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1 Introduction

Empirical research has shown that expected utility fails to provide a general description of

individual behavior under risk. Shortly after its introduction by von Neumann and Morgenstern

(1944), the predictive power of expected utility was subject to criticism by thoughtfully designed

experiments, the most famous of which were offered by Allais (1953). Since, many new theories

have been developed to capture expected utility anomalies. Among those, the so-called rank-

dependent utility theories, which allow for a non-linear representation of probabilities, have

emerged as an elegant way to capture relevant descriptive generality and to maintain most of

the mathematical tractability offered by expected utility (see the recent overview by Starmer

2000). By now these models have established their validity, and it is not surpring that nowadays

they have become important tools for general economic analyses.

Most of the provided preference foundations for rank-dependent utility theories require a

rich structure on the set of outcomes. Köbberling and Wakker (2003), give a review of such

theories, and show that many of the foundations for rank-dependent utilty can be unified under

the principle of comonotonic tradeoff consistency. This principle, which implies a separation of

utility from attitudes towards probabilities, has lead to more advanced elicitation techniques

for utility, firstly by dispensing from parametric specifications for utility, and secondly because

of its insensitivity to probability distortions. The requirement of a rich structure on the set

of outcomes is, to a large degree, in contrast to the structure needed to establish expected

utility, where the richness of the naturally given probability inteval is more relevant. Also,

most expected utility paradoxes in fact originate from choice examples that require only a

finite number of outcomes (e.g., three outcomes in the Allais-paradoxes). Therefore, preference

foundations, which can dispense of a rich structure for outcomes, can be viewed as closer or
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more natural extensions of expected utility.

Only few such close extensions of expected utility are available in the literature. Loewen-

stein and Prelec (1991) have considered preference conditions for lotteries with two outcomes

one of which is zero. This structure has proven useful in the parametric characterization of

inverse S-shaped probability weighting functions (Prelec 1998). Nakamura (1995) is, to my

knowledge, the first axiomatization of rank-dependent expected utility that allows for more

general probability distributions. In particular, Nakamura shows that, by looking at decumu-

lative probability distributions, new preference conditions can be introduced, which allow for

the application of familiar mathematical techniques in the derivation of rank-dependent utility.

This has been best illustrated in Abdellaoui (2002), where the probability tradeoff consistency

condition has been employed to separate decision weights from the utility of outcomes. From

a technical point of view this condition plays the analogue role of comonotonic tradeoff consis-

tency for outcomes when the rich-outcome-set approach is used (see Wakker 1989, 1994, and

more recently Köbberling and Wakker 2003). Abdellaoui shows that probability tradoff con-

sistency is a direct implication of von Neumann Morgenstern independence, and that, in the

presence of stochastic dominance (a further implication of von Neumann Morgenstern indepen-

dence) and the additional standard principles of weak ordering and continuity in probabilities,

an elegant preference foundation for rank-dependent expected utility results.

The approach in this paper is similar in that it focuses on the structure offered through

the probability inteval, leaving aside assumptions on the structure of the outcome set. The

goal is to provide a preference characterization of rank-dependent expected utility. Similarly

to Abdellaoui (2002), weak ordering, continuity with respect to changes in probability and

stochastic dominance are maintained, and supplemented with two further conditions focusing

on extreme, that is best or worst, outcomes. The first of these resembles the idea of tail
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independence (Wakker and Zank 2002) or ordinal independence (Green and Jullien 1988),

and is a slight weakening of comonotonic independence (Schmeidler 1989). It means that the

preference is independent of common decumulative probabilities for best or worst outcomes.

The second condition ensures that probability weights can be separated from the utility of

outcomes. It is a novel condition that can be tested empirically, and, on its own, is weaker than

probability tradeoff consistency, and consequently also implied by von Neumann Morgenstern

independence. The new probabilistic consistency condition is inspired by the fact that under

rank-dependent expected utility decision weights are independent of the magnitude of outcomes

and only the rank of the latter matters.

The paper continues with some preliminary notation in the next section. In Section 3

tail independence is introduced and some implications are presented. Probabilistic consistency

is discussed in Section 4, where also the main result of the paper is presented (Theorem 4).

Concluding remarks are provided in Section 5. Most proofs are postponed until the Appendix,

unless they are used to supplement the intuition behind some of the axioms.

2 Preliminaries

Let X denote the set of outcomes. A lottery is a finite probability distribution over the set X.

It is represented by P = (p0, x0; . . . ; pn, xn) meaning that probability pj is assigned to outcome

xj ∈ X, for j = 0, . . . , n. Let L denote the set of all lotteries. A preference relation < is

assumed over L, and its restiction to subsets of L (e.g., X) is also denoted by <. The symbol Â

denotes strict preference, ∼ denotes indifference, and 4 respectively ≺ are the usual reversed

preferences. In the notation for a lottery we assume that outcomes are ordered from worst

to best, i.e., with P = (p0, x0; . . . ; pn, xn) it holds that x0 4 · · · 4 xn. It what follows it is
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convenient to sometimes fix a finite subset of outcomes Y = {x0, . . . , xn} ⊆ X and consider the

set of lotteries with respect to outcomes in Y , denoted LY .

The goal is to provide preference conditions for < in order to represent the preference

relation by a functional V defined over lotteries. That is, V is a mapping from L into the set

of real numbers, IR, such that

P < Q⇔ V (P ) > V (Q).

This necessarily implies that < must be a weak order, i.e. < is complete (P < Q or P 4 Q for

all lotteries P,Q) and transitive (P < Q and Q < R implies P < R for all lotteries P,Q,R).

The set of lotteries L is a mixture space endowed with the operation of probability mixing,

i.e., for P,Q ∈ L and α ∈ [0, 1] the mixture αP +(1−α)Q is also a lottery in L. The preference

relation < satisfies Jensen-continuity on the set of lotteries L if for all lotteries P Â Q and R

there exist ρ, µ ∈ (0, 1) such that

ρP + (1− ρ)R Â Q and P Â µR+ (1− µ)Q.

