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Abstract

This paper develops a framework for the construction and anal-
ysis of misspecification tests for GARCH models and proposes new
asymptotically valid and locally optimal tests of asymmetry and non-
linearity. It is argued that the asymmetry test of Engle and Ng (1993)
and non-linearity test of Lundbergh and Teräsvirta (2002) are neither
asymptotically valid (since they ignore asymptotically non-negligible
estimation effects) nor locally optimal (since they ignore the recursive
nature of the conditional variance structure). The framework ecom-
passes conditional mean specifications estimated by either OLS, NLLS
or QML, and it is shown that the GARCH misspecification tests can be
asymptotically sensitive to unconsidered misspecification of the condi-
tional mean. Monte Carlo results indicate the new tests are very pow-
erful when compared with the previous tests proposed by Engle and
Ng (1993) and Lundbergh and Teräsvirta (2002).
JEL Classification: C12, C22

1 Introduction

Due to the widespread interest in stock market prices, a great deal of re-
search has been undertaken on the specification of parametric models that
can model the characteristics, and determinants, of stock prices. For exam-
ple, the ARCH model, pioneered by Engle (1982), accommodates volatility
clustering - a feature of stock returns first noticed by Mandelbrot (1963) and
Fama (1970) and explained by the arrival and transmission of news. Sub-
sequently, Bollerslev (1986) introduced the Generalized ARCH (GARCH)
model, which nowadays represents a benchmark specification for all volatility
models. The finance literature on volatility clustering has also documented
an asymmetric behaviour of volatility to shocks. This feature manifests it-
self through negative shocks having higher impacts on volatility than equal
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positive shocks. The leverage effect suggested by Black (1976) and the risk
premium investigated by French et al. (1987) are widely cited as possi-
ble explanations of this behaviour in financial markets. Several asymmetric
and/or non-linear GARCH models have been proposed in order to model
both volatility clustering and asymmetric effects of past shocks on volatil-
ity. Prominent among these models are: the EGARCH model of Nelson
(1990); the GJR model of Glosten et al (1993); the TGARCH model of Za-
koian (1994); and, the Smooth Transition GARCH (STGARCH) model of
Hagerud (1997) and Gonzalez-Rivera (1998).

Since the GARCH specification is a parametric model in which a partic-
ular structure is imposed, it is important to perform misspecification tests
to check that the model adequately represents the data. Bollerslev (1986)
suggested a score type test for testing a GARCH model against a higher
order GARCH model. Asymmetry tests were proposed by Engle and Ng
(1993), and these are now widely used in empirical finance. Li and Mak
(1994) constructed a test for the adequacy of a GARCH (p, q) model with a
null hypothesis that the squared standardised error process is serially uncor-
related. Finally, Lundbergh and Teräsvirta (2002) recently proposed tests
for remaining ARCH in standardised errors, linearity and parameter con-
stancy. These test procedures, therefore, are important tools for empirical
researchers who are interested in obtaining accurate forecasts of financial
volatility in order to take the appropriate decisions on portfolio selection,
asset management or pricing derivative assets.

This paper develops a unifying framework for the construction and analy-
sis of misspecification tests in GARCH models, based on the score principle
and first order asymptotic analysis, from which new tests for asymmetry
and non-linearity emerge. These tests represent developments over previous
procedures in a number of respects. Firstly, either Ordinary Least Squares
(OLS), Non-Linear Least Squares (NLLS) or Quasi-Maximum Likelihood
(QML) estimation of the conditional mean is allowed for. Secondly, the tests
are locally optimal, since they explicitly account for the recursive nature of
the conditional heteroskedasticity, whereas those of Engle and Ng (1993)
and Lundbergh and Teräsvirta (2002), for example, do not. Thirdly, it is
shown that there can be asymptotically non-negligible estimation effects,
in the limit null distribution of the resultant test indicators, arising from
the estimated conditional mean parameters. (This problem was addressed
by Durbin, 1970, when testing for serial correlation with lagged dependent
variables.) Importantly, these estimation effects can occur even when the
estimated conditional mean parameters are orthogonal to estimated condi-
tional heteroskedasticity parameters. Indeed, because of this orthogonality,
such estimation effects appear to have been assumed away by Engle and Ng
(1993) and Lundbergh and Teräsvirta (2002), thus bringing into question the
asymptotically invalidity of their test procedures. This also suggests that
such tests will, therefore, be sensitive to misspecification of the conditional
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mean function. The results of a small Monte Carlo study reveal that, not
only do, the new locally optimal tests have excellent power, compared with
the tests of Engle and Ng (1993) and Lundbergh and Teräsvirta (2002), but
also that they will be sensitive to conditional mean misspecification.

The paper is organized as follows. Section 2 describes the null model,
which is the GARCH specification, and briefly discusses estimation of the
conditional mean by OLS, NLLS and QMLE which underpins the generic
framework for the construction of misspecification tests in Section 3. In
Section 4 the tests proposed by Engle and Ng (1993) and Lundbergh and
Teräsvirta (2002) are reviewed and new asymptotically valid and locally op-
timal tests for asymmetry and non-linearity are outlined using the method-
ology of Section 3. Section 5 presents a sensitivity analysis to local mis-
specification of the conditional mean. Section 6 presents some Monte Carlo
evidence in support of the theoretical findings and Section 7 concludes.

2 The null GARCH model

The GARCH(1,1) model of Bollerslev (1986) represents the benchmark spec-
ification for modelling conditional volatility in financial and economic time
series data and is employed as the null model for simplicity of derivations.
Nevertheless, the results below can be easily generalized to a GARCH(p, q)
model. The description of this null model and the assumptions imposed are
presented below.

The conditional mean equation for the variable of interest, yt, can con-
tain lagged endogenous variables and/or strictly exogenous variables and is
defined as:

yt = f (wt;ϕ) + εt (1)

where wt = (y0t−1, z0t), yt−1 = (1, yt−1,..., yt−l)0 ∈ <l+1, exogenous variables
are zt = (zt1,..., ztk)0 ∈ <k, ϕ = (ϕ1, ..,ϕr)0 is a vector of mean parameters
and f (wt;ϕ) is at least twice continuously differentiable in ϕ. The condi-
tional mean of the observed time series yt is E[yt|Ft−1] = f(wt;ϕ), where
Ft−1 is a σ-field generated by the history of εt to date t−1. The innovation,
εt, is the unanticipated shock at time t and is given by

εt = ξth
1/2
t (2)

where ξt is an i.i.d sequence with mean zero and variance one, termed a
standardised error process.

Assumption 1 The process yt is strictly stationary and ergodic.

Assumption 2 (Conditional symmetry) E
£
ξ3t
¤
= 0, i.e., E

£
ε3t |Ft−1

¤
=

0.
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The conditional symmetry assumption makes the estimated conditional
mean and variance parameters asymptotically orthogonal, within a Quasi
Maximum Likelihood (QML) framework; see Section 2.1. The conditional
symmetry assumption can be tested using tests proposed by Bai and Ng
(2001). The condition was also assumed by Lundbergh and Teräsvirta
(2002).

Assumption 3 E
h¡
ξ2t − 1

¢2i
= kc − 1, where kc is a finite constant.

Since the ξt are i.i.d., the standardised errors are conditionally homokur-

tic with Assumption 3 yielding E
·³

ε2t
ht
− 1
´2 |Ft−1¸ = kc − 1.

The conditional variance is specified as

ht = η0st−1, (3)

which is measurable with respect to Ft−1, where η =(α0,α1,β1)0 and st−1 =¡
1, ε2t−1, ht−1

¢0. Thus (1), (2) and (3) define the GARCH(1,1) model.
Assumption 4 The process ht is strictly stationary and ergodic.

Sufficient conditions for ht to be strictly positive are: α0 > 0, α1 ≥ 0,
β1 ≥ 0, whereas the necessary and sufficient condition for covariance sta-
tionarity of ht is α1+ β1 < 1. Nelson (1990) showed that the necessary and
sufficient condition for strict stationarity and ergodicity of the GARCH(1,1)
model is E

£
ln
¡
α1 + β1ξ

2
t

¢¤
< 0. However, this condition is weaker than co-

variance stationarity, but it also allows α1 + β1 = 1 and α1 + β1 slightly
greater than one, and therefore it includes the IGARCH(1,1) model. There-
fore the condition of covariance stationarity of ht is sufficient for strict sta-
tionarity and ergodicity of the conditional variance process.

Assumption 5 E
¡
ξ8t
¢
<∞.

This assumption is made by Comte and Lieberman (2003) in proving
the asymptotic normality of the QML estimator of the GARCH model.
Asymptotic theory for GARCH models was also considered by Bollerslev
and Wooldridge (1992), Lee and Hansen (1994) and Lumsdaine (1996). For
the present purposes, sufficient regularity is assumed so that appropriate
Central Limit Theorems and a Uniform Law of Large Numbers can be ap-
plied in order to derive appropriate limiting distributions. Following Comte
and Lieberman (2003) this requires, for example, the density of ξt to be
absolutely continuous with respect to the Lebesgue measure and positive in
the neighbourhood of the origin.
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We define θ0 = (ϕ0,η0) and the quasi log-likelihood, based on normality,
would be (ignoring constants)

LT (θ) = −1
2

TP
t=1

·
ln(ht) +

ε2t
ht

¸
(4)

for a sample of T observations. Even if we assume normality in estimation,
the true conditional distribution of ξt can be non-normal.

