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Introduction

The paper analyses questions of asset pricing and hedging under transaction costs and
trading constraints. A new approach to these questions is proposed. The approach is sug-
gested by analogies between dynamic models of financial markets and (stochastic analogues
of) the von Neumann-Gale model of economic growth [17], [38].

We obtain, in the general context of transaction costs and trading constraints, analogues
of the classical results of Harrison and Pliska [18], Dalang, Morton and Willinger [8] and
others related to the Fundamental Theorem of Asset Pricing (FTAP), providing criteria for
the absence of arbitrage. Also, we generalize the known principle of valuation of contingent
claims based on the notion of superhedging (e.g. Pliska [32]). According to this principle,
the minimum initial level of wealth needed to superhedge a contingent claim represents a
"fair price” of the claim.

We look at the topics in question from the classical mathematical economics standpoint.
We regard the FTAP as a version of various results in general equilibrium theory and
multiobjective programming dealing with the characterization of Pareto-optimal states —
see, e.g., Aliprantis, Brown and Burkinshaw [2]. These results describe such states as
maxima of positive linear functionals (supporting prices). In different specialized models,
assertions of this kind take on different specific forms. In the conventional model of a
frictionless financial market, they are expressed in terms of the concept of an equivalent
martingale measure. In more realistic settings, however, this concept requires substantial
generalization and refinement.

A key role in this work is played by the observation that dynamic models of financial
markets can formally be described by using the framework of homogeneous convex random
dynamical systems. These dynamical systems are defined by multivalued stochastic opera-
tors satisfying certain conditions of convexity and homogeneity. Such multivalued operators



have been studied, primarily, in connection with stochastic analogues of the von Neumann—
Gale model of economic growth (see von Neumann [38] and Gale [17] for the deterministic
theory, and Radner [33]|, Dynkin [11], Evstigneev and Kabanov [14], Arnold, Evstigneev
and Gundlach [4], Anoulova, Evstigneev and Gundlach [3] for stochastic generalizations).
The methodology and the technical tools developed in that field turn out to be helpful for
understanding the general structure of no-arbitrage criteria and hedging results in models
with transaction costs and trading constraints.

In the present work, we concentrate primarily on the conceptual aspects and on the
economic content of the theory under review. Therefore we try to reduce technical consid-
erations as much as possible. We focus on finite-dimensional cases, assuming that the time
parameter takes on a finite number of values and the underlying probability space is finite.

We initiated this study in 2000, and the preliminary results were set out in our paper
[15]. In the course of further work, the paper has been substantially revised. In particular,
a more general model for a financial market with frictions, comprising a broader range of
examples and applications, has been suggested.

The paper is organized as follows. In Section 1, we present the classical model for the
valuation of hedgeable contingent claims in a frictionless financial market with a riskless as-
set. Section 2 provides a version of the theory applicable to superhedgeable (non necessarily
hedgeable) contingent claims. Section 3 describes a general dynamic model for a securities
market with transaction costs and trading constraints. In Section 4, we examine the central
notion of the theory under consideration — the notion of a consistent price system (playing a
role similar to the role of an equivalent martingale measure in the classical setting). Section
5 contains a discussion of analogies between the dynamic securities market model we study
and the von Neumann-Gale model of economic growth. Sections 6 and 7 review a number of
examples and applications. The Appendix assembles some general facts in convex analysis
employed in this study.



1 The classical model of a frictionless financial market

1.1 The basic elements of the model

Let A = {a!,...,a’} be a finite set, elements of which are interpreted as possible states of
the world. At each time t = 1,2,...,T, any of these states can be realized. That state of the
world which is realized at time ¢ is denoted by a;. A sequence w = (ay,...,ar) is called a
history (scenario) of the market over the time period 1,2,...,T. For each t = 1,2,...,T — 1,
the sequence w! = (ay, ..., a;) is called the partial history or partial scenario (up to time t).

For each w = (ay, ..., ar) € , we are given a probability measure! P on the set Q of all
market scenarios. Thus, to each w € €2, a positive number P(w) is assigned representing the
probability that the market will develop according to the scenario w. The sum of all these
probabilities is 1:

> Pw)=1.

weN

In this work, we always assume that P is strictly positive: P(w) > 0 for each w. We denote
by the letter E the expectation with respect to the probability measure P:

EX =) X(w)P(w),

where X (w) is any function on €.
There are N + 1 securities (assets) ¢ = 0,1,..., N. The vector of their prices at time
t=0,...,T is denoted by

S, = (8,81, ..., M),

We assume that the vector S; (¢ > 1) is a function of the sequence w* = (ay, ..., a;) of the
states of the world up to time ¢:

St = St(ala ey at)'

In other words, every coordinate S¢ of the vector S; — the price of asset i at time ¢t > 1 — is
the given function

Si = Si(ay, ..., a,)

of the sequence w' = (ay, ...,a;). The vector Sq = (53, S3, ..., SY) is constant (non-random).
The Oth asset i = 0, plays a special role. Its price SP at time ¢ (i.e., the Oth coordinate
of the vector S;) is supposed to be non-random and equal to (1 + 7)t, where r > 0 is some

IThe terms ”probability”, ” probability measure” and ”probability distribution” are used interchangeably.
p
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given number. Asset i = 0 may be interpreted as cash, r being the interest rate (the same
for lending and borrowing).

Any real-valued function X (w) of w € Q will be called a contingent claim. A contingent
claim is interpreted as a contract that allows its owner to receive the specified amount of
money X (w) at time 7. This amount might be both positive and negative. In general,
X (w) might depend on the whole market history w = (a4, as, ..., ar) — on the current state
of the world, ar, at time 7" and on the previous states aq, as, ...,ar_1. A contingent claim X
can be regarded as a security (asset) which can, as well the basic securities i =0, 1,2, ..., N,
traded on the market. The price of this security at time 7" is equal to X(w). The amount
X (w), and hence the price, might be negative if the contract at hand involves the obligation
to pay, rather than the right to get, the prescribed sum of money.

What is the fair price of a contingent claim at time ¢t = 07 The general informal principle
in this model is that the price of X is the minimum level of wealth at time 0 which is needed
to hedge the contingent claim X. ”Hedging” means that we can generate the payoff of the
contingent claim by a self-financing trading strategy. In the next subsection, we will give
precise definitions of the these notions.

1.2 Trading strategies

A trading strategy is a sequence H = (hy, ..., h;.) where h, = (h, h}, ..., hY) is the investor’s
portfolio at time t = 0,1, ..., T. Portfolio positions are expressed in terms of units of assets,
so that h! is the number of units of asset 4 in the portfolio h;. The investor can choose
a portfolio hy (¢ > 1) based on the observation of the history w* = (ay,...,a;). Thus, in
general, h; is a function of w:

ht: ht(wt), t= 1, 2, ceey T.

To emphasize this fact the term contingent portfolio is used. The portfolio hg = (h3, h}, ..., hY)
is constant (non-random). By selecting a trading strategy, the investor specifies what port-
folio he/she is going to have at each time t = 0,1, ..., T in each possible contingency.

A central role in this theory is played by self-financing trading strategies, i.e. those
satisfying the following condition?:

<Sta ht—l> = <Sta ht>a t = 1, 2, aeey T (1)

Condition (1) means that the investor, at each time period, rebalances his/her portfolio
(replaces the old one, h; ;, by the new one, h;) remaining within the budget constraints.

Mf u=(u?,...,uN) and v = (27, ...,vN) are vectors, then we write

N . .
(u,v) =uv = E utv*
i=0

for the scalar product of these vectors.



According to (1), the value (S;, h;) of the new portfolio h;, expressed in terms of the new
price system S; = (S?, S}, ..., SN), is equal to the value (S;,h; ;) of the old portfolio h; ;
expressed in terms of this price system. Self-financing strategies exclude consumption and
do not involve an inflow of external funds. During the time period 0 < ¢ < T, the investor
"plays” on price changes with the view of obtaining at the end of the period a portfolio hp
that is most preferred to him/her in the sense of one criterion or another.

We say that a contingent claim X(w) can be replicated, or hedged, if there exists a
self-financing trading strategy H = (hy, ..., hr) such that

(St,hr) = X(w)

for all w (note that Sz and hy depend on w). This means that the strategy H yields exactly
the same payoff at time T as the contingent claim X (w). To price such contingent claims
we will use the general principle outlined above: the price of X is the minim level of initial
wealth needed to hedge X. Formally, this price can be defined as

inf (So, H) @)

where the infimum is taken over all self-financing strategies H = (hO’hl,_“,hT) replicating X,
i.e., satisfying

(S, Hy) = X (w) (3)

for all w. Typically, the greatest lower bound in this minimization problem is attained, and
so we can replace "inf” by “min”.

1.3 The pricing of contingent claims by no arbitrage

In the present model, one can formulate a very natural assumption under which the value of
the objective function (Sy, H,) in the minimization problem (2), (3) is the same for all self-
financing strategies H satisfying (3). This remarkable fact lies in the basis of the principle
of asset pricing by no arbitrage. To formulate the assumption, let us introduce the following
definition. For a trading strategy H = (hy, ..., hr), denote by Vj¥ and V' the values of its
initial and final portfolios:

VOH = <SOah0>a VTH = <STahT>'

(Note that V1 =V} (w) is random, while V7 is not.) Let us say that there is an arbitrage
opportunity if there exists a self-financing trading strategy H such that

VHE <0,



VA (w) > 0 for all w, and V;¥(w) > 0 for at least one w.

It is said here that the self-financing strategy H allows, starting from some non-positive
wealth at time 0, to get at time T non-negative wealth always and strictly positive wealth
sometimes (for at least one w). The fundamental assumption we impose is this:

(NA) Arbitrage opportunities do not exist.

If (NA) holds then the level of initial wealth needed to replicate or hedge X is defined
uniquely. In other words, the following assertion holds.

Theorem 1.1. Let hypothesis (NA) hold. Let H = (h,...,h;) and H' = (h, ..., h7.) be
two self-financing trading strategies hedging the same contingent claim X. Then

<SO, h0> = <86a h6> .

Proof. Suppose the contrary: (Sg,hg) # (Sg,hj). We may assume without loss of
generality that (So,hjy) > (S, hy), ie., the difference A = (Sg, hy)— (So, hg) is strictly
positive. Consider the trading strategy H® = (hg', ..., h}), where

h? = (A,0,0,...,0)

for each t (the Oth coordinate of the vector h2 is A, and all the other coordinates are equal
to zero). Clearly the strategy h2 is self-financing — because the portfolio h2 does not change
in time. Consequently, the strategy H =(hy, ..., h7) defined by

h, = h; — h} + h#
is self-financing. For this strategy, we have
Vo' = (So, ho) = (So, ho) — (So,hp) + A=—-A+A =0
and

VTI’:I = (Sr,hr) = (S, hr) — (Sr,b7) + A(l+1)" =

X—X+A(l+r)"=A0+7r">0
(we have used the fact that S? = (1 + ), t = 0,T). Thus the strategy H provides an

arbitrage opportunity. A contradiction. U

1.4 Risk-neutral probabilities

We have shown that, under the no arbitrage hypothesis (NA), the initial values V; and
V&' of two self-financing trading strategies H and H' hedging the same contingent claim X
coincide. This fact leads to the following no-arbitrage pricing principle:
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The fair price I(X) of a contingent claim X
is equal to the initial value VI of any self-financing
strategy H replicating X.

Now a question arises: how can we compute {(X)? To answer this question we introduce
the notion of a risk-neutral probability measure. A probability @ on €2 is called risk-neutral
if the expectation with respect to this measure of the net present value of any self-financing
trading strategy is zero:

ECVH = 0. (4)
The symbol E?X denotes the expectation of a random variable X with respect to Q:

E9X =) X(w)Qw).

weN

The net present value for a trading strategy H = (hy, ..., hr) is defined by

H
Vr H

u _ (St hr) _
V= (1+r)T 0

(e (So, hg) =

Since Sg, hy and r are non-random, formula (4) can be written

ECVH
VT _ ‘/OH — 0
(1+r)T
or

ERVH
H T
Vo' = (1+nr)T (5)

Thus the value Vi of the initial portfolio hy of any self-financing trading strategy H is equal
to the expectation — with respect to the risk-neutral measure @) - of the discounted value

Vit
1+nr)T

of the final portfolio h of this strategy. The property we have just formulated is an equiv-
alent form of the definition of a risk-neutral probability measure: formula (5) is equivalent
to formula (4).

We will consider only those risk-neutral measures ) which are strictly positive,

Q(w) > 0 for all w. (6)

Property (6) will be included into the definition of a risk-neutral probability measure.
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Recall that a contingent claim X (w) is hedgeable if there exists a self-financing trading
strategy H = (hy, ..., hy) such that

X(w) =V (w).
If Q is a risk-neutral probability, we have
VH
ge | Vo _ym| _g
{(1 +r)T 0 ’
or, equivalently,
H
o X _pe_ Vo _ym
(14nr)T (1+r)T 0

Thus we obtain the following formula for the fair price [(X) of contingent claim X :

X

This formula leads to the celebrated risk-neutral pricing principle:

I(X)=E®

The fair price {(X) of a contingent claim X
is equal to the discounted risk-neutral expected
value (1 +r)"TE?X of the contingent claim X.

1.5 Fundamental theorem of asset pricing

We have defined the notion of a risk-neutral probability and we have shown how such
measures can be used for asset pricing. To employ the risk-neutral pricing principle, we
have to be sure that risk-neutral probabilities exist. Fortunately, this is the case under the
very general assumption we have imposed — the no arbitrage hypothesis (NA).

Theorem 1.2. A risk-neutral probability measure ezists if and only if the market does
not allow for arbitrage opportunities.

This result, going back to Harrison, Kreps and Pliska, is called the Fundamental Theorem
of Asset Pricing (FTAP).

Before proving this theorem, we formulate an equivalent version of hypothesis (NA).

(NA1) There is no self-financing trading strategy H for which the net present value
VH(w) is non-negative for all w and strictly positive for some w.

Proposition 1.1. Hypotheses (NA) and (NA1) are equivalent.

Proof. (NA)=(NA1). Suppose (NA1) does not hold, i.e., there exists a self-financing
trading strategy H = (hy, ..., hr) such that V¥(w) > 0 for all w and VH(w) > 0 for at least
one w. Recall that

VE = (14 7r)T(Sr,hy) — (So, hy).



Put A = (Sg,hy) and consider the trading strategy H® = (hg,...,h}), where h® =
(A,0,0, ...,0) for each t (the Oth coordinate of he* is A; all the others are equal to zero).
The strategy H2 is self-financing since h2 does not change in time. Hence the strategy
H = (h,, ..., hr), where h, = h; — h{, is self-financing. We have

Vot = (So, ho) — (S, hf") =0
because (So, hy') = S§ - A = A = (S, hy). Further,

V' = (Sr,hr) = (Sr,h2) = (S, hr) — (14 1)"A =

(St, hr)

(1+7”)T[m - Al =
(1+ r)T[ig’i’ l;)TT> — (So, ho)] = (1 +7)"VH.

We can see that the strategy H is an arbitrage opportunity. Indeed, Vi = 0, while V1 =
(1+7)TVH >0 for all w and VA = (14 7)TVH > 0 for some w. This contradicts (NA).

