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Abstract

This paper considers the racetrack economic approach, where manu-

facturing activities are distributed continuously. We seek constant-access

equilibria and show that smooth equilibrium distributions are always un-

stable for almost all transport cost functions, whereas agglomeration in

1 or 2 atomic cities is stable for any economic parameters given regular

transport costs, such as linear transport costs.
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1 Introduction

The number of cities that naturally emerge from market interactions in continu-

ous space is an issue that worries spatial economists and economic geographers.

Indeed, given the bunch of literature based on the special case of two regions,

such as Krugman (1991), it is important to check the foundation of spatial

configurations with large number of cities or regions.
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Krugman’s (1993) develops the racetrack economic approach and attempts

to support the view that agglomeration processes lead to few cities. He demon-

strates and simulates that a configuration with 12 symmetric cities of equal

size is often unstable against small perturbations. Brakman, Garretsen and

Marrewijk (2001) provide simulations supporting the same kind of result and

they suggest that 2-city agglomeration is likely to emerge. Fujita, Krugman

and Venables (1999, chapters 6 and 17) and Mossay (2003) prove the instabil-

ity of flat earth, where workers distribute uniformly over space, in Krugman’s

(1991) model. On the other hand, Tabuchi, Thisse and Zeng (2002) and Anas

(2003) provide more analytical light on the topic given identical transport costs

between any two regions.

This paper considers both discrete distributions of atomic cities and contin-

uous distributions of cities in a unified framework. It attempts to fill the gap in

the economic geography literature by investigating the nature and the number

of stable equilibria. Extending Salop’s (1979) model, we assume that economic

space is a continuous circumference on which firms and also workers-consumers

are perfectly mobile. The economic space is symmetric in that there exists no

“first nature” locational advantage.

The results obtained in this paper contrast with those obtained in tradi-

tional theories in spatial competition. In particular, spatial competition models

based on a circular space yield equilibria where the economic activity is dis-

persed. In particular, it is shown that firms disperse equidistantly around a

circumference when they choose their location before their prices (Anderson,

de Palma and Thisse 1992) and that similar configurations are obtained when

firms choose their location before their output levels (Pal, 1998; Matsushima,

2001; Matsumura and Shimizu, 2002). This literature does not give support

the existence of agglomerations in a single location unless some geographical

constrained are considered. For instance, agglomeration in a single location can

occur when space is limited to a line segment (de Palma, Ginsburgh, Papageor-

giou and Thisse, 1985; Anderson and Neven, 1991). The existence of borders

indeed provides a locational advantage to the central place. By contrast, the

present paper shows that agglomeration in a single location exists when some

workers-consumers may choose to locate close to firms.

Spatial distributions of manufacturing activities are sensitive to the shapes of

transport costs. The impact of transportation costs on economic agglomeration
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is not well documented in the economic geography literature which generally

restricts attention to iceberg and linear transportation costs. In this paper,

we therefore do not assume particular transport costs, but consider a class of

transport costs including linear, exponential, sinusoidal, and so on.

We firstly study the existence and the stability of continuous spatial distri-

butions of workers. Such spatial distributions are characterized by no empty

location and continuous distributions of manufacturing activities. Many equi-

libria can exist according to the shape of transportation costs and to the spatial

frequency contents of both transport cost functions and spatial distribution. We

also show that equilibrium exists with non-uniform distributions of manufactur-

ing activities. However, any continuous equilibrium distribution is unstable in

the sense that there always exist a spatial perturbation of workers’ migration

that does not converge back to the equilibrium. Stable equilibria therefore in-

cludes no continuous distributions of economic activities.

We secondly investigate the equilibrium conditions of configurations in which

economic activity is concentrated on a finite number of atomic cities. It is shown

that the nature of equilibria is very similar to that for continuous distributions.

Many equilibria may exist according the shape of transportation costs and to

the spatial frequency contents of both transport cost function and spatial distri-

bution of workers. However, we show that equilibrium distributions with large

number of cities are unstable as it is the case for continuous distributions. By

contrast, there always exists a configuration with either 1 or 2 atomic cities

that is stable if transport costs have the regular properties used in the litera-

ture, including those of linear transport costs. Such a finiteness property in the

number of cities might be comparable to the properties of the limited number

of firms in natural oligopoly in the literature of vertical differentiation (Shaked

and Sutton, 1983).

The remainder of the paper is organized as follows. The model is presented

in Section 2. Existence of continuous equilibria are analyzed in Section 3, while

its stability is dealt with in Section 4. On the other hand, Section 5 character-

izes existence of atomic city equilibrium, and Sections 6-8 consider its stability

properties mainly in the cases of sinusoidal and linear transport costs. Section

9 concludes.
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2 The Model

We assume that immobile farmers and perfectly mobile workers are located on

a circumference with perimeter equal to 1. Farmers are uniformly distributed

around the circumference with a distribution density equal to A. Workers are

located according to the density λ(y)L with
R 1
0
λ(y)dx = 1. Each firm produces

a single variety i ∈ [0,M ] and requires φ workers to operate its plant. There are
thus λ(y)M varieties produced at location y. Equilibrium in the whole labor

market implies that L = φM .

Let y and x ∈ [0, 1] be the coordinates of a producer and a consumer on
the circumference. The consumer demand of a variety produced at location y

and consumed at location x is given by the function q(y, x). As in Ottaviano,

Tabuchi and Thisse (2002), consumers’ preferences are identical across indi-

viduals and are described by the following quasi-linear utility with quadratic

sub-utility functions:

U(q0, q (·, x)) = α

Z 1

0

q(y, x)λ (y)M dy − β − γ

2

Z 1

0

[q(y, x)]2 λ (y)M dy

−γ
2

·Z 1

0

q(y, x)λ (y)M dy

¸2
+ q0

where α > 0, β > γ > 0 and q0 is the numéraire. The budget constraint of a

consumer located at x is equal toZ 1

0

p(y, x)q(y, x)λ (y)M dy + q0 ≤ w(x) + q̄0

where p(y, x) is the price of a variety produced at location y and sold at location

x, w(x) is his/her income residing at location x, and q̄0 is the consumer’s initial

endowment. Whereas mobile workers’ income depends on their location, the

immobile farmers’ income does not depend on location. Indeed, it assumed that

immobile farmers produce the same constant-returns-to-scale good that can be

transported at zero cost. Therefore, the market for this agricultural good clears

at the same price in every location and yield the same income to farmers. We can

normalize this income to 1 without loss of generality. Each consumer maximizes

his/her utility, which leads to the following demand

q(y, x) = a− (b+ cM)p(y, x) + cP (x)

where a ≡ α/[(β+ (M − 1)γ] > 0, b ≡ 1/[β+ (M − 1)γ] > 0, c ≡ γ/(β − γ)[β +

(M − 1)γ] > 0, and P (x) = R 1
0
p(y, x)λ (y)Mdy is the price index at location x.
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Each price-discriminating firm at location y maximizes its profits

Π(y) =

Z 1

0

[p(y, x)− τ(y, x)] q(y, x) [λ (x)L+A] dx− φw(y)

where τ(y, x) is the unit transport costs from locations y to x incurred by the

firm, and w(y) is the wage paid to workers employed by the firm at location

y. The first-order condition yields the optimal price of variety produced and

consumed at the same location x:

p (x, x) =
2aφ+ cL

R 1
0
τ (x, y)λ(y)dy

2 (2bφ+ cL)

and the optimal price of variety produced at y and consumed at x:

p (y, x) = p (x, x) +
1

2
τ (y, x)

For the sake of clarity, we define the firms’ prices net of transport costs on a

variety produced in x and sold in y as

m(x, y) ≡ p (x, y)− τ (x, y) = p (y, y)− 1
2
τ (x, y)

To avoid corner solutions, we impose that the prices net of transport costs are

always positive. That is, we require that m(x, y) > 0 for any x, y and λ(x),

which is equivalent to min p (y, y) > max 12τ (x, y).

In the long run, entry occurs until firms earn zero profit. Entry determines

the workers’ wage at location x as

w (x) =
bφ+ cL

φ2

Z 1

0

[m (x, y)]
2
[λ (y)L+A] dy

As in Ottaviano et al. (2002), the consumer surplus of an individual located at

x is given by

S (x) =
a2L

2bφ
− aL

φ

Z 1

0

p (y, x)λ (y) dy − cL
2

2φ2

·Z 1

0

p (y, x)λ (y) dy

¸2
+
bφ+ cL

2φ2
L

Z 1

0

[p (y, x)]2 λ (y) dy

The worker’s indirect utility is therefore given by V (x) = S(x) + w(x).

Before turning to the study of the equilibria for several types of spatial

distributions, we need to be more explicit about the transport cost function.

We decompose unit transport costs from locations x to y as

τ (x, y) ≡ τ

2
[1− C (x− y)]
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where τ is the amplitude of transportation costs and where C(x) captures the

shape of transportation costs. The function C(x) : R → [−1, 1] is a periodic
function such that C(x) = C (l + x) = C(l − x) ∀l ∈ N, where N is the set

of natural numbers, and such that C(0) = 1, C(1/2) = −1, and C 0(x) ≤ 0

∀x ∈ [0, 1/2]. This function shares many similarities with the cosine function;
indeed C(x) = cos 2πx fulfills these conditions. Also the crenellated periodic

function C(x) = C1 (x) ≡ 1 − 4x for all x ∈ [0, 1/2] fulfills these conditions; it
captures linear transport cost. Figure 1 shows examples of shapes of transport

cost functions.

INSERT FIGURE 1 HERE

Given this definition, the condition to avoid corner solutions becomes:

τ <
2aφ

2bφ+ cL
(1)

which is obtained from min p (y, y) > max 12τ (x, y).