The preference relation < satisfies vNM-independence (short for von Neumann Morgenstern

independence) if for all lotteries P,Q,R ∈ L and all α ∈ (0, 1) it holds that

P < Q⇔ αP + (1− α)R < αQ+ (1− α)R.

That is, the preference between P and Q remains unaffected if both, P and Q, are mixed with

a common R. Note that in the definition of vNM-independence no restrictions apply to the

choice of R.

Given the structure considered here, it is well-known (see Fishburn 1970) that the three

axioms above are necessary and sufficient for a representation of < by expected utility. That
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is, the representing functional for < evaluates any lottery P = (p0, x0; . . . ; pn, xn) by

EU(P ) =
nX
j=0

pju(xj),

with utility function u : X → IR unique up to positive affine transformations.

The focus of this paper is on a more general representation, that is, on rank-dependent

expected utility, which involves a probability weighting function that transforms decumulative

probabilities. Formally, a probability weighting function is an increasing continuous mapping

w : [0, 1] → [0, 1], with w(0) = 0 and w(1) = 1. Rank-dependent expected utility (RDEU)

represents < if any lottery P = (p0, x0; . . . ; pn, xn) is evaluated by

RDEU(P ) =
nX
j=1

[w(pj−1 + · · ·+ pn)− w(pj + · · ·+ pn)]u(xj−1) + w(pn)u(xn), (1)

with utility function u : X → IR as for expected utility, and unique probability weighting

function w. It is convenient for the later exposition to sometimes use the following equivalent

formula for RDEU:

RDEU(P ) = u(x0) +
nX
j=1

w(pj + · · ·+ pn)[u(xj)− u(xj−1)]. (2)

RDEU is more general than expected utility, which can be seen if in the above equations the

probability weighting function is assumed linear, i.e., w(p) = p for all p ∈ [0, 1]. To allow for the

empirically observed deviations from linearity in the weighting functions, vNM-independence

needs to be relaxed.

One implication of vNM-independence that is maintained under RDEU is stochastic domi-

nance. For x ∈ X and a lottery P ∈ L denote by P ({y ∈ X|y < x}) the probability of receiving

an outcome weakly preferred to x under P . Stochastic dominance says that lotteries where the

probability of receiving weakly preferred outcomes is always higher are preferred. Formally, for

all P,Q ∈ L, whenever P ({y ∈ X|y < x}) > Q({y ∈ X|y < x}) for all x ∈ X and P 6= Q,
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then P Â Q. It can be shown (e.g., Abdellaoui 2002, Proposition 10) that vNM-independence

implies stochastic dominance for a weak order < on L.

Some convenient notation is now introduced. Consider, for a finite set of outcomes Y =

{x0, . . . , xn}, the set of lotteries LY . Take any P ∈ LY with P = (p0, x0; . . . ; pn, xn). Then, the

probability p∗i for i = 0, . . . , n is equal to

p∗i := P ({y ∈ Y |y < xi}) =
nX
j=k

pj, if xk−1 ≺ xk ∼ xi, (3)

where obviously p∗0 = 1 and p∗n = pn. Hence, any lottery P ∈ LY can be identified with the

(non-increasing) probability distribution, say P ∗ = (1, x0; p
∗
1, x1; . . . ; p

∗
n, xn). Let L

∗
Y denote

the set of (non-increasing) probability distributions with respect to Y , and more generally

let L∗ denote the set of (non-increasing) probability distributions with respect to X. If Y

is fixed and no confusion arises, then the outcomes in P and P ∗ are suppressed, i.e., the

probability vector (p0, . . . , pn) stands for P = (p0, x0; . . . ; pn, xn), and (p
∗
1, . . . , p

∗
n) stands for

P ∗ = (1, x0; . . . ; p∗n, xn). Note that, in the special case that x0 ≺ · · · ≺ xn the distribution P ∗

with respect to Y is in fact a decumulative probability distribution, and therefore L∗Y is the set

of decumulative probability distributions over Y .

The correspondence between a lottery P = (p0, x0; . . . ; pn, xn) over the outcomes in Y and

probability distribution P ∗ ∈ L∗Y through the mapping defined using Equation (3) above

LY → L∗Y

(p0, . . . , pi, . . . , pn) 7→ (p∗1, . . . , p
∗
i , . . . , p

∗
n),

with the implicit relation
Pn

j=0 pj = 1 suppressed, allows the extension of preference conditions

defined on L to preference conditions defined on L∗. The fact that LY , L∗Y are mixture spaces,

with the operation of probabilistic mixture αP + (1− α)Q on LY for P,Q ∈ LY and α ∈ [0, 1]

being equivalent to the mixture αP ∗ + (1− α)Q∗ on L∗Y for P
∗, Q∗ ∈ L∗Y and α ∈ [0, 1], allows
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to identify the preference relation < on LY with the preference relation < on L∗Y through the

equivalence

P < Q⇔ P ∗ < Q∗.

Now, the preference conditions of weak ordering and Jensen-continuity, and vNM-independence

are extended straightforwardly from L to L∗. Stochastic dominance is reformulated as mono-

tonicity: For any Y = {x0, . . . , xn}, all P ∗, Q∗ ∈ L∗Y with P ∗ = (p∗1, . . . , p
∗
n) and Q

∗ =

(q∗1, . . . , q
∗
n), if p

∗
j > q∗j for all j = 1, . . . , n and P ∗ 6= Q∗, then P ∗ Â Q∗.