If the true distribution of ξt is symmetric then, as noted above, the
estimated conditional mean and variance parameters of the GARCH model
are asymptotically orthogonal. Engle (1982) presents a theorem for this
result, and applied to the ARCH model, but since normality was assumed
throughout his paper, the conditional symmetry assumption of ξt is not
stated explicitly in the theorem. Asymptotic orthogonality implies that
consistent estimation of η can be achieved based on any consistent estimator
for ϕ and this suggests that tests designed to test the adequacy of ht will
not be influenced (asymptotically, at least) by the estimation of ϕ; as when
constructing tests for unconditional heteroskedasticity in the linear model,
for example. However, this intuition is flawed for certain misspecification
tests in the GARCHmodel; in particular, asymmetry and non-linearity tests.

The asymptotic properties of GARCHmodel parameter estimators based
on OLS, NLLS and QML for estimating ϕ, and QML for estimating η, are
briefly presented below with details being well documented elsewhere in the
literature; see, for example, Weiss (1986) or Greene (2003). Throughout,
the estimated parameter vector will be denoted θ̂

0
=
¡
ϕ̂0, η̂0

¢
, and true

parameter value will be denoted by θ00 = (ϕ00,η00).

2.1 Parameter Estimation

2.1.1 OLS Estimation

Assuming a linear functional form for the conditional mean, i.e. f (wt;ϕ) =
w0tϕ, the conditional mean parameters can be estimated consistently by
OLS. The asymptotic properties below are easily extended from the work
of Weiss (1986) in which the errors of the linear conditional mean follow an
ARCH process. (If the conditional mean is estimated by OLS, then Assump-
tion 5 can be relaxed to E

¡
ξ4t
¢
<∞; see also Gonçalves and Killian, 2004.)

Standard OLS inferences are asymptotically valid if the wt are fixed, other-
wise (for example when lagged dependent variables are included) consistent
standard errors for the conditional mean and variance parameters can be ob-
tained by using the White’s sandwich variance-covariance form, as suggested
by Engle (1982). Note that the estimated conditional mean parameters, ϕ,
are consistent even without the conditional symmetry assumption, but this
can result in asymptotically inefficient inferences.
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The OLS estimator is given by ϕ̂ = ϕ0 + (W
0W)−1W0ε0, where ε0 has

typical element yt −w0tϕ0 andW has rows w0t. Assuming that both

Jϕ = p lim
1

T
W0W (5)

and

Ω11 = p lim
1

T
W0H0W

are finite and positive definite, with H0 = diag (η
0
0st−1) , and

1√
T
W0ε0

d−→ N (0,Ω11) ,

it follows that
√
T (ϕ̂−ϕ0) d−→ N

¡
0,J−1ϕ Ω11J

−1
ϕ

¢
.

As noted by Engle (1982), since the variables, wtεt, are uncorrelated the
asymptotic variance matrix can be estimated as (W0W)−1Ŵ0ÊŴ(W

0
W)−1,

where Ê = diag(ε̂2t ) with ε̂t = yt−w0tϕ̂; see, for example, White (2002, p.139)
or Nicholls and Pagan (1983). However, an asymptotically more efficient
variance matrix estimator could be obtained as (W0W)−1Ŵ0ĤŴ(W0W)−1,
where Ĥ = diag

¡
η̂0st−1

¢
and η̂ is any consistent estimator for η; see Section

2.1.3 below.

2.1.2 NLLS Estimation

Suppose we assume a non-linear functional form for the conditional mean.
For example, Lundbergh and Teräsvirta (1999) proposed combining a non-
linear specification for the conditional mean with a GARCH model for
the conditional variance, i.e., the STAR-GARCH model, and used it in
forecasting economic time series. The statistical properties of this model
were investigated by Chan and McAleer (2002). When the form of transi-
tion function (including the transition variable) is known, and given the
conditional symmetry assumption, the STAR model for the conditional
mean can be estimated consistently by NLLS. This estimator minimizesPT
t=1 (yt − f (wt;ϕ))2 and shall also be denoted ϕ̂, where there is no ambi-

guity.
Here, adapt the notation so that F is the matrix with rows f 0t = ∂f (wt;ϕ) /∂ϕ

0,
with F̂0ε̂ = 0 where ε̂ has typical element yt− f (wt; ϕ̂) . In general, the fol-
lowing Central Limit Theorem (CLT) will apply

1√
T
F00ε0

d−→ N (0,Ω∗11) ,
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where F0 denotes evaluation at ϕ0, and

Ω∗11 = p lim
1

T
F00H0F0

is assumed to be finite and positive definite.
Therefore, after taking a mean value expansion of F̂0ε̂ = 0 about θ̂ = θ0,

and noting that E [εt|Ft−1] = 0, we obtain

√
T (ϕ̂−ϕ0) d−→ N

¡
0,J∗ϕ

−1Ω∗11J
∗
ϕ
−1¢

where

J∗ϕ = p lim
1

T
F00F0

is finite and positive definite. As before, due to conditional symmetry, the
asymptotic variance of ϕ̂ can be consistently estimated by replacing η with
any consistent estimator, such as the QML estimator, yielding (for example)
(F̂0F̂)−1F̂0ĤF̂(F̂0F̂)−1.

2.1.3 Quasi-Maximum Likelihood Estimation

The conditional mean and variance parameters can be estimated jointly
by quasi-maximum likelihood estimation. If the true conditional distribu-
tion of ξt is normal, then the QML estimator is interpreted as the Max-
imum Likelihood Estimator (MLE) and the estimators are asymptotically
efficient; see, for example, Bollerslev (1986). Under non-normality, condi-
tional symmetry of εt is still maintained and this ensures that ϕ and η can
still be estimated separately without loss of asymptotic efficiency. For sim-
plicity, a a linear conditional mean is assumed in the following derivations.

Ignoring constants of proportionality, let sθ(θ) =
∂LT (θ)

∂θ
, partitioned as

sθ(θ)
0 = (sϕ(θ)0, sη(θ)0)0 , in an obvious manner. In general, a CLT for the

score function of the conditional mean parameters yields:

√
Tsϕ(θ0)

d−→ N (0,Ω∗∗11)

where sϕ(θ) = T−1
¡
W0H−1ε+1

2C
0ϑ
¢
, H−1 = diag

¡
h−1t

¢
and C has rows

c0t =
1

ht

∂ht
∂ϕ0

with

∂ht
∂ϕ0

= −2α1εt−1w0t−1 + β1
∂ht−1
∂ϕ0

= −2α1
tX
i=1

βi−11 εt−iw0t−i.
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The covariance matrix

Ω∗∗11 = p lim
1

T

µ
W0H−10 W+

(kc − 1)
4

C00C0
¶

is assumed finite and positive definite, with C0 denoting C evaluated at
θ = θ0. A mean value expansion of sϕ(θ̂) = 0, and conditional symmetry
(see Section 2.1.4, below), yields

√
T (ϕ̂−ϕ0) d−→ N

¡
0,J∗∗ϕ

−1Ω∗∗11J
∗∗
ϕ
−1¢

where

J∗∗ϕ = p lim
1

T

µ
W0H−10 W+

1

2
C00C0

¶
is assumed finite and positive definite.

2.1.4 GARCH Parameter Estimation

Exploiting the QML approach and consistency of ϕ̂ (the OLS, NLLS or QML
estimator) a consistent estimator for η solves sη(θ̂) = 0, where sη(θ) =

T−1X0ϑ, ϑ has typical element
n

ε2t
ht
− 1
o
, and X has rows

x0t =
1

ht

∂ht
∂η0

=
1

ht

µ
s0t−1 + β1

∂ht−1
∂η0

¶
=

1

ht

tX
i=1

βi−11 s0t−1

assuming h0 = T−1
PT
t=1 ε

2
t . Denoting X0 and ϑ0 to be X and ϑ, re-

spectively, evaluated at θ0, a CLT for the score function of the conditional
variance parameters yields:

√
Tsη(θ0) =

1√
T
X00ϑ0

d−→ N (0,Ω22)

where

Ω22 = p lim
kc − 1
T

X00X0

is assumed to be finite and positive definite. Furthermore, and as stated
previously, the asymptotic distribution of η̂ is not influenced by the choice
for ϕ̂ (OLS, NLLS or QML). In order to inform the analysis that follows
in Sections 3 and 4, it is worth briefly showing why this is so. Noting
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that,
∂sη(θ0)

∂ϕ0
− E

·
∂sη(θ0)

∂ϕ0

¸
p→ 0, conditional symmetry ensures that this

expectation is zero, as follows:

E

·
∂sη(θ0)

∂ϕ0

¸
=

1

T

TP
t=1
E

·
E

½
2εt
ht
xt

∂εt
∂ϕ0

+

µ
ε2t
ht
− 1
¶
∂xt
∂ϕ0
− ε2t
h2t
xt

∂ht
∂ϕ0

¯̄̄̄
Ft−1

¾¸
θ=θ0

= − 1
T

TP
t=1
E

·
1

ht
xtc

0
t

¸
θ=θ0

where the subscript θ = θ0 denotes evaluation inside [.] at θ0 before expec-
tations are taken, and E [εt|Ft−1] = 0, E

£
ε2t |Ft−1

¤
= ht.