Finally, we will show in the sequel that the spatial frequency content of

shape of transport costs drives the results about the existence and stability of

equilibria. For this purpose, we define the Fourier decomposition of C(x) and

its square as

C (x) =
∞X

m=−∞
cm exp(2πImx) and [C (x)]

2
=

∞X
m=−∞

dm exp(2πImx)

where I2 = −1 and exp 2πIkx ≡ cos 2πkx+ I sin 2πkx. We readily have

cm =

Z 1

0

C(x) exp(−2πImx) dx

dm =

Z 1

0

[C (x)]2 exp(−2πImx) dx

Because the transport costs are even functions and return real values, the Fourier

coefficients are real and symmetric with respect to m: cm = c−m ∈ R and dm =
d−m ∈ R. In other words, transport cost functions are approached by Fourier
series with cosine components only. Moreover, one easily gets the following

relationship: d0 > 0 and

dm =
∞X

k=−∞
ckcm−k (2)
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3 Quasi-Smooth and Dense Equilibria

In this section, we consider quasi-smooth and dense equilibrium distributions of

firms and workers, where manufacturing is active in any location.

Definition 1 A spatial distribution λ(x) is said to be quasi-smooth if λ(x) is

continuous and λ0(x) is piecewise continuous ∀x. It is dense if λ(x) > 0 ∀x.

In the sequel, we seek the conditions under which an equilibrium exists for

quasi-smooth and dense distributions. Collecting the results of section 2, the

worker’s indirect utility can be rewritten as a function of λ(·) and x:

V (x) = W0 +W1

Z 1

0

[f1(y)]
2
dy +W2

Z 1

0

f1(y)λ (y) dy

+W3

Z 1

0

[f1(y)]
2 λ (y) dy + V1f1(x) + V2f2(x)− V3 [f1(x)]2

−V4
Z 1

0

C (x− y) f1(y)dy − V5
Z 1

0

C (x− y)λ (y) f1(y)dy (3)

where the accessibility measures are given by

f1(x) ≡
Z 1

0

C (x− z)λ (z) dz f2(x) ≡
Z 1

0

[C (x− z)]2 λ (z) dz

and where all constants Wj ’s and Vj ’s are all positive and ‘generically’ different

from zero (see Appendix 1 for these expressions). Whereas the constant Vj ’s are

the coefficients of terms that depends on x, the constant Wj ’s are coefficients of

terms independent from x.

It is known that Fourier series of quasi-smooth functions converge (Iorio and

de Magalhães Iorio, 2002, p.102). Hence, a quasi-smooth spatial distribution

can be decomposed by its Fourier series:

λ (x) ≡
∞X

k=−∞
λk exp(2πIkx) (4)

where λk ∈ C, the set of complex numbers. Because λ (x) returns real values
and because

R 1
0
λ (x) dx = 1, we have that λ−k = λk where λk is the complex

conjugate of λk and Re(λ0) = 1.
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The Fourier series of λ (x) and C(x) make explicit the spatial frequency

contents of those functions. Expanding the terms of the utility yields

f1(x) =
∞X

k=−∞
λkck exp(2πIkx)

f2(x) =
∞X

k=−∞
λkdk exp(2πIkx)

[f1(x)]
2 =

∞X
k=−∞

" ∞X
m=−∞

(λmcmλk−mck−m)

#
exp(2πIkx)

Z 1

0

C (x− y) f1(y)dy =
∞X

k=−∞
λk (ck)

2 exp(2πIkx)

Z 1

0

C (x− y)λ (y) f1(y)dy =
∞X

k=−∞

" ∞X
m=−∞

(λmcmλk−mck)

#
exp(2πIkx)

Thus, V (x)− V (0) =P∞k=−∞ Vk exp(2πIkx), where
Vk = λk

h
V1ck + V2dk − V4 (ck)2

i
−

∞X
m=−∞

λmcmλk−m [V3ck−m + V5ck] (5)

Equilibrium is attained when Vk = 0 for all k 6= 0.
In this paper, we will focus on a particular type of equilibria: the constant-

access equilibria. Because constant-access provides additional symmetry to the

locational problem, the nature and the stability of constant-access equilibria can

be determined in a general way. In many cases, non-constant access equilibria

exist but their stability is difficult to assess.

3.1 Constant-access Equilibria

Definition 2 A distribution λ(x) is said to be constant-access if

ckλk = ckcmλk−m = 0 ∀k 6= m ∈ Z (6)

We immediately know from (5) that any constant-access distribution yields

equilibria. In this case, the functions f1(x) and f2(x) are constant for all x.1

The function f1(x) corresponds to the additional transport costs that workers

located at x incur when they rise their consumption by one unit of each variety.

1 It should be noted that the constant-access is endogenously determined here, while it is

often exogenously specified in the literature, such as Tabuchi et al. (2002).
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The function f2(x) corresponds to a higher moment of this additional transport

costs. Constant-access brings additional symmetry: workers have the same

access to varieties wherever they locate. Equivalently, firms have the same

access to consumers.

By definition of equilibrium, a dense distribution yields is an equilibrium if

the worker’s utility is the same everywhere. It can be readily shown that any

constant-access distribution is an equilibrium. Functions f1(x) and f2(x) can

be decomposed with their frequency components as

f1(x) =
∞X

k=−∞
ckλk exp(2πIkx) and f2(x) =

∞X
k=−∞

dkλk exp(2πIkx)

An equilibrium exists if these expressions are constant, which is satisfied if

ckλk = ckcmλk−m = 0 for all k 6= m ∈ Z. In this case, by (2), we have

that dkλk = 0, and thus f1(x) = f∗1 = c0/2 and f2(x) = f∗2 = d0/2, where

−1 ≤ c0 ≤ 1 and 0 ≤ d0 ≤ 1. This yields the following lemma.

Lemma 1 Any constant-access, quasi-smooth and dense distribution of workers

is an equilibrium.

This lemma means the following. Let Y = Yc ∪ Yd, where Yc is a set of
frequencies m 6= 0 such that cm 6= 0 and where Yd is a set of frequencies m 6= 0
such that dm 6= 0. Let also Z be a set of frequencies k such that λk 6= 0. The set
Z includes the frequency k = 0. Then, any distribution with spatial frequencies

in Z is an equilibrium if Z ∩ Y = ∅.
It is easy to infer that flat earth λ∗ (x) = 1 (i.e., Z = {0} because λk = 0

∀k 6= 1) is a quasi-smooth and dense equilibrium distribution of workers that is

compatible with all shapes of transport costs (i.e. for any cm). From equality

(6), it can be seen that the set of quasi-smooth and dense equilibria is smaller,

the richer the spatial frequency content of transport cost functions. To illustrate

this, it is worth looking at specific examples.

Linear transport costs: Assume that C1(x) = 1−4x ∀x ∈ [0, 1/2]. Then,
c0 = 0, cm = 4 [1− (−1)m] / (πm)2 > 0 and dm = 8 (−1)m / (πm)2 > 0. Thus,
we readily get that either cm 6= 0 or dm 6= 0 for any m ≥ 1. Hence, Y = Z0,
the set of natural numbers. It must be that flat earth (Z = {0}) is the unique
quasi-smooth equilibrium distribution.
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Step transport costs: Assume that transport is costless within some dis-

tance ξ from production location and is constant above this distance: C (x) = 1

for 0 ≤ x < ξ and C (x) = −1 if ξ < x ≤ 1/2, where 0 < ξ < 1/2,. Then,

one can compute that c0 = 8ξ − 2 and cm = 4 sin 2ξmπ
mπ for m ≥ 1. If ξ is not a

rational number so that 2ξm 6= k with m, k ∈ Z, then cm 6= 0 for all m 6= 0, and
hence Y = Z0. It must be that flat earth (Z = {0}) is the unique quasi-smooth
equilibrium distribution. Nevertheless, there exists shapes of transport costs

that yield equilibria with other spatial distributions than flat earth.

Sinusoidal transport costs: Assume that C(x) = cos 2πx. Then c1 = 1,

d0 = 1, d2 = 1/2 and cm = dm = 0 otherwise. Hence, Y = {−2,−1, 1, 2}. Any
spatial distribution with the shape λ∗ (x) = 1+

P
m≥3 λm exp(2πImx) > 0 is an

equilibrium. For instance, the three-peaked distribution λ∗ (x) = 1+0.5 cos 6πx

as well as flat earth is an equilibrium.

Non-constant-access equilibria: In many cases, constant-access equilib-

ria exist at the same time as non-constant-access equilibria. Although the for-

mer are independent of the economic parameters (a, b, c, ...), the latter generally

depends on the economic conditions. Indeed, it is difficult to obtain a general

characterization of those non-constant-access equilibria, but it is possible to find

examples for some particular shapes of transport costs. For instance, when the

transport cost function is a Fourier series truncated to the K-th component,

C(x) =
KX

k=−K
ck exp(2πIkx)

it can be shown that non-constant-access distributions λ∗ (x) with the coeffi-

cients:

λk = 0 for all k /∈ {0,±K,±2K}
kλKk2 =

V2d2K

V3V5 (cK)
4

h
V1cK + V2dK − (cK)2 (V4 + V5)

i
λ2K = (λK)

2 V3
V1

(cK)
2

d2K

are equilibria.2 In the case of sinusoidal transport costs (where K = 1), this is

shown to be the unique non-constant-access equilibrium distribution. In con-

trast to constant-access equilibrium distributions, this distribution changes in

2A proof can be obtained upon request.
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accordance with the economic parameters since it is determined by the economic

parameters. Because the nature and stability of non-constant-access equilibria

are too complicated to characterize in general, we will focus on constant-access

equilibria in the sequel.

4 Stability of Quasi-Smooth and Dense Equilib-

ria

In this section, we extend Krugman’s (1993) racetrack economic approach for

any (non-flat) equilibrium and study its stability. To this aim we analyze the

stability against small cyclical perturbations on the quasi-smooth and dense

equilibrium distribution λ∗ (x). We first present the dynamics of workers’ mi-

gration, derive the equilibrium conditions of workers’ distribution around the

space, and finally study whether those perturbations attenuate or amplify due

to (infinitesimally) small perturbations.