As shown in Lemma 18 of Abdellaoui (2002), for any finite subset Y = {x0, . . . , xn} ⊆ X

the preference relation < on L∗Y satisfies (Euclidean) continuity if it is a monotonic and Jensen-

continuous weak order. The preference relation < on L∗Y is continuous if for any P ∗ ∈ L∗Y the

sets {Q∗ ∈ L∗Y |Q∗ Â P ∗} and {Q∗ ∈ L∗Y |Q∗ ≺ P ∗} are open in L∗Y .

With the above notation, Equations (1) and (2) can be reformulated in terms of (decumu-

lative) probabilities as follows: A lottery P = (p0, x0; . . . ; pn, xn) is evaluated by

RDEU(P ) =
nX
j=1

[w(p∗j−1)− w(p∗j)]u(xj−1) + w(p∗n)u(xn), (4)

respectively

RDEU(P ) = u(x0) +
nX
j=1

w(p∗j)[u(xj)− u(xj−1)]. (5)

That this notation makes sense follows from the fact that under RDEU the utility of two

indifferent outcomes is equal, i.e., u(xi) = u(xk) for xi ∼ xk (and consequently p∗i = p∗k).

Two further implications of vNM-independence are considered in the next sections, and as

it turns out these suffice for a preference representation by RDEU (see Theorem 4 below).
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3 Tail Independence

In this section it is convenient to formulate preference conditions initially for probability dis-

tributions in L∗. Before tail independence is introduced some useful notation is presented.

Take any finite set of outcomes Y = {x0, . . . , xn}, such that x0 ≺ · · · ≺ xn, and a subset

I ⊆ {1, . . . , n}. For P ∗, R∗ ∈ L∗Y define the probability tuple R∗IP ∗ = (t∗1, . . . , t∗n) with t∗i = r∗i
for i ∈ I, and t∗i = p∗i for i /∈ I. Note that, for R∗IP ∗ ∈ L∗Y to hold, it is necessary that

1 > t∗1 > · · · > t∗n > 0.2

The preference relation < satisfies tail independence if for any finite set of outcomes Y =

{x0, . . . , xn}, such that x0 ≺ · · · ≺ xn, and any R∗IP ∗, R∗IQ∗, S∗IP ∗, S∗IQ∗ ∈ L∗Y it holds that

R∗IP
∗ < R∗IQ∗ ⇔ S∗IP

∗ < S∗IQ∗,

whenever I = {1, . . . , i} or I = {j, . . . , n} for some i, j ∈ {1, . . . , n}.

Tail independence requires the preference between two probability distributions on any L∗Y

to be invariant to substitution of the common part of the probability distributions when this

part refers to the most preferred outcomes or most dispreferred ones. Translating the condition

into lottery notation reveals its relationship with vNM-independence. Take any finite set of

outcomes Y = {x0, . . . , xn}, with x0 ≺ · · · ≺ xn. Assume I = {1, . . . , i}, for some 0 < i < n.

Suppose R∗IP
∗, R∗IQ

∗, S∗IP
∗, S∗IQ

∗ ∈ L∗Y with

R∗IP
∗ = (r∗1, . . . , r

∗
i , p

∗
i+1, . . . , p

∗
n),

R∗IQ
∗ = (r∗1, . . . , r

∗
i , q

∗
i+1, . . . , q

∗
n),

and

S∗IP
∗ = (s∗1, . . . , s

∗
i , p

∗
i+1, . . . , p

∗
n),

2This notation and the subsequent condition can be formulated for general finite sets of outcomes Y con-

taining indifferent outcomes. Then the additional restriction t∗k = t
∗
l applies if xk ∼ xl.
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S∗IQ
∗ = (s∗1, . . . , s

∗
i , q

∗
i+1, . . . , q

∗
n).

Then, R∗IP
∗ < R∗IQ∗ ⇔ S∗IP

∗ < S∗IQ∗ can equivalently be written as

(r∗1, . . . , r
∗
i , p

∗
i+1, . . . , p

∗
n) < (r∗1, . . . , r

∗
i , q

∗
i+1, . . . , q

∗
n)

⇔

(s∗1, . . . , s
∗
i , p

∗
i+1, . . . , p

∗
n) < (s∗1, . . . , s

∗
i , q

∗
i+1, . . . , q

∗
n).

Hence, the common decumulative probabilities r∗1, . . . , r
∗
i in the first preference have been re-

placed in the second preference by the common decumulative probabilities s∗1, . . . , s
∗
i . Translated

into lotteries from LY the latter equivalence means that

(1− r∗1, . . . , r∗i−1 − r∗i , r∗i − p∗i+1, . . . , p∗n) < (1− r∗1, . . . , r∗i−1 − r∗i , r∗i − q∗i+1, . . . , q∗n)

⇔

(1− s∗1, . . . , s∗i−1 − s∗i , s∗i − p∗i+1, . . . , p∗n) < (1− s∗1, . . . , s∗i−1 − s∗i , s∗i − q∗i+1, . . . , q∗n).

Assume now that 1 > q∗i+1 > p∗i+1 > 0. Define the lotteries R,P,Q, S ∈ L as

R = (
1− r∗1
1− q∗i+1

, x0; . . . ;
r∗i−1 − r∗i
1− q∗i+1

, xi−1;
r∗i − q∗i+1
1− q∗i+1

, xi),

S = (
1− s∗1
1− q∗i+1

, x0; . . . ;
s∗i−1 − s∗i
1− q∗i+1

, xi−1;
s∗i − q∗i+1
1− q∗i+1

, xi), and

P = (
q∗i+1 − p∗i+1
q∗i+1

, xi;
p∗i+1 − p∗i+2
q∗i+1

, xi+1; . . . ;
p∗n
q∗i+1

, xn),

Q = (
q∗i+1 − q∗i+2
q∗i+1

, xi+1; . . . ;
q∗n
q∗i+1

, xn).