Now,

E

·
1

ht
ctx

0
t

¸
θ=θ0

= −2α1
tX
i=1

β
2(i−1)
1 E

·
wt−i

1

h2t

¡
εt−i, ε3t−i, ht−iεt−i

¢¸
θ=θ0

−2α1
tX
i=1

tX
j 6=i

βi+j−21 E

·
wt−j

1

h2t
εt−js0t−i

¸0
θ=θ0

. (6)

Consider the expectation on the right hand side of the first line of (6) above,

E

·
wt−i

1

h2t

¡
εt−i, ε3t−i, ht−iεt−i

¢¸
θ=θ0

= E

½
wt−iE

·
1

h2t

¡
εt−i, ε3t−i, ht−iεt−i

¢¯̄̄̄Ft−i−1¸¾
θ=θ0

which is zero if the expression for the conditional expectation, given Ft−i−1,
above is zero. To establish the latter, follow Engle (1983) and treat this
conditional expectation in two steps, observing that εt−i−m, m = 1, 2, ..., is
included in the conditioning set of Ft−i−1 and therefore can be treated as
non-random when taking this conditional expectation. First, construct the
conditional expectation given Ft−i, which is·¡

εt−i, ε3t−i, ht−iεt−i
¢
E

½
1

h2t

¯̄̄̄
Ft−i

¾¸
θ=θ0

≡ g(εt−i),

where it is implicit that g(.) is evaluated at θ = θ0. Since ht is symmet-
ric in εt−i and εt−i, ε3t−i, ht−iεt−i are all anti-symmetric, the elements in
h−2t

¡
εt−i, ε3t−i, ht−iεt−i

¢
are anti-symmetric in εt−i, which forms part of

Ft−i and is, also, the only random element when, and at the second step,
expectations are taken with respect to Ft−i−1. Therefore, for the present
argument, h−2t

¡
εt−i, ε3t−i, ht−iεt−i

¢
can be regarded as a random function

of (ht, εt−i) . Now, because ht is symmetric in εt−i its conditional density
given εt−i is also symmetric in εt−i. Therefore, by Engle (1983, Lemma
p.1006), g(εt−i) is anti-symmetric in εt−i. Finally, the second step involves
E [g(εt−i)|Ft−i−1] which is zero, because the conditional density of εt−i given
Ft−i−1 is symmetric and g(.) is anti-symmetric.
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The expectation in the cross-product term in (6) is

E

½
wt−jE

·
1

h2t
εt−js0t−i

¯̄̄̄
Ft−j−1

¸¾
θ=θ0

which is zero if the conditional expectation, given Ft−j−1, is zero. The later
can be expressed as

E

·
1

h2t
εt−js0t−i

¯̄̄̄
Ft−j−1

¸
θ=θ0

= E

½
E

·
1

h2t
εt−js0t−i

¯̄̄̄
Ft−j

¸¯̄̄̄
Ft−j−1

¾
θ=θ0

.

For i > j, the elements of st−i belong to Ft−j−1 and the preceeding argu-
ments show that E

h
1
h2t
εt−j

¯̄̄
Ft−j−1

i
θ=θ0

= 0. For, j > i, note that the ele-

ments of h−2t st−i are symmteric in εt−j , so that E
h
1
h2t
εt−js0t−i

¯̄̄
Ft−j

i
θ=θ0

≡
g(εt−j) is anti-symmetric and, again, E [g(εt−j)| Ft−j−1]θ=θ0 = 0.

Similar analysis also reveals that, under conditional symmetry,

E

"
1

T

TP
t=1

µ
ε2t
ht
− 1
¶2
xtc

0
t

#
θ=θ0

= (kc − 1)E
·
1

T

TP
t=1
xtc

0
t

¸
θ=θ0

= 0

making sη(θ0) and sϕ(θ0) asymptotically uncorrelated, although this is not
needed to establish that the limit null distribution of η̂ is not influenced by
ϕ̂.

Using this result, a standard mean value expansion of sη(θ̂) = 0 about
θ̂ = θ0 (where ϕ̂ is the OLS, NLLS or QML estimator) yields

√
T (η̂ − η0) d−→ N

¡
0,J−1η Ω22J

−1
η

¢
where

Jη = p lim
1

T
X00X0 (7)

is finite and positive definite. Although estimated separately, and as pointed
out by Engle (1982), the process could be iterated without affecting the
asymptotic distribution of the resulting estimators for ϕ and η.

Having obtained a consistent estimator for η in this way, consistent esti-
mation of the asymptotic variance of ϕ̂ (including OLS and NLLS) follows
from previous discussion. When ϕ̂ is the QML estimator, this can be esti-
mated asµ
W0Ĥ−1W+

1

2
Ĉ0Ĉ

¶−1Ã
W0Ĥ−1W+

ϑ̂
0
ϑ̂

4T
Ĉ0Ĉ

!µ
W0Ĥ−1W+

1

2
Ĉ0Ĉ

¶−1
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where Ĥ−1and Ĉ denote H and C, respectively, evaluated at θ = θ̂, and
(kc − 1) is consistently estimated by k̂c − 1 = T−1ϑ̂

0
ϑ̂, where ϑ̂ denotes

evaluation at θ̂.

3 Generic Misspecification Test Statistic

In this section, a general misspecification test for GARCH models is de-
veloped. A certain intellectual and notational economy is achieved by em-
ploying this approach, since it provides a unifying framework for generating
misspecification tests. In particular, asymptotically valid and locally op-
timal tests for asymmetry and non-linearity emerge as special cases. To
proceed, define ξt = εt/

√
ht, the standardised error.

If the GARCH model is correctly specified, then it follows from (2) that

E
£¡
ξ2t − 1

¢ |Ft−1¤ = 0.
Therefore, misspecification tests of GARCH models can be constructed as
conditional moment tests, of the form:

E
£¡
ξ2t − 1

¢
r (Ft−1)

¤
= 0 (8)

where r is a measurable function of Ft−1. The intuition, here, is that if the
GARCH model is appropriate, then the squared standardised errors should
be serially uncorrelated with any past information. For example, Lundbergh
and Teräsvirta (2002) employ a similar approach in order to test for no
remaining ARCH effects, in a GARCH model, but where the implicit null
is E

£¡
ξ2t − 1

¢ |Gt−1¤ = 0, with Gt−1 = σ
¡
ξ2t−1, .., ξ

2
t−m

¢
; see the discussion

in Section 3.1 of Lundbergh and Teräsvirta (2002). However, this moment
condition does not generally guarantee that E

£¡
ξ2t − 1

¢ |Ft−1¤ = 0, which
implies that the Lundbergh and Teräsvirta test could have lower power than
a test for which the null is E

£¡
ξ2t − 1

¢ |Ft−1¤ = 0.
For the present purposes, consider the construction of a rather general

test procedure, and statistic, designed to assess whether the GARCH(1,1)
model, presented in Section 2, is misspecified. Specifically, the misspecified
GARCH model is conceived as:

yt = f (wt;ϕ) + εt

εt = ςt (h
a
t )
1/2 (9)

hat = α0 + α1ε
2
t−1 + g (vt;π) + β1h

a
t−1 (10)

where ςt are i.i.d. (zero mean and unit variance) random variables, and
g (vt;π) = π0vt is a non-linear and/or asymmetric function of εt−1, with
vt being a vector of omitted variables; for example v0t =

¡
εt−1, ε3t−1

¢
. The

null hypothesis is H0 : π = 0, which must imply g (vt;π) = 0. Observe that
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the alternative specification includes lagged hat , which would appear to be
appropriate for the more general model.

For the moment, define the conditional quasi log-likelihood under the
alternative hypothesis as:

LAT (θ;π)= −
1

2

TP
t=1

·
ln(hat ) +

ε2t
hat

¸
where θ0 = (ϕ0,η0) as previously. The generic test indicator emerges from
the score principle and has the form of (ignoring constants of proportional-
ity)

dT (θ̂) =
1

T

TP
t=1

·µ
ε̂2t

ĥt
− 1
¶
r̂t

¸
=
1

T
R̂0ϑ̂ (11)

where the matrix R has rows

rt =

·
1

hat

∂hat
∂π

¸
π=0

=
1

ht

tP
i=1

βi−11 vt−i+1 (12)

which are the test variables (described later in Section 4 for each source
of misspecification) and where “hats” denote that everything is evaluated
at the consistent null parameter estimator, θ̂, estimated according to OLS,
NLLS or QML methods, as discussed previously. Although constructed from
a score principle, the test indicator in (11) is simply the sample analogue of
(8). Thus assessing the statistical significance of (11) provides the basis for
a test procedure, following all three methods of estimation.

A mean value expansion of the test indicator
√
TdT (θ̂) in (11) about

θ̂ = θ0, yields:

√
TdT (θ̂) =

√
TdT (θ0) +

∂dT
¡
θ̄
¢

∂η0
√
T (η̂ − η0) +

∂dT
¡
θ̄
¢

∂ϕ0
√
T (ϕ̂−ϕ0)

(13)

where θ̄ denotes the usual mean value “between” θ̂ and θ0, so that θ̄ =
θ0 + op (1) under the null hypothesis. A Uniform Law of Large Numbers

ensures that
∂dT (θ̄)
∂θ0 − E

h
∂dT (θ0)

∂θ0

i
p−→ 0, where unless stated otherwise all

expectations are taken under the null. Correspondingly define

Dϕ = E

·
∂dT (θ0)

∂ϕ0

¸
, Dη = E

·
∂dT (θ0)

∂η0

¸
.