4.1 Dynamic Behavior of Workers

Introducing the time variable t, the variables λ(x, t) and V (x, t) are now time de-

pendent. We assume myopic workers in the time and space dimensions: workers

consider only the current period and the utility differential with respect to their

neighboring locations in their migration decisions. More specifically, we assume

that the number of migrating workers is proportional to the difference of their

instantaneous utility between their current location x and their neighboring lo-

cation x±ε where ε > 0 is small enough. If V (x−ε, t) > V (x, t), then we assume
that ν0 [V (x− ε, t)− V (x, t)] workers move from locations x to x− ε, otherwise
ν0 [V (x, t)− V (x− ε, t)] workers move from locations x − ε to x, where coeffi-

cient ν0 measures the speed of adjustment. Similarly, if V (x + ε, t) > V (x, t),

then ν0 [V (x+ ε, t)− V (x, t)] workers move from location x to location x + ε,

otherwise ν0 [V (x, t)− V (x+ ε, t)] workers move from location x+ε to location

x. The resulting flows yield the following local motion equation:

∂

∂t
λ (x, t) = ν0 [2V (x, t)− V (x− ε, t)− V (x+ ε, t)]

This motion process respect the law of conservation of the total mass of work-

ers. Indeed, the total number of workers remains fixed since
R 1
0
∂λ (x, t) /∂t
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dx = 0. Still, the motion process will be well defined provided that the number

of workers at each location remains positive. That is, we must choose suffi-

ciently small ν and ε such that ν0 |V (x, t)− V (x± ε, t)| ≤ Lλ(x, t). For dense
distribution of workers, we have that minx,t λ(x, t) > 0 and it suffices that

ν0maxx,t |V (x, t)− V (x± ε, t)| ≤ Lminx,t λ(x, t).
For sufficiently small ε, the above expression can be approximated to the

following motion equation:

∂

∂t
λ (x, t) = −ν ∂2

∂x2
V (x, t) (7)

where ν = ν0ε
2/2, which is set equal to 1 without loss of generality.

We finally note that as in Mossay (2003), stability results do not depend on

this local motion process where workers consider neighboring locations only. In

the Appendix 2, we prove the validity of our results for a global motion process

where workers consider all locations in their migration choice.

4.2 Perturbed Equilibrium Distributions

Let us consider a quasi-smooth and dense equilibrium distribution

λ∗ (x) =
X
m∈Z

λm exp(2πImx),

where Z ∩ Y = ∅ and λ0 = 1. In order to check stability, we now allow for

(infinitesimally) small temporal variations of the variables. Small perturbations

are defined as eλ (x, t) = λ(x, t) − λ∗(x) and eV (x, t) = V (x, t) − V ∗, where
a tilde refers to the perturbed values of these variables, and where λ∗(x) and

V ∗ are the equilibrium values of these variables. Also, using the definitionsef1(x, t) = f1(x, t) − f∗1 = R 10 C (x− y) eλ (y, t) dy and ef2(x, t) = f2(x, t) − f∗2 =R 1
0
[C (x− y)]2 eλ (y, t) dy, the utility function and the motion equation (7) can

be linearized by dropping terms with perturbations of order strictly higher than

one. This yields

eV (x, t) = V1 ef1(x, t) + V2 ef2(x, t)− V4 Z 1

0

C (x− y) ef1(y, t)dy
−V5

Z 1

0

C (x− y)λ∗ (y) ef1(y, t)dy + constant (8)

where we used the obvious facts that
R 1
0
eλ (y, t) dy = 0 and R 1

0
λ∗ (y) dy = 1.
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The motion equation (7) can be linearized as

∂eλ (x, t)
∂t

= −∂
2 eV (x, t)
∂x2

(9)

Note that equations (8) and (9) constitute a homogenous system of linear partial

differential equations. It can be studied by its ‘normal modes’ below.

4.3 Normal Modes and Instability

Let the system be perturbed by initial normal mode functions of the form

exp (2πIkx), where k is the normal mode frequency. Then, the solution of the

system is given by exp (2πIkx) exp (skt), where sk are amplifying parameters.

Since the system of equations is linear, any linear combination of normal mode

solutions is also a solution of the system. Because we focus on quasi-smooth

and dense spatial distributions, any initial perturbation can be decomposed by

its Fourier series eλ (x, 0) = P∞k=−∞ eλk exp (2πIkx), where eλk are normal mode
amplitudes. Since the perturbation does not alter the total size of the workers’

population, it must be that
R 1
0
eλ (x, 0) dx = 0 and thus eλ0 = 0. As a result, the

response of the system to such an initial perturbation is equal to

eλ (x, t) = ∞X
k=−∞

eλk exp (2πIkx+ skt)
Stability is related to the normal modes by the following definition:

Definition 3 A quasi-smooth and dense equilibrium λ∗ (x) is asymptotically

stable if any sufficiently small change in the distribution results in a movement

back toward the equilibrium.

Therefore, an equilibrium is unstable if there exists a (infinitesimally small)

perturbation of the equilibrium distribution that does not attenuate. That is,

there exists a normal mode k(≥ 1) that does not vanish: sk ≥ 0 or rk ≥ 0.
Krugman et al. (1999) study the stability of flat earth (λ∗ (x) = 1, Z = {0},

f∗1 = c0). We here provide the condition for stability of any constant-access

equilibrium distribution λ∗ (x). Plugging this function into (8) and (9) yields

the following lemma:
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Lemma 2 A constant-access, quasi-smooth and dense equilibrium distribution

is unstable if and only if there exists one k such that sk > 0 where

sk = (2πk)2
h
[V1 − (2V3 + V5) c0] ck + V2dk − (V4 + V5) (ck)2

i
(10)

=
π2k2τL (bφ+ cL)

4φ2 (2bφ+ cL)2

"
[8φ (2a− τb) (3bφ+ 2cL)− 2τcL (4bφ+ 3cL) c0] ck
+3τ (2bφ+ cL)2 dk − 4τc (2bφ+ cL) (A+ L) (ck)2

#
Proof. See Appendix 3.

For general transport cost functions, a constant-access equilibrium will be

unstable if, for some k, the squared bracket term in the above expression is

positive. Note that small transport costs τ and large manufacturing demand a

decrease the likelihood of flat earth stability, whereas large farming population

A always increases the likelihood of flat earth stability. However, the impact of

the farming population is rather weak for perturbations with high frequencies

because, as ck is a decreasing series, the term in (ck)
2 becomes much smaller

than the terms in ck and dk at high frequencies. For high frequencies, the shapes

of transport cost have then a dramatic impact on stability.

For high frequencies, the amplifying parameter sk has the same sign as V1ck+

V2dk, where V1 ≡ V1 − (2V3 + V5) c0. The question of stability and instability
is then related to whether this expression is always negative or whether it can

sometimes be positive. When the transport cost function C(x) is differentiable

on the interval [0, 1/2], the values of the Fourier coefficients ck and dk are closely

related to the properties of the transport cost function at the points x = 0 and

1/2 (see Appendix 4). That is, they are related to the derivatives of C(x)

evaluated at x = 0 and 1/2.

Let us define

Qh ≡ (−1)h
h
V1C

(2h−1)(0) + V2D(2h−1)(0)
i
+
¯̄̄
V1C

(2h−1) (1/2) + V2D(2h−1) (1/2)
¯̄̄

where C(2h−1) and D(2h−1) are the derivatives of C(x) and [C(x)]2 to the order

2h− 1, h ∈ N. In some cases, Qh can be equal to zero. Thus, we need to define
H ∈ N such that

QH 6= 0 and Qh = 0 for h = 1, . . . ,H − 1 (11)

In Appendix 4, we show that sk has the same sign as QH for sufficiently large

k. Therefore, there exists a k̄ such that (i) sk < 0 for all k > k̄ if QH < 0 and

(ii) sk > 0 for some k > k̄ if QH > 0. Part (i) implies that all high frequencies
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attenuate. It can be readily checked that lower frequencies also attenuate if

the farming population A is sufficiently larger. Part (ii) implies that some high

frequencies amplify and that instability always prevails. These arguments lead

to the next proposition and corollary.

Proposition 1 Assume that C(x) is differentiable and H exists. Then, any

constant-access, quasi-smooth and dense distribution λ∗ (x) is a stable (resp.

unstable) equilibrium for sufficiently large A if QH < 0 (resp. QH > 0).

The literature has provided support to the view that flat earth is unstable

in the case of very specific shape of transport costs (Fujita et al., 1999; Mossay,

2003). The proposition suggests that flat-earth instability is a property for a

large class of transport cost functions.

Nevertheless, the proposition also states that flat earth can be stable un-

der some class of shape of transport costs. Take for instance the following

polynomial transport cost function: C(x) = 1 − 2x2 − 96x3 + 248x4 − 160x5
(which is shown in Figure 1 with a dotted curve) This cost function is such

that C0(0) = C 0(1/2) = D0(0) = D0(1/2) = C 000(1/2) = D000(1/2) = 0 and that

C 000(0) = −576, D000(0) = −1152. Thus, Q1 = 0 and Q2 = −576 [QA + 2QB] <
0, which implies stability of flat earth when A is sufficiently large.

The intuition behind Proposition 1 and the example is as follows. First, note

that since the farming population is the dispersion force in the model, a large

number of farmers rises the likelihood of dispersion. The effect of the farming

population is particularly important against low frequencies of perturbations.

For instance, if workers are forced to locate in the North of the earth (i.e. a

perturbation with frequency equal to one), they have incentives to relocate to

the South because of the weaker competition and close access to Southern farm-

ers. By contrast, if workers locate in close, repeated and dense areas (i.e. a

perturbation with high frequency), they do not have incentives to relocate far

away because access and competition conditions are rather similar everywhere.