(NA1)=(NA) Suppose (NA) does not hold. Then there is H satisfying Vi <0, VH >0
for all w and V2 > 0 for some w. But then the last two inequalities hold for VH =
(14 7)TVE — VA which contradicts (NA1). O

Proof of Theorem 1.2. ”Only if”. Let @) be a risk-neutral probability. Suppose (NA)
does not hold. Then, as we have shown, (NA1) does not hold, i.e., for some H, we have
VH (w) > 0 for all w and VH (w*) > 0 for some w*. But in view of the definition of a risk-
neutral probability (see (1)), we have 0 = E?VH =% o Q(w)VH(w) > Q(w*)VH(w*) > 0,
which is a contradiction (0 > 0).

YIf”. Suppose (NA), and hence (NA1), holds. Consider the following maximization
problem:

max EVH
H
subject to
VH(Ww) > 0forallw e Q.

Here the maximum is taken with respect to all self-financing trading strategies H =
(hg, hy, ..., h7) satisfying constraints (4). We regard H as a vector whose coordinates are

hi(w), i=0,1,..,N, t=0,1,2,...,T, w € Q.



For each w € (), the net present value V¥ (w) is a linear function of H, and so the
constraints in (4) are linear. (The number of the constraints is equal to the number of
points in ). Also, EVH is a linear function of H, and so the maximization problem (3),
(4) is a linear programming problem.

Observe that the maximum value in the problem

max EVH,
H

VHE(w) >0 for all w € Q,

is zero (it is attained at H = 0). Suppose the contrary. Then there exists H such that
VH(Ww) >0 for all w € Q and EVH > 0. But then VH(w) > 0 for at least one w. This
contradicts (NA1). O

Definition 1.1. The market under consideration is called complete if every contingent
claim X (w) can be hedged.

Theorem 1.3.The following assertions are equivalent:

(i) For every t = 0,1,....,T — 1 and for every contingent portfolio hy = hy(w') of risky
assets 1 = 1,2, ..., N, we have

EQ<ht, St4+1 — St> =0.

(ii) The probability measure Q is risk-neutral.

Condition above means that the expectation E? of the discounted profit (hy, s¢.1 — ;) is
equal to zero for each contingent portfolio h;. In the applications of the risk-neutral pricing
principle, we will construct risk neutral probabilities ) by verifying condition (12). This is
much easier than dealing with the net present value directly. We do not provide a proof of
Theorem 1.3 here; it will follow from the results in Section 7 (Theorem 7.1).
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2 Superhedging of (non-hedgeable) contingent claims
in a frictionless market

2.1 Superhedging

Consider the model of a frictionless financial market described in the previous section. We
have presented a theory for the pricing of hedgeable contingent claims in the framework of
this model. How to deal with non-hedgeable contingent claims? To this end we will use the
following definition. Let X (w) be a contingent claim. Let us say that a trading strategy
H = (hy,...,h;) superhedges (superreplicates) X if

(Sz, hy) > X(w) (7)

for all w. According to the general pricing principle used in this work, it is natural to
define the fair price [(X) of the contingent claim X as the minimum level of initial wealth
v such that there exists a self-financing trading strategy H = (hy, ..., h;) superhedging X
and satisfying

Equivalently, we can write

1(X) = min (So, o), ®)

where the minimum is taken over all self-financing strategies H = (hy, ..., hy) satisfying (7).
Here, (So, hy) (which we also denoted by V) is regarded as a function of trading strategy
H.

Note that the minimum in (8) is, indeed, attained (and finite) if the no-arbitrage hy-
pothesis (NA) holds. To prove this, observe that in (8), we deal with a linear programming
problem 3. It is known that the minimum in such problems is attained if and only if the
objective function is bounded below. To provide a lower bound on the objective function
consider a risk-neutral probability (), which exists by virtue of the FTAP. Then we have

_ <ST’ hT)
<SOa hO) - EQ (1 _{_,’,.)T

for any self-financing strategy H = (hy, ..., h;), and if H superreplicates X, then (7) yields

(So,hy) > EQM > E9 X

Qrnr = A %)

3This problem involves the inequality constraints (7) and the equality constraints arising from the self-
financing condition (S¢,h,_;) = (S, h,).
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Consequently, there is a lower bound for the initial values of all self-financing strategies
superreplicating X .

The above definition can be applied to each contingent claim in our model because, for
each contingent claim X, there is a self-financing strategy supperreplicating X. Indeed,
since € is finite, we can consider the maximum value of X,

M = max X (w),
weN

and consider the strategy H = (hy, ..., hy) for which
h, = (M,0,0,...,0). for all t =0, ..., T.

This is a buy-and-hold strategy (the portfolio does not change in time), and so it is of course
self-financing. Furthermore,

(Sr, hy) = (147" - M > X(w)

for all w, which means that H superreplicates X.

Assume that the no arbitrage hypothesis (NA) holds and suppose that the contingent
claim X is hedgeable. Then the new definition of [(X), given in this section, coincides with
the old one, given in the previous section. This follows from the proposition below.

Proposition 2.1. Let H = (hy, ..., h;) be a self-financing strategy such that (S, h;) =
X (w) for allw. Let H' = (hj, ..., h}.) be a self-financing strategy such that (Sz, hy.) > X (w)
for all w. Then

<SO, h0> < <SO, h6>

Proof. Suppose (So, hy) > (Sp, hy). Then (Sr, h7) > X (w) for at least one w. Define
H = H' —H. The strategy H is self-financing strategy and we have

VE <0, VE >0 for all w,

Vi > 0 for some w.

Consequently and there exits an arbitrage opportunity. This contradicts (NA).

We can see from Proposition 2.1 that the minimum in the optimization problem (8) is
attained at a self-financing strategy H such that inequality (7) holds as equality. But if so,
the initial value of such a strategy is defined uniquely (under the no arbitrage hypothesis
(NA)), and it coincides with the price [(X) defined in the previous section.
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2.2 Hedging constraints

Throughout this subsection, hypothesis (NA) is supposed to hold. How can we compute the
minimum level of wealth needed to superhedge contingent claim X ? First of all, observe
that inequality (9) implies
[(X) = min (Sq, hy) > EQL
I : e e (IR T
(H runs through the set of all self-financing strategies superreplicating X). It turns out
that the following formula holds

X
_ Q

0= s P i

where () ranges over the set Q of all risk-neutral probabilities. This formula provides a

method for computing the fair price of any, not necessarily hedgeable, contingent claim.

Recall that the notion of ”fairness” is defined in terms of the minimum level of wealth
needed to superreplicate X.

To establish formula (10), we will include the dynamic security market model into the

abstract mathematical framework described in the Appendix and use Theorem A.5 to derive
(10). To this end define

(10)

A= {(UO, vr) t Uy > VE, vp < V7 for some self-financing strategy H} ,

Here, v, is a number, and vr is a function of w: vy = vr(w). The inequality vy < VI is
supposed to hold for each w € Q. The meaning of the set A is as follows: a pair (vg, vr)
belongs to A if and only if we can superreplicate the contingent claim vy starting from
the initial endowment vy. Thus the set A specifies the hedging constraints in the market
under consideration: it determines the totality of those contingent claims which can be
superreplicated starting from any given initial endowment.

Further, we define

K = {(vo,vr) : vo <0, vr > 0},

where vy is a number and vy = vr(w) is a function of w € 2. As above, the inequality
vr(w) > 0 is supposed to hold for each w.
It is easy to verify that A and K are cones. Let us show this first for A. Take any

(vo,vr) € A, (v),vy) € Aand o, € RL.

Consider self-financing strategies H and H' such that vy > VE v < VE o) >V o <
VE' and put H = oH + SH'. clearly H is a self-financing strategy and

avy + Bup > aVi + BV = VA,

13



avy + Bvp < aVE + gVE = VE.
The last two inequalities mean that
(awp + Buy, avr + Buy) € A.

Consequently, we have proved that A is a cone.
Note that the cone A is polyhedral, and hence closed. This is so because we can
represent A as the projection on the space of pairs (vg, v7) of the polyhedral cone

A= {(UO,UT,H) Ty > VOH, vp < VTH}

in the space of triples (v, vr, H), where vy is a number, vr(w) is a function of w and H
is a self-financing strategy. The set A is indeed a cone because if (vo,vr,H) € A and
(vg, v, H') € A, then

a(UOaUTaH) + ﬁ(v(l)aUITaHl) € AV

for all &, 3 > 0. The cone A is polyhedral because it is determined by a finite set of linear
equalities and inequalities.
Now let us prove that K is a cone. Consider any

(vo,vr) € K, (vg,v7) € K and o, B € RL.
Then
vo,vy < 0, vp,vp >0
and so
avy + Bvy <0, avy + Bug > 0.
Thus (avy + Buy, avr + Bvy) € K, which proves that K is a cone. It is clear that I is

polyhedral since it is determined by a finite family of linear (non-strict) inequalities.

2.3 An equivalent version of the no arbitrage hypothesis

Proposition 2.2. The market does not have arbitrage opportunities (i.e. hypothesis (NA)
holds) if and only if the following assertion is valid:

(NA) AnK = {0}.

Proof. (NA)=>(NA). Suppose (NA) does not hold. Let us show that (NA) fails. If
(INA) does not hold, then there is (vg, vr) such that

(UOaUT) # 0) (UOaUT) S Aa Vo S 0) Ur Z 0.
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Since (vg, vr) # 0, then either vy # 0 or vy # 0.
Consider first the case where vr # 0. Then vy > 0, vr(w) > 0 for at least one w. By the
definition of A, there is a self-financing H such that

0>wvy >V,

VA > vp >0 for all w
and
Vi > wp > 0 for some w.
But this is exactly an arbitrage opportunity in the sense of (NA).
Now consider the case where vy # 0. Then vy < 0. Define the following strategy
H' = (h),...,h}), h, = (—%,o,o, 0), t=0,..,T.
Clearly, H' is self-financing, and so the strategy H = H + H’ is self-financing too. We have

VE =V v -3 =2 <0,

and
VOFI =VE4VHE > v - (%)(1 +7)T > 0 for each w.

Consequently, H is an arbitrage opportunity.
Thus we have proved that (NA)=— (NA). Now we will prove the converse implication.
(NA) =(NA). Suppose (NA) does not hold. Then there is a self-financing strategy H
such that

VH <0, V>0 for all w, V; > 0 for some w.

Define vy = V@ and vr = V. Then (vo,vr) # 0, which means that A N K # {0}.
Consequently, (NA) fails to hold.
The proof is complete. O

2.4 No arbitrage criteria and consistent discount factors

We will apply Theorem A.3 to the cones A and K defined in the previous subsection, and
this will lead to a result about necessary and sufficient conditions for the validity of the
no-arbitrage hypothesis (INA). This result (Theorem 2.1below) will provide a no arbitrage
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criterion in terms of “stochastic discount factors”. It will yield a new proof of the FTAP
(different from that already given in Section 1).

According to Theorem A.3, (NA) holds if and only if there exist a linear functional
q = q(v) [v= (vo,vr)| such that

ge kKt (11)
and
q(v) <0 for all v € A. (12)
Observe that any linear functional g(v) can be written as
q(v) = —govo + E grvr [v = (vo,vr)], (13)
where ¢ is some number, gr(w) is some real-valued function of w, and
E grvr = E gr(w)vr(w) = w%]ﬂqT(w)vT(w)P(w).

Indeed, we can regard a pair v = (v, vr) as a vector of dimension 1+ L, where LT is
the number of points in Q (the number of market scenarios). For each w, the value of the
functional vr(w) at the point w is regarded as a coordinate of vector v. A linear function
q(v) of such a vector can be represented as a scalar product of the form

q(v) = lyvy + WEQZT (w)vr(w) (14)

for some vector [ = (ly, l7) of the same dimension as v = (v, vr). Now if we define

g = —lo, gr(w) = Z;EZ;’

we can write (14) as
q(v) = —qovo + WEQQT(W)UT(W) - P(w),

which leads to formula (13).

Theorem 2.1. The no arbitrage hypothesis (NA) holds if and only if the following
assertion is valid:

(Q) There exists a strictly positive number gy and a strictly positive real-valued function
gr(w)such that

E gV = gV (15)

for all self-financing strategies H.
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The ratio gr/qo may be interpreted as a stochastic discount factor with the following
property: the expected discounted value of the final portfolio of any self-financing strategy
H is equal to the value of the initial portfolio of this strategy. If this property holds, the
discount factor qr/qo is called consistent.

Proof. We have already noted that, by virtue of Theorem A.3, (NA) holds if and only
if relations (11) and (12) are valid for some ¢ = (qo, ¢r), where gp is a number and gr(w) is
a function of w.

Observe that ¢ € K* if and only if

¢ > 0, gr(w) > 0 for all w;
and ¢ € Kt if and only if
do > 0, gr(w) > 0 for all w.

Consequently, (11) means that gy and gr are strictly positive.
Let us examine when inequality (12) holds. Recall that v = (v, vr) € A if and only if

v > VOH and vr < VTH
for some self-financing strategy H. It follows from (12)and (13) that

—qVo' + E grVi <0 (16)
for any self-financing H. Conversely (16) implies (12), and so (12) is equivalent to (16).

Since —H is also a self-financing strategy, we have
—oV 4+ E gV <,
but
Vi =~y and Vi = -V,

and so

wVy! — E qrVF < 0. (17)

by combining (16) and (17), we obtain that (12) is equivalent to (15), which completes the
proof. O

Now let us apply Theorem 2.1 to obtain a new proof of the FTAP. Consider the self-
financing strategy H = (hy, ..., h;), where h, = (1,0,0, ..., 0). For the strategy H, we have

VE=1, VE=(1+n".
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Then (15) yields

E Z—T(1 +r)T =1 (18)
Now we can write (15) as
. Vi _om
E[1+r) }.(HT)T_VO. (19)
Define
@) = T 14yt (20

4o

and consider the probability measure

QW) =qw) - P(w), we (21)

The last formula indeed defines a probability measure because ¢(w) > 0 (and so Q(w) > 0)
and

2 QW)= 2 gw)P(w)=Eqw) =1

weN we

by virtue of (18) and (20).
For any function Y (w),

ECY = WEQQ(w)Y(w) = wggq(w)P(w)Y(w) = EqY.

consequently, (19) can be written as
o Vi
(1+n)T

Thus we obtain that the probability measure @) defined by (19) and (20) is risk-neutral.
The above arguments lead to another proof of the FTAP.

=V

2.5 Minimum wealth needed for superhedging

We are going to prove the following theorem.
Theorem 2.2. The minimum level of wealth, [(X), needed to superhedge a contingent
claim X is equal to the supremum




of the discounted expected values of X with respect to all risk-neutral measures.

Proof. To prove this assertion, we will apply Theorem A.5 to the cones A and K defined
in subsection 2.2. first of all, we observe that condition (NA) holds (this has been proved
in Proposition 2.2).