12



Using similar arguments to those of Section 2.1.4,

Dϕ =
1

T

TX
t=1

E

·µ
ε2t
ht
− 1
¶

∂rt
∂ϕ0
− 2εt
ht
rtw

0
t −

ε2t
h2t
rt
∂ht
∂ϕ0

¸
θ=θ0

=
1

T

TX
t=1

E

·
− ε2t
h2t
rt
∂ht
∂ϕ0

¸
θ=θ0

=
1

T

TX
t=1

E
£−rtc0t¤θ=θ0

= −p lim 1

T
R00C0, (14)

and

Dη =
1

T

TX
t=1

E

·µ
ε2t
ht
− 1
¶
∂rt
∂η0
− ε2t
h2t
rt
∂ht
∂η0

¸
θ=θ0

=
1

T

TX
t=1

E
£−rtx0t¤θ=θ0

= −p lim 1

T
R00X0. (15)

In Section 4, we investigate Dϕ and Dη for the particular test indicators,
through choice of vt, designed to detect asymmetries and non-linearities.
Before doing so, though, the asymptotically valid test statistic is now con-
structed according to the method of estimation under the null. For this, con-
sistent estimation of both Dϕ and Dη may be required in order to capture
potential asymptotically non-negligible estimation effects. Where necessary,
this can be achieved by employing − 1

T R̂
0Ĉ and − 1

T R̂
0X̂, respectively.

3.1 OLS Estimation

Assuming that the conditional mean is estimated by OLS under the null,
and exploiting conditional symmetry, a suitable CLT yields

1√
T

 W0ε0
X00ϑ0
R00ϑ0

 d→ N

 0
0
0

 ,
 Ω11 0 0

0 Ω22 Ω032
0 Ω32 Ω33


where R0 denotes evaluation at θ0 and

Ω32 = (kc − 1) p lim 1

T
R00X0 (16)

Ω33 = (kc − 1) p lim 1

T
R00R0. (17)

13



Standard first order asymptotic theory, the discussion in Section 2.1.1
and (13) yields

√
TdT (θ̂) =

1√
T
R00ϑ0

+DϕJϕ
−1 1√

T
W0ε0

+DηJη
−1 1√

T
X00ϑ0 + op(1),

which implies

√
TdT (θ̂) =

1√
T
R̂0ϑ̂ d→ N(0,Σ)

where

Σ = AΩA0 (18)

Ω =

Ω11 0 0
0 Ω22 Ω032
0 Ω32 Ω33


A =

£
DϕJϕ

−1, DηJη
−1 Im

¤
and Im is the identity matrix of rank m = rank(Ω33), and it is assumed that
Ω is positive definite. Therefore, the general form of the misspecification test
statistic is

TdT (θ̂)
0Σ̂−1dT (θ̂)

which converges in distribution to that of a χ2m random variable under the
null, where Σ̂ is any consistent estimator of Σ, i.e. Σ̂ = Σ + op (1) . Such a
consistent estimator can be obtained by estimating Dϕ and Dη as described
above, estimating Ω11,Ω22, Jϕ and Jη in the manner described in Section

2.1, and estimating Ω32 as
³
ϑ̂
0
ϑ̂
T

´ 1
T
R̂0X̂ and Ω33 as

³
ϑ̂
0
ϑ̂
T

´ 1
T
R̂0R̂.

3.2 NLLS Estimation

If the conditional mean is estimated by NLLS, then the following CLT is
required

1√
T

 F00ε0
X00ϑ0
R00ϑ0

 d→ N

 0
0
0

 ,
 Ω∗11 0 0

0 Ω22 Ω032
0 Ω32 Ω33

 .
Again, standard first order theory arguments yield

√
TdT (θ̂) =

1√
T
R̂0ϑ̂ d→ N(0,Σ∗)
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where

Σ∗ = A∗Ω∗A∗0 (19)

Ω∗ =

Ω∗11 0 0
0 Ω22 Ω032
0 Ω32 Ω33


A∗ =

£
DϕJ

∗
ϕ
−1, DηJη

−1 Im
¤
.

Therefore, the generic misspecification test, and its limit distribution
under the null, is:

TdT (θ̂)
0Σ̂∗−1dT (θ̂)

d−→ χ2m

where Σ̂∗ is any consistent estimator of Σ, which can be obtained in an
obvious manner following previous discussions.

3.3 QML Estimation

Finally, if the conditional mean is estimated by QML, then the following
CLT is exploited

1√
T

 W0H−10 ε0+
1
2C

0
0ϑ0

X00ϑ0
R00ϑ0

 d→ N

 0
0
0

 ,
 Ω∗∗11 0 Ω∗∗031

0 Ω22 Ω032
Ω∗∗31 Ω32 Ω33



with

Ω∗∗31 = p lim
1

T

kc − 1
2

R00C0.

(The fact that the elements of W0H−10 ε0+
1
2C

0
0ϑ0 and X

0
0ϑ0 are asymp-

totically uncorrelated is discussed in Section 2.1.4, although there may ex-
ist asymptotic correlation betweenW0H−10 ε0+

1
2C

0
0ϑ0 and R

0
0ϑ0.) Standard

first order theory yields

√
TdT (θ̂) =

1√
T
R̂0ϑ̂ d→ N(0,Σ∗∗)

where

Σ∗∗ =A∗∗Ω∗∗A∗∗0 (20)

Ω∗∗ =

Ω∗∗11 0 Ω∗∗031
0 Ω22 Ω032
Ω∗∗31 Ω32 Ω33


A∗∗ =

£
DϕJ

∗∗
ϕ
−1, DηJη

−1 Im
¤
.
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The test statistic and limit null distribution follows in an analogous man-
ner to the previous two cases, with Ω∗31 being consistently estimated by³
ϑ̂
0
ϑ̂
T

´ 1
T
R̂0Ĉ.

The next section of the paper describes how previously proposed mis-
specification test statistics relate to the above unifying procedure and also
offers some analysis on both their asymptotic validity and local optimality.
In particular, notice that if Dϕ can not be guaranteed to be zero, then there
are potential estimation effects from the conditional mean that have to be
taken into account when constructing asymptotically valid tests statistics,
even though ϕ̂ and η̂ are (asymptotically) orthogonal. If so, the limit dis-
tribution of the test indicator will be different according to the method of
estimation employed, through the introduction of either Jϕ, J∗ϕ or J∗∗ϕ .

4 Testing for Asymmetry and Non-linearity

4.1 Engle and Ng Test

The most popular asymmetry tests are those proposed by Engle and Ng
(1993). In order to confirm the asymmetric behaviour of financial series,
they construct score type tests using the indicator function

It−1 =
½
1 if εt−1 ≤ 0
0 otherwise.

For purposes of exposition, consider the negative size bias test which
examines the significance of the test variable It−1εt−1 in order to assess if
important negative shocks have more impact on volatility than important
positive shocks. The analysis of other tests proposed by Engle and Ng
(1993) follows that of the symmetry test described below, except that the
test variable will be defined differently. Specifically, Engle and Ng (1993)
propose that under the alternative:

log (hat ) = log (ht (st−1; η)) + g (vt;π) (21)

where ht (st−1;η) is the model under the null (i.e. the GARCH model) and

g (vt;π) = πIt−1εt−1. (22)

The test statistic proposed by Engle and Ng (1993) has the following
form

TEN = T ×
ϑ̂
0
Ẑ
³
Ẑ0Ẑ

´−1
Ẑ0ϑ̂

ϑ̂
0
ϑ̂

, (23)
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where Ẑ has rows ẑ0t =
³
Ît−1ε̂t−1, x̂0t

´
, and is assumed to be asymptotically

χ21 under the null. The tests presented in their paper are derived assuming a
conditional normal distribution for ξt, although asymptotically valid proce-
dures can be derived assuming just conditional symmetry (and the existence
of appropriate higher order moments).

However, notice that the alternative model in (21) does not appear to
represent an optimal form for the asymmetric and/or non-linear GARCH
models proposed in the literature, since the conditional variance under the
alternative hat does not contain lagged h

a
t on the right hand side of (21).

Rather, the alternative model of Engle and Ng (1993) represents a hybrid
model, entailing, first, the GARCH model under the null and then the ad-
dition of test variables that allows for the asymmetric behaviour to ht. This
suggests that the approach of Engle and Ng (1993) will not yield locally
optimal tests.