So, the dispersion role of the farming sector is likely to be important for per-

turbation with low frequencies. Second, suppose again that the perturbation

has a high spatial frequency. Since C 0(0) = C 0(1/2) = 0, workers can always

slightly relocate to a close location without altering its average cost and its util-

ity. Therefore, the advantage of agglomeration disappears. All in all, dispersion

becomes stable.
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It must be noted thatH does not exist when the transport cost function has a

finite number of Fourier coefficients. For example, in the case of C(x) = cos 2πx,

we have Qh = 0 for all h. In this case, any constant-access, quasi-smooth and

dense equilibrium distribution is unstable for such a shape of transport cost with

a limited frequency content. To see this, suppose that the frequency content

of the transport cost function is limited to the frequency k̄: that is, ck = 0 for

any k > k̄. By (2), it is easily checked that the frequency content of the square

of transport cost goes to the frequency 2k̄. Hence, the term in d2k̄ is shown to

be positive, while c2k̄ is zero, which implies s2k̄ > 0. As a result, any Fourier

approximation of transport cost function with a finite number of terms implies

instability.

It is reasonable to argue that transport costs should strictly increase with

distance: C0(x) < 0. More generally, if we consider the weaker restriction of

C 0(0) < 0 or C 0(1/2) < 0, we get H = 1 and Q1 < 0, which establishes the

following corollary.

Corollary 1 Assume that C(x) is three-times differentiable with C 0(0) < 0 or

C 0(1/2) < 0. Then, any constant-access, quasi-smooth and dense equilibrium

distribution λ∗ (x) is unstable.

This corollary states that the instability property of any constant-access,

quasi-smooth and dense equilibrium distribution holds for ‘acceptable’ transport

cost functions. It also says that flat earth, which is the limit case of symmetric

atomic cities when the number of cities goes to infinity, is always unstable.

Therefore, the racetrack economic approach developed by Fujita et al. (1999)

turns out to contain no stable constant-access equilibrium. Its intuition is that

workers and firms always have an incentive to move and form agglomerations

in which some transport costs can be saved.

To sum up, many shapes of transport costs yield to multiplicity of equilibria

with quasi-smooth and dense distributions of workers. However, flat earth is the

unique constant-access equilibrium for all shapes of transport costs. Still, flat

earth is unstable under acceptable conditions on the shape of transport costs.

Because of this negative result on quasi-smooth and dense distributions, it is

worth studying alternative spatial distributions of workers. In the next section,

we explore equilibria with atomic cities.
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5 Equilibrium with Many Atomic Cities

Suppose that there are n atomic cities located equidistantly on the circumference

with perimeter equal to 1. Whereas the density of farmers is uniform across the

circumference and equal to A, workers are now distributed over n atomic cities

and located at xj ≡ j/n, j = 0, 1, . . . , n − 1. We focus on equilibria, where
workers and firms locate only in cities. The spatial distribution of workers is

λ (x) =

(
1
n

P∞
k=0 λk exp (2πIkx) if x = xj , j = 0, 1, . . . , n− 1

0 otherwise

with λ0 = 1, λ−k = λk and λk (k ≥ 1) are small enough to respect λ(x) > 0 for
all x. The spatial distribution is symmetric if λ(xj) = 1/n for all j.

Before studying discrete equilibrium distributions, it is natural to introduce

the discrete Fourier series associated to transport cost functions as

C(xj) =
n−1X
m=0

cnm exp (2πImxj) and [C(xj)]
2
=

n−1X
m=0

dnm exp (2πImxj)

where the coefficients cnm and dnm are defined as

cnm ≡
1

n

n−1X
j=0

C (xj) exp (−2πImxj) and dnm ≡
1

n

n−1X
j=0

[C (xj)]
2
exp (−2πImxj)

These coefficients are the discrete counterpart of the Fourier transform coeffi-

cients in the racetrack economic model where workers’ location choice is contin-

uous. More specifically, using the identities

1

n

n−1X
j=0

exp (2πIkxj) =

(
1 if k = nl, l ∈ Z
0 otherwise

we get the following relationships:

dnm = 2
n−1X
k=0

cnkc
n
m−k

cnm = cnn−m =
1

n

∞X
l=−∞

cm−nl and dnm = d
n
n−m =

1

n

∞X
l=−∞

dm−nl

for all n ≥ m. Note that these discrete Fourier coefficients converge to the

continuous Fourier coefficients when n becomes very large: limn→∞ cnm = cm

and limn→∞ dnm = dm.
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The workers indirect utility with n cities becomes

V (x) = W0 +W1

Z 1

0

[g1(y)]
2 dy +W2

n−1X
j=0

g1(xj)λ (xj)

+W3

n−1X
j=0

[g1(xj)]
2
λ (xj) + V1g1(x) + V2g2(x)− V3 [g1(x)]2

−V4
Z 1

0

C (x− y) g1(y)dy − V5
n−1X
j=0

C (x− xj)λ(xj)g1 (xj) (12)

where

g1(x) ≡
n−1X
i=0

C (x− xi)λ (xi) and g2(x) ≡
n−1X
i=0

[C (x− xi)]2 λ (xi)

When there are n(≥ 2) cities located at x = xj , j = 0, 1, . . . , n− 1, it must
be that V (x) is the maximum at each city location xj . Noting that cnk = c

n
k+n

and dnk = d
n
k+n, we get

g1 (xj) ≡
n−1X
i=0

C (xj − xi)λ (xi) =
n−1X
k=0

cnkλ
n
k exp(2πIkxj)

g2 (xj) ≡
n−1X
i=0

[C (xj − xi)]2 λ (xi) =
n−1X
k=0

dnkλ
n
k exp(2πIkxj)

where

λnk ≡
∞X

l=−∞
λk+nl

and where k = 0, 1, . . . , n − 1. These two functions are constant for all j =
0, 1, . . . , n− 1 at an equilibrium with constant-access, whose definition is given

by the following.

Definition 4 A discrete distribution λ(xj) is said to be constant-access if

cnkλ
n
k = c

n
kc
n
mλ

n
k−m = 0 ∀k 6= m ∈ N (13)

The constant-access equilibrium conditions (13) are the discrete counter-

part of (6). According to Ginsburgh, Papageorgiou and Thisse (1985), spatial

equilibrium is defined as follows.

Definition 5 A spatial equilibrium is a distribution λ (x) in the space [0, 1] such

that either V (x) = V for λ (x) > 0, or V (x) ≤ V for λ (x) = 0.
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Similar to the quasi-smooth and dense equilibria, we can say the following.

Lemma 3 Any constant-access discrete distribution of n(≥ 2) atomic cities

is a spatial equilibrium if and only if V (x) ≤ V (xj) for all x and for j =

0, 1, . . . , n− 1.

This is the discrete counterpart of Lemma 1. The additional condition

V (x) ≤ V (xj) requires that the utility in the hinterland does not exceed that in
the cities because workers are not restricted to locate in cities. Obviously, when

there are few cities, farmers in the hinterland are badly served by firms charging

high prices, and hence firms would find it profitable to locate there and workers

would increase their utility by following the firms. As a result, symmetric dis-

tribution λ∗ (xj) = 1/n, ∀xj is not necessarily a spatial equilibrium in the case

of atomic cities.

For a specific shape of transport costs, many non-uniform spatial distribu-

tions are likely to exist provided that transport costs include few spatial fre-

quencies. Let Y n = Y nc ∪ Y nd , where Y nc is a set of integers m 6= 0 such that

cnm 6= 0 and Y nd is a set of integers m− j such that m, j ∈ Y nc . Let also Z be a
set of positive integers k such that λnk 6= 0. Then, any distribution with spatial
frequencies in Z is a spatial equilibrium if Z ∩ Y n = ∅.

6 Stability of Many Atomic City Equilibria

While spatial equilibrium is defined by the possible deviation of a single worker/firm

to any location including the hinterland, asymptotic stability is defined here by

the possibility of deviations in multiple directions to cities only. At the equi-

librium, workers’ utility is higher in cities than in the hinterland. Because

the perturbations studied in the asymptotic stability analysis are infinitesi-

mal, workers’ utility remains higher in cities.3 For expositional purposes, let

Λ ≡ (λ(x0),λ(x1), ...,λ(xn−1)) and Λ∗ ≡ (λ∗(x0),λ∗(x1), ...,λ∗(xn−1)). As de-
fined before, an equilibrium Λ∗ is asymptotically stable if any sufficiently small

change in the distribution results in a movement back toward the equilibrium.

Analogous to the case of quasi-smooth and dense distribution, we assume

that workers compare utilities of neighboring cities. Dynamics of n cities is
3Note that we do not consider configurations of parameters such that workers’ utility is

the same as within cities as at some locations outside cities. In this case, the stability criteria

should be defined with respect to the hinterland too, which is beyond the scope of this paper.
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therefore depicted by

dλ∗(xj)
dt

= 2V (xj ,Λ)− V (xj−1,Λ)− V (xj+1,Λ) j = 0, 1, . . . , n− 1 (14)

where we normalize the speed of adjustment ν to 1 as before. Note that dynam-

ics (14) satisfies the principle of a constant total mass since
Pn−1

j=0 dλ
∗(xj)/dt =

0.