Denote by Q the set of those pairs ¢ = (qo, ¢r) which satisfy (11) and (12). Recall that,
with every pair of the form g = (qo, gr), we associate the linear functional

q(v) = —qovo + Eqrvr
of v = (vp, vr). The property indicated in (11) means that
¢o > 0 and ¢r(w) > 0 for each w. (22)

As we proved in Proposition 2.3, (12) holds if and only if

E LR -y (23)
do
for each self-financing H. By virtue of Theorem A.5, v = (v, vr) € A — K if and only if
q(v) = —qovo + E qror <0 (24)

for all ¢ = (qo, qr) satisfying (22) and (23). It follows from the definitions of the cones .Aand
K that A — K = A. Consequently v = (vg,vr) € A if and only if (24) holds for all (qo, gr)
satisfies (22) and (23).

Let us write (24) in the following form

FE q—TUT S Vo- (25)

9

It was demonstrated in the previous subsection (see (18) - (21)) that gy and gr satisfy
(23) if and only if the probability

R (R ® (20

is risk-neutral. We can write (25) as

Ur
E°—— < 2
(14+r)T — Yo, (27)

where @) is given by (26). Consequently, (vy, vr) € A if and only if (27) holds for all
risk-neutral probabilities Q(w) > 0. In other words, (vy, vr) € A if and only if

Ur
vp > supE? ———,
gee (1+n)T
where the supremum is taken over the set Q of all risk-neutral probabilities.
The proof is complete. 0
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3 Dynamic securities model with transaction costs and
trading constraints

3.1 The data of the model

We describe a model of a financial market influenced by random factors. Let A = {a!, ..., a}
be a finite set, elements of which are interpreted as possible states of the world. At each
time t = 1,2,...,T, any of these states can be realized. The state of the world which is
realized at time ¢ is denoted by a;. A sequence w = (ay, ..., ar) is called a history (scenario)
of the market over the time period 1,2,...,T. For each t = 1,2,...,T — 1, the sequence
w' = (ay,...,a;) is called the partial history or partial scenario (up to time t). For every
w = (ay,...,ar) € Q, we are given a number P(w) > 0 such that > ., P(w) = 1. The
numbers P(w), w € §, define a probability measure on the set Q of all market histories:
P(w) is the probability of the realization of the scenario w. The situation at the market at
time ¢ might depend on the realization w* = (a4, ..., a;) of the random states of the world at
present (at time t) and in the past (at times 1,2,...,t — 1).

Trading at the securities market is possible at any of the dates t =0, 1, ...,T. At time ¢,
N; assets (securities) i = 1,2, ..., N; are traded. A portfolio of assets at time 0 is a vector
ho € RNo. A (contingent) portfolio of assets at time ¢t = 1,2, ..., T is a vector function

he(W') = (hy ("), -, B (")) (28)

of dimension N; depending on the observed market history w® = (a4, ...,a;) up to time ¢.
The coordinate h! of the vector h; stands for the number of units of asset ¢ in the portfolio
hy. The set of all contingent portfolios (28), i.e., the linear space of vector functions h;(w?)
with values in RM, will be denoted by X, (t = 1,2,...,T). For t = 0, we will write X, = RMo.

Two linear spaces V, and Vr are given — the spaces of initial endowments and contingent
claims. Elements of V), are mg-dimensional non-random vectors (interpreted as investor’s
initial endowments). Elements of Vr are all mp-dimensional vector functions of w (inter-
preted as contingent claims). Generally, both initial endowments and contingent claims can
be vectors, rather than scalars, which is the case when there are several currencies in the
market under consideration. An important special case is mg = ms = 1; in this case, initial
endowments and contingent claims are measured in terms of a single currency (cash).

In the model, a sequence of cones

Zt - ‘)(t—l X Xta t= 1,2, ...,T, (29)

describing trading constraints is given. Elements of Z; are pairs (h;—1,h;) of contingent
portfolios such that h; can be obtained at time ¢ by rebalancing h,_; without an inflow of
external funds. When rebalancing, one can buy new assets for the portfolio h; only at the
expense of selling some assets contained in h;_;. Generally, the operations of buying and
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selling assets involve transaction costs. If there are no transaction costs and no constraints
on admissible portfolios h; at each time ¢, then

Zy = {(ht—1,ht) € X1 X Xy 2 (St hy—1) < (Si, he) }y (30)

where S; = S;(w') is the vector of the market prices of the assets.

The model at hand allows to take into account proportional transaction costs. The
assumption of proportionality of transaction costs is reflected by the assumption that each
of the sets Z; is a cone, and so if (h;_i, h;) is a pair of contingent portfolios in Z;, then
(Ahi—1, Ahy) € Z; for all A > 0. Furthermore, if portfolios h; and h} can be obtained
by rebalancing h;—; and h;_;, respectively, then h; + h} can be obtained by rebalancing
hi—1 + h}_,. Various models of proportional transaction costs considered in the literature
lead to constraint sets Z; possessing these properties.

Further, in the model we are given two cones

WOQVOXXOandWTQXTXVT.

The cone W, describes possibilities of constructing an initial portfolio hq starting from some
initial endowment vy € V. It is supposed that an investor with initial endowment vy can
construct a portfolio hg at time 0 if and only if (vo, ho) € Wo. In the case of a frictionless
market with mg = 1,

W() = {(Uo, ho) S VO X XO : S()h() < Uo}, (31)

where Sy is the vector of asset prices at time 0. Clearly (31) means that an investor can buy
those and only those portfolios of assets at time 0 whose values, expressed in terms of the
price vector Sy, do not exceed the initial endowment vg. The cone Wi describes possibilities
of portfolio liquidation and superhedging contingent claims. Given a contingent claim vy,
an investor with contingent portfolio hr at time T can superhedge vr by liquidating the
portfolio hr if and only if (vr, hr) € Wr. If the market is frictionless and mr = 1, then

WT = {(UT, hT) B SThT S UT} . (32)

Finally, we assume that proper cones My C Vy and M7 C Vr are given. These cones
define partial orderings <; (¢t = 0,7) in the spaces Vy and Vr according to the formula

v< v =1 —v e M,

(t=0,T). We write v/ >; v if and only if v <; v/. Important examples of the cones M, are
the standard cones in the spaces V; (t =0, T):

MO = RTO, MT = {UT S VT : UT(LU) Z 0} .
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We write > (or <) between two vector functions of w if the corresponding inequality holds
for each w and coordinatewise. For most of examples we have in mind, the consideration
of the standard partial orderings in the spaces of initial endowments and contingent claims
is sufficient. There are some other settings, however, where it is convenient to deal with
more general, not necessarily standard, partial orderings in V, and Vr (see Kabanov [23]
and Kabanov and Stricker [25]).

3.2 The problem of superhedging contingent claims

The general question we are going to consider is as follows. Suppose a contingent claim
vp € Vr is given. What is the set of initial endowments vy € V, starting from which an
investor, trading in the financial market, can superhedge vy at time 77 It is supposed that
at time 0, the investor can construct a portfolio hg satisfying (vo, ho) € Wp, then follow
some feasible trading strategy

H = (ho, hq, ..., hr), (33)
satisfying the constraints
(ht—la ht) S Zta t = 1, aeey T, (34)

and finally liquidate the portfolio hr to superhedge the contingent claim vy. The last step
(liquidating h7 and superhedging v7) can be implemented if and only if (hz,vr) € Wr.

A feasible trading strategy H = (hg, hy, ..., hr) is defined as a sequence of contingent
portfolios hy € X; (t = 0,...T) satisfying the trading constraints (34). In the case of a
frictionless market, where the cones Z; are defined by (30), those and only those strategies
are feasible which are self-financing. In the general case, the trading constraints (34) express
the same idea of self-financing, but, in contrast with (30), they may take into account
transaction costs and portfolio constraints. A number of examples will be analyzed in detail
in the sequel.

3.3 Hedging constraints and no arbitrage

The general problem outlined in the previous subsection is concerned with the analysis of
pairs (vg, vr) € VoXVr such that the contingent claim vy can be superhedged starting from
the initial endowment vy. Such pairs (vp, vr) are elements of the set

A = {(vo,vr) : (vo, ho) € Wy and

(hr,vr) € Wy for some feasible strategy H = (hy, ..., hr)}- (35)
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In other words, (vy,vr) € A if and only if there is a feasible strategy H = (hy, ..., hy) for
which (vg, ho) € Wy and (hg,vr) € Wyr. Thus, A provides a description of the hedging
constraints in our model.

Define

K = {(vo,vr) € VoxVr : v9 <o 0 and vy >r 0}. (36)

We will examine the above-mentioned general hedging problem under the following funda-
mental hypothesis.

(NWA) AnK = {0}.
This hypothesis expresses the idea of the absence of arbitrage opportunities in the market
under consideration. Suppose for the moment that the partial orderings <; (¢ = 0,T") are
standard (in this case we drop the subscript ”#’). Then the fact that (N .A) fails to hold
means the existence of a pair (vg,vr) € A such that

UOSO, UTZO

and (vg,vr) # 0. Then either vy # 0 or vy # 0. In the former case, we can superhedge
a nonnegative contingent claim starting from an initial endowment vector that is strictly
negative in at least one component and non-positive in all its components. In the latter
case, starting from a non-positive initial endowment, we can superhedge a contingent claim
that is always non-negative and strictly positive in at least one component for at least one w.
Recall that, in the current model, initial endowments and contingent claims are, generally,
vectors, which reflects the possibility of several currencies available in the market.

Central results of this work we will be obtained under the following assumption:

(I) The cones A and K are closed.

We note that if the cones Z; (t = 1,...,T) and W; (¢t = 0,T') are polyhedral, then A is
polyhedral as well, because A can be represented as the projection on the space VyxVr of
the polyhedral cone

A= {(vo,vr, H) : H = (ho, ..., hr) is feasible, (vo, ho) € Wo, (hr, Vr) € Wr}.
Consequently, in this case, A is closed. The cone K can be represented as
K= {(Uo,UT) S V()XVT Y € —Mo, Ur € MT} = (—Mo) X MT.

consequently, if My and My are closed (in particular, if they are polyhedral), then K is
closed. Since we have assumed that M, and M are proper, K is proper as well.

3.4 Ciriteria for no-arbitrage and hedging in terms of consistent
discount factors

We will provide a necessary and sufficient condition for the validity of hypothesis (N .A)
similar to that given in Theorem 2.1. Let us write gy € M{ if qq is a vector in V, such that
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qovo > 0 for each vy € My, vy # 0. The notation gr € M7, will mean that Eqpruy > 0 for
all vr € My, vr # 0. The notation for M{ and M. corresponds to that introduced in the
Appendix (Section A.4).

In this subsection, we will assume that hypothesis (I) holds.

Theorem 3.1. The no arbitrage hypothesis (N'A) is valid if and only if the following
assertion holds.

(Q) There ezist go € M{ and qr € M} such that

Eqrvr < qovo (37)

for all (vg,vr) € A.

The set of all pairs (qo, gr) € Mg x M satisfying (37) will be denoted by Q.

We will call any pair g € M, gr € M a pair of discount factors (on initial endowments
and contingent claims) respectively. Recall that ”*” refers to a dual cone, and so the
inclusions gy € M{ and gr € M. mean that gyvy > 0 for all vy € My and Eqrvr > 0 for
all vp € Mr. Discount factors qo, gr € Mp x M. satisfying (37) will be called consistent.
Condition (37) says that the expected discounted value Eqrvr is not greater than the
discounted value govy for all contingent claims vr that can be superhedged starting from the
initial endowment vg. In (Q) the existence of strictly positive (i.e., satisfying the condition
(q0,qr) € M x MZ) consistent discount factors is claimed. Such discount factors will
be called strictly consistent. Since vy and vy are, generally, vectors in our model, ¢y and
qr are vectors as well. If components vg, i = 1, ..., mg, and v%, j =1,...,mr, of the initial
endowment vy and the contingent claim vy are measured in several currencies, then the
respective components g, i = 1, ..., my and q%, j =1,...,mp of the vectors ¢y and qr are
discount factors for these currencies.

Proof of Theorem 8.1. We apply Theorem A.3 to the cones A and K. Since A and K
are closed (as was assumed) and since K is proper (which follows from the assumption that
My and M are proper), all the requirements needed for the validity of Theorem A.3 are
satisfied. Note that the cones A and K are contained in the linear space Vy X Vr. Linear
functionals ¢(v) on this space can be written as

q(v) = —qovo + Eqrvr [v = (vo,vr)], (38)

where ¢o € R™ and gr(w) is a function of w € Q with values in R™”. The existence of
a linear functional involved in assertion (Q) of Theorem A.3 (applied to the cones A and
K) is equivalent to the existence of (qo, gr) € Mg X M7 satisfying (37). Indeed, if g(v) is
given by (38), then the inequality q(v) < 0 (see (Q)) is equivalent to (37) and the inclusion
q € Kt is equivalent to (qo, gr) € M§ x M. O

We now will give an answer to the general question posed in subsection 3.2. Theorem
3.2 below provides a necessary and sufficient condition for a contingent claim vy to be
superhedgeable starting from an initial endowment vy. This condition is formulated in
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terms of the set Q of pairs of strictly positive consistent discount factors (go, gr) (see (37)).
In addition to (I) we impose the following hypothesis.

(IT) (a) If (vo, ho) € W, vj € Vo and vy <g vy, then (vg, ho) € Wy. (b) If (hr,vr) € Wr,

v € Vr and v, <r vr, then (hr,v}) € Wr.
This hypothesis relates the partial orderings >; and the cones Wy (t = 0,T). According to
assertion (a) in (II), if we can construct a portfolio hg starting from same initial endowment
Vo, then we can construct hg starting from any v >¢ vy. By virtue of (b), if a contingent
claim vy can be superhedged by liquidating a portfolio hr, then any v} <r vr can also be
superhedged by liquidating this portfolio.

Theorem 3.2 Let hypothesis (N A) hold. Then for any (v, vr) € Vox V7 the following
conditions are equivalent.

(H) (vo,vr) € A.

(D) For all (qo,qr) € Q, we have Eqruvr < qouo.

Condition (H) means that vz can be superhedged starting from vg. Consequently, Theo-
rem 3.2 yields the following hedging criterion. If we wish to check whether we can superhedge
a contingent claim vy starting from initial endowment vy, we have to perform the following
test. Take any strictly consistent discount factors (qo, gr) € Q. If the expected value Eqrur
is not greater than the value ggvg, then vr can indeed be superhedged starting from vg. If
for some strictly consistent discount factors this is not the case, vr cannot be superhedged
starting from wvj.

Proof of Theorem 3.2 The result is a consequence of Theorem A.5 and the fact that
A — K = A. To prove this equality we observe that A C A — K because 0 € K. Con-
versely, suppose (vp,vr) € A and (ko, kr) € K. Let us show that (vo — ko, vr — kr) € A.
Since (vo,vr) € A, we have (vo,ho) € Wy, (hr,vr) € Wy for some feasible strategy
H = (ho,....,hr). Then (vo — ko, ho) € Wp and (hr,vr — kr) € Wr by virtue of (II).
Consequently, (vy — ko, vy — kr) € A.