Note that both, R and S, assign zero probability to xi+1, . . . , xn, whereas P and Q assign zero

probability to x0, . . . , xi−1, and further Q assigns zero probability to xi. It is now easily verified

that the previous preferences can equivalently be written as preferences between mixtures of

lotteries as follows:

(1− q∗i+1)R+ q∗i+1P < (1− q∗i+1)R+ q∗i+1Q
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⇔

(1− q∗i+1)S + q∗i+1P < (1− q∗i+1)S + q∗i+1Q.

For the case “0 < q∗i+1 6 p∗i+1 < 1” a similar equivalence can be derived, and further the

corresponding relations for the case when I = {i, . . . , n}, for some 0 < i 6 n, can be derived in

an analogous way.

These computations show that indeed tail independence is a weak form of vNM-independence.

The outcomes in the common lotteries R and S are either all (weakly) preferred to those of

Q and P , or all outcomes of P and Q are preferred to those of R and S. This condition has

already appeared in Wakker and Zank (2002) under the same name of tail independence, and

further, extended to nonsimple lotteries, in Green and Jullien (1988) as ordinal independence.

The comonotonicity requirements introduced by Schmeidler (1989), which underlie all rank-

dependent theories, are further weakened in the definition of tail independence, by imposing

the condition only for mixtures with lotteries involving best and worst common outcomes.

The next lemma and its elementary proof further clarify the nature of tail independence

and its relation to RDEU.

Lemma 1 Assume that < on L is represented by RDEU. Then < satisfies tail independence.

Proof: Take any finite set of outcomes Y = {x0, . . . , xn}, such that x0 ≺ · · · ≺ xn, and

assume I = {1, . . . , i}, for some 0 < i < n. Assume R∗IP ∗, R∗IQ∗ ∈ L∗Y with

R∗IP
∗ = (r∗1, . . . , r

∗
i , p

∗
i+1, . . . , p

∗
n),

R∗IQ
∗ = (r∗1, . . . , r

∗
i , q

∗
i+1, . . . , q

∗
n),

Then, using the RDEU form in Equation (5), it follows that

(r∗1, . . . , r
∗
i , p

∗
i+1, . . . , p

∗
n) < (r∗1, . . . , r

∗
i , q

∗
i+1, . . . , q

∗
n)
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⇔

RDEU(r∗1, . . . , r
∗
i , p

∗
i+1, . . . , p

∗
n) > RDEU(r∗1, . . . , r

∗
i , q

∗
i+1, . . . , q

∗
n),

where on both sides of the latter inequality the common term,

u(x0) +
iX
j=1

w(r∗j )[u(xj)− u(xj−1)],

can equivalently be replaced by the common term

u(x0) +
iX
j=1

w(s∗j)[u(xj)− u(xj−1)]

for any 1 > s∗1 > · · · > s∗i > max{p∗i+1, q∗i+1}. Hence, with S∗IP ∗, S∗IQ∗ ∈ L∗Y defined as

S∗IP
∗ = (s∗1, . . . , s

∗
i , p

∗
i+1, . . . , p

∗
n),

S∗IQ
∗ = (s∗1, . . . , s

∗
i , q

∗
i+1, . . . , q

∗
n),

it follows that

RDEU(s∗1, . . . , s
∗
i , p

∗
i+1, . . . , p

∗
n) > RDEU(s∗1, . . . , s∗i , q∗i+1, . . . , q∗n).

In summary, R∗IP
∗ < R∗IQ∗ ⇔ S∗IP

∗ < S∗IQ∗ follows for the case of common worst outcomes,

i.e., I = {1, . . . , i}, for some 0 < i < n. The case of common best outcomes (I = {i, . . . , n}, for

some 0 < i 6 n) is similar. Hence, as Y is arbitrary, tail independence follows. ¤

It is useful to recall here an intermediate implication of the preference conditions introduced

so far. The next lemma shows that on each set L∗Y the preference relation is represented by

an additive separable functional. One complication that occurs here is the existence of the

extreme probabilities 1 respectively 0 in the distributions.

Lemma 2 Let n > 3 and let Y = {x0, . . . , xn} be a set of outcomes such that x0 ≺ · · · ≺ xn.

The following two statements are equivalent for a preference relation < on the set of lotteries

L∗Y :
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(i) The preference relation < on L∗Y is represented by an additive function

V (p∗1, . . . , p
∗
n) =

nX
j=1

Vj(p
∗
j),

with continuous strictly monotonic functions V1, . . . , Vn : [0, 1] → IR which are bounded

except maybe V1 and Vn which could be infinite at extreme probabilities (i.e., at 0, 1).

(ii) The preference relation < is a Jensen-continuous monotonic weak order satisfying tail

independence.

The functions V1, . . . , Vn are jointly cardinal, that is, they are unique up to common scale

and location. ¤

4 Probabilistic Consistency

The next condition is called probabilistic consistency. It is the main condition of the paper,

and it implies the separation of the weighting of the (decumulative) probability from the utility

of outcomes. Take a finite set of outcomes Y = {x0, . . . , xn}, such that x0 ≺ · · · ≺ xn, let

I = {1, . . . , i} for some 1 6 i < n (or I = {i, . . . , n} for some 1 < i 6 n), and take some

P ∗ = (p∗1, . . . , p
∗
n) ∈ L∗Y and probability α ∈ [p∗i+1, 1] (or α ∈ [0, p∗i−1]). Then αIP

∗ is defined

as the probability distribution

αIP
∗ =


(α, . . . ,α, p∗i+1, . . . , p

∗
n), if I = {1, . . . , i},

(p∗1, . . . , p
∗
i−1,α, . . . ,α), if I = {i, . . . , n}.