Differentiating the RHS of (14) by λ∗(xi) and evaluating it at xj , we get the

Jacobian matrix J whose elements are defined by

Jj,i ≡ ∂

∂λ∗(xi)
[2V (xj ,Λ)− V (xj−1,Λ)− V (xj+1,Λ)]

The constant-access equilibrium condition is now written as g1(xj ,Λ∗)) = g∗1
and. g2(y,Λ∗)) = g∗2 where g∗1 and g∗2 are constants. Using these properties and

the fact that
Pn−1

j=1 λ
∗(xj) = 1, we compute

∂V (xm,Λ
∗)

∂λ∗(xi)
= V1C (xi − xm) + V2 [C (xi − xm)]2

−2V3g∗1C (xi − xm)− V4
Z 1

0

C (xi − y)C (y − xm) dy

−V5
n−1X
j=0

[C (xi − xm) + C (xj − xm)]C (xi − xj)λ∗(xj)

For any equilibrium distribution λ∗(xj) satisfying conditions (13), this expres-

sion has the following symmetry property: ∂V (x0)/∂λ
∗(xi) = ∂V (xk)/∂λ

∗(xi+k)

for all k ∈ Z. Let us define

vi ≡ ∂V (x0)

∂λ∗(xj)
for j = mod |i|

where mod |i| is the modulo n function: mod |i| = i − nl if l ≤ i < nl, l ∈ Z.
Because of the symmetry, we note that vi = ∂V (xk)/∂λ

∗(xi+k) for all k =

0, 1, . . . , n − 1. This yields a circulant Jacobian matrix Jj,i = J|i−j|,0 where

Jk,0 = 2vk − vk−1 − vk+1. According to Bellman (1970, pp.242-243), the n
eigenvalues of this matrix are known as

snk =
n−1X
j=0

Jj,0 exp (−2πIkxj) for k = 0, 1, . . . , n− 1

20



which is rewritten as

snk =
n−1X
j=0

(2vj − vj−1 − vj+1) exp (−2πIkxj)

=
n−1X
j=0

vj

·
2 exp

−2πIkj
n

− exp −2πIk (j + 1)
n

− exp −2πIk (j − 1)
n

¸

=
n−1X
j=0

vj

µ
2 exp

−2πIkj
n

− 2 exp −2πIkj
n

cos
2πIk

n

¶

= 2

µ
1− cos 2πk

n

¶ n−1X
j=0

vj exp (−2πIkxj) (15)

Since 1−cos 2πkn > 0, the eigenvalue snk is proportional to the discrete Fourier

transform of vj . Because sn0 = 0, we pay attention to s
n
k for k = 1, . . . , n − 1.

Before characterizing stability, we finally need to define

enk ≡
∞X

l=−∞
(ck−nl)

2 ≥ 0

Note that limn→∞ enk = (ck)
2. Using the above, we obtain the following lemma:

Lemma 4 An equilibrium with atomic cities satisfying conditions (13) is un-

stable if and only if there exists k ∈ {1, 2, . . . , n− 1} such that snk > 0 where

snk = n
h
[V1 − (2V3 + V5) cn0 ] cnk + V2dnk −

³
V4e

n
k + V5 (c

n
k )
2
´i

(16)

=
nτL (bφ+ cL)

32φ2 (2bφ+ cL)
2

 [8φ (2a− bτ) (3bφ+ 2cL)− 2τcL (4bφ+ 3cL) cn0 ] cnk
+3τ (2bφ+ cL)2 dnk − 4τc (2bφ+ cL)

³
Aenk + L (c

n
k )
2
´ 

Moreover,

lim
n→∞

snk
n
=

sk

(2πk)2

Proof. Appendix 5.

This lemma is very similar to Lemma 2; it is equivalent to the latter for

infinitely many atomic cities. Hence, stability of uniform distributions in atomic

cities share similar properties. As in Proposition 1, equilibrium distributions with

atomic cities are unstable when n is large enough. Inspection of expression (16)

also allows us to establish the following properties.
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Proposition 2 Equilibria with atomic cities satisfying conditions (13) are sta-

ble if there are sufficiently many immobile farmers (large A). They are unstable

if the manufacturing demand is high (large a), if the transport costs are low

(small τ) and if goods are very bad substitutes (small c).

Proof. For large A, we obviously get snk > 0 for all k. Since cnk multiplies

a in (16), large enough a yields instability if there exists a positive cnk with k ∈
{1, 2, . . . , n− 1}. This is true because one can check that C(0) =Pn−1

k=0 c
n
k = 1,

cn0 = (1/n)
Pn−1
k=0 C(xk) ≤ 1, and thus,

n−1X
k=1

cnk ≥ 0 (17)

Note that decreasing transport costs C(xj) cannot yield cnk = 0 for all k 6= 0.

Hence, there always exists a strictly positive cnk with k 6= 0. The same argument
applies to τ . Finally, when c→ 0, we get snk = 2 (2a− bτ) cnk + bτdnk . Applying
(17) for dnk , we have

Pn−1
k=1 d

n
k > 0, and hence

Pn−1
k=1 s

n
k > 0. There exists at

least one k such that snk > 0 when c→ 0.

We are nevertheless unable to provide a general condition for instability of

equilibria with small numbers of cities except if we put some additional symme-

try in the shape of transport costs.

Definition 6 The transport cost function C2(x) : R→ [0, 1] is doubly symmet-

ric if

C2(x) = −C2(1/2− x) ∀x ∈ [0, 1/2]

This means that C2(x) is not only symmetric around l/2 ∈ N but it is

also anti-symmetric around l/2 + 1/4, l ∈ N. Examples of such functions are
the linear transport cost function, 1 − 4x, the composition of sinusoidal cost
functions like

P
m c2m−1 cos(2m − 1)πx, some cubic transport cost functions

like −8x3 +6x2 − 5x+1, and so on. One can check that the associated Fourier
coefficients ck is zero for even k, which leads to cn2 = e

n
2 = 0 and d

n
2 > 0, and

hence sn2 > 0 holds for all even n(≥ 4).

Proposition 3 Suppose doubly symmetric transport costs. Then, equilibrium

distributions with even numbers (n ≥ 4) of atomic cities satisfying conditions
(13) is unstable.

This proposition suggests that stable equilibria include few atomic cities.

We now focus on the stability of 2-city configurations.
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7 Stable Equilibrium with Few Atomic Cities

In this section, we consider equilibria with 1 or 2 atomic cities. When there is

one city with λ∗(0) = 1, we have

V (x)|λ∗(0)=1 = W0 +W1 +W2 +W3 + (V1 − V5)C(x) + (V2 − V3) [C(x)]2

−V4
Z 1

0

C (x− y)C(y)dy

By definition of the spatial equilibrium, a one-city equilibrium with λ∗(0) = 1

exists if and only if V (0) ≥ V (x) for all x ∈ [0, 1]. This condition is rewritten
as

(V1 − V5) [1− C(x)]+(V2 − V3)
h
1− [C(x)]2

i
−V4

·
d0
2
−
Z 1

0

C (x− y)C(y)dy
¸
≥ 0

(18)

for all x, where V1 − V5 > 0, V2 − V3 > 0 and V4 > 0.
Suppose that we have two atomic cities located at x = 0 and x = x1, where

x1 needs not be 1/2. Let the workers’ distribution be λ(0) = λ and λ(x1) = 1−λ.
We have

g1(x) = C(x)λ+C(x−x1) (1− λ) and g2(x) = (C(x))
2
λ+(C(x− x1))2 (1− λ)

Then, the inter-city utility differential is

V (0)− V (x1)|λ(0)=λ,λ(x1)=1−λ

= (2λ− 1)
 (V1 − V5) [1− C(x1)] + (V2 − V3)

h
1− (C(x1))2

i
−V4

h
d0
2 −

R 1
0
C (y − x1)C(y)dy

i 
Hence, the two-city symmetric equilibrium is stable if

(V1 − V5) [1− C(x1)]+(V2 − V3)
h
1− (C(x1))2

i
−V4

·
d0
2
−
Z 1

0

C (y − x1)C(y)dy
¸
< 0

(19)

One can check that this condition is consistent with (16) for n = 2, k = 1

and x1 = 1/2. The two-city stability condition (19) is similar to the one-city

equilibrium condition (18) except for the presence of variables x and x1. This

implies that if there exists a 1-city equilibrium, then there exists no configura-

tion with 2 cities that is stable. By contrast, if there does not exist a 1-city

equilibrium, but there exists a 2-city equilibrium, then a 2-city equilibrium is
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stable. As a result, we can state that one-city equilibrium and two-city stable

equilibrium cannot simultaneously exist for any shape of transport costs and for

any distance between cities. Still, this does not provide information about the

existence of a 2-city stable equilibrium. Further properties of stability can be

characterized for equidistant cities (x1 = 1/2), symmetric spatial distribution

(λ∗(0) = λ∗(1/2) = 1/2), for transport cost functions with double symmetry:

C(x) = C2(x). The worker’s utility reduces to

V (x)|λ∗(0)=λ∗(1/2)=1/2 =W0+W1+W2+W3+
V2
2

h
(C2(x))

2 + (C2(x− 1/2))2
i

which has maxima at x = 0, 1/2. We thus establish the following proposition.

Proposition 4 Suppose doubly symmetric transport costs. Then, there always

exists a stable a equilibrium with either 1 or 2 cities.

Proposition 4 confirms two-region models, such as Krugman (1991) and Ot-

taviano et al. (2002). The proposition sharply contrasts with Proposition 1: for

any doubly symmetric transport costs, there is always a stable equilibrium of 1

or 2 atomic cities, whereas there is no stable equilibrium of quasi-smooth and

dense spatial distributions. Thus, Proposition 4 exhibits natural agglomeration

in economic geography. Note however that if the transport costs are not doubly

symmetric (e.g. exponential transport costs), there may be no stable equilib-

rium with 1 or 2 cities for certain parameters. In such a case, stable equilibria

with 3 or more cities would exist.

8 Stable Equilibria with Specific Transport Costs

The previous sections are informative about equilibria with very small and very

large number of atomic cities. We can nevertheless obtain clearer results for

specific shapes of transport costs functions. In this section, we study the nature

of stable equilibria of atomic cities in the cases of sinusoidal and linear transport

costs. In both cases, the property of double symmetry applies.

8.1 Sinusoidal Transport Costs

Suppose that C(x) = cos 2πx. Then, we get g1 (x) = cos 2πx if n = 1 and

g1 (x) = 0 otherwise; g2 (x) = 1
2+

1
2 cos 4πx for n = 1, 2 and g2 (x) =

1
2 otherwise.
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Also, we have c1 = d0 = 1, d2 = 1/2 and cm = dm = 0 for any other m. Thus,

c21 = 2 and c
n
1 = 1 for n ≥ 3.