3.5 Bank accounts and consistent discount factors

Let us introduce the following condition.
(B) The dimensions mg and my coincide: mg = mg = m. There exists a strictly positive
vector

Br(w) = (Br(w), .-, Bf'(w))
depending on w € Q such that, for any vg = (v}, ..., v§*) € Vo, we have (v, vr) € A, where
or = (U ) = (BH@)Us s BE@)): (39)

Proposition 3.1. If condition (B) holds, then for any pair qo,gr of consistent discount
factors, we have

@=EB.g, =12, ..m, (40)
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where ¢ is the jth coordinate of ¢ (t=0,T).

Proof. Consider any vy € Vy, define vr according to (39) and substitute (vp,vr) € A
into (37). Since —vp € Vy, we have (—vp, —vr) € A, and so (37) holds for (—vg, —vr) as
well. This yields

Qv = Eqrur = E Z B%q%vé- (41)

Jj=1

Since vy is an arbitrary element of the linear space Vo = R™, (41) implies (40).

To explain the meaning of condition (B) suppose that initial endowments and contingent
claims are both measured in terms of m currencies which are traded assets. Specifically,
assume that N; > m and the first m components of portfolios h; € X; correspond to these
m currencies. Further, suppose that any amount vg of each currency can be deposited with
a bank account at time 0, which will yield the amount Bi(w)v) at time T (B%— 1 being
the cumulative interest rate over the time period from 0 to 7). The amount v} might be
both positive and negative, the latter case reflecting a possibility of borrowing currency j
from the jth account with the same interest rate BJ(w). Formally, the situation described
corresponds to the assumption that, for each vy € V, the cone A contains (v, vr) € A,
where vy is defined by (39). According to Proposition 3.1, the availability of such bank
accounts leads to relations (40) between the discount factors ¢} and ¢

Assume m = 1, i.e., initial endowments and contingent claims are measured in terms of
one currency (cash). Suppose that cash is a traded riskless asset with non-random interest
rate r over each time period ¢t — 1,¢. Then an amount v} of cash deposited with the bank
account at time 0 will yield the amount B}.v} at time T', where B}. = (1+)%. In this case,
formula (40) coincides with formula (18) established in the classical case of a frictionless
market with a riskless asset.
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4 Consistent price systems

4.1 Consistent price systems: the definition

Let qo, gr be discount factors, that is, (g, gr) € M§ x M. . Let pg be a vector in R_],\_]0 and
pe(wh), t =1,2,...,T, vector functions of w® with values in Ri’t. We will denote by P, the
set of nonnegative elements in &; (understood in the sense of the standard partial ordering
in X;). Thus p; € Py, t = 0,...,T. The ith coordinate p(w’) of the vector p; = p;(w') will
be interpreted as a price of asset i = 1,2, ..., N; at time t. The prices at time ¢, depend on
the market history w® up to time t. A sequence

(q0ap0aplap2a -y Py qT)

will be called a consistent price system if the following requirements are fulfilled:

govo > pohg for each (v, hg) € Wo; (42)
Ep;_1hi—1 > Epihy for each (hy_y1, hy) € Zy; (43)
Eprhr > Eqpur for each (hy,vr) € Wr. (44)

In (43), t ranges through 1,...,T. It follows from (42) - (44) that
qovo = poho > Epihy > ... > Epr_i1hr_y > Eprhy > Eqrup (45)
for all sequences (vg, ho, ..., by, v1) satisfying
(vo, ho) € Wy, (ho, h1) € Zy, ..., (hp_1, hr) € Zp, (hy,vr) € Wi (46)

According to (42), if a portfolio hg can be constructed based on the initial endowment
wg, then the value qqvg of the initial endowment vy is not less that the value pohg of the
portfolio hy. It follows from (43) that, for each feasible trading strategy (ho, ..., hr), the
expected value Ep;h; of the portfolio h; does not increase in time. Requirement (44) states
that the expected value Eqrvur of a contingent claim vy does not exceed the expected value
Eqrhy of each portfolio h that allows to superhedge this contingent claim.

The portfolio values involved in the above definition are measured in terms of the price
vectors p;. If conditions (43) hold for each t = 1,...,T, we say that py € Po, ...., pr € Pr
are consistent asset prices. The initial endowment vy and the contingent claim vy are
evaluated by using the discount factors gy and g7, respectively. If there are several currencies
i=1,2,..,mg and j = 1,...,my in terms of which the coordinates v} and v% of the vectors
vo and vy are expressed, then the discount factors g and q’T may be viewed as "relative
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prices” on these currencies at time 0 and time 7" (which justifies the term ”consistent price
system” ).

Any sequence (v, ho, ..., hr, vr) satisfying (46) will be called a superhedging programme.
Such a sequence specifies an initial endowment vy a contingent claim vr and a feasible trad-
ing strategy (hy, ..., hr) allowing to superhedge vy starting from vy. According to (45), a
consistent price system does not increase (in the sense of expectations) along any super-
hedging programme.

It is clear from the above definitions that if (qo, po, p1, P2, .., Pr, gr) is a consistent price
system, then (qo, ¢r) is a pair of consistent discount factors. Under general assumptions,
one can prove the following converse statement: if (qg,gr) is a pair of consistent discount
factors, then there exist po, p1,pa, ..., pr such that (qo,po, p1, P2, .-, D1, gr) is a consistent
price system. This assertion will be proved in the next subsection.

4.2 Consistent discount factors and consistent price systems

Let us introduce the following assumptions.

(III) (a) If (ht—l,ht) € Zt, h:ﬁ—l € X1 and h:ﬁ—l > ht—la then ( 2_1,ht) € Z;. (b) If
(hr,vr) € Wr, b € Xr and bl > hr, then (b, vr) € Wr.

(IV) (a) For each ¢, the cone Z; contains an element (h_1, j;) € Z; such that g, > 0. (b)
There is a pair (9, §o) € Wy such that gy > 0.

(We recall that strict inequalities, as well as non-strict ones, are understood coordinate-
wise and for each w.)

The condition imposed on the cones Z; in part (a) of hypothesis (III) is supposed to hold
foreach t = 1,...,T. It means that if we can obtain a portfolio h; by a feasible rebalancing of
a portfolio h;_;, we can also obtain h; by a feasible rebalancing of any portfolio h;_; > h;_;.
Part (b) of assumption (III) expresses the analogous property of the cone Wr describing
the possibilities of hedging a contingent claim vy by liquidating a portfolio Ar. Hypothesis
(IV) contains mild assumptions of non-degeneracy of Z; and Wr.

Theorem 4.1 below holds under the assumptions (III) and (IV) (hypotheses (I) and (II)
are not used in its proof).

Theorem 4.1 Let qy, qr be consistent discount factors. Then there exist pq,p1, ..., Pr
such that (qo, o, P1, ---» 1, qT) 1S G consistent price system.

Proof. By virtue of the definition of consistent discount factors (qo, gr), we have gy €
Mg, qr € Mj and Eqrvr — qouo < 0 for all (vp,vr) € A. The last inequality means that
the functional

Eqrvr — qovo (47)

of v = (vp,vr) attains its maximum on the set A at (0,0) (and the maximum value of the
functional is 0). Consequently, by virtue of the definition of A (see (35)), the functional
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F (&) = Eqrur — qovo attains its maximum over the set of sequences

f = (UOagOagla "'agT,UT) (48)
satisfying the constraints
(vo, 90) € Wo, (90, 91) € Z1; -y (97-1,9r) € Zr, (97, vr) € Wr, (49)

at the sequence (0,0, ...,0), and the maximum value of F(§) is zero. Note that sequences £
of the form (48) are vectors in the space Vo X Xy X X1 X ... X Xp X Vr.
Consider the set © of sequences 6 of the form

0 = ((vo; 90), (ho; 91), ---; (hr—1, g1), (b, 7)), (50)
where
(vo, go) € Wo, (ho,q1) € Z1, ..., (hr—1,97) € Z7, (hr,v7) € Wr. (51)
Denote by ©° the set of sequences 6 € O satisfying
9o > ho, g1 2> h1,...;gr > hr. (52)

A sequence 6 € © may be regarded as a plan for hedging vy which starts from the initial
endowment vy at time 0, and involves feasible portfolio rebalancing, as well as consumption,
in the time periods 1,2, ...,7. A possibility of consumption is reflected by the fact that we
allow inequalities g; > hy, rather than requiring equalities g; = h;.

For 6 € O, define

f(0) = Eqrvr — qovo
and
G(0) = (9o — ho, g1 — b1,y gr — hr) € Xp X X1 X ... X Xp.
Clearly
0°={0cO:G(H) >0},

where the inequality is understood coordinatewise and for each w. Equivalently, we can
write

0°={§ecO:a0) g} (53)

where G is the standard cone in the space Xy x X; X ... X Xp.
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Observe that the maximum of f(#) on ©° is equal to zero. Indeed, if a sequence 6 of the
form (50) satisfies (51) and (52), then the sequence

0 = ((v0, 90) (90, 91) (91, g2); -+ (971, g7), (g5 V1))

also satisfies (52) (since the inequalities in (52) hold as equalities) and it also satisfies (51)
by virtue of hypothesis (II). But f(#") = F(£), where the sequence ¢ = (vo, 9o, g1, ---» g7, VT)
satisfies constraints (49), and so

f(6) =f(0)=F() <o0.

We would like to apply the Kuhn-Tucker theorem (see the Appendix, Theorem A.7) to
the problem of maximization of f(#) on © subject to the constramt G#) €G. To thls end

we have to check Slater’s constraint qualification, stating that G (9) €int G for some 9 € 0.
The interior of G consists of vector functions that are strictly positive in each coordinate
and for each w. Thus it is sufficient to construct a sequence

0= ((1020,30), (ho,?h), H) (h’T’/lo)T)) € S/
for which

go() > h0,§1 > h’la---a.;T > hr. (54)

Define (vg, go) = (0, o) (see (IV), (b)). Then define (ho, g;) as (Atho, M) € Zi(see
(IV), (a)), where \; > 0 is a sufficiently small number, such that gy > ho. Then define
(hq, 32) as ()\JLl, A2Ga) € Zy where A > 0 is a sufficiently small number for which 31 > hy.

By continuing this procedure, we construct step by step a sequence 6 € © with properties

(54). At the last step, we define (h,.,v,.) = (0,0).
By virtue of Theorem A.7, there exists a linear functional p € G* such that

f(6) +p(G(6)) <0 (55)

for all # € ©. A linear functional p(g) on the space of g = (go, g1, ..., 97) € Xo X X1 X ... X Xr
is given by

p(9) = pogo + Ep1g1 + Epago + ... + Eprgr,

where pg € R™ and p; = p;(w') are Ni-dimensional vector functions of w'. We have p € G*
if and only if p; > 0 for all t =0, ..., T. Inequality (55) can be written

—qovo + po(go — ho) + Ep1(g1 — h1) + ... + Epr(gr — hr) + Eqrvr <0, (56)
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where (v, 90) € Wo, (ho,q1) € Z1, ..., (hr—1,97) € Z7, (hr,vr) € Wr. Fix some t =
1,...,T, consider any (h;_1, g:) € Z; and define (vg, go) = 0, (hj—1,9;) = 0 for all | # t and
(hr,vr) = 0. Then (56) yields —Ep;_1hi—1 + Epig: < 0, which implies (43). Analogously,
we obtain (42) and (44). This proves that (qo, po, p1, ..., Pr, ¢r) is a consistent price system.
O
Remark 4.1. Sequences 6 possessing properties (51) and (52) can be called superhedging
programmes with consumption. In the proof of Theorem 4.1, we used hypotheses (III) and
(IV) in order to derive the following properties of the set © of such sequences.
(©.1) For each 60 = ((vo,90), (ho,91), -, (hr—1,9r), (hr,vr)) € O, there exists a super-
hedging programme (vg, hy, b}, ..., A7, vr) with the same initial endowment vg and the same
contingent claim vr.

(©.2) There exists a sequence ((vo, go), (ho, 1), -y (B, V) € O satisfying (54).

Condition (©.1) expresses the assumption that if an initial endowment v, allows to su-
perhedge a contingent claim vy with consumption, then vy allows to superhedge vy without
it. According to (©.2), there exists a superhedging programme with strictly positive con-
sumption in each time period. We can see from the proof of Theorem 4.1 that the theorem
remains valid if hypotheses (III) and (IV) are replaced by more general conditions (6.1)
and (©.2).

Finally, we note that condition (©.2) is obsolete when the cones W; (t = 0,T) and Z;
(t = 1,...,T) are polyhedral. Indeed, (©.2) is used to guarantee the validity of Slater’s
condition in the optimization problem considered in the course of the proof of Theorem 4.1.
If all the above cones are polyhedral, then we obtain a linear programming problem, where
no Slater’s condition is needed (see the Appendix, Theorem A.7).

4.3 Criteria for no-arbitrage and hedging in terms of consistent
price systems

Let us say that a consistent price system (qo, po, 1, ---, Pr, qr) is Strictly consistent if ¢ € M(;"
and qr € M. By combining Theorems 3.1 and 4.1, we obtain the following result.

Theorem 4.2. The validity of the no-arbitrage hypothesis (N'A) is equivalent to the
existence of a strictly consistent price system.

By using Theorems 3.2 and 4.1, we arrive at a superhedging criterion stated in terms of
consistent price systems.

Theorem 4.3. Let hypothesis (N'A) hold. Then for any (vy,vr) € Vo X Vr the following
assertions are equivalent:

(H) The contingent claim vr can be superhedged starting from the initial endowment vy,
i.e. (vg,vr) € A.

(C) We have Eqrur < qqug for each strictly consistent price system (qo, Do, D1, ---, P15 91) -

It should be noted that the main advantage of the consideration of consistent price
systems in place of (or in addition to) consistent discount factors lies in the following.
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It might be difficult to verify directly that some (go,qr) is a pair of consistent discount
factors. For this aim one has to check inequality (37) involving the cone .4 which might
have, generally, a quite complex structure. The analysis of consistent price systems allows
to simplify the problem. It allows to ”decompose” it — to reduce it to a family of simpler
problems over each of the time periods ¢t — 1,¢. Indeed, to check that (qo, po, 1, ---, 1, q1)
is a consistent price system, we have to verify separately every inequality in the chain (45).
The analysis of each of these inequalities requires a separate consideration of each of the
given cones Wy, Zy, ..., Zp, Wr.

4.4 Consistent price systems and supermartingales

In most of the specific examples, the cones Z; (t = 2,3,...,T) and Wr satisfy additional
conditions included into hypothesis (V) below.

(V) (a) If (h4_1, hi) € Z;, then for any non-negative function y(w'™!) of w'™!, we have
(vhi_1,vhs) € Z;. (b) The cone Wr contains with each pair of vector functions (hr,vr) the
pair (yhr,yvr), where y(w) is any non-negative function of w.

Note that if (hi—1,ht) € Z;, then (yhi—1,7hs) € Z; for each non-negative constant -y
because Z; is a cone. Condition (a) in (V) requires more. It states that (yh;—1,vh:) € Z; for
each function y(w'™1). This condition imposes additional restrictions on Z; only if ¢t > 2;
therefore in (V) we assume that t takes on the values 2,3, ..., T. If assumption (Va) holds,
we say that the cone Z; is decomposable with respect to w'™'. Analogously, if (Vb) holds,
we say that the cone Wy is decomposable with respect to w.