Moreover, the Engle and Ng (1993) tests are also potentially asymptot-
ically invalid under the null hypothesis, since the construction of the test
statistic does not take account of the possible estimation effects from the
conditional mean equation. This can be seen below whereDϕ is constructed
for this particular case, from the discussion in Section 3, assuming a linear
conditional mean function. For the test variable of Engle and Ng (1993),
which is r̂t = Ît−1ε̂t−1,

Dϕ = 2α1
1

T

TX
t=1

tX
i=1

β
(i−1)
1 E

·
1

ht
It−1εt−1εt−iw0t−i

¸
θ=θ0

= 2α1
1

T

TX
t=1

E

½
E

·
1

ht
It−1ε2t−1 |Ft−2

¸
w0t−1

+
tX
i=2

β
(i−1)
1 E

·
1

ht
It−1εt−1εt−i |Ft−i−1

¸
w0t−i

)
θ=θ0

which is not necessarily non-zero (certainly, E
h
1
ht
It−1ε2t−1|Ft−2

i
is non-

negative) and implies that there are, potentially, asymptotically non-negligible
estimation effects from the conditional mean, thus rendering the Engle and
Ng (1993) asymmetry tests asymptotically invalid.

4.2 Lundbergh and Teräsvirta Test

Lundbergh and Teräsvirta (2002) entertained an alternative in which εt
follows a smooth transition GARCH (1,1) model,

hat = ht + g (vt;π)

where

g (vt;π) =
¡
α01 + α11ε

2
t−1
¢
Fn (εt−1; γ; c) .
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Here, non-linearity is introduced in the intercept and the term containing the
squared past errors via a smooth transition function Fn (εt−1; γ; c), where

Fn(εt−1; γ; c) =
µ
1 + exp

µ
−γ

nQ
l=1

(εt−1 − cl)
¶¶−1

− 1
2
, γ > 0, c1 ≤ ... ≤ cn.

(24)

For example, if the location parameter (threshold) of the transition func-
tion is zero, i.e. c = 0, then the transition is made between the regime char-
acterized by negative shocks to the one characterized by positive shocks.
The smooth transition GARCH model is proposed by Hagerud (1997) and
Gonzalez-Rivera (1998). The alternative model includes as a special case
the GJR model of Glosten et al. (1993) when γ →∞.

Under the null of γ = 0, it follows that Fn = 0, and taking a first-order
Taylor expansion of Fn around γ = 0, for n = 1 in (24) yields

g (vt;π) = π0vt (25)

where π = (π1,π2)
0, vt = (εt−1, ε3t−1)0. The null hypothesis now becomes

H0 : π = 0, implying linearity, so that g (vt;π) = 0. Lundbergh and
Teräsvirta (2002) construct the following non-linearity test statistic

TLT = T
ϑ̂
0
Ẑ(Ẑ0Ẑ)−1ϑ̂

ϑ̂
0
ϑ̂

(26)

where Ẑ is a matrix with rows ẑ0t = (x̂0t, v̂0t) and v̂t =
¡
ε̂t−1, ε̂3t−1

¢0
. The test is

assumed to be asymptotically distributed as a χ22 random variable under the
null. Lundbergh and Teräsvirta (2002) also define an alternative regression
based procedure, following Wooldridge (1991), which they suggest is robust
to non-normality. However, the modification employed is actually designed
to make the statistic robust to heterokurticity (as Wooldridge, 1991, p.29,
makes clear), not non-normality. However, heterokurticity is ruled out by
Assumption 3.

As with the Engle and Ng (1993) approach, Lundbergh and Teräsvirta
(2002) ignore the fact that the model under the alternative hat should have
lagged hat−i on the right hand side implying that their non-linearity test is
not locally optimal. Furthermore, it is also asymptotically invalid, since it
ignores non-negligible estimation effects. Consider Dϕ, defined at (14), but
employing the test variables considered by Lundbergh and Teräsvirta (2002),
i.e. r̂t =

¡
ε̂t−1, ε̂3t−1

¢0
. Assuming conditional symmetry and, for simplicity,
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a linear functional form for the conditional mean,

Dϕ = 2α1
1

T

TX
t=1

E

"
1

ht

µ
εt−1
ε3t−1

¶ tX
i=1

β
(i−1)
1 εt−iw0t−i

#
θ=θ0

= 2α1
1

T

TX
t=1

E

½
E

·
1

ht

µ
ε2t−1
ε4t−1

¶¯̄̄̄
Ft−2

¸
w0t−1

+
1

T

tX
i=2

βi−11 E

·
1

ht

µ
εt−1
ε3t−1

¶
εt−i

¯̄̄̄
Ft−i−1

¸
w0t−i

)
θ=θ0

= 2α1
1

T

TX
t=1

E

½
E

·
1

ht

µ
ε2t−1
ε4t−1

¶¯̄̄̄
Ft−2

¸
w0t−1

¾
θ=θ0

which again is non-zero, in general. The the second term (in the second
line) is zero because, for i ≥ 2,

E

·
1

ht

µ
εt−1
ε3t−1

¶
εt−i

¯̄̄̄
Ft−i−1

¸
= E

½
E

·
1

ht

µ
εt−1
ε3t−1

¶
εt−i

¯̄̄̄
Ft−2

¸¯̄̄̄
Ft−i−1

¾
θ=θ0

= E

½µ
εt−iE

·
1

ht

µ
εt−1
ε3t−1

¶¯̄̄̄
Ft−2

¸¶¯̄̄̄
Ft−i−1

¾
θ=θ0

and

E

·
1

ht
εmt−1

¯̄̄̄
Ft−2

¸
θ=θ0

= E [g (εt−1) |Ft−2]θ=θ0

where E
£
h−1t εmt−1|Ft−1

¤
= g(εt−1), m = 1, 3, which is anti-symmetric in

εt−1, so that E [g(εt−1)|Ft−2] = 0 since the conditional density of εt−1 given
Ft−2 is symmetric.

Additionally, Lundbergh and Teräsvirta (2002) employ an inefficient
asymptotic variance. Specifically, for the test variables considered by Lund-
bergh and Teräsvirta (2002),

Dη = − 1
T

TX
t=1

tX
i=1

βi−11 E

·
1

ht

µ
εt−1
ε3t−1

¶
s0t−i

¸
θ=θ0

= − 1
T

TX
t=1

E

½
E

·
1

ht

µ
εt−1
ε3t−1

¶
s0t−1

¯̄̄̄
Ft−2

¸

+
1

T

tX
i=2

βi−11 E

·
1

ht

µ
εt−1
ε3t−1

¶¯̄̄̄
Ft−2

¸
s0t−i

)
θ=θ0

.

Arguments similar to those employed above, and in Section 2.1.4, imply that
Dη is the null vector. This is contrary to Lundbergh and Teräsvirta (2002)
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who, by accounting for the estimation effects of η̂, employ an inefficient
variance in constructing the test statistic.

It can be shown that the test for remaining ARCH effects and the pa-
rameter constancy test proposed by Lundbergh and Teräsvirta (2002) are
asymptotically valid as the estimation effects from the conditional mean are
asymptotically negligible in these tests. However, the parameter constancy
test of Lundbergh and Teräsvirta (2002) is not the locally most powerful
test, since the alternative model defined by them does not contain hat−1 on
the right hand of the conditional variance equation, under the alternative.

4.3 Testing for Asymmetry

Exploiting the general methodology of Section 3, new asymmetry tests
that are guaranteed asymptotically valid and locally optimal are now pro-
vided. With asymmetry characterised by (10) with g(vt;π) = πIt−1εt−1,
the generic misspecification test indicator (11), has test variable (12)

r̂t =
1

ĥt

tP
i=1

β̂
i−1
1 Ît−iε̂t−i (27)

which is evaluated at the null parameter estimator θ̂. Observe how this dif-
fers from the Engle and Ng test variable of Ît−1ε̂t−1, although arguments
similar to those of Section 4.1 show that, here also, the corresponding ex-
pressions for Dϕ, (14), and Dη , (15) can not be guaranteed to be zero, as
follows.

Assuming conditional symmetry and, for simplicity of derivations, a lin-
ear conditional mean,

Dϕ = 2α1
1

T

TX
t=1

tX
i=1

β
2(i−1)
1 E

·
1

h2t
It−iε2t−iw

0
t−i

¸
θ=θ0

+2α1
1

T

TX
t=1

tX
i=1

X
j 6=i

βi+j−21 E

·
1

h2t
It−iεt−iεt−jw0t−j

¸
θ=θ0

which is, in general, non-zero, as is

Dη = − 1
T

TX
t=1

tX
i=1

β
2(i−1)
1 E

·
1

h2t
It−iεt−is0t−i

¸
θ=θ0

− 1
T

TX
t=1

tX
i=1

X
j 6=i

βi+j−21 E

·
1

h2t
It−iεt−is0t−j

¸
θ=θ0

.

The discussion in Section 2.1 provides the following test statistic, follow-
ing OLS estimation of the conditional mean

TA = TdT (θ̂)
0Σ̂−1dT (θ̂) (28)
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where Σ̂ is any consistent estimator of Σ, i.e. Σ̂ = Σ+ op (1), and

Σ = p lim
1

T

h
(kc − 1)R00MXR0 +R

0
0C0(W

0W)−1W0H0W(W0W)−1C00R0
i

MX = IX −X0
¡
X00X0

¢−1
X00

and where IX an identity matrix of order dim (η) . A consistent estimator of
the asymptotic variance Σ is given by

Σ̂∗ =
1

T

"
ϑ̂
0
ϑ̂

T
R̂0M̂XR̂+ R̂

0Ĉ(W0W)−1W0ĤW(W0W)−1Ĉ0R̂

#

whereMX = IX − X̂
³
X̂0X̂

´−1
X̂0. Under the null, TA

d→ χ21.