For n = 1, 2, Proposition 4 applies: there always exists a stable equilibrium

with either 1 or 2 cities.

For n = 3, the indirect utility writes as V (x) = W0 +
1
2W1 +

1
2V2, which

is constant and which is equal to the utility under flat earth. Because c30 = 0

and c31 = c32 = 1, there exists no constant-access equilibrium other than sym-

metric distribution of atomic cities. It is also readily shown that the symmetric

distribution equilibrium with 3 cities yields a lower utility than those with 2

cities. Interestingly, the utility level is the same not only across cities but also

across the hinterland as those of flat earth. Workers may relocate to outside

cities due to constant V (x) for all x as it is the case in flat earth. Such a ‘weak’

equilibrium is possible for combinations of any shape of transport costs that has

a bounded frequency content and that has a large number of cities. This result

has a very similar structure to the stability result of flat earth. The stability of

a 3-city equilibrium is given by the sign of s32. Because c
3
2 = e32 = 2d32 = 1,

we can state that the 3 symmetric atomic cities is unstable if and only if

8φ (2a− bτ) (3bφ+ 2cL) + 3τ (2bφ+ cL)2 /2 − 2τc (2bφ+ cL) (A+ L) > 0. In-
stability will occur provided that a and L are sufficiently large, while c, τ and

A are sufficiently small. Otherwise, the symmetric equilibrium is stable.

For more than 3 cities, many constant-access equilibria may occur. For

instance, when there are 6 cities located equidistantly, then there exist non-

uniform equilibrium distributions exhibiting hierarchical system of cities. We

have c6k 6= 0 for k = 1, 5, d6k 6= 0 for k = 2, 4, and c63 = d63 = 0. This implies that
the non-uniform distribution λ∗ (xj) = 1+ λ3 sin 6πxj + µ3 cos 6πxj is a spatial

equilibrium. This yields the following distribution: λ∗
¡
0
6

¢
= λ∗

¡
2
6

¢
= λ∗

¡
4
6

¢
=

1
n+∆ and λ

∗ ¡1
6

¢
= λ∗

¡
3
6

¢
= λ∗

¡
5
6

¢
= 1

n−∆ for any ∆ ∈ [0, 1/n]. However, for
more than 3 cities, constant-access equilibria are always unstable. It can indeed

be checked that cn0 = c
n
2 = e

n
2 = 0 < d

n
2 and thus s

n
2 > 0 for any n ≥ 4.

8.2 Linear Transport Costs

Under linear transport costs C(x) = C1(x), equilibrium conditions differ ac-

cording to even or odd numbers of cities. The following lemma is useful (the

proof is contained in Appendix 6).
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Lemma 5 For linear transport costs, we have

g1(x) =
1− (−1)n
2n2

C1 (nx)

g2(x) =

 n2−4
3n2 + 1

n2

h
(C1 (nx))

2
+ 1
i

if n is odd
n2−4
3n2 + 1

n2

£
2C1

¡
n
2x
¢¤2

if n is even

G (x) ≡
Z 1

0

C1 (y − x)C1 (ny) dy = 1− (−1)n
12n4

h
3C1 (nx)− C1 (nx)3

i
Suppose even number of cities. The mill price p(x, x) is shown to be

constant across locations for even number of cities. Using Lemma 5, we can

show that the indirect utility is given by

V (x) =W0 + V2

·
n2 − 4
3n2

+
1

n2

h
2C1

³n
2
x
´i2¸

which attains a maximum at city locations xj = 0, 1/n, . . . , (n− 1) /n because
V2 > 0. This implies that once a symmetric equilibrium with even number of

cities is reached, workers do not move to the hinterland, and hence new cities

never emerge for any marginal changes in parameter values. However, as shown

in Proposition 3, only the 2-city configuration can be stable.

The utility level at the symmetric equilibrium decreases with even n and

converges to the level obtained under flat earth as n goes to infinity.

Suppose odd number of cities. The mill price p(x, x) is not constant in

the case of odd number of cities. Again using Lemma 5, the indirect utility is

written as

V (x) = W0 +W1
1

n3
+W2

1

n2
+W3

1

n4
+ V1

1

n2
C1 (nx)

+V2

·
n2 − 4
3n2

+
1

n2

h
(C1 (nx))

2
+ 1
i¸
− V3 1

n4
[C1 (nx)]

2

−V4 1

6n4

h
3C1 (nx)− [C1 (nx)]3

i
− V5 1

n4
C1 (nx)

This function is a linear combination of a periodic functions with n periods

and with period 2n on the interval [0, 1]. We can thus restrict the analysis to

the interval [0, 1/2n]. Since it can be shown that V 0 (0) < 0 < V 0 (1/2n) and

V 000 (x) < 0 for x ∈ [0, 1/2n], V (x) is quasi-convex in the interval of [0, 1/2n].
This suggests that there can exist maxima in the utility function at x = 0, 1/2n.

Unlike the case with even number of cities, this utility may have the extrema not

only at the city locations xj = 0, 1/n, . . . , (n− 1) /n, but also at the midpoints
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of city locations x = 1/2n, 3/2n, . . . , (2n− 1) /2n. Therefore, V (0) ≥ V (1/2n)
is a necessary and sufficient condition for any odd number of symmetric cities to

be a spatial equilibrium under linear transport costs. For the sake of conciseness,

we do not present the explicit form of this condition. We nevertheless stress that

it is likely to be broken for some feasible sets of parameters.

Stability is difficult to check too. Since cnk = 2n
−2
h
1 + (−1)k cos kπn

i−1
, we

also have dnk > 0 and enk > 0 for all odd n. As a result, the negative term

containing A in (16) does not vanish for any finite n. This means that a spatial

equilibrium with an odd number of cities must be stable for sufficiently large A,

which contrasts with any even number of cities. In fact, when A = 100000, a =

3, b = 2, c = 1, φ = 1, L = 100, there are four stable equilibria with symmetric

configurations of n = 1, 2, 3, 5.4 This example shows that odd numbers of stable

equilibrium cities can be larger the even numbers of cities. It is easy to build

examples with still larger odd numbers of cities.

Finally, the utility level at the symmetric equilibrium is shown to be decreas-

ing in odd n and equal to the flat earth utility for n→∞.

To sum up, our analysis suggests that existence and stability of equilibria

depend on the degree of symmetry in the configuration of cities (even n versus

odd n) and also on the degree in the shape of transport costs. The richer the

symmetries in the transport cost functions, the larger the set of equilibria with

atomic cities but the smaller the set of stable equilibria.

9 Conclusion

We have considered the racetrack economic approach, where manufacturing ac-

tivities are distributed continuously and discretely around a circumference of a

circle, and where the economic interactions were identical to those in Ottaviano

et al.’s (2002) model. Investigating the nature and the number of stable equi-

libria, we have shown that constant-access, quasi-smooth and dense equilibrium

4They are
n = 1 for τ ∈ [0, 0.000238)
n = 2 for τ ∈ (0.000238, 0.019608)
n = 3 for τ ∈ (0.000215, 0.002141)
n = 5 for τ ∈ (0.002511, 0.019608)

where the upper bound 0.019608 = 2aφ
2bφ+cL

is given by the tradability condition (1).
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distributions are unstable for almost all transport cost functions, whereas ag-

glomeration in 1 or 2 atomic cities is stable for any economic parameters given

some symmetry properties in the transport cost functions.

Our finding vindicates that the assumption of two regions in most of the

literature is neither noxious nor a mathematical convenience. When compared

with Hotelling or Cournot competition, agglomeration is a distinct property in

economic geography accruing from the existence of home market effects which

results in forming a limited number of atomic cities instead of dispersed and

continuous urban configurations.

Appendix 1: The weights Vi and Wi

We compute the weights Vi. Remember that

τ (x, y) ≡ τ

2
[1− C (x− y)]

f1(x) ≡
Z 1

0

C (x− z)λ (z) dz f2(z) ≡
Z 1

0

[C (x− z)]2 λ (z) dz

We have that p (y, x) = α1+α2f1(x)− τ
4C (x− y) and m(x, y) = α3+α2f1(y)+

τ
4C (x− y), where

α1 ≡
2aφ+ cL τ

2

2 (2bφ+ cL)
+

τ

4
α2 ≡ − cLτ

4 (2bφ+ cL)
α3 ≡

2aφ+ cL τ
2

2 (2bφ+ cL)
− τ

4

We can computeZ 1

0

p (y, x)λ (y) dy = α1 +
³
α2 − τ

4

´
f1(x)Z 1

0

[p (y, x)]2 λ (y) dy = (α1)
2 + (α2)

2 [f1(x)]
2 +

³τ
4

´2
f2(x)

+2α1α2f1(x)− τ

4
2α1f1(x)− τ

4
2α2 [f1(x)]

2

and thus

S (x) =
a2L

2bφ
− aL

φ
α1 − cL

2

2φ2
(α1)

2
+
bφ+ cL

2φ2
L (α1)

2

+

·µ
−aL

φ
− cL

2

2φ2
2α1

¶³
α2 − τ

4

´
+
bφ+ cL

2φ2
1

2
α1L (4α2 − τ)

¸
f1(x)

+

·
−cL

2

2φ2

³
α2 − τ

4

´2
+
bφ+ cL

2φ2
1

2
α2L (2α2 − τ)

¸
[f1(x)]

2

+
bφ+ cL

2φ2
L
³τ
4

´2
f2(x)
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Z 1

0

(m (x, y))
2
Ady

= (α3)
2A+ (α2)

2A

Z 1

0

[f1(y)]
2 dy +

³τ
4

´2
A

Z 1

0

[C (x− y)]2 dy

+2α3α2A

Z 1

0

f1(y)dy + 2α3
τ

4
A

Z 1

0

C (x− y) dy + 2α2 τ
4
A

Z 1

0

C (x− y) f1(y)dy

and Z 1

0

[m (x, y)]
2
Lλ (y) dy

= (α3)
2 L+ (α2)

2 L

Z 1

0

[f1(y)]
2 λ (y) dy +

³τ
4

´2
L

Z 1

0

[C (x− y)]2 λ (y) dy

+2α3α2L

Z 1

0

f1(y)λ (y) dy + 2α3
τ

4
L

Z 1

0

C (x− y)λ (y) dy

+2α2
τ

4
L

Z 1

0

C (x− y) f1(y)λ (y) dy

Note that
R 1
0
C (x− y) dy = 0 and

R 1
0
f1(y)dy =

R 1
0

R 1
0
C(x − y)dyλ(x)dx = 0.