The preference relation < satisfies probabilistic consistency if for any finite set of outcomes

Y = {x0, . . . , xn}, such that x0 ≺ · · · ≺ xn, and all probabilities α,β, γ, δ with αIP ∗,βIQ∗ ∈ L∗Y
and γIP

∗, δIQ∗ ∈ L∗Y it holds that

αIP
∗ ∼ βIQ

∗ and γIP
∗ ∼ δIQ

∗ ⇒ αJγIP
∗ ∼ βJδIQ

∗
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for any subset J ⊆ I such that αJγIP ∗, βJδIQ∗ ∈ L∗Y .

Before the condition is discussed in more detail, it is instructive to consider a specific case

for the above implication. Take Y = {x0, . . . , xn}, such that x0 ≺ · · · ≺ xn, and probabilities

α > β and γ > δ, and further let I = {1, . . . , i} for some 1 6 i < n, such that the following

relationships hold among probability distributions in L∗Y

(α, . . . ,α, p∗i+1, . . . , p
∗
n) ∼ (β, . . . ,β, q∗i+1, . . . , q∗n)

and

(γ, . . . , γ, p∗i+1, . . . , p
∗
n) ∼ (δ, . . . , δ, q∗i+1, . . . , q∗n).

Then, if α > γ, for αJγIP
∗ to belong to L∗Y it should hold that J = {1, . . . , j} with 1 6 j 6 i.

This therefore implies β > δ (with β > δ in the presence of monotonicity). The above condition

then implies that αJγIP
∗ ∼ βJδIQ

∗ or equivalently

(α, . . . ,α| {z }
J

, γ, . . . , γ| {z }
I\J

, p∗i+1, . . . , p
∗
n) ∼ (β, . . . , β| {z }

J

, δ, . . . , δ| {z }
I\J

, q∗i+1, . . . , q
∗
n).

So, viewed from the first indifference, probabilistic consistency says that, if initially the (decu-

mulative) probabilities α and β for x1, . . . , xi outweigh each other to give indifference αIP
∗ ∼

βIQ
∗, and a joint reduction of α to γ and simultaneously of β to δ for x1, . . . , xi maintains that

indifference (i.e., γIP
∗ ∼ δIQ

∗), then a joint reduction of α to γ and simultaneously of β to δ

for x1, . . . , xj for any 1 6 j 6 i should also maintain that indifference (i.e., αJγIP ∗ ∼ βJδIQ
∗).

Viewed from the second indifference (i.e., γIP
∗ ∼ δIQ

∗) joint changes γ to α, respectively δ

to β, are improvements in decumulative probabilities, and the condition says that such joint

improvements are independent of the outcomes for which they occur, as long as the outcomes

are intermediate ones, i.e., x0 ≺ xj ≺ xi.

Above, the case of probabilities for the common worst outcomes has been considered. A

similar interpretation applies for the case of probabilities for best outcomes, i.e., I = {i, . . . , n}

14



for some i ∈ {1, . . . , n}. Note that this focus on common best or worst outcome is similar

to tail independence. Reformulating the previous indifferences in terms of lotteries over Y =

{x0, . . . , xn} (now including outcomes in the notation) further clarifies this point. The first two

indifferences (i.e., αIP
∗ ∼ βIQ

∗ and γIP
∗ ∼ δIQ

∗) give

(1− α, x0;α− p∗i+1, xi; . . . ; p∗n, xn) ∼ (1− β, x0; β − q∗i+1, xi; . . . ; q∗n, xn),

and

(1− γ, x0; γ − p∗i+1, xi; . . . ; p∗n, xn) ∼ (1− δ, x0; δ − q∗i+1, xi; . . . ; q∗n, xn),

and the third indifference (i.e., αJγIP
∗ ∼ βJδIQ

∗) implies that for all 0 < j 6 i we have

(1− α, x0;α− γ, xj; γ − p∗i+1, xi; . . . ; p∗n, xn) ∼ (1− β, x0;β − δ, xj; γ − q∗i+1, xi; . . . ; q∗n, xn).

Note, that in the lotteries involved in the first two indifferences the outcome xj has zero prob-

ability, whereas in the lotteries involved in the latter indifference it has positive probability

α − γ, respectively β − δ. Hence, probabilistic consistency, and similarly tail independence,

provide specific rules on how information regarding decumulative probabilities about common

best or common worst outcomes is integrated in the evaluation of lotteries. Whereas tail inde-

pendence refers to invariance of common probabilities, probabilistic consistency indicates how

information about a previously impossible outcome is integrated when this outcome becomes

possible: α−γ outweighs β−δ in the above indifference independently of which of the outcomes

x1, . . . , xi−1 receive this positive probability. All that matters is that this outcome (xj above)

is of common rank 2 in the new pair of lotteries.

The next lemma shows that RDEU requires probabilistic consistency to hold. The proof

of the lemma is presented in the main text as it further clarifies the nature of probabilistic

consistency.
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Lemma 3 Assume that < on L is represented by RDEU. Then < satisfies probabilistic consis-

tency.

Proof: Take Y = {x0, . . . , xn}, such that x0 ≺ · · · ≺ xn, and probabilities α > β and

γ > δ, and further let I = {1, . . . , i} for some 1 6 i < n, such that αIP
∗ ∼ βIQ

∗ and

γIP
∗ ∼ δIQ

∗, or equivalently

(α, . . . ,α, p∗i+1, . . . , p
∗
n) ∼ (β, . . . ,β, q∗i+1, . . . , q

∗
n)

and (γ, . . . , γ, p∗i+1, . . . , p
∗
n) ∼ (δ, . . . , δ, q∗i+1, . . . , q

∗
n).

Then, using Equation (5), and cancelling the common u(x0), it follows that

iX
k=1

w(α)[u(xk)− u(xk−1)] +
nX

k=i+1

w(p∗k)[u(xk)− u(xk−1)]

=
iX

k=1

w(β)[u(xk)− u(xk−1)] +
nX

k=i+1

w(q∗k)[u(xk)− u(xk−1)]

and

iX
k=1

w(γ)[u(xk)− u(xk−1)] +
nX

k=i+1

w(p∗k)[u(xk)− u(xk−1)]

=
iX

k=1

w(δ)[u(xk)− u(xk−1)] +
nX

k=i+1

w(q∗k)[u(xk)− u(xk−1)].