For a random variable ¢, we will denote by E(¢ | w®™!) the conditional expectation of ¢
given w'™!. For t = 1 (when w'™! does not make sense), the above notation will stand for the
unconditional expectation E¢. Under hypothesis (V), we can give an equivalent definition
of a consistent price system.

Proposition 4.1. A sequence (qo,po,p1;---, Pr,qr), where qo € M§, gr € Mj and
p €Py (t=0,..,T), forms a consistent price system if and only if the following relations
hold:

govo > pohg for each (v, hg) € Wo; (57)
pi_1hi—1 > E(pshy | w1) for each (hy_1,h;) € Zy and t = 1,2, ..., T; (58)
prhr > qrur for each (hr,vr) € Wr. (59)

Proof. Condition (57) simply repeats condition (42). Let us show that (59) is equivalent
to (43). By taking the expectations of both sides of inequality (58) we obtain (43). Con-
versely, assume (43) holds. Consider any (h;_1, h;) € Z; and take any function y(w?™!) > 0.
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Then (yhy_1,vhs) € Z; by virtue of part (a) of hypothesis (V), and so Ep;vhy < Epy;_17vhs_1
in view of (43). The last inequality implies Ey[E(ph; | w'™)] < Evypi_1h—1 for each
y(wt™) > 0, which byields (58). The equivalence of (59) and (44) is straightforward. = O

From Proposition 4.1, we obtain the following result.

Proposition 4.2. Let (qo, po, P1, ---, b1, 9r) be a consistent price system. Then for any
superhedging programme (vg, ho, h1, ..., hr, vr), the random sequence (pohg, p1h1, ..., prhr) IS
a supermartingale and inequalities (57) and (59) hold.

It is natural to ask when the sequence pg, p1, ..., pr is a supermartingale or martingale
itself. The answer is given in the following proposition.

Proposition 4.3. Let condition (Va) hold. If N; does not depend on t (N, = N) and
if Z; contains (h,h) for each h € RN (resp. for each h € RY), then for any consistent
price system (qo, Po, P1, ---, PT, qT), the sequence of random vectors py, ..., pr is a martingale
(resp. supermartingale).

The assumption (h,h) € Z; for a non-random portfolio h implies that a buy-and-hold
strategy (h, h, ..., h) is feasible. According to Proposition 4.3, if this is true for any h (resp.
any nonnegative h), then the vectors pg, py, ..., pr of asset prices involved in a consistent
price system form a martingale (resp. supermartingale).

Proof of Proposition 4.3. When proving Proposition 4.2, we established the equivalence
of (59) and (44) under assumption (Va). By substituting h; = hy_1 = h € RY into (59), we
get p,_1 > E(p; | wt!), which means that pg,p, ..., pr is a supermartingale. If any h € RY
can be substituted into (59), we obtain that p,_; = E(p; | w'™!), and so pg,pi, ..., pr is a
supermartingale. O
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5 Von Neumann-Gale model and set-valued dynamical
systems

5.1 Von Neumann-Gale model

The von Neumann-Gale model [17], [38] is specified by a sequence of cones Z, C RY* x RY,
t = 1,2,.... The model describes an economy in which, at time ¢t = 0,1, ..., there are N;
commodities ¢ = 1,2,...,N;. The state of the economy at time t is characterized by a
commodity vector ; = (z},...,z*) € RN. A path (trajectory) of the economic system is a
finite or infinite sequence xg, 1, Z2, ... such that

({Et_l,fEt) S Zt, t=1,2,....

Elements (z,y) € Z; are called input-output pairs or technological processes. The sets Z;
are called technology sets. In the original [38] model, the cones Z; were supposed to be poly-
hedral. Gale [17] generalized von Neumann’s framework allowing general (not necessarily
polyhedral) cones.

The main focus in the von Neumann-Gale model is on the analysis of paths that maximize
growth rates over each time period ¢ — 1,¢. Such paths are called efficient. The precise
definition is as follows. A path zg, 1, Zs, ... is called efficient if there exists a sequence of
price vectors pg, p1, ... (ps € Ri’t) such that p,z; = 1 and

py < pyz for all (z,y) € Z,. (60)
By virtue of this definition, the growth rate
Pt
Pt—1Yt—1
over the time period t — 1,¢ attains its maximum among all paths yg,y;,... on the path
Zg, L1, .... Since pyzy = 1, the growth rate on zg, 1, ... is constant and equal to one. (In the

above definition, the assumption p;z; = 1 is not essential, what matters is that p,x; is a
strictly positive constant.)

5.2 Homogeneous convex dynamical systems

A (discrete-time ) dynamical system is given by a sequence of sets Y;, t = 0,1,..., and
mappings

Ft: Y;—l _>}/ta t:1a2a“'a

of Y;_; into Y;. Points y in Y; represent possible states of the dynamical system at time t.
The mappings F; specify the law of dynamics. If x; is a state at time ¢, the state at time
t+ 1 will be

Ti41 = Ft+l(xt)- (61)
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Sequences zg, x1, Za, ... satisfying (61) are called paths (trajectories) of the dynamical system
under consideration.

A set-valued (multivalued) dynamical system is defined by a sequence of multivalued
mappings ®,(z) assigning a set ®,(z) C Y; (rather than a singleton) to each z € Y;—;. A
path of the multivalued dynamical system is a sequence of states zg, x1,... such that

Tyy1 € Pyyq(y).

If for each t, Y, is a convex set in R and if the graph
Gr(®) ={(z,y) €Y1 x Vi y € Oy(z)}

of the multivalued mapping ®;(-) is a convex set in RN+-1 x RN then the multivalued
dynamical system is called convexr. The dynamical system is said to be homogeneous and
convez if Gr(®,) is a cone in RN-1 x RM:.

5.3 The homogenous convex dynamical system generated by a
von Neumann-Gale model

Given a von Neumann-Gale model specified by a sequence of cones Z, C RN-1 x RN,
t=1,2,..., we define a multivalued dynamical system by setting

Zy(z) ={y € RY* : (z,y) € 2}, z € RM. (62)

Then the cone Z; is the graph of the multivalued mapping Z;(x). Consequently, the multi-
valued dynamical system (62) is convex and homogeneous. Paths of the von Neumann-Gale
model are nothing but paths of the multivalued system (62).

The dual dynamical system (to the system (62)) is defined as follows:

ZX(p)={q € Ri’t : qy < px for all z,y satisfying y € Z;(z)}, p € th_l. (63)

According to this definition, pg, p1, ... is a path of the dual dynamical system (63) (or briefly a
dual path or a dual trajectory) if p;y < p;_1z for all (z,y) € Z;. The last inequality coincides
with (60), and so we can reformulate the definition of an efficient path, saying that a path
To, L1, X, ... 1S efficient if there exists a dual path po, p1, ps, -.. such that pyxy = 1. Clearly, if
Do, P1, P2, --- 1S a dual trajectory, then

PoZo = P1%1 2> Pa%a 2 ... (64)

for each trajectory zo, z1, xa, ... of the dynamical system (62).
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5.4 Analogies between the von Neumann-Gale model and the se-
curities market model

In the above considerations, we dealt with deterministic models. Paths zg, z1, x2, ... and
dual paths pg, p1,ps... were sequences of non-random vectors. We can easily extend all
the above considerations to the case where z; and p; are functions of w* = (a1, as, ..., az),
where aj,as, ... is a sequence of random states of the world taking values in a finite set
A ={al,...,a"}. The scalar products of the form p,z; can be replaced in the above analysis
by the expectations Ep;z;. Clearly functions p;(w') and z;(w') may be regarded as vectors
in R™, where n, = N, - L' (if A contains L elements, then there are L' different sequences
w' = (a1, ag, ...,a)). The stochastic analogue of the von Neumann-Gale model is specified
by a family of cones Z; C R™-1 x R™, t =1,2, ..., whose elements are pairs of non-negative
functions z = z(w!™!), y = y(w'). Paths in the stochastic model are sequences zg, z1, ... such
that (z;_1,7;) € Z;. A dual path pg, py, ... is a sequence of nonnegative functions p; = p;(w?)
such that

Ep;_1z > Epyy for all (z,y) € Z,.

The above discussion suggests clear analogies between concepts related to the von
Neumann-Gale model and notions associated with the dynamic securities market model.
In the latter, we deal with a sequence of cones Wy, Z1, ..., Z7, Wr describing possibilities
of converting an initial endowment v, into the portfolio hy (purchasing the portfolio hy),
then trading over the time period 1,2, ..., T according to a feasible strategy (hy, ..., A1), and
finally liquidating the portfolio A7 and superhedging the contingent claim vy. Superhedging
programmes (vg, ho, ..., hr, vr) are nothing but paths in the model defined by the cones

Zl = W(), ZQ - Zl; aeey ZT+1 = ZT, ZT+2 = WT.

Note, however, that in the financial context, vectors in the given cones Wy, 71, ..., Zr, Wr
are not necessarily nonnegative, is the case in the conventional von Neumann-Gale setting.
All the other analogies are straightforward. These analogies are summarized in the following
table:

H Von Neumann-Gale model H Securities Market Model H

commodities assets
commodity vectors portfolios of assets
paths of economic dynamics superhedging programmes
dual paths consistent price systems
technology constraints trading constraints
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6 Two classes of models

6.1 Models described in terms of ”value operators”

We will begin with a description of two classes of models. In the former class, the cones W)
and Wr characterizing the possibilities of constructing the initial portfolio and liquidating
the final one, have a special structure defined in terms of the ”value operators”. In the latter
class (considered in the next subsection), the cones Z; specifying the trading constraints
have a special structure described by difference inclusions. A number of concrete examples
analyzed in the remainder of the paper can be included into these two frameworks.

Let us assume that the cones W; (t = 0,T) are defined as follows. Suppose mappings
(operators)

Vi X, —V, (t=0,T)
are given, and the cones W; are defined by

W() = {(Uo, ho) € VO X XO ) ZO %(ho)}, (65)

Wr = {(hT,UT) € Xr X Vr :vp <p VT(hT)} (66)

The mappings V; are called the value operators.

The operator V; associates with each initial portfolio hq its purchase value, indicating
what is the minimum initial endowment needed to construct the portfolio hg. The minimum
is understood with respect to the partial ordering >,. An important special case is where
Vo(ho) is a scalar (i.e., the dimension my of the space V, of initial endowments is equal to
one), and the partial ordering >, is standard. Then V;(hg) is the amount of cash needed to
purchase, taking into account the transaction costs, the assets contained in the portfolio hg.
The purchase is supposed to be made at the prices prevailing at time 0. Another important
case is where my = Np and V(hg) = ho. In this case the ”purchase value” of the portfolio
does not admit aggregation and can only be specified by the portfolio itself. This situation
is characteristic for currency markets where positions of portfolios h; represent holdings of
N, currencies (cf. Kabanov [23] and Kabanov and Stricker [25]).

The operator Vr associates with each final portfolio hg its liquidation value. Again,
there are two important special cases. In the former, mr = 1, and the scalar Vr(w, hr(w)),
depending on w, represents the amount of money that can be obtained by liquidating the
portfolio hr with transaction costs. In the latter case, typical for models of currency markets,
mr = NT and VT(hT) = h'T-

Models described in terms of the value operators were considered by Evstigneev and
Taksar [15]. The framework adopted in this paper, in which the cones Wy and Wy are
given, is more general. It is applicable, in particular, to those cases where 1 < mr < Nr
and there is no well-defined maximum with respect to the partial ordering <7 in the set
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{vr : (hp,vr) € Wr}. The latter case arises, for example, when there is a mixed asset
market where N; assets ¢ = 1,2, ..., N, including currencies and common stock, are traded
at each time period t = 1,2,...,T, and where contingent claims are portfolios of several
currencies j = 1,2, ...,mr . In a typical example, my = 3, i.e., a contingent claim has three
components: the first component is measured in terms of dollar, the second in terms of euro,
and the third in terms of the local currency (provided it is not dollar or euro).

Let us impose the following assumptions on the operators Vy and Vi .Assume

Vo(ahg + o'hg) <o aVo(ho) + o' Vo (hy) (67)
for all vectors hyg, hy € Xy and all numbers «, @’ > 0, and
Vr(ahr + o' hr) >1 aVr(hr) + &' Vr(hy) (68)
for all vector functions hr, b, € Xr and all numbers a, o’ > 0. Further, suppose
hy > hy = Vi(hy) >¢ Vi(he) (t = 1,2). (69)

Note that (67) and (68) contain assumptions of convexity and concavity similar to the
conventional ones, but stated in terms of the general, not necessarily standard, partial
orderings <o and >r. Also, we emphasize that, in the monotonicity assumption (69), the
inequality between h; and h; is understood in the standard sense, while V;(h}) and V;(h;)
are compared by using the partial ordering >;.

Proposition 6.1. If conditions (67), (68) and (69) hold, then the sets Wy and Wr
defined by (65) and (66) are cones satisfying all the requirements contained in hypotheses
(II)-(1V).

Proof. The sets Wy and Wy are cones in view of inequalities (67) and (68). Conditions
(ITa) and (IIb) follow immediately from (65) and (66). Property (IIIb) is a consequence of
(69). To verify (IVb) consider any go > 0 and put 9y = Vo(go)- O

If the cones W; (t = 0,T) are described in terms of the value operators according to
formulas (65) and (66), then one can express conditions (42) and (44), involved in the
definition of a consistent price system, directly through the operators V; (¢t = 0,T). This is
shown in the following proposition.

Proposition 6.2. Let gy € M§ and py € RfT. Then inequality (42) holds if and only

if
q0Vo(ho) > poho for all hy € A. (70)

Let qr € M3 and let pr be a function of w with values in RfT. Then inequality (44) holds
if and only if

EqTVT(hT) S EpThT fOT’ all hT € XT. (71)
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Proof. Let us prove the latter of the two assertions. The former is proved similarly.
Suppose (44) holds. Take any hr € Xr and define vr = Vr(hr). Then (hr,vr) € Wr, and
so (71) follows from (44). Conversely, suppose (71) is valid. Consider any (hr,vr) € Wr.
By virtue of (66), v <r Vr(hr). Consequently, Eqrvr < EqrVr(hr) because gr € M.
By combining the last inequality and (71), we obtain (44). O

We formulate a list of assumptions on the value operators Vy and Vi that imply the
conditions already introduced and, in addition, guarantee that the cone Wy defined by (66)
is decomposable with respect to w. Recall that the last property means (see condition (Vb))
that Wy contains with each pair of vector functions (hr, vr) the pair (vhr, yvr), where v(w)
is any nonnegative function of w. Let us say that the operator Vi is decomposable (with
respect to w) if

Vr(hr) = Vr(w, hr(w)), (72)

where Vr(w, -) is a mapping of RNT into R™7 given for each w. Slightly abusing notation,
we write Vr both for the operator Vr(-) and the mapping Vr(w,-). The representation (66)
means that the value of Vz(hr) is defined ”for each w separately”.