Thus, grouping terms and substituting for α1, α2 and α3, we get

V (x) = W0 +W1

Z 1

0

[f1(y)]
2
dy +W2

Z 1

0

f1(y)λ (y) dy

+W3

Z 1

0

[f1(y)]
2 λ (y) dy + V1f1(x) + V2f2(x)− V3 [f1(x)]2

−V4
Z 1

0

C (x− y) f1(y)dy − V5
Z 1

0

C (x− y) f1(y)λ (y) dy

where

W0 =
(bφ+ cL)

¡
(2A+ 3L) bφ+ cL2

¢
8bφ (2bφ+ cL)2

(2a− bτ)2 + τ2A (bφ+ cL)

32φ2
d0 > 0

W1 =
τ2c2AL2 (bφ+ cL)

16φ2 (2bφ+ cL)
2 > 0 W2 =

τ2c2L3 (bφ+ cL)

16φ2 (2bφ+ cL)
2 > 0

W3 =
τ2c2L3 (bφ+ cL)

16φ2 (2bφ+ cL)2
> 0

V1 =
τL (3bφ+ 2cL) (bφ+ cL) (2a− bτ)

4φ (2bφ+ cL)2
> 0

V2 =
3τ2L (bφ+ cL)

32φ2
> 0 V3 =

τ2c2L3 (bφ+ cL)

32φ2 (2bφ+ cL)
2 > 0

V4 =
τ2cAL (bφ+ cL)

8φ2 (2bφ+ cL)
> 0 V5 =

τ2cL2 (bφ+ cL)

8φ2 (2bφ+ cL)
> 0
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which is (3). Note that condition (1) guarantees V1 > 0.

Appendix 2: Global motion process

This paper studies stability under a local motion process. We here show that

stability under the local motion process is equivalent to stability under a global

motion process.

For quasi-smooth and dense distributions, a global motion process may be

depicted by
dλ(x, t)

dt
= V (x, t)−

Z 1

0

V (z, t) dz

by which workers moves to any location that has a higher utility than the average

utility on the circumference. Obviously, the total number of workers remains

fixed:
R 1
0
dλ(x,t)
dt dx = 0 ∀t. For small perturbations, we get

deλ(x, t)
dt

= eV (x, t)
and for normal modes with spatial frequency k, we get

skeλk = eVk
This must be compared with the local motion and its resulting normal mode

equality: skeλk = (2πk)2 eVk. Obviously, the sign of sk does not depend on

whether motion is local or global.

For equilibria with atomic cities, we propose a similar global motion equa-

tion:
dλk
dt

= V (xk,Λ)− 1
n

n−1X
j=0

V (xj ,Λ) k = 0, 1, . . . , n− 1

Net migration flow in a city xk is proportional to the difference between that

region’s utility and the average utility. Differentiating the RHS of this equation

by λl and evaluating it at Λ∗, we get the Jacobian matrix J , whose elements

are given by

Jm,l =
∂

∂λl
V (xm,Λ

∗)− 1
n

n−1X
p=0

∂

∂λl
V (xp,Λ

∗)

Taking advantage of the symmetry property, we note that partial derivatives

are equal to

vj ≡ ∂

∂λ0
V (xj,Λ0) =

∂

∂λl
V (xm,Λ

∗).
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for any l and m such that j = mod |l −m|. This also yields a circulant Jacobian
matrix Jn,l = vj − v where j = |l − n| and where v = 1

k

Pk−1
j=0 vj . The n

eigenvalues of this matrix are known as

snk =
n−1X
j=0

(vj − v) exp(2πIkxj) =
n−1X
j=0

vj exp(2πIkxj) k = 0, 1, . . . , n− 1

Each eigenvalue has the same sign as that in (15) for the local motion process

since 1− cos 2πkn > 0 holds for 1 ≤ k < n in (15).

Appendix 3: Proof of Lemma 2

At a constant-access equilibrium λ(x) = λ∗(x), we must have

f1(x) = c0 and f2(x) = d0

In the dynamic setting, small perturbations are defined as eλ(x, t) ≡ λ(x, t)−
λ∗(x), ef1(x, t) ≡ f1(x, t) − c0 and ef2(x, t) ≡ f2(x, t) − d0. Dropping terms in
perturbations with order higher than one, we can write the perturbation in the

worker’s utility as

eV (x) = V1 ef1(x, t) + V2 ef2(x, t)− 2V3 ef1(x, t)f∗1 − V4 Z 1

0

C (x− y) ef1(y, t)dy
−V5

Z 1

0

C (x− y) eλ (y) f∗1 dy − V5 Z 1

0

C (x− y)λ∗ (y) ef1(y, t)dy
Since eλ(x, t) =P∞k=−∞ eλk exp (2πIkx+ skt) and since R 10 exp (2πI (k −m) y) dy
is equal to 1 if k = m and to 0 otherwise, we have

ef1(x, t) = Z 1

0

C (x− y) eλ (y) dy = ∞X
k=−∞

ckeλk exp (2πIkx+ skt)
ef2(x, t) = ∞X

k=−∞
dkeλk exp (2πIkx+ skt)

Z 1

0

C (x− y) ef1(y, t)dy = ∞X
k=−∞

(ck)
2 eλk exp (2πImx+ skt)

Z 1

0

C (x− y) eλ (y) f∗1 dy = ef1(x, t)f∗1 = ∞X
k=−∞

c0ckeλk exp (2πIkx+ skt)
Z 1

0

C (x− y)λ∗ (y) ef1(y, t)dy = ∞X
k=−∞

∞X
m=−∞

∞X
l=−∞

clλ
∗
mckeλk Z 1

0

exp (2πI (ky +my + lx− ly) + skt) dy

=
∞X

k=−∞

∞X
m=−∞

cmckλ
∗
m−keλk exp (2πImx+ skt) = ∞X

k=−∞
(ck)

2 eλk exp (2πIkx+ skt)
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where the last equation is due to the condition of constant-access equilibrium:

cmckλ
∗
m−k for all k 6= m and λ∗0 = 1.

Using eV (x) =P∞k=1 eVkeλk exp (2πIkx+ skt), we obtain
eVk = V1ck + V2dk − (V4 + V5) (ck)2 − (2V3 + V5) c0ck

implying that the eigenvalues sk are the same for any quasi-smooth and dense

distribution.

Appendix 4: Proof of Proposition 1

When C(x) is differentiable, Fourier coefficient ck with sufficiently large k is

rewritten as

ck = 4

Z 1/2

0

C (x) cos 2πkx dx

= −4
Z 1/2

0

C 0 (x) sin 2πkx
2πk

dx

= 4
(−1)k C0 (1/2)− C0(0)

(2πk)
2 + 4

Z 1/2

0

C 000 (x) sin 2πkx
(2πk)

3 dx

= 4
(−1)k C0 (1/2)− C0(0)

(2πk)2
− 4(−1)

k C000 (1/2)− C 000(0)
(2πk)4

−4
Z 1/2

0

C(5) (x) sin 2πkx

(2πk)
5 dx

= 4
HX
h=1

(−1)k C(2h−1) (1/2)− C(2h−1)(0)
(−1)h−1 (2πk)2h

+ 4

Z 1/2

0

C(2H+1) (x) sin 2πkx

(−1)H−1 (2πk)2H+1
dx(20)

≈ 4
HX
h=1

(−1)k C(2h−1) (1/2)− C(2h−1)(0)
(−1)h−1 (2πk)2h

The last near equality holds because the last integral is bounded and its ab-

solute value decreases faster with k than the other term due to the continuity

of C(2H+1) (x).

Similarly, using D(x) ≡ [C(x)]2, we have

dk = 4
HX
h=1

(−1)kD(2h−1) (1/2)−D(2h−1)(0)

(−1)h−1 (2πk)2h
+ 4

Z 1/2

0

D(2H+1) (x) sin 2πkx

(−1)H−1 (2πk)2H+1 dx

≈ 4
HX
h=1

(−1)kD(2h−1) (1/2)−D(2h−1)(0)

(−1)h−1 (2πk)2h
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Third, since (ck)
2 ¿ ck holds for sufficiently large k, we have

sk ≈ 4 (πk)2 τL (bφ+ cL)

8φ2 (2bφ+ cL)
2

¡
V1ck + V2dk

¢ ≈ 16 (πk)2 HX
h=1

Rh,k

where

Rh,k ≡ (−1)h−1
(2πk)2h

n
−
h
V1C

(2h−1)(0) + V2D
(2h−1)(0)

i
+ (−1)k

h
V1C

(2h−1) (1/2) + V2D
(2h−1) (1/2)

io
Since

sgn {max {Rh,k, Rh,k+1}} = sgn {Qh}
holds, by using (11), we obtain

sgn {max {sk, sk+1}} = sgn {QH}

(i) When QH < 0, from this expression, it can be seen that ∃k̄ such that
sk < 0 ∀k > k̄. Therefore, if QH < 0 is satisfied, high frequencies will not

amplify. Furthermore, low frequencies will also not amplify if A is sufficiently

large so that the equilibrium will be stable.

(ii) When QH > 0, there always exist some high frequencies that amplify

and the equilibrium is unstable.