Subtracting the second equality from the first, and cancelling common terms, gives:

[w(α)− w(γ)][u(xi)− u(x0)] = [w(β)− w(δ)][u(xi)− u(x0)]

(or [w(α)−w(γ)] = [w(β)−w(δ)] given that xi Â x0) Take any J = {1, . . . , j} with 1 6 j 6 i and

assume that αJγIP
∗ ¿ βJδIQ

∗ (which implies α > β, γ > δ). This means RDEU(αJγIP
∗) 6=

RDEU(βJδIQ
∗) and subtracting that from RDEU(αIP

∗) = RDEU(βIQ
∗), and cancelling

common terms, implies

[w(α)− w(γ)][u(xj)− u(x0)] 6= [w(β)− w(δ)][u(xj)− u(x0)].
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This contradicts the previous equality given that xj Â x0. Hence, αJγIP ∗ ∼ βJδIQ
∗ follows for

any J = {1, . . . , j} with 1 6 j 6 i. The case J = {j, . . . , i} for some 1 6 j 6 i follows similarly

by jointly reverting the role of α and γ, respectively, β and δ. Further, the case I = {i, . . . , n}

for some 1 < i 6 n, is completely analogous. Therefore, probabilistic consistency follows, which

completes the proof. ¤

The following figure helps clarifying the nature of RDEU in relation to EU, and also in

relation to Yaari’s (1987) dual theory (DT), using probabilistic consistency. Here X is assumed

to be the real line IR, and that < on X comes down to the natural ordering > on IR. Assume

Y = {x0, x1, x2, x3} for distict outcomes x0, x1, x2, and x3, and let α, β, γ, δ be decumulative

probabilities, such that for I = {1, 2} (and J = {1}), αIP ∗ ∼ βIQ
∗ and γIP ∗ ∼ δIQ

∗ holds from

some p∗3 = p
∗, q∗3 = q

∗. Figure 1(a) depicts the decumulative distribution functions αIP ∗,βIQ∗

and γIP
∗, δIQ∗, and αJγIP

∗, βJδIQ∗. Under EU, only attitudes towards outcomes matter, and

outcomes are translated into utilities, whereas the decumulative probabilities are taken as their

objective value. This translates Figure 1(a) to Figure 1(b), where the horizontal axis refers to

utilities and on the vertical axis α − γ = β − δ is required. Hence, the shaded rectangles in

Figure 1(b) are of equal size, i.e.,

(α− γ)[u(x2)− u(x1)] = (β − δ)[u(x2)− u(x1)].

Subtracting this equality from EU(αIP
∗) = EU(βIQ

∗), and translating the result back into

preference notation gives αJγIP
∗ ∼ βJδIQ

∗ under EU.

Under DT, only attitudes towards probabilities matter, and decumulative probabilities

translate into weighted decumulative probabilities, outcomes however are left unchanged. This

translates Figure 1(a) into Figure 1(c), where the vertical axis refers to weighted probabilities
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and

[w(α)− w(γ)](x2 − x1) = [w(β)− w(δ)](x2 − x1)

is required. This again implies αJγIP
∗ ∼ βJδIQ

∗.
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º 
¶ 

 p* 

 q* 

1 

x 
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(a) Decumulative probability 
distributions in transfer invariance. 

(b) EU: Only attitudes towards 
outcomes incorporated. 
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w() 
w(º) 
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x 
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} w(º)-w(¶)

x2 x3 

(c) DT: Only attitudes towards 
probabilities incorporated. 
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 w(q*)
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} w(º)-w(¶)
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(d) RDEU: Attitudes towards both 
probability and outcomes incorporated. 

Figure 1: Probabilistic Consistency

Under RDEU, both, attitudes towards outcomes and attitudes towards probabilities matter,
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so that Figure 1(a) transformes into Figure 1(d). There the horizontal axis refers to utilities

and the vertical axis to transformed decumulative probabilities. Now

[w(α)− w(γ)][u(x2)− u(x1)] = [w(β)− w(δ)][u(x2)− u(x1)]

is required, and this implies αJγIP
∗ ∼ βJδIQ

∗.

Notice that for RDEU and DT, in the above illustration any outcome x ∈ X, such that

x0 < x < x2 holds, can be substituted for x1. This indicates that RDEU requires that differences

of transformed probabilities are independent of the (utility of) outcomes provided that these

outcomes are restricted to be of a certain rank, namely, second worst (or similarly second best).

This is precisely what probabilistic consistency entails.

The main result of this paper can now be formulated:

Theorem 4 Assume the set of outcomes X contains at least four strictly ranked outcomes.

Then the following two statements are equivalent for a preference relation < on L:

(i) Rank-dependent expected utility holds (with a strictly increasing and continuous weighting

function w, and a strictly monotone utility function u).

(ii) The preference relation < is a Jensen-continuous weak order satisfying stochastic domi-

nance, tail independence, and probabilistic consistency.

The utility function u is unique up to positive affine transformations, and the weighting

function w is uniquely determined. ¤

5 Conclusion

This paper presents a new preference characterization of rank-dependent expected utility us-

ing probabilistic consistency. This condition is inspired by two features. First, under rank-
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dependent expected utility only the rank and not the magnitude of outcomes determines how

the probability of an outcome is perceived. Second, the condition entails an aspect relating to

the perception of probability changes from impossibility to possibility in aggrement with the

many empirical studies that have confirmed that most sensitivity is exhibited near impossi-

bility and certainty. Probabilistic consistency combines this intuition in a weak and natural

preference condition that still suffices for a derivation of rank-dependent expected utility. The

condition is weaker than the probabilistic tradeoff consistency introduce in Abdellaoui (2002),

first because it is separated from comonotonic independence, and second because it is formu-

lated for indifferences only (but see Köbberling and Wakker 2003) and further it applies only

to common best or worst outcomes. Therefore, probabilistic consistency can be tested inde-

pendently of the principle of comonotonic independence, and as such provides a new tool for

empirical studies as well as for preference foundations.