(VI) (a) The operator Vj is homogeneous and convex:

Vo(aoho) = CYOVO(ho) (73)
for all scalars a > 0 and vectors hy € Vy;
Vo(ho + hg) <o Vo(ho) + Vo(hyg) for all ho, hy € Xp. (74)

(b) The operator Vr is decomposable (i.e., it admits a representation (72)), and the mapping
Vr(w,-) is homogeneous and concave for each w:

VT(OéThT) = OéTVT(hT) (75)
for all scalar functions ar = ar(w) > 0 and vector functions hr € Xr;
VT(hT + hIT) ST VT(hT) + VT(hIT) for all hT, hIT € XT. (76)
(c) The operators V; (t = 0,T) are monotone, i.e., requirement (69) is satisfied.
Clearly, conditions (73) and (74) imply (67), and conditions (75) and (76) imply (68).
Moreover, we have

Vr(w, arhr + ofphr) >7 arVr(w, hr) + o3 Ve (w, hy) (77)

for all hr, b7 € Xr and all non-negative functions ar = ar(w) and o, = a7 (w).
Proposition 6.3. If the cone My is decomposable, then the cone Wr defined by (66)
is decomposable (and so condition (Vb) holds).
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Proof. Let (hr,vr) € Wr and let y(w) be a nonnegative scalar function. Then vy <r
Vr(hr), ie., Vp(hr) — vr € Myp. Consequently, YVr(hr) — yor € My, since My is
decomposable. Thus yvr <7 vVr(hr), and since the mapping Vr(w, -) is homogeneous, we

get yvr <r Vr(vhr), which means that (yhz,yvr) € Wr. O
Proposition 6.4. Inequality (44) holds if and only if
qr(w)Vr(w,b) < pr(w)b for all b € RNT, (78)

Proof. By virtue of Proposition 6.2, (44) is equivalent to (71). We can see that (78)
implies (71). To prove the converse assume (71) holds and consider some hr € Xr. For any
function y(w), we have Vr(vhr) = YVr(hr), and so EyqrVr(hr) < Eyprhr by virtue of
(75). This implies

qTVT(hT) S pThT for all hT € XT. (79)

Suppose (78) fails to hold for some w = @ and b = b. Then, by setting hr(w) = b for w = @
and hr(w) = 0 for w # @, we arrive at a contradiction with (79). This completes the proof
of the proposition. O

6.2 Models described in terms of difference inclusions

Let us assume that the number NV, of assets traded at time ¢ does not depend on ¢ (N, = N).
Suppose the cones Z; describing trading constraints are of the form

Zt = {(h’t—lah’t) S ‘)(t—l X ‘)(t : ht — ht—l € Mt}, (80)

where My C X, (t =1,...,T) are some given cones. In models of this kind, feasible trading
strategies are sequences {h, ..., hr} satisfying

h’t S Xt, t= 0, ,T, h’t - h’t—l S Mt, t= 1, ,T

Note that in (80) possible transitions from one portfolio, h;—1, to another, h;, are defined
in terms of the difference between the vectors h; and h;_;. One can obtain a portfolio h;
by rebalancing a portfolio h;_; if and only if h; — h;_; € M;. Therefore we say that models
with constraint sets Z; of the form (80) are defined in terms of difference inclusions.

We first examine conditions on M; guaranteeing the validity of the assumptions imposed
on Z,; in Section 4.

Proposition 6.5. Let the cone Z; be defined by (80) (t = 1,...,T). Then condition
(IVa) holds. If My O —P;_1 (t =1,..,T), then Z; satisfies condition (IIla). If for each
t=1,..,T, the cone M is decomposable with respect to w'™1, then Z; satisfies (Va).

Proof. Fix any strictly positive vector hi_1 € X,_1 and define g = hi_1. Then h,_; =
g € X1 C X, and g, — hi 1 = 0 € M,. Hence Z; contains (Et_l,gt) such that g > 0, which
yields (IVa).
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Consider any (hi_1,h;) € Z; and X;—1 O h,_; > hy_;. Then g, 1 :=h,_; — hy_1 € P;_1.
Consequently, hy — h}_; = hy — hy—1 — gt—1 € M;. Thus (h;_l, ht) € Z;, and so Z; satisfies
(I1Ia).

Suppose, for each t = 2,3,...,T, the cone M, is decomposable with respect to w'™!.
Consider any element (h;_;, h;) of Z; and any function y(w?™!) > 0. We have yh;_; € X;_;
and yh, € X,. Since M, is decomposable with respect to w'~!, we obtain vh, — Yh,_; =

’Y(ht — ht—l) € Mt. O
Let us examine the structure of consistent asset prices in models defined in terms of dif-
ference inclusions. Recall that such prices are given by sequences of vectors py € Py, ..., pr €

Pr satisfying (43).
Proposition 6.6. Vectors p, € Py, t = 0,1,....,T, form a sequence of consistent asset
prices if and only if the sequence py, ..., pr is a martingale and
Epy <0, y € My, (81)
forall t =1,2,...,T. If the cone M; is decomposable with respect to wt, i.e.,
M, ={z € X;: z(w) € My(w)}, (82)
where My(w) is a cone in RN, then (81) is equivalent to the assertion that
pe(w)b <0, for all w'and all b € My(w). (83)
Proof. Observe that (hi—1, ht) € Z; if and only if
hi_1 € X, and hy = hy_1 + y;, where y, € M,.
Therefore condition (43), defining consistent asset prices, holds if and only if
Epwy + Epihy1 < Epy_1hi_1, hy_1 € X1, y € M.
In turn, this inequality is equivalent to the following two relations: (81) and Ephy—; <

Epi_1hi—q (hi—y € Xi—1). Since X;_; is a linear space, the last inequality holds if and only
if Epshy—1 = Epi_1hy—1, which implies that py, ..., pr is a martingale. U
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7 Examples and applications

7.1 The case of a frictionless market

In this section we consider four specific models that can be included into the general frame-
work we developed. All these models are described in terms of value operators; all except
the last one are defined in terms of different inclusions. All the cones involved are polyhe-
dral, so that condition (I) (see Section 3) holds automatically. The verification of all the
assumptions in (II) - (V) used in each specific case is straightforward.

We begin with reconsidering the case of a frictionless market. The model we deal with is
essentially the same as in Section 2. However, the existence of a riskless asset is not assumed.
Also, in the definition of a self-financing strategy, we assume inequality S;h; < S;h;_q
between the portfolio values, rather than equality. The main conclusions we will obtain will
be fully analogous to those derived in Section 2, but they will be expressed in the general
terms of consistent price systems.

Suppose for each t = 0,..., T, we are given a vector S;(w!) = (S}(w?), ..., SN (w?)) > 0
specifying the market prices of N assets i = 1,2,..., N at time ¢. Assume that initial
endowments and contingent claims are measured in terms of a single currency, so that
mo = my = 1. Thus Vo = R', and Vr is the space of scalar-valued functions v(w”). Assume
that Mo and Mt are the standard cones of non-negative elements, consequently, the partial
orderings <o and <r are standard. Let the cones Z;, t = 1,...,T, and W, (¢t = 0,T) be
defined by

Zy = {(h4—1,hy) € Xy X X, 2 Sthy < Sihy_y}, (84)
W() = {(Uo, ho) S VO X XO v > Soho}, (85)
WT = {(hT,UT) S XT X VT : SThT Z UT}. (86)

The inequality Sihy < Sihi—1 in (84) expresses the self-financing condition. According to
(85), an initial endowment vy allows to purchase a portfolio hg if the value Sphy of this
portfolio expressed in terms of the prices Sy (without transaction costs) does not exceed vj.

Note that the model under consideration is defined in terms of difference inclusions, since
we can represent Z; in the form

Zt = {(ht—la ht) € ‘)(t_l X Xt : ht — ht—l c Mt};
where

M, ={y € X, : Sy <0} (87)
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The cones Wy and Wy are defined in terms of the value operators
Vo(ho) = Soho, Vir(hr) = Srhi.

In each of the examples we analyze in this section, we are primarily interested in the
description of the class of strictly consistent price systems. Recall that such price systems
exist if and only if the no arbitrage hypothesis holds (see Theorem 4.2). Furthermore, they
are used for the characterization of the set of initial endowments needed to superhedge a
contingent claim (see Theorem 4.3).

Suppose asset i = 1 is cash and put B;(w') = S}(w'). There is a bank account such
that one unit of cash deposited with the account at time 0 yields B; units of cash at time
t. Assuming that B;(w') > 0, consider the discounted prices

Si: S;/Bt

of assets i = 1,2, ..., N. Clearly s} = 1. Denote by Qr the set of those real-valued functions
q(w) > 0 for which

E(gs; | W) = E(q | w81, t=1,2,...,T. (88a)

Since E(gs; | w'™') = E[E(q | w!)s; | w'™!], equality (88a) means that the sequence E(q |
w')sy, t =0, ..., T, is a martingale (with respect to the original measure P on §2). Define

Qw) = %P(w), w € . (89)
Then @ is a probability measure on ), equivalent to P with density E'iq > 0. Conditional
expectations with respect to () and P are related to each other by the formula
1y _ B(gg|w)
E9 =1y _ 90
€1 = o) (90)

holding for any random variable £(w). By using (90), we can write (88a) in the form
E°(s; | w'™) = s4_1, (91)

which means that the discounted price process sg, ..., st is a martingale with respect to Q).
Such measures () are called equivalent martingale measures. If asset ¢ = 1 is riskless, i.e.
B; = (14 )", then this notion coincides with the notion of a risk-neutral measure examined
in Sections 1 and 2.

Theorem 7.1. Let (qo, po, ---, Pr, qr) be a sequence such that p, € Py (t =1,2,...,T),
do > 0 is a number and qr(w) > 0 is a real-valued function of w. Then the following three
assertions are equivalent.
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(a) The sequence (qo, Po, ---, DT, 1) 1S a Strictly consistent price system.
(b) The random process po, ..., pr is a martingale, qr > 0, and there ezist nonnegative
real-valued functions g (w'), ..., qr—1(w? ™) such that

Dt = tht, t= 0, 1, ceny T. (92)
(c) We have
qrBr € Qr;

the discount factors qo and qr satisfy

qrBr
= E . 93
q0 BO ) ( )
and the vectors of asset prices py, ..., pr are expressed through Sy, ..., St by the formula:
QTBT t
Pt = 1S, where ¢z = E( lwh), t=0,...,T. (94)

B,

Proof. By virtue of Propositions 6.2, 6.4 and 6.6, a sequence (qo, Po,---, Pr,qr) IS a
consistent price system if and only if

q0So0 = Po; 9rST = Pr, (95)
Do, ---, P is & martingale and
ps(wh)b < 0 for all b satisfying S;(w)b< 0, t=1,2,....,T (96)
(see (78) and (83)). Observe that condition (96) holds if and only if
pe(w') = L(w")Si(w") (97)

for some real-valued function l;(w?) > 0 (¢ =1, ...,T). To prove this statement observe that
if p; is of the form (97), then the second inequality in (96) implies the first one. Conversely,
assume (96) is valid. Fix some w' and consider the linear programming problem: maximize
pi(wh)b subject to —S;(w')b > 0. According to (96), b = 0 is a solution to this problem. By
virtue of the Kuhn-Tucker theorem (see the Appendix), there exists | = l;(w) > 0 such that
pi(wh)b — 1Sy (w')b < 0 (b € RN) which yields (97).

(a)=(b) Suppose (qo, Po, ---s P1, ) is a strictly consistent price system. Then gr > 0.
Consider the functions l; in (97) and define ¢, = I;, t = 1,2,...,7 — 1. Then py,...,pr is a
martingale satisfying (92).

(b)=(c) If the vector process ¢;:S;, t = 0,...,T, is a martingale, its first coordinate
¢S} = q;B; is a martingale, which yields ¢,B; = E(qrBr | w'), which implies formula (94)
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and the expression for ¢; in (93). It remains to show that ¢rBr € Q7. This follows from
the relations ¢r > 0 and

_ S, _
E(qrBrs; | w'™") = E[E(qrBr | wt)gt W =
t

E(Qtst | wt_l) =q-15t-1 = @-1Bi_15-1 = E(QTBT | wt_l)st—l-

(The second of these equalities holds because p; = ¢Sy, t =0, ..., T, is a martingale.)
(c)=(a) Since gr > 0, we obtain that go > 0 by virtue of (93). Relations (95) and (96)
hold because p; = ¢;S;. To show that p; is a martingale, we write

E(p; | wt_l) = E(q:S; | wt_l) = E(q;Bys; | wt_l) =
E[E(qrBr | w")s | w'™'] = ElgrBrs; | '] =

grBr

ElgrBr | w'™ s, = E| B
t—1

| wt_l]st—l = q—-15t—1 = D1,

where the third equality follows from (94) and the fifth from (88a) with ¢ = ¢rBr € Qr. [

Assertion (c) of Theorem 7.1 demonstrates the relation between consistent price systems
and equivalent martingale measures. If (qo, po, ..., pr, ¢r) is a consistent price system, then
grBr € Qr, and so qrBr/(EqrBr) is the density of an equivalent martingale measure (see
(88a), (89) and (91)). Conversely, if ¢ is the density of an equivalent martingale measure,
then g € Qr, and by setting

q grBr

= — = E
qr BT’ 9 BO

, Dt = @S,

B
where ¢, = E(QTB—T|wt) (t =0,...,T), we obtain a consistent price system. By virtue of

Theorem 4.2, a consistent price system exists if and only if the no arbitrage hypothesis holds.
This we conclude that the latter hypothesis holds if and only if there exists an equivalent
martingale measure. This leads to a proof of the Fundamental Theorem of Asset Pricing in
the model under consideration.
We can see from Theorem 7.1 that (qo, gr) is a pair of strictly consistent discount factors
(in symbols, (qo,qr) € Q) if and only if g = E(qT%) and grBr/E(qrBr) is the density
0

of an equivalent martingale measure. By virtue of Theorem 4.3, an initial endowment vy is
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sufficient to superhedge a contingent claim vy if and only if goug > Eqrvr for all (go, qr) € Q,
in other words, if and only if

Ur
FqrBr——

EqTUT B qr TBT B

Vg > sup = sup B =
(g0.97)€Q@ 40 (g0,a7)€Q E(CJT T)

By
B B, B, B
sup E| qr B OUT] — sup E( q OUT) zsupE'Q oUr

gr BT €Qr E(CITBT) Br q€0T Eq Br QeQ Br '’

where the last supremum is taken over the set QQ of all equivalent martingale measures ()
and the last but one with respect to their densities q. We formulate the result obtained in
the following theorem.

Theorem 7.2. An initial endowment vy is sufficient to superhedge a contingent claim
vr if and only if
Bovr

Vg = sup E° B
QeQ T

If i =1 is a riskless asset, i.e. B; = (1+r)!, where r > 0 is a non-random number, then
we arrive at the formula

(%

vo >sup E9———
=T )T

fully analogous to that we obtained in Theorem 2.1.

7.2 The conventional model with proportional transaction costs

The material of the present subsection is based on the work of Jouini and Kallal [20] (see also
Pham and Touzi [30]). Suppose that, for each t = 0, ..., T, we are given a vector Sy(w!) =
(SHw?), ..., SN (w?)) > 0 specifying the market prices of N assets i = 1,2,..., N at time t.
Assume that mg = mr = 1, and so elements of the space V;, of initial endowments are real
numbers (amounts of cash) and elements of the space Vr of contingent claims scalar-valued
functions v(w) (amounts depending on the random situation w at the terminal moment of
time T). Let Mg and My be the standard cones of non-negative elements in V, and Vr,
generating the standard partial orderings.