The asymmetry test statistic proposed in (28) remains asymptotically
valid under conditional non-normality of ξt, provided ξt satisfies the as-
sumptions of Section 2. Following Engle and Ng (1993), we can also test
asymmetry for more extreme values of εt−1. The asymptotic distribution of
the test in this case, is the same as the previous one, except that the test
indicator is r̂t = ĥ−1t

Pt
i=1 β̂

i−1
1 Ît−iε̂2t−i.

When employing different consistent estimators for the conditional mean
parameter vector ϕ, the asymptotic distribution of the test statistic will
change accordingly, as noted in Section 3. If the conditional mean is non-
linear, for example a STAR or SETAR model, and estimated by NLLS, then,
given the conditional symmetry assumption, the test statistic becomes

T ∗A = TdT (θ̂)
0(Σ̂∗)−1dT (θ̂)

where Σ̂∗ = Σ∗ + op (1) , where

Σ∗ = p lim
1

T

h
(kc − 1)R00MXR0 +R

0
0C0(F

0
0F0)

−1F00H0F0(F
0
0F0)

−1C00R0
i

which can be consistently estimated by

Σ̂∗ =
1

T

"
ϑ̂
0
ϑ̂

T
R̂0M̂XR̂+ R̂

0Ĉ(F0F)−1F0ĤF(F0F)−1Ĉ0R̂

#
.

Now, if the conditional mean is estimated by QMLE, then

T ∗∗A = TdT (θ̂)
0(Σ̂∗∗)−1dT (θ̂)
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where Σ̂∗∗ = Σ∗∗ + op (1) with

Σ∗∗ = p lim
1

T

"
(kc − 1)R00MXR0 − (kc − 1)R00C0

µ
W0H−10 W+

1

2
C00C0

¶−1
C00R0

+R00C0
µ
W0H−10 W+

1

2
C00C0

¶−1µ
W0H−10 W+

(kc − 1)
4

C00C0
¶

µ
W0H−10 W+

1

2
C00C0

¶−1
C00R0

#

which can be consistently estimated by

Σ̂∗∗ = p lim
1

T

"
ϑ̂
0
ϑ̂

T
R̂0M̂XR̂− ϑ̂

0
ϑ̂

T
R̂0Ĉ

µ
W0Ĥ−1W+

1

2
Ĉ0Ĉ

¶−1
Ĉ0R̂

+R̂0Ĉ
µ
W0Ĥ−1W+

1

2
Ĉ0Ĉ

¶−1Ã
W0Ĥ−1W+

ϑ̂
0
ϑ̂

4T
Ĉ0Ĉ

!
µ
W0Ĥ−1W+

1

2
Ĉ0Ĉ

¶−1
Ĉ0R̂

#
.

4.4 Testing for non-linearity

Following the generic test procedure introduced in Section 3, the function
of omitted variables is derived from a first-order Taylor expansion of (24).
It transpires that the score indicator for testing for non-linearity is dT (θ̂) in
(11) where the test variables take the form

rt =
1

ht

tP
i=1

βi−11

µ
εt−i
ε3t−i

¶
. (29)

The test variables of Lundbergh and Teräsvirta (2002) are simply vt =¡
εt−1, ε3t−1

¢0, which omits a multiplicative h−1t term and as well as ignoring
the recursive behaviour of the conditional variance. Similar arguments to
those of Section 4.2 imply that Dϕ can not be guaranteed to be zero, whilst
analysis similar to that of Section 2.1.4 reveals that Dη = 0, which implies
that the influence of η̂ is asymptotically negligible and need not be consid-
ered in constructing the asymptotic variance of the test. To see this, observe
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that (again, assuming that the conditional mean is linear)

Dϕ = 2α1
1

T

TX
t=1

tX
i=1

β
2(i−1)
1 E

·
1

h2t

µ
εt−i
ε3t−i

¶
εt−iw0t−i

¸
θ=θ0

+2α1
1

T

TX
t=1

tX
i=1

X
j 6=i

βi+j−21 E

·
1

h2t

µ
εt−i
ε3t−i

¶
εt−jw0t−j

¸
θ=θ0

= 2α1
1

T

TX
t=1

E

(
tX
i=1

β
2(i−1)
1 E

·
1

h2t

µ
ε2t−i
ε4t−i

¶¯̄̄̄
Ft−i−1

¸
w0t−i

)
θ=θ0

,

which is non-zero, in general, although observe the expectations of the cross-
product terms will be zero following the line of argument presented in Section
2.1.4.

On the other hand,

Dη = − 1
T

TX
t=1

tX
i=1

β
2(i−1)
1 E

·
1

h2t

µ
εt−i
ε3t−i

¶
s0t−i

¸
θ=θ0

− 1
T

TX
t=1

tX
i=1

X
j 6=i

βi+j−21 E

·
1

h2t

µ
εt−i
ε3t−i

¶
s0t−j

¸
θ=θ0

and arguments similar to those used in Section 2.1.4 show that Dη = 0.
Similar analysis also shows that Ω32 = 0, in this case. Therefore, the

forms of the asymptotic variance of our non-linearity test will differ from
those of our asymmetry test proposed in Section 4.3 by not including terms
to account for the estimation effects from the conditional variance under the
null.

Thus, the non-linearity test statistic is

TN = TdT (θ̂)
0
Σ̂−1dT (θ̂) (30)

which is asymptotically distributed χ2m under the null, where m = dim (vt),
Σ̂ = Σ+ op (1) and

Σ = p lim
1

T

h
(kc − 1)R00R0 +R00C0(W0W)−1W0H0W(W0W)−1C00R0

i
.

(31)

As with the asymmetry test, the non-linearity test proposed here is
asymptotically valid under non-normality provided ξt satisfies the assump-
tions of Section 2. Furthermore, the asymptotic variance matrix in the limit
distribution will change according to the choice of ϕ̂. Following NLLS esti-
mation, the asymptotic variance becomes:

Σ∗ = p lim
1

T

h
(kc − 1)R00R0 +R00C0(F00F0)−1F00H0F0(F

0
0F0)

−1C00R0
i
,
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whilst if ϕ̂ is estimated by QML,

Σ∗∗ = p lim
1

T

"
(kc − 1)R00R0 − (kc − 1)R00C0

µ
W0H−10 W+

1

2
C00C0

¶−1
C00R0

+R00C0
µ
W0H−10 W+

1

2
C00C0

¶−1µ
W0H−10 W+

(kc − 1)
4

C00C0
¶

µ
W0H−10 W+

1

2
C00C0

¶−1
C00R0

#
.

As before, the various asymptotic variances can be consistently estimated
using Σ̂, Σ̂∗ or Σ̂∗∗ with the appropriate redefinition of R̂.

5 Sensitivity Analysis

The tests proposed above employ an implicit alternative, since they are ex-
pected to be locally most powerful against the alternatives for which they
are designed. In this section, asymptotic local analysis is employed to inves-
tigate whether the asymmetry and non-linearity tests proposed have power
against alternatives for which they are not designed, i.e. unconsidered alter-
natives. Intuitively, since the test indicators are asymptotically sensitive to
the conditional mean estimation, one might expect the tests to be sensitive
to misspecification of the mean.

Suppose that the true conditional mean is represented by

E [yt|Ft−1] = m (wt) = w0tϕ+ l(wt)0
δ√
T

where l (wt) is a bounded function, which can be non-linear, δ0δ <∞, and,
for simplicity, the null conditional mean is assumed linear with ϕ being
estimated by OLS (although, qualitatively, the results below will remain
valid under NLLS or QML estimation). Then, the true process is

yt = m (wt) + εt.

In order to analyse the asymptotic behaviour of the non-linearity tests
under local misspecification of the conditional mean, the approach of God-
frey and Orme (1996) is adopted. Define θ̂

0
=
¡
ϕ̂0, η̂0,00

¢
, under the null,

with
¡
ϕ̂0, η̂0

¢
as previously and θ00 =

¡
ϕ00,η00, δ

0
T

¢
as the true parameter vec-

tor, where δT = T−1/2δ0. Proceeding generally, a mean value expansion of√
TdT (θ̂) defined in (11) about θ̂ = θ0 yields
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√
TdT (θ̂) =

√
TdT (θ0) +

∂dT
¡
θ̄
¢

∂η0
√
T (η̂ − η0) +

∂dT
¡
θ̄
¢

∂ϕ0
√
T (ϕ̂−ϕ0)

−∂dT
¡
θ̄
¢

∂δ0T
δ

where θ̄ denotes the usual mean value between θ̂ and θ0, so that θ̄
p→ θ0. As

previously, assume Uniform Laws of Large Numbers apply, but now under
local alternatives (see, for example, Newey and McFadden (1994)). The
analysis of Godfrey and Orme (1996) then yields

√
TdT (θ̂) =

1√
T
R00ϑ0

+DϕJϕ
−1 1√

T
W0ε0

+DηJη
−1 1√

T
X00ϑ0

−Dδδ + op(1).

where
∂dT

¡
θ̄
¢

∂δ0T
−Dδ

p→ 0..