6 Appendix

Proof of Lemma 2: It is easy to see that statement (i) implies statement (ii). For the

converse, note that a Jensen-continuous monotonic weak order on L∗Y satisfies continuity on

L∗Y . This is shown in Lemma 18 of Abdellaoui (2002). Then the proof is similar that of Lemma

A.2. of Wakker and Zank (2002). The only difference is that in Wakker and Zank (2002) the

arguments and preference conditions in their proof apply to the set IRn↓ = {x ∈ IRn|x1 > · · · >

xn} whereas here they apply to the set [0, 1]n↓ = {p∗ ∈ [0, 1]n|p∗1 > · · · > p∗n}, which is identified

with L∗Y . This completes the proof of Lemma 2. ¤

Proof of Theorem 4: In the first step of the proof a similar technique is used to that in

the proof of Theorem 2 of Chateauneuf (1999) in order to show that the functions in Lemma 2
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are first locally, then globally, proportional. Subsequently, in Step 2 of the proof, Proposition

3.5 of Wakker (1993) applies which shows that all functions V1, . . . , Vn can be taken finite at

extreme probabilities, and therefore proportional to a function w. Then, a utility function

can be defined on Y and further RDEU on LY . In Step 3 it is shown that the case when Y

contains possibly indifferent outcomes can be inferred from the previous 2 steps in the proof.

The remainder of the proof (Step 4) then follows from Abdellaoui (2002).

Step 1: For n > 3 take any fixed set of outcomes Y = {x0, . . . , xn}, such that x0 ≺ · · · ≺ xn.

consider the restriction of < to the set of lotteries L∗Y , which is identified here with the set

[0, 1]n↓ = {(p∗1, . . . , p∗n) ∈ [0, 1]n|p∗1 > · · · > p∗n}. The preference relation < inherites weak

ordering, monotonicity, Jensen-continuity, tail independence, and probabilistic consistency on

L∗Y from < on L∗. Then statement (ii) of Lemma 2 is satisfied and this implies the existence

of jointly cardinal, continuous strictly monotonic functions V1, . . . , Vn : [0, 1] → IR which are

bounded except maybe V1 and Vn which could be infinite at extreme probabilities (i.e., 0, 1),

such that < is represented by

V (p∗1, . . . , p
∗
n) =

nX
j=1

Vj(p
∗
j).

Next the analysis is restricted to the preference over the set (0, 1)n↓ := {(p∗1, . . . , p∗n) ∈ (0, 1)n|1 >

p∗1 > · · · > p∗n > 0}, hence extreme probabilities are excluded. Fix any state k ∈ {2, . . . , n−1}.

Take any probability r∗ such that there exists an open neighborhood B(r∗) such that for all

α > β > γ in that neighborhood with

kX
j=1

[Vj(α)− Vj(β)] =
kX
j=1

[Vj(β)− Vj(γ)]

there exist probabilities p∗ 6 q∗ 6 γ such that

kX
j=1

Vj(α)+
nX

j=k+1

Vj(p
∗) =

kX
j=1

Vj(β)+
nX

j=k+1

Vj(q
∗)
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and

kX
j=1

Vj(β)+
nX

j=k+1

Vj(p
∗) =

kX
j=1

Vj(γ)+
nX

j=k+1

Vj(q
∗).

The latter two equalities are equivalent to the following indifferences, where the first dots

indicate that the same probability appears in the first k coordinates:

(α, . . . ,α, p∗, . . . , p∗) ∼ (β, . . . , β, q∗, . . . , q∗)

and

(β, . . . , β, p∗, . . . , p∗) ∼ (γ, . . . , γ, q∗, . . . , q∗).

probabilistic consistency implies that for any J = {1, . . . , i} with i 6 k

αJ(β, . . . ,β, p
∗, . . . , p∗) ∼ βJ(γ, . . . , γ, q

∗, . . . , q∗).

Substituting the representing functional for < implies that

iX
j=1

Vj(α)+
kX

j=i+1

Vj(β)+
nX

j=k+1

Vj(p
∗) =

iX
j=1

Vj(β)+
kX

j=i+1

Vj(γ)+
nX

j=k+1

Vj(q
∗).

Further, using (β, . . . ,β, p∗, . . . , p∗) ∼ (γ, . . . , γ, q∗, . . . , q∗) or equivalently
nX

j=k+1

Vj(p
∗) =

kX
j=1

Vj(γ)−
kX
j=1

Vj(β)+
nX

j=k+1

Vj(q
∗)

in the previous equality, and cancelling common terms it follows that

iX
j=1

Vj(α)−
iX
j=1

Vj(β) =
iX
j=1

Vj(β)−
iX
j=1

Vj(γ).

Hence, it has been shown that

kX
j=1

[Vj(α)− Vj(β)] =
kX
j=1

[Vj(β)− Vj(γ)]

⇒
iX
j=1

Vj(α)−
iX
j=1

Vj(β) =
iX
j=1

Vj(β)−
iX
j=1

Vj(γ),
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for any 1 6 i 6 k.

Next the converse is shown. Assume that for some 1 6 i 6 k

iX
j=1

Vj(α)−
iX
j=1

Vj(β) =
iX
j=1

Vj(β)−
iX
j=1

Vj(γ)

holds, but
kX
j=1

[Vj(α)− Vj(β)] 6=
kX
j=1

[Vj(β)− Vj(γ)].