Fix some numbers X\* > 0 and 1 > u’ > 0 — transaction cost rates. By selling one unit
of asset 4 at time ¢, one gets (1 — pf)S?, and in order to buy one unit of asset i, one has to
pay (1+X)S:. As in the classical model considered in the previous subsection, assume that
asset 4 = 1 is cash. Suppose B; := S} > 0 and

Alz,ul:O
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(there are no transaction costs for operating the bank account).
For any vector a = (a,...,a") € RN and any i = 1,2, ..., N, define

mia) = (1 4+ N)al + (1 — p)al, (98)

where @ = max{a’,0} and a* = min{a?,0}. The functions 7%(a) are convex and homoge-
neous. Consider the mapping 7 : RN — R acting by the formula

7(a) = (1'(a), ..., 7'(a))- (99)
Define the cones Z;, t =1,...,T, and W; (¢t =0,T) by

Zy = {(ht—1, ) € X1 x Xy 2 Syr(hy — hy—q) < 0}, (100)
Wo = {(vo, ho) € Vo X Xp = vo > So7(ho)}, (101)
Wr = {(hr,vr) € Xp X Vp : =Sp7(—hr) > vr}. (102)

The inequality S;7(h; — h;—1) < 0 in involved in (100) can be written

N N

D A+ NSk~ ki) < =) (1= 1)Si(hi — hi_y)- .

The last relation expresses a self-financing condition: assets are purchased only at the
expense of sales of other assets. In order to construct a portfolio hy at time 0, one needs
the amount

N

Sor(ho) = D2 (1+ X)Si () + (1 — w)Si(h)-

i=1 i=1
and when liquidating a portfolio hr at time 7', one gets

N N

=Sp7(=hr) = = Y (1+ X)SH(=hy) = D (1= w)Sh(~hi)- =

N

D L+ N)Sh(he) -+ D (1= ) Sh ()

This leads to the definitions of the cones Wy and Wy in (101) and (102).
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The model under consideration is defined in terms of difference inclusions, since we can
represent Z; in the form

Zy=A{(hi_1, ) € X1 X Xyt hy — hy_q € My}, (103)
where
My ={y e & :S7(y) <0} (104)
The cones Wy and Wy are defined in terms of the value operators
Vo(ho) = So7(ho), Vr(hr) = —Sr7(—hr). (105)

Consider the discounted prices si = Si/Bi of assets i = 1,2, ..., N. Denote by Qr the set
of those real-valued functions g(w) > 0 for which there exists a sequence 5y, 5;(w!), ..., 57 (w")
of vector functions with values in RY such that

(1—p))st <8 < (14+MN)sé, t=0,2,...,T, (106)
and

E(g5; | W) = E(q | w51, t=1,2,...,T. (107)

The set Qr consists of functions g(w) > 0 for which some sequence §, satisfying (106) is a

martingale with respect to the measure Q(w) = %P(w). If \' = p* = 0 (there are no
q

transaction costs), then QT coincides with the set Q7 introduced in the previous subsection.

Theorem 7.3. Let (qo, po, ---s D1, qr) be a sequence such that p, € Py (t =1,2,...,T),
do > 0 is a number and gr(w) > 0 is a real-valued function of w. Then the following
assertions are equivalent.

(a) The sequence (qo, Po, ---, DT, qr) 1S @ Strictly consistent price system.

(b) The random process po, ..., pr is a martingale, qr > 0, and there ezist nonnegative
real-valued functions g, (w'), ..., qr_1 (W) such that

@Si(1— p') < pi < @Si(1+ X, t=0,...,T. (108)

(¢) The function qrBr belongs to the class Or, the discount factors qy and qr are related

B
to each other by formula gy = E(q% T

0

), and the sequence of asset prices py,...,pr IS a

QTBT t
Bt |w )
Proof. By virtue of Propositions 6.2, 6.4 and 6.6, a sequence (qo, Po, --., P1,qr) IS &
consistent price system if and only if

martingale satisfying (108), where q, ...,qr—1 are defined by ¢ = E(

q0S07(b) > pob, pr(w)b > —gr(w)Sr(w)T(—b) for all b € RV. (109)
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Do, ---, Pr is & martingale, and
pi(wh)b < 0 for all b € RY satisfying Sy(w)7(b) <0, (110)

(t=1,2,...,T). In the model we deal with, the inequalities involved in (109) are equivalent
to those in (70) and (78)). Property (110) is derived from (83) under the assumption that
M, defined by (104).

Let us show that condition (110) holds if and only if

LSH1 — pt) < pi <1,SH1+ M), i=1,..., N, (111)

for some real-valued functions l; = l;(w*) > 0 (t = 1,...,T). Consider the following opti-
mization problem: maximize p;(w')b over b € RN subject to —S;(w)7(b) > 0. Property
(110) is equivalent to the assertion that b = 0 is a solution to this problem. By virtue of
the Kuhn-Tucker theorem (see the Appendix), this assertion holds if and only if there exists
[ = l;(w) > 0 such that

py(wh)b — Iy(w)Sy(w')7(b) < 0 for all b € RN, (112)

(The Kuhn-Tucker theorem can be applied because the function —S;(w*)7(b) is concave and
the Slater condition —S;(w?)7(b) > 0 is fulfilled for b = (—1,0,0, ...,0).) Since Si(w*)7(b) =
SN | Si(w')7i(b), inequality (109) is valid if and only if the analogous ”coordinatewise”
inequality

pi(w)r — l(w)Si (W) (r) <0, i=1,..,N, r € R, (113)

is valid. It remains to observe that, for 7 < 0, (113) is equivalent to the first inequality in
(111), and for r > 0, (113) is equivalent to the second inequality in (111).
We note that relations (109) hold if and only if, for ¢ = 0,7, we have

@Si(1— i) < pi < @Si1+N), i=1,.., N, t=0,T. (114)

This follows from the assertion that 113) is equivalent to (111). To use this assertion it is
sufficient to set I; = ¢q; (t =0,T).

(a)=(b) Suppose (qo, po, ---, Pr, qr) is a strictly consistent price system. Then gr > 0.
Consider the functions /; in (111) and define ¢; = I;, t = 1,2,...,T — 1. Then py, ...,pr is a
martingale satisfying (108).

(b)=(c) If the vector process p;, t =0, ..., T, is a martingale, its first coordinate p} is a
martingale. From (108), by using the relations S} = B; and \' = p! = 0, we get p} = ¢,B,.
The fact that the process ¢;B;, t =0, ..., T, is a martingale implies (94) and (93). It remains
to show that ¢rBr € Qr. Define ¢ = grBr (> 0) and 5, = p;/q:B;. Then §; satisfies (106)
by virtue of (108), and we have

grBr
q: B

B
Bgs, | o) = B(E L p [0 = B(ET | wpe | oY) =
q1 Dy
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E[pt | wt_l] =DPt-1 = qt—lBt—lgt—l = E(q | wt_l)gt—la t= 1) 2) "'aTa

which means that ¢ = g7 Br € QT.

(¢)=(a) Since gr > 0 (which is true because grBr € Qr), we obtain that gy > 0 by
virtue of (93). Inequalities (114) follow from (108) with ¢ = 0,7. By setting I; = ¢, t =
1,...,T—1, we obtain (111) as a consequence of (108). Since p;, t =0, ..., T, is a martingale,
we find that (qo, po, ---, P, ¢r) is a consistent price system. O

Denote by Q the class of probability measures @) equivalent to P with density ¢/FEq,
where g € Or.

Theorem 7.4. An initial endowment vo is sufficient to superhedge a contingent claim
vr if and only if
Vg > sup E° Bovr

QeQ T

Proof. By virtue of Theorem 4.3, vy is sufficient to superhedge vy if and only if
qovo = Eqrur (115)

for all strictly consistent price systems (qo, po, ..., P, ¢r). In view of assertion (c) of Theorem
7.3, for any such price system, we have

- B
Brgr € Qr and qo = Eq% < (116)
0

Conversely, suppose discount factors qg, g7 satisfy (116). Consider the process §; satisfying
(106) and (107) with ¢ = grBy € Qr. Define ¢, = E(qrBrB; ' | wt), t =1,..,T — 1, and
Pt = @ BiS:. Then (108) follows from (106) and formulas (93), (94) follow from the definition
of ¢; and (116). The sequence py, ..., pr is a martingale because

E(ps | wt_l) = E(q:B:5: | wt_l) == FE(E(qrBr | wt)gt | wt_l) =

E(qrBrs: | wt_l) = E(qrBr | wt_l)gt—l = E(qrBr | wt_l)(QtBt)_lpt_l = Ppt-1

by virtue of (107) with ¢ = ¢rBr. Thus (qo, po, ---, P, qr) is & consistent price system in
view of assertion (c) of Theorem 7.3.
By using (115) and (116), we obtain that v, is sufficient to superhedge vr if and only if

E B -
vy > 24rvrHo for all g with grBr € Or,
EqrBr
or in other words, if and only if
B B
Vg > sup EchEO = sup EQU; 0,
gcor PTHY Qe T
which completes the proof. O

50



7.3 A multicurrency model with short sales

The model we discuss here is a version of that studied in a series of papers by Kabanov and
coauthors (see, e.g., [23], [25], [22], [9]). Consider a financial market where N currencies
i=1,2,...,N are traded. Admissible portfolios h; at time ¢ are any vector functions hy(w?)
with values in RY, so that short sales are allowed. For each t = 1,2, ..., T, we are given an
N x N matrix (4 (w?)) with g > 0 and p& = 1. The numbers p}’ represent the ezchange
rates of the currencies (including transaction costs). For one unit of currency j, at time ¢,
one can get y;’ units of currency i. A portfolio of currencies h; 1 = (hi_;,..., A ;) can be
exchanged to a portfolio h; = (h},...,hY) at time ¢ in a random situation w? if and only if
there exists a nonnegative N x N matrix (b (w?)) such that

hE<hi 4+ plb =Y b i=1,.,N. (117)
J#i J#i

Here, b!* stands for the amount of currency i exchanged into currency j. Therefore the sum
> i b7t is subtracted from the ith position of the portfolio. In the course of the exchange,
one gets the amount ., 1267 of currency i. Hence the sum i p7b7 is added to the
ith position of the portfolio. The inequality (rather than equality) in (117) points to a
possibility of consumption.

To embed the above model into the general framework studied in this paper, we define

My={ye X, : y'< Z,uijbij - Z bl* for some matrix (b!*(w?)) > 0}
J#i J#i
and Z; = {(h4_1,hs) : hy — hy_1 € M;}. Thus the cone Z; is defined in terms of difference
inclusions. Note that the cone M; is decomposable with respect to w': we have y € M, if
and only if y(w') € M;(w?), where
M) ={beRN:¥ < Z,uijbij — Zbg’ for some matrix (b)) > 0}.
J#i J#i
Further, we assume that mqg = m¢r = N, Vy = Ay and Vr = X , and so both initial

endowments and contingent claims are represented by portfolios of currencies. We define
the value operators as the identity mappings

Vo(ho) = ho (ho € &), Vo(ho) = ho (ho € Ap). (118)

These operators characterize wealth contained in a portfolio A by the vector h itself: there
are no natural aggregate indicators of value in the multicurrency context. To complete the
model description, we define the conesM, and Mr (and the partial orderings associated
with them) in the spaces Vy and Vr to be standard.

The main results related to the model at hand are presented in the following theorem.
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Theorem 7.5 (cf. [25], Theorems 3.2 and 4.1). In the model under consideration,
strictly consistent price systems are sequences (qo, Po, ---, P, qr) Such that qo = po, pr = qr
and po,...,pr (pr € Py) is a martingale satisfying the following conditions:

p>0,t=0,.,T (119)
and
H?P; S p{a t = 1a2a "'aTa Za] = 1’ ""N’ (120)

where pt is the ith coordinate of the vector p;. The no-arbitrage hypothesis (N'A) is equiv-
alent to the existence such a martingale. A contingent claim vr € Vr can be superhedged
starting from an initial endowment vg € Vy if and only if Epyv > Eprw for any martingale
Do, ---, D1 Satisfying (119) and (120).

Proof. By virtue of Propositions 6.2, 6.4 and 6.6, a sequence (qo, Po, ---, Pr, 9r) is a strictly
consistent price system if and only if ¢g > 0, gr > 0,

qoho > poho (ho € &), prhr > grhr (hr € Xr), (121)

Do, ---, Pr is & martingale and
py(w)b < 0 for all b < Z,uij(wt)b"j - iji, (122)
J#i J#i

where (V') is any nonnegative matrix (see (70), (78) and (83)). Clearly the inequalities in
(121) hold if and only if

go = po and pr = gr. (123)

Property (122) can be equivalently stated as

D@ wl (We? = ¥ <0 (124)

J#i J#i

for all (b¢) > 0. Since p¥ = 1, we can replace in (124) the sums over j # 7 by the analogous
sums over j = 1,..., N. This yields

N N
Z piupi < Z plb for all (H%) >0,
ij=1 ij=1
which is equivalent to (120). As long as po, ..., pr is a martingale and the equalities in (123)
are valid, condition (119) holds if and only if go > 0 and ¢z > 0 because p; = E(qr | w?).
This completes the proof of the first assertion of Theorem 7.5. To prove the second and the
third assertions it is sufficient to refer to Theorems 4.2 and 4.3. O
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7.4 Currency exchange without borrowing and short sales

We consider another multicurrency model, similar to that proposed in [15]. As in the
foregoing subsection, we are given, for each t = 1,..., T, a matrix {u;’ (w')} with g’ > 0 and
p = 1, specifying the exchange rates of N currencies i = 1,2, ..., N. In the present model,
portfolios hy(w') are supposed to be nonnegative vectors with values in RV, which excludes
possibilities of short sales. A portfolio hy_; = (k! ;,...,hY ;) € P;_; can be transformed into
portfolio hy = (h{,...,h)’) € P, at time ¢ if and only if there exists a nonnegative matrix
(di'(w*)) (the ezchange matriz) such that

N N
(@) =2 dl (W), 0 < hi(w') <) p (Whd (W) (125)
=1 =1

The set of all such portfolio pairs will be denoted by Z,. Here, di* (i # j) stands for the
amount of currency i converted into currency j. The amount d , of currency i is left
unexchanged. The first inequality in (125) is a balance constraint for the currency i: one
cannot exchange more of it than is available at time ¢t — 1 (no borrowing is allowed). The
second inequality in (125) says that, at time ¢, the ith position of the portfolio cannot
be greater than the sum Z;Zl pd? | obtained as a result of the exchange. We define
mg=mg = N, put V, = A, t = 0,7, and denote by M; the standard cones in the spaces

V; (t =0,T). Finally, we set

W() = {(Uo, ho) S XO X PO Vo Z ho}, (126)

WT == {(hT,UT) S PT X XT : hT Z UT}. (127)

The model we have just described will be denoted by M.
Observe that, in the deterministic case (when the space of states of the world consists
of one element), the cone Z; can be represented in the form

Zy =A{(z,y): x> Ad, 0 <y < Bd for some d € Rf_ﬂ}.
Here A : R¥* — RN and B, : RN’ — RY are nonnegative linear operators transforming an
element d = (d”) € RN’ into the vectors Ad and B,d whose coordinates are defined by

N N
(Ad)' = & and (Bid)' = Y pfd? (i=1,2,..., N).