Appendix 5: Proof of Lemma 4

We must compute the eigenvalues
Pn−1
j=0 vj exp (−2πIkxj) for 0 ≤ k < n

where

vj =
∂V (0,Λ∗)
∂λ∗(xj)

= V1C (xj) + V2 [C (xj)]
2 − 2V3g∗1C (xj)

−V4
Z 1

0

C (xj − y)C (y) dy

−V5
n−1X
p=0

[C (xj) + C (xp)]C (xj − xp)λ∗(xp)

We compute each line separately. The first line obviously yields

n (V1c
n
k + V2d

n
k − 2V3g∗1cnk)
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whereas the second line gives

−V4
n−1X
j=0

Z 1

0

C (xj − y)C (y) dy exp (−2πIkxj)

= −V4
n−1X
j=0

∞X
l=−∞

∞X
p=−∞

clcp

Z 1

0

exp (2πI (lxj − ly + py − kxj)) dy

= −V4
n−1X
j=0

∞X
p=−∞

(cp)
2 exp (2πI (p− k)xj)

= −nV4
∞X

l=−∞
(cnl+k)

2 = −nV4enk

To compute the last line, we firstly note that for p = {0, 1, ..., n− 1},

λ∗(xp) =
∞X

q=−∞
λ∗q exp(2πIqp/n) =

n−1X
r=0

∞X
l=−∞

λ∗r+nl exp(2πIp (r + nl) /n) =
n−1X
r=0

λnr exp(2πIrxp)

One can then show that
Pn−1
r=0 λ

∗(xp) = nλn0 = 1, and thus λn0 = 1/n. Note

also that

n−1X
p=0

n−1X
t=0

n−1X
r=0

cnt λ
n
r exp (2πI (−txp + rxp)) = n

n−1X
r=0

cnrλ
n
r

n−1X
j=0

n−1X
s=0

n−1X
r=0

cns c
n
rλ

n
r exp (2πI (sxj + rxj − kxj)) = ncnkc

n
0λ

n
0 + 2n

n−1X
r=0

cnk−rc
n
rλ

n
r

As a consequence, the first term in the last line can be computed as

n−1X
j=0

"
−V5

n−1X
p=0

C (xj)C (xj − xp)λ∗(xp)
#
exp (−2πIkxj)

= −V5
n−1X
j=0

n−1X
p=0

n−1X
s=0

n−1X
t=0

n−1X
r=0

cns c
n
t λ

n
r exp (2πI (sxj + txj − txp + rxp − kxj))

= −nV5
n−1X
j=0

n−1X
s=0

n−1X
r=0

cns c
n
rλ

n
r exp (2πI (sxj + rxj − kxj))

= −nV5cnkcn0λn0 + 2nV5
n−1X
r=1

cnk−rc
n
rλ

n
r

= −nV5cnkcn0
where the last equality is due to constant-access condition (cnrλ

n
r = 0 for all

r 6= 0).
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Finally, the second term of the last line is equal to

n−1X
j=0

"
−V5

n−1X
p=0

C (xp)C (xj − xp)λ∗(xp)
#
exp (−2πIkxj)

= −V5
n−1X
j=0

n−1X
p=0

n−1X
s=0

n−1X
t=0

n−1X
r=0

cns c
n
t λ

n
r exp (2πI (sxp + txj − txp + rxp − kxj))

= −nV5
n−1X
p=0

n−1X
s=0

n−1X
r=0

cns c
n
kλ

n
r exp (2πI (sxp − kxp + rxp))

= −n2V5cn−kcnkλn0 − 2n2V5
n−1X
r=1

cnr−kc
n
kλ

n
r

= −nV5 (cnk )2

where the last equality is due to constant-access condition (cnr−kc
n
kλ

n
r for all

r 6= 0).
Thus, using g∗1 = nc

n
0λ

n
0 = c

n
0 under constant-access condition, we get

snk =
n−1X
j=0

vj exp (2πIkxj) = n
h
V1c

n
k + V2d

n
k − 2V3cn0 cnk − V4enk − V5cnkcn0 − V5 (cnk )2

i
and

lim
n→∞ s

n
k/n =

h
V1ck + V2dk −

³
V4e

n
k + V5 (ck)

2
´
− (2V3 + V5) c0ck

i
=

sk
8π2k2

Note that eigenvalues are real numbers.

Appendix 6: Proof of Lemma 5:

(i) We prove that g1 (x) =
Pn−1
j=0 C1 (xj − x)λ (xj) = 1−(−1)n

2n2 C1 (nx). Sym-

metry imposes that
Pn−1
j=0 C1 (xj − x) = 0 when n is even. For n = 1, we readily

get
Pn−1
j=0 C1 (xj − x) = C1 (x). For n = 3, 5, . . . , we get

n−1X
j=0

C1 (xj − x) = C1 (x) +

(n−1)/2X
l=1

·
C1

µ
l

n
− x

¶
+ C1

µ
l

n
+ x

¶¸

= (1− 4x) +
(n−1)/2X
l=1

·µ
1− 4

µ
l

n
− x

¶¶
+

µ
1− 4

µ
l

n
+ x

¶¶¸
=

1− 4xn
n

=
1

n
C1 (nx) for n = 3, 5, . . .
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(ii) We prove that

g2 (x) =
n−1X
j=0

[C1 (xj − x)]2 λ (xj) =
 n2−4

3n2 + 1
n2

h
(C1 (nx))

2
+ 1
i

if n is odd
n2−4
3n2 + 1

n2

£
2C1

¡
n
2x
¢¤2

if n is even

We obviously get that g2 (x) = n (C1 (nx))
2 for n = 1, 2. In order to determine

g2 (x) for n > 2, let ĥ : [0, 1/2] → [0, 1], ĥ (x) = (1− 4x)2. One can check that
ĥ (x) = (C1 (x))

2 ∀x ∈ [0, 1/2]. For n = 3, 5, 7, ... and for x ∈ [0, 1/2n], we can
write

n−1X
j=0

[C1 (xj − x)]2 = ĥ (x) +

n−1
2X
l=1

µ
ĥ

µ
l

n
− x

¶
+ ĥ

µ
2l − 1
2n

− x
¶¶

= (1− 4x)2 +
n−1
2X
l=1

"µ
1− 4

µ
l

n
− x

¶¶2
+

µ
1− 4

µ
2l − 1
2n

− x
¶¶2#

=
1

n
(1− 4nx)2 + n

2 − 1
3n

=
1

n
ĥ (nx) +

n2 − 1
3n

where we used the equality
Pm
l=1 l

2 = 1
6m (m+ 1) (2m+ 1). Hence,

g2 (x) =
1

n2
[C1 (nx)]

2 +
n2 − 1
3n2

For n = 4, 6, 8, ... and for x ∈ [0, 1/n], we can write
n−1X
j=0

[C1 (xj − x)]2 = 2ĥ (x) + 2

n
2−1X
l=1

ĥ

µ
l

n
− x

¶

= 2 (1− 4x)2 + 2
n
2−1X
l=1

µ
1− 4

µ
l

n
− x

¶¶2
=

4

n
(1− 2nx)2 + n

2 − 4
3n

=
4

n
ĥ
³n
2
x
´
+
n2 − 4
3n

Hence, we get

g2 (x) =
n2 − 4
3n2

+
1

n2

h
2C1

³n
2
x
´i2

(iii) We prove thatG (x) ≡ R 1
0
C1 (ny)C1 (y − x) dy = 1−(−1)n

12n2

h
3C1 (nx)− C1 (nx)3

i
.

Let ĝ : [0, 1/2] → [−1, 1], ĝ(x) = 1 − 4x. We have that C1(x) = ĝ(x − l) if
x ∈ [l, l + 1/2] with l ∈ N and C1(x) = ĝ(l + 1− x) if x ∈ [l + 1/2, l + 1].
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For even n, we have
R 1
0
C1 (ny)C1 (x− y) dy = 0 for x ∈ [0, 1/2n] since

ĝ1 (x) = 0.

For odd n ≥ 3, we can writeZ 1

0

C1 (ny)C1 (y − x) dy

=

Z x

0

ĝ (ny) ĝ (x− y) dy +
Z 1

2n

x

ĝ (ny) ĝ (y − x) dy

+

n−1
2X
l=1

ÃZ 2l
2n

2l−1
2n

ĝ (l − ny) ĝ (y − x) dy +
Z 2l+1

2n

2l
2n

ĝ (ny − l) ĝ (y − x) dy
!

+

Z 1
2+x

1
2

ĝ

µ
n+ 1

2
− ny

¶
ĝ (y − x) dy +

Z 1
2+

1
2n

1
2+x

ĝ

µ
n+ 1

2
− ny

¶
ĝ (x− y + 1) dy

+
n−1X
l=n+1

2

ÃZ 2l+1
2n

2l
2n

ĝ (ny − l) ĝ (x− y + 1) dy +
Z 2l+2

2n

2l+1
2n

ĝ (l + 1− ny) ĝ (x− y + 1) dy
!

=
1− 24n2x2 + 32n3x3

3n2
=
3ĝ (nx)− ĝ (nx)3

6n2

for x ∈ [0, 1/2n]. This function has a maximum at x = 0 and a minimum at x =
1/2n. By symmetry, the above convolution is equal to 3ĝ (−nx)− ĝ (−nx)3 /6n2
for any x ∈ [−1/2n, 0]. This pattern is repeated with frequency n. Therefore,
for any x ∈ R, we can writeZ 1

0

C1 (ny)C1 (y − x) dy = 3C1 (nx)− C1 (nx)3
6n2

One can check that this result is also valid for n = 1.
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Figure 1 : Shapes of transportation costs 
 (Linear: C(x)=1-4x; Cosine: C(x)= cos2πx; Step: C(x)= 1 if x>0.31, 
C(x)= 0 otherwise; Polynomial: C(x)=1-2x²-96x³+248x4-160x5)  