Under the true process, and using similar arguments as before,

Dδ =
1

T

TX
t=1

E

·
2εt
ht
rt

∂εt
∂δ0T

+

µ
ε2t
ht
− 1
¶

∂rt
∂δ0T

− ε2t
h2t
rt
∂ht
∂δ0T

¸
θ=θ0

=
1

T

TX
t=1

E

·
− ε2t
h2t
rt
∂ht
∂δ0T

¸
θ=θ0

=
1

T

TX
t=1

E

·
− 1
ht
rt
∂ht
∂δ0T

¸
θ=θ0

= −p lim 1

T
R00G0

where G has rows

g0t =
1

ht

∂ht
∂δ0T

= 2α1
1

ht

tP
i=1

βi−11 εt−il (wt−i)0 .

Now, following the arguments used in Section 2.1.4, it can be shown
that for both the asymmetry test TA proposed in Section 4.3, with rt =
h−1t

Pt
i=1 β

i−1
1 It−iεt−i, and for the non-linearity test proposed in Section

4.4, with test variable rt =
1

ht

Pt
i=1 β

i−1
1

µ
εt−i
ε3t−i

¶
, Dδ is, in general, non-zero.
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This implies that the asymmetry and non-linearity tests are asymptoti-
cally sensitive to local misspecification of the conditional mean. The results
of Godfrey and Orme (1996) show that under local misspecification of the
conditional mean, the test is asymptotically distributed as non-central χ2

with the noncentrality parameter given by

λ = δ0D0
δΣ
−1Dδδ.

Thus, for example, neglected non-linearities in the conditional mean may
lead to misleading conclusions about non-linearities in the conditional vari-
ance.

Modelling non-linearities in the conditional mean with GARCH errors
has recently become of interest. Li and Li (1996) modelled non-linearities in
both the conditional mean and variance through a SETAR type conditional
mean and a Threshold ARCH (TARCH) for the conditional variance. The
STAR-STGARCH model of Lundbergh and Teräsvirta (1999) models non-
linearities in both the conditional mean and variance parameters by allow-
ing the switch between regimes to be smooth. In the light of the preceding
analysis, misspecification tests of the conditional mean should be conducted
before assessing the ARCH/GARCH specification of the errors. Indeed, mis-
specification tests of the conditional mean (i.e., tests of E [εt|wt] = 0) can be
made asymptotically robust to misspecification of the conditional variance.
Therefore, the strategy in misspecification testing of GARCH models is first
to estimate the conditional mean where the errors follow a GARCH process
and test misspecification of the conditional mean by using, say, the a para-
metric test and the bootstrap method of Gonçalves and Killian (2004), or a
consistent test in the spirit of Fan and Li (1999). Then, after estimating the
GARCH process, misspecification testing of the conditional variance can be
performed using the tests proposed in Section 4.3 and 4.4.

Chan and McAleer (2002) examine the effects on the MLE of misspec-
ifying a STAR-GARCH model as an AR-GARCH model. They report a
bias in the α1 and β1 estimates of the conditional variance in finite samples
and argue that the magnitude of the finite samples bias depends on the
functional form of the transition function. Here it has been verified that
neglected non-linearities in the conditional mean may lead to misleading
inferences about the conditional variance equation.

6 Monte Carlo Study

In this section Monte Carlo evidence is presented on the finite sample size
and power performance of the various asymmetry and non-linearity tests
discussed in Section 4. Furthermore, the sensitivity of the tests to local
misspecification of the conditional mean is examined, in finite samples.
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The Monte Carlo experiment for assessing the size properties of the tests
is based on an AR(1)-GARCH(1, 1) data generation process, namely

yt = ϕ0 + ϕ1yt−1 + εt

εt =
p
htξt

ht = α0 + α1ε
2
t−1 + β1ht−1

where ξt ∼ N (0, 1) or ξt ∼ t (10) (standardised Student t-distribution with
10 degrees of freedom).

We consider the following sets of parameter values for the conditional
mean:

Model (1) : yt = εt
Model (2) : yt = 1 + 0.1yt−1 + εt

The conditional variance equation follows Engle and Ng (1993), such
that the unconditional variance of εt equals one without loss of generality,
where

Model H (high persistence): ht = 0.01 + 0.09ε2t−1 + 0.9ht−1
Model M (medium persistence): ht = 0.05 + 0.05ε2t−1 + 0.9ht−1
Model L (low persistence): ht = 0.2 + 0.05ε2t−1 + 0.75ht−1

Combining the conditional mean and variance equations yields six mod-
els to generate. For this purpose, a series of 1200 data realizations were gen-
erated using the random generator number in GAUSS 5.0, with the first 200
observations being discarded, in order to avoid initialization effects, yielding
a sample size of 1000 observations. Each model is replicated and estimated
1000 times. Because of computational costs, we estimate the conditional
mean parameters by OLS and then the conditional variance parameters by
QML, as described in Section 2.1. The test statistics considered were TA of
(28) with r̂t = 1

ĥt

Pt
i=1 β̂

i−1
1 Ît−iε̂t−i; TN of (30) with rt = 1

ht

Pt
i=1 β

i−1
1 ε3t−i;

the Engle and Ng statistic, TEN , of (23); and,.the Lundbergh and Teräsvirta
statistic, TLT , of (26) with vt = ε̂3t−1.

Table 1 reports the actual rejection frequencies when the null is true for
the tests described above. The results are reported for a nominal size of 5%
and the correct model for the mean is estimated, i.e. no mean estimation for
Model (1) and OLS estimation for Model (2). When ξt ∼ N (0, 1) and there
are no estimation effects (i.e., yt = εt), the empirical sizes for TA and TEN
are close to the nominal size of 5%, with the exception of low persistence
volatility, when the size of TA is 6%. However, the empirical literature
typical reports high persistence volatility models for financial time series.
When there are estimation effects from the conditional mean generated as
an AR process, TEN tends to be slightly undersized for all volatility models
relative to TA, which is slightly oversized. Note that under high persistence
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and an AR conditional mean specification, TEN is quite undersized which is
consistent with the analysis of Section 4.1 which implies that the variance
estimator employed can be expected to be biased downwards, in general.

Table 1. Empirical size
N (0, 1) t (10)

ϕ0 ϕ1 TA TEN TN TLT TA TEN TN TLT
H - - 4.9 4.6 5.8 3.1 5.7 4.1 4.5 1.4
(0.09,0.9) 1 0.1 4.8 3.9 5.0 2.3 4.9 4.3 3.9 1.5
M - - 5.2 4.9 4.8 4.0 4.7 3.8 4.1 4.0
(0.05,0.9) 1 0.1 5.2 4.5 5.2 4.3 5.5 4.1 4.2 3.0
L - - 6.0 4.8 4.2 4.1 4.5 4.6 4.1 2.9
(0.05,0.75) 1 0.1 5.5 4.6 5.2 4.0 4.7 4.6 4.8 2.6

The empirical size of the non-linearity test, TN , is close to the nominal
size, whereas TLT is undersized in all the experiments, especially for a high
persistence volatility model and under t(10) errors. When the conditional
mean is generated as an AR process, the empirical size of TN is close to
the nominal size, except for a low persistence volatility model, whereas that
of TLT is lower than the nominal size of 5% for all volatility models exam-
ined. Again, by ignoring asymptotically non-negligible estimation effects,
the TLT statistic employs a variance estimator which is biased downwards,
thus providing and under-sized test procedure.

The results of the Monte Carlo study for assessing the power of the
tests are reported in Table 2, where the nominal size is again 5%. The al-
ternative models used are the GJR(1,1) model, with the parameter values
considered by Lundbergh and Teräsvirta (2002) in their simulations; the
logistic STGARCH (1,1) model, which has similar parameter values as the
GJR model except that the transition between negative to positive shocks is
made smooth by using the logistic function; the EGARCH (1,1) model with
parameter values considered by Engle and Ng (1993); and, the TGARCH
(1,1) model. In the last case, the parameter values used are estimates ob-
tained by Zakoian (1994) for the CAC 40 daily stock index. Note that
in these experiments, for the non-linearity tests, the “omitted variable” is
vt = ε3t−1 when the data is generated from the GJR and STGARCH mod-
els, but vt = εt−1 for the EGARCH and TGARCH models. (Again, for each
non-linear model 1000 observations are drawn from the standard normal
distribution, as well as from the standardised Student t-distribution with 10
degrees of freedom. The first 200 observations are disregarded in order to
avoid initialization problems. Each design is carried out with 1000 replica-
tions. Again, for each model the conditional mean equation is designed as
previously.)

When the true data generating process is a GJR(1,1) model, the asym-
metry test, TA, performs remarkably well compared with the test proposed
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by Engle and Ng (1993), TEN . This is true, as well, when the distribution
of ξt is non-normal. Similarly, when the asymmetry parameter is 0.212, and
under normality, the simulated power for the non-linearity test TN is 88.9%,
whereas that of the test proposed by Lundbergh and Teräsvirta (2002), TLT ,
is 7.7%, when there are no estimation effects from the conditional mean.
This implies, that TLT is relatively insensitive to this alternative model.
Similar conclusions can be drawn when the coefficient that measures the
asymmetry is reduced to 0.17.