Consider the case
Pk

j=1[Vj(α)−Vj(β)] >
Pk

j=1[Vj(β)−Vj(γ)] (and note that the opposite case,

i.e., when < holds, is similar). The open neighborhood B(r∗) can be chosen small such that

there exist α0 > α and p̂∗ 6 q̂∗ 6 γ such that

kX
j=1

[Vj(α
0)− Vj(β)] =

kX
j=1

[Vj(β)− Vj(γ)],

and

kX
j=1

Vj(α
0)+

nX
j=k+1

Vj(p̂
∗) =

kX
j=1

Vj(β)+
nX

j=k+1

Vj(q̂
∗)

and

kX
j=1

Vj(β)+
nX

j=k+1

Vj(p̂
∗) =

kX
j=1

Vj(γ)+
nX

j=k+1

Vj(q̂
∗).

similar to the analysis above, applying probabilistic consistency, this implies

iX
j=1

Vj(α
0)−

iX
j=1

Vj(β) =
iX
j=1

Vj(β)−
iX
j=1

Vj(γ)

for all 1 6 i 6 k − 1, which is a contradiction to Pi
j=1[Vj(α)− Vj(β)] =

Pi
j=1[Vj(β)− Vj(γ)],

given monotonicity (recall α0 > α).

Hence, we can conclude that for any 1 6 i 6 k locally
Pk

j=1 Vj(·) and
Pi

j=1 Vj(·) order

differences the same way, hence the functions are proportional. This statement remains valid

for any k ∈ {2, . . . , n− 1}.
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A similar argument can be used to show that for any l ∈ {2, . . . , n − 1} it follows that

for all l 6 i 6 n locally
Pn

j=i Vj(·) and
Pn

j=l Vj(·) order differences the same way, hence are

proportional.

Next proportionality of the functions Vj, for j = 1, . . . , n is derived. The proof employs a

similar idea as in the proof of Lemma 4 of Chateauneuf (1999). Obviously, for all 1 < l 6 k < n

the identity

V (p, . . . , p) =
l−1X
j=1

Vj(p)+
nX
j=l

Vj(p) =
kX
j=1

Vj(p)+
nX

j=k+1

Vj(p)

holds for any nonextreme probability p. The above derived proportionality results imply the

existence of constants a1,...,k, al,...,n > 0 and c1,...,k, cl,...,n such that

nX
j=l

Vj(p) = al,...,n{
nX

j=k+1

Vj(p)}+ cl,...,n
kX
j=1

Vj(p) = a1,...,k{
l−1X
j=1

Vj(p)}+ c1,...,k

which substituted in the above identity implies

(al,...,n − 1){
nX

j=k+1

Vj(p)}+ cl,...,n = (a1,...,k − 1){
l−1X
j=1

Vj(p)}+ c1,...,k.

From strict monotonicity it follows that either (al,...,n− 1) and (a1,...,k − 1) are of the same sign

or they are both equal to zero (in which case al,...,n = a1,...,k = 1 follows). The latter case is

excluded by strict monotonicity. It follows that

l−1X
j=1

Vj(p) = [(al,...,n − 1){
nX

j=k+1

Vj(p)}+ cl,...,n − c1,...,k]/(a1,...,k − 1)

and hence, inductively, proportionality of all functions Vj, first locally then globally, on the set

(0, 1)n↓ follows.

Step 2: From Proposition 3.5 of Wakker (1993) it follows that the functions Vj can chosen

finite at extreme probabilities, and therefore can continuously be extended to the entire set

[0, 1]n↓ .
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Set
Pn

j=1 Vj(1) = 1 and Vj(0) = 0 for all j = 1, . . . , n, thereby fixing the location and

common scale of the otherwise jointly cardinal Vj. Define w(α) :=
Pn

j=1 Vj(α) then w becomes

unique satisfying w(0) = 0, w(1) = 1. As the functions Vj are proportional to each other, they

are also proportional to their sum, w. Hence, there exists positive numbers π1, . . . ,πn summing

to one such that

Vj(α) = πjw(α).

Therefore, on [0, 1]n↓ the following functional is a representation for <

V (p∗1, . . . , p
∗
n) =

nX
j=1

πjw(p
∗
j), (6)

where w : [0, 1]→ [0, 1] is continuous and strictly increasing with w(0) = 0 and w(1) = 1, and

the numbers π1, . . . ,πn are positive summing to one.

Define the utility function as follows:

u(x0) = 0 and u(xj) = πj − πj−1 for j = 1, . . . , n.

Then substitution in Equation (6) above gives the RDEU form similar to Equation (5), namely:

V (p∗1, . . . , p
∗
n) = u(x0) +

nX
j=1

w(p∗j)[u(xj)− u(xj−1)].

This completes the proof for the case that Y contains only strictly ranked outcomes.

Step 3: Thusfar in the analysis the case that Y contains outcomes that are indifferent has

been excluded. If Y contains outcomes that are indifferent the proof is of Steps 1 and 2 above

is similar. What is essential is that Y contains at least four outcomes that are strictly ordered

in terms of <. The proof is then restricted to a maximal subset of Y that contains only strictly

ranked outcomes. In a similar fashion as above a representing functional as in Equation (6)

can be derived. Then the weights πi = Vi = 0 are assigned for outcomes that are indifferent to

any of those in the maximal subset of Y having strictly ranked outcomes.
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Step 4: The remainder of the proof is identical to the proof of Part II of Theorem 9 in

Abdellaoui (2002). Only a brief overview is given here. First, for a fixed set Y of outcomes

one can define a utility function u determined by the weights πj above. It can then be shown

that the utility function so defined is affine, and further that w and u are independent of the

choice of Y . Because a preference between any two lotteries comes down to a preference relation

between those two lotteries as lotteries with respect to a finite set of outcomes the existence of

a general RDEU representation is obtained. This completes the proof. ¤
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