Jj=1 Jj=1

Thus the model M is a direct stochastic analogue of the von Neumann [38] model of economic
growth (A and B; being the counterparts of the ”technology matrices”).
The following theorem contains results regarding the model M.
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Theorem 7.6. In the model M, strictly consistent price systems are sequences
(g0, Po, ---» DT, qT) Such that gr > 0

do = Po, Pr = qr; (128)

and po, ...,pr (Pt € Pi) is a strictly positive supermartingale satisfying the following condi-
tion:

() For every t = 1,2,..., N, there exists a strictly positive vector function m;(w') such
that

H?P; Sﬂza = 1a2a"'aTa ZaJ: 1""’N’ (129)
and
E(ﬂ't | wt—l) S Dy_1- (130)

The no-arbitrage hypothesis holds always. A contingent claim vy € Vr can be superhedged
starting from an initial endowment vy € Vy if and only if Epov > Eprw for any strictly
positive supermartingale po, ..., pr satisfying condition ().

Proof. To characterize consistent price systems, we examine conditions (42) - (44). The
first and the third of these hold if and only if gy > py and pr > ¢r. Requirement (43) can
be written in the following equivalent form:

N N N
EY piw) ) @) (W) — EY piy (ki) <0 (131)
i=1 =1 i=1
for each vector function h;,_; = hy_;(w*™!) and each matrix function d; = (d*(w?)) satisfying
N ..
B (W) > ) dl(W). (132)
=1

This property means that (h;—1,d;) = (0,0) maximizes the expression on the left-hand
side of (43) among all (h;_1,d;) = (hy_1(w'™?),dy(w?)) > 0 subject to constraint (43). By
applying the Kuhn-Tucker theorem to the linear programming problem at hand, we obtain
that the above property holds if and only if there exists a vector function 7; = m;(w?) > 0
such that

N N N N
E sz Zu?d? - E Zpi—lhi—l + Eﬂ-t[hi—l - Z d'1<0 (133)
i=1  j=1 i=1 J=1

for all (hy_1,d;) = (hs—1(w'™), di(w?)) > 0. Replacing the term Emihi_,; in (133) by E[E(m; |
w!™1)hi_;] and maximizing the expression in (133) separately with respect to h;_; and d,

o4



we obtain that (133) is equivalent to (129) and (130). Observe that conditions (129) and
(130) imply

Eipi |t <pl_,, t=1,2,..,T, i,j=1,..., N. (134)

By setting ¢ = j and using the fact that ¥ = 1, we obtain the inequality E(p; | w'™') < p;_1,
and so any sequence py, ..., pr (p; € P;) satisfying (7) is a supermartingale. Thus we have
shown that (qo, po, ..., Pr, ¢r) is a consistent price system if and only if the relations in (128)
hold and po, ..., pr (p; € P;) is a supermartingale satisfying condition (7).

Suppose (qo, Po, ---, P, gr) is a strictly consistent price system. Then pr > g > 0, which
implies that the supermartingale py, ..., pr is strictly positive (indeed, p; > E(pr | w') > 0).
Conversely, if gr > 0, the relations in (128) hold and py, ..., pr is a supermartingale, then
we have g9 > po = Epr > Eqr > 0. Thus ¢y > 0, and so (qo, po, ---, Pr, qr) is a strictly
consistent price system. This completes the proof of the first assertion of Theorem 7.6.

To verify (M.A) observe that if (hi_1,h;) € Z; and hy_; = 0, then h; = 0. This is
immediate from (128). Thus if (v, hg, ..., b, v7) is a superhedging programme with vy < 0

and vy > 0, we have vy > hg > 0, hence hg = hy = ... = hy = 0, which implies vy = 0
because vr < hr < 0.
The last assertion of Theorem 7.6 is a direct consequence of Theorem 4.3. O

Consider a modification of the model M (which will be denoted by M’) described like
M, with the only difference that the cones Z; are defined as follows. A pair of portfolios
(hi_1,hs) € Pi_1 X Py belongs to Z; if there exists a matrix function dﬁl = dﬁl(wt_l) >0
such that

N N
Wi @) 2 d (), 0 < Ri(w!) <) pf (hdP (). (135)
Jj=1 j=1

The difference between (125) and (135) lies in the fact that, in the former formula, the
exchange matrix d; depends on the market history w® (which is known at time t), whereas
in the latter, the matrix d;_; depends on w'! (which is known one time period earlier).
Although this assumption might seem restrictive, it is fulfilled for an important class of
exchange strategies. This is the class of fized-miz strategies (see, e.g., [10]), for which

dﬁl (W) = hi_; (w")6%,

where (#7*) > 01is a fixed (non-random) matrix with Zjvzl 6" = 1. The number §’* represents
the proportion of the available amount of currency j that is exchanged into currency 4.
Theorem 7.7. For the model M/, all the assertions of Theorem 7.6 remain valid with
the only difference that condition (m) involved in the characterization of consistent price
systems should be replaced by condition (134).
Proof. The arguments basically repeat those in the proof of Theorem 7.6. Only when
analyzing requirement (43), we observe that this requirement can be written in the following
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equivalent form:
N N .. .. N N ..
EDY pi(w)> (W)L (W) = EY pia (@) dl (W) <0 (136)
i=1 j=1 i=1 j=1

for each matrix function dy_; = (d?* ,(w*™')) > 0. Clearly (136) holds if and only if
E[E(Piﬂij | wt_l)dij—l] < Epi—ldzil

for each 4,j and d?*, = d?* | (w*™') > 0, which is equivalent to (134). O
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Appendix: Some facts of convex analysis

A.1. Separation theorems.
Theorem A.1. Let X and Y be convex sets in R" such that

Xny =40.
Then there ezists a linear function qx (x € X) such that

qr < qy

forallze X, yeY.
Theorem A.2. If X and Y are convex sets in R™ such that the distance between X
and Y is strictly positive, then there is a linear function qx such that

supgr < infqy.
reX yey

A.2. Separation of cones by strictly positive functionals. Let K be a closed
proper cone? in R™. The cone K defines a partial ordering on R"

t<kgy & y—z€K.

For example, if K = R} (standard cone in R"), then the inequality  <x y means that
zt <yt for all i = 1,...n. We write K* for the set of all those linear functionals g on R" for
which gz > 0, z € K. We denote by K* the set of those ¢ in K* that satisfy gz > 0 for
each non-zero element z € K. Functionals in K* (resp. in K*) are called positive (resp.
strictly positive). The cone K* is called the dual to the cone K.

Let A be a closed cone in R".

Theorem A.3. The following two assertions are equivalent:

(NA) An K ={0}.

(Q) There exists ¢ € K+ such that ga < 0 for all a € A.

Define

Q={geK*": qa<0,acA}.
Theorem A.3 says that
(NA) & Q #10.

To prove Theorem A.3, fix some convex compact set ¥ C K such that 0 ¢ ¥ and
K ={\x: X >0,z € X}. Theset X exists since the cone K is proper and closed (one can
take as ¥ the convex hull of the intersection of K with the Euclidean sphere in R").

4A cone K is called proper if the relations z € K and —z € K imply z = 0.
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Proof of Theorem A.3. The implication (Q)=>(NA) is straightforward. Let (NA) hold.
Since the closed convex set A does not intersect the convex compact set X, the distance
between A and X is strictly positive, and so, by virtue of Theorem A.2, there exists a linear
functional ¢ on R™ which strongly separates A and ¥, i.e.,

oo < ufb
This implies sup,.4 ga = 0, as long as A is a cone. Furthermore, we have gz > 0 for each
z € K, z # 0, because any such z is of the form z = \b, where A >0 and b € > . O

Remark A.1. Theorem A.3 reflects the content of various versions of the FTAP (in
the finite-dimensional case). In this work, we derive from it some specific versions of FTAP
in several models. Condition (NA) (interpreted in the applications as the no-arbitrage
hypothesis) states that if a € A and 0 <k a, then a = 0. Assertion (Q) deals with a strictly
positive functional ¢ whose maximum on A is zero. According to Theorem A.3, the existence
of this functional is equivalent to (NA). We may interpret (NA) as the hypothesis that the
point 0 is a Pareto-optimal element of the set A, the optimality being defined in terms of
the partial ordering <x. Theorem A.3 expresses the idea that an element is Pareto-optimal
if and only if it maximizes a strictly positive linear functional (for related results see, e.g.,
[2], Section 3.5).

When A is a linear space, Theorem A.3 admits the following refinement.

Theorem A.4. If A is a linear space, then

Q={qeKt: ga=0, ac A},

and (NA) holds if and only if the following assertion is valid:

(Qo) There exists ¢ € Kt such that ga = 0 for all a € A.

Proof. If A is a linear space, then the inequality ga < 0 holds for all a € A if and only
if ga = 0 for each a € A. O

Remark A.2. Theorem A.4 corresponds to the classical case of a frictionless market. In
that case, assertion (Qg) turns into the statement regarding the existence of an equivalent
martingale measure.

A.3. A duality theorem. Theorem A.5. below characterizes elements u in the cone
A — K in terms of dual variables - linear functionals ¢ in ). It may be thought of as an
abstract version of various hedging results.

Theorem A.5. Let (NA) hold. Then, for any u € R", the following assertions are
equivalent:

(H) There ezists an element a € A such that u <g a (i.e., u € A— K).

(U) We have

qu < 0 for all g € Q.

Notethat ue A— K < u=a—kforsomeac Aandke K =>a—-u=k € K <
u <g a.
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Before proving Theorem A.5, we consider the following consequence of it.

Theorem A.6. Let (NA) hold. Suppose A is a linear space. Then, for any u € R™,
the following assertions are equivalent:

(Ho) The vector u belongs to A.

(Uo) We have

qu =20 forall q € Q.

Proof. Suppose (Hy) holds. Then by virtue of Theorem A.5 (the implication (H)=(U)),
we have qu < 0 for all ¢ €Q. Since A is a linear space, this means that qu = 0 for all ¢ €Q),
which is stated in (Uy).

Let (Up) hold. In view of Theorem A.5, we have u <k a, i.e., a—u € K for some a € A.
We have to show that u = a for some a € A. To this end let us apply Theorem A.5 to a
modified model in which the cone K is replaced by —K. For this model, condition (NA)
is fulfilled as well. Indeed, if a € —K for some a € A, then —a € K N A (since A is a
linear space), and so a = 0. Furthermore, (Uj) holds for the modified model too. Indeed,
if g € (—K)", and ga = 0, a € A, then —¢ € K™ and —ga = 0, a € A. Consequently,
—qu = 0, and so qu = 0. By applying Theorem A.5 in this situation, we find an a’ € A such
that u <(_k) a’, which means ¢’ —u € —K, or u — @’ € K. By adding up this relation and
the relation a —u € K, we get a — a’ € K. Furthermore, a —a’ € A. This implies a = @’ in
view of (NA). Hence a —u € K and u — a € K, which yields u = a because K is a proper
cone. U

A.4. A lemma for Theorem A.5. The proof of Theorem A.5 is based on Lemma,
A.1 below. Denote by B, the closed ball {x € R™ : |z| < €}, where | - | is the Euclidean
norm in R"™, and consider the closed e-neighborhood of 3:

X=X+ B..
Put
K={\: 2>0,ye X}

If € > 0 is small enough (which will be assumed in what follows), the convex compact set
Y. does not contain 0, and so the cone K, spanned on ¥, is proper and closed.

Lemma A.1. Let condition (NA) be fulfilled. Let u be a vector in R™ such that
(A—u)N K = 0. Then there exists a number € > 0 for which the distance between the sets
A —u and K. is strictly positive.

Proof. Suppose the contrary. Then there exist sequences a;, € A, Ay > 0, s € X,
by € R such that |by| < k7! and

|ak —Uu-—- )\ksk - )\kbk| S k_l

(k = 1,2,...). We may assume without loss of generality that sy — s € X, since X is
compact. If Ay is bounded, then, along a subsequence, A\, — A > 0. Consequently, ar —u —
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As € K, since A\yby — 0. Thus ap, — a € A, where a — u € K. This is a contradiction,
since (A —u) N K = (. If \; is unbounded, then by passing to a subsequence, we obtain
0 < A\ — 00,

u

M

|i_:_bk_ _Sk|_>0a

and ak)\,:l — § € ¥ (since by, — 0 and u)\,:l — 0). Thus s € A, because ak)\,:l € Aand A

is closed. This contradicts hypothesis (NA), according to which AN K = {0}. O
A.5. Proof of Theorem A.5. Let (H) hold. Then a —u € K for some a € A, and if

q €Q, we have

0<g(a—u)=qa—qu< —qu,

which yields (U). Conversely, suppose (U) is true, while (H) is not. The latter means that
(A—u)N K = 0. Indeed, if g€ K and g € A — u, then g =a —u, a € A, and so u <k a.
By Lemma A.1, the distance between A — u and K. is strictly positive for some ¢ > 0.
Consequently (see Theorem A.2), there exists a linear functional ¢ strongly separating the
sets A —u and K,:

ilelg(qa qu) < blenli qb. (137)
Since K. is a cone, the infimum on the right-hand side is equal to zero. Consequently, gb > 0
for b € K., which yields gs > 0, s € X.. Therefore ¢ € K*. By using (137) and the fact that
0 € A, we obtain the inequality —qu < 0. The functional ¢ is bounded above on A, and
hence it is nonpositive on A. Thus ¢ €Q and qu > 0. A contradiction. O
A.6. The Kuhn-Tucker theorem. Let O be a convex subset in R™ and f(0), 6 € O,
a concave real-valued function defined on ©. Let G be a cone in R* and G(6) a vector
function on © with values in R*. Assume that G is concave in the following sense

G(ch; + (1 —c)fy — cG(01) — (1 —c)G(62) € G (138)

for all 6,1, 83 € © and c € [0,1]. (Clearly (138) holds if G is affine, i.e., the expression in
(138) is equal to zero.) Consider the following optimization problem.
(M) Maximize f(#) on the set © subject to the constraint

G(0) €G. (139)

Suppose that one of the conditions (SL) or (LP) below holds.

(SL) (Slater’s constraint qualification). There is a vector § € © such that G(0) €int G.

(LP) The set © is polyhedral and f, G are affine.

(If (LP) holds, (M) is a linear programming problem.)

Theorem A.7. Let 0 be an element of © satisfying the constraint G(6) € G. Then the
following assertions are equivalent.
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(i) The vector 0 is a solution to optimization problem (M).
(ii) There ezists a linear functional such that

f(8) +p(G(9)) < f(8) +p(G(9)), 6 €O, (140)
and
p(G(9)) = 0. (141)

Condition (140) states that § maximizes the Lagrangian L(p,8) = f(6) + p(G(8)) over
all 8 € © (not necessarily satisfying (141)). In this sense, p is said to relaz the constraint
(139). Equality (141) is called the complementary slackness condition. If p € G*, then two
relations (140) and (141) are equivalent to one:

f(0) +pG(H) < f(6), 6 € 6. (142)
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