For smooth transitions between negative to positive shocks, i.e. the
true data process is generated by STGARCH (1,1) model, the differences
between the powers of TA and TEN , and TN and TLT , respectively, are quite
large. When estimation effects from the conditional mean are present and
the model with larger asymmetry is examined the power of TN is 96.4%
whereas that of TLT is 40.6%. Similarly, the asymmetry test TA attains a
simulated power of 95.6%, whereas the actual rejection frequency of TEN is
67.2%. For the non-normal distribution, the differences are also significant.
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Table 2. Empirical power
GJR (1,1) model

ht = 0.005 + 0.136ε
2
t−1 + 0.212I (εt−1) ε2t−1 + 0.7ht−1

I (εt−1) =
n
1 if εt−1<0
0 otherwise

N (0, 1) t(10)
ϕ0 ϕ1 TA TEN TN TLT TA TEN TN TLT

- - 85.8 47.8 88.9 7.7 65.2 30.0 68.6 1.9
1 0.1 81.6 45.3 86.2 6.4 63.0 30.4 68.3 2.6

ht = 0.005 + 0.136ε
2
t−1 + 0.17I (εt−1) ε2t−1 + 0.7ht−1

I (εt−1) =
n
1 if εt−1<0
0 otherwise

N (0, 1) t(10)
ϕ0 ϕ1 TA TEN TN TLT TA TEN TN TLT
- - 75.4 35.7 75.9 7.6 53.4 25.6 53.4 1.9
1 0.1 69.5 36.3 73.9 7.0 49.4 24.3 54.8 2.3

STGARCH (1,1) model
ht = 0.005 + 0.136ε

2
t−1 − 0.212F (εt−1) ε2t−1 + 0.7ht−1

F (εt−1) = 1
1+exp(−100εt−1) − 1

2

N (0, 1) t (10)
ϕ0 ϕ1 TA TEN TN TLT TA TEN TN TLT
- - 95.4 68.7 96.6 41.3 81.7 49.7 88.0 18.9
1 0.1 95.6 67.2 96.4 40.6 81.4 49.3 88.0 18.6

ht = 0.005 + 0.136ε
2
t−1 − 0.17F (εt−1) ε2t−1 + 0.7ht−1

F (εt−1) = 1
1+exp(−100εt−1) − 1

2

N (0, 1) t (10)
ϕ0 ϕ1 TA TEN TN TLT TA TEN TN TLT
- - 85.3 51.3 87.5 30.5 64.7 36.6 70.6 12.4
1 0.1 83.6 51.0 87.1 29.2 63.0 36.0 70.4 12.3

EGARCH (1,1) model

log(ht) = −0.23 + 0.9 log(ht−1) + 0.25
£|ξt−1|− 0.3ξt−1¤2

N (0, 1) t (10)
ϕ0 ϕ1 TA TEN TN TLT TA TEN TN TLT
- - 84.7 29.9 75.2 34.3 68.9 20.8 57.8 25.3
1 0.1 82.2 22.0 73.2 34.1 66.6 12.1 54.6 21.6

TGARCH (1,1) model√
ht = 0.07 + 0.081 (1− It−1) |εt−1|+ 0.193It−1 |εt−1|+ 0.831

p
ht−1

N (0, 1) t (10)
ϕ0 ϕ1 TA TEN TN TLT TA TEN TN TLT
- - 98.4 45.8 97.3 52.0 93.0 30.5 86.8 36.8
1 0.1 98.1 44.9 95.9 51.7 91.3 30.4 84.3 36.5
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Notice that the asymmetry tests have higher power against the STGARCH
(1,1) model compared with the corresponding GJR (1,1) model. For the
other data generating processes, i.e. the EGARCH (1,1) and TGARCH
(1,1) models, the results are similar. The simulated power of the tests TA
and TN is much higher than the power of the tests proposed by Engle and
Ng (1993) and Lundbergh and Teräsvirta (2002).

Overall, the Monte Carlo simulations confirm the theoretical derivations
undertaken in the previous sections. The “new” tests, namely TA and TN ,
have fairly good size properties and excellent power when compared with
TEN and TLT . Moreover, the simulations reveal these tests can be inter-
preted as general misspecification tests of asymmetry and non-linearity since
they have power against the asymmetry and/or non-linear models proposed
in the literature.

Finally, Monte Carlo results are reported with illustrate the sensitivity
of these tests to unconsidered misspecification in the conditional mean, as
analysed in Section 5. The results are obtained by employing SETAR and
STAR models as true data generation processes for the conditional mean,
with the conditional variance structures being given, as before, by Models
H, M and L. The precise specifications employed to generate the data are
as follows:

SETAR1: yt =
½
1− 0.1yt−1 + εt if yt−1 < 1
0.5 + 0.7yt−1 + εt if yt−1 ≥ 1

SETAR2: yt =
½
0.5− 0.7yt−1 + εt if yt−1 < 1
0.5 + 0.7yt−1 + εt if yt−1 ≥ 1

LSTAR1: yt = 0.9 + 0.1yt−1 + (1.5− 0.7yt−1)Ft−1 + εt where

Ft−1 = {1 + exp [−7 (yt−1 − 0.05)]}−1

ESTAR1: yt = 0.9 + 0.1yt−1 + (1.5− 0.7yt−1)Ft−1 + εt where

Ft−1 = 1− exp
£−7(yt−1 − 0.05)2¤

In order to investigate the finite sample sensitivity of the test procedures
to conditional mean misspecification, the assumed specification is given by
an AR(1) namely: yt = ϕ0 + ϕ1yt−1 + εt, whereas for the conditional vari-
ance specification the assumed and the true specifications are given by the
GARCH (1,1) model. In these experiments, as before, for each model 1200
observations are drawn from the standard normal distribution, in which first
200 observations are discarded to leave a sample size of 1000. Each design
is carried out with 1000 replications.

Table 3 reports the rejection frequencies of the tests when the condi-
tional mean is misspecified. The tests do indeed exhibit some “power” in
this case, although TA and TN appear relatively more robust than TEN and
TLT , respectively. Note, also, that TN is actually quite robust to LSTAR1
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and ESTAR1 misspecifications. Thus, neglected non-linearities in the condi-
tional mean may lead to misleading conclusions about non-linearities in the
conditional variance. Therefore, it is important to perform misspecification
tests of the conditional mean which are robust to conditional heteroskedas-
ticity.

Table 3. Rejection frequencies for misspecified conditional mean models
Model N (0, 1) t (10)

TA TEN TN TLT TA TEN TN TLT
SETAR1 H (0.09,0.9) 4.2 24.3 9.3 17.5 3.9 20.7 8.5 14.4

M (0.05,0.9) 9.4 22.5 15.6 25.8 6.8 21.1 13.2 21.2
L (0.05,0.75) 12.2 16.7 19.8 22.6 10.1 14.2 17.0 18.7

SETAR2 H (0.09,0.9) 71.8 99.1 79.0 91.0 66.7 98.3 76.8 86.4
M (0.05,0.9) 92.2 99.3 97.6 99.3 81.3 98.0 93.5 96.9
L (0.05, 0.75) 93.4 99.5 99.8 99.3 82.7 96.0 98.4 96.2

LSTAR1 H (0.09,0.9) 12.8 57.9 3.2 16.1 10.5 46.2 1.6 10.8
M (0.05,0.9) 15.2 56.2 5.8 21.1 10.8 42.2 6.0 9.5
L (0.05,0.75) 26.6 46.0 12.8 19.1 17.7 32.9 8.4 7.0

ESTAR1 H (0.09,0.9) 10.8 50.1 3.6 7.0 9.1 33.9 3.7 3.2
M (0.05, 0.9) 13.3 49.5 5.3 11.6 9.6 33.9 3.2 4.8
L (0.05,0.75) 26.6 46.6 7.5 11.3 16.3 29.5 4.8 4.8

7 Conclusion

This paper has provided some unifying theoretical results for misspecifica-
tion testing in GARCH models, which have practical implications for empir-
ical research. New asymptotically valid and locally optimal tests for asym-
metry and non-linearity for GARCH models have been proposed. Moreover,
it has been argued that the asymmetry and non-linearity tests proposed by
Engle and Ng (1993) and Lundbergh and Teräsvirta (2002) , respectively, are
neither asymptotically valid (since they ignore asymptotically non-negligible
estimation effects) nor locally optimal (since they ignore the recursive nature
of the conditional variance structure).

In addition to linear mean specifications estimated by OLS, theoretical
results are also presented for the asymptotic distribution of asymmetry and
non-linearity tests when the conditional mean is estimated by NLLS and
QML. These results, therefore, provide the framework for misspecification
tests to be undertaken in a variety of circumstances. For example, misspec-
ification tests for the STAR-GARCH model have not been considered in the
literature to date.

Most importantly, the Monte Carlo results clearly suggest that the power
of the new tests is excellent when compared with the previous tests proposed
by Engle and Ng (1993) and Lundbergh and Teräsvirta (2002). Moreover,
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the tests are powerful against various non-linear models proposed in the
literature, suggesting that they can be used as general misspecification tests
in GARCH models against non-linearity and/or asymmetry. Finally, and
contrary to previous understanding, the theoretical results here show that
GARCH misspecification tests are asymptotically sensitive to unconsidered
misspecification of the conditional mean, which suggests that robust tests
of the conditional mean specification must be undertaken before tests of the
GARCH specification are performed. Such tests of the conditional mean
might employ the recently proposed bootstrap scheme by Gonçalves and
Killian (2004) and this is left for future research.
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