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Abstract

In this paper a new asymptotically valid heteroskedasticity and non-
normality robust tests for skewness are proposed. Applying Davidson
& Flachaire’s (2001) wild bootstrap to the proposed tests is considered.
Importantly the proposed tests can provide guidance on the efficacy of
this wild bootstrap procedure. The Monte Carlo evidence shows that the
proposed tests together with the Davidson & Flachaire’s wild bootstrap
method perform well.

1 Introduction

In this paper a new asymptotically valid heteroskedasticity and nonnormality
robust test for skewness is derived based on standard first order asymptotic
theory. A growing body of research has shown that the first order asymptotic
theory often provides poor guidance to finite sample behaviour. For example,
it is known that the commonly used test for skewness (or kurtosis) is severely
undersized even in quite large samples (see, for example, Table 2 in Jarque and
Bera (1987). For more general studies, see Orme (1990), Chesher and Spady
(1991)). Thus, it is conjectured that rejection probabilities based on standard
asymptotic theory may not have good agreement with their desired nominal
levels, including cases when heteroskedasticity robust covariance matrices are
employed.

However, in such circumstances we might apply the wild bootstrap proce-
dure!, which is known to have better finite sample performance in general, to the
heteroskedasticity robust test for skewness, since it is generally asymptotically
justified under unknown heteroskedasticity. Among the various wild bootstrap
schemes that have been proposed, Davidson and Flachaire’s (2001) wild boot-
strap procedure, which is called the DF' wild bootstrap hereafter, is the most
appropriate one for our test, since, firstly, it enforces the Ordinary Least Square
(OLS) residuals in “bootstrap world” to be symmetric, due to the symmetric
pick distribution employed, and secondly, the DF' wild bootstrap enjoys extra
refinement over first order approximation, provided that the bootstrap Data

! The wild bootstrap procedre has proposed by Wu (1986) and has developed by Liu (1988)
and Mammen (1993).



Generating Process (DGP) and test statistic are asymptotically independent,
and that is the case for our test. The evidence of MacKinnon and White (1985)
and Davidson and Flachaire (2001) shows that the {-test based either on i) the
HCCME using restricted residuals or ii) the original form of the HCCME, using
the DF wild bootstrap performs well. However, Godfrey and Orme (2002, 2003)
have shown that the test for several linear restrictions on regression coefficients
with HCCME can give good control over the finite sample significance levels
only when both i) and ii) are adopted.

The condition for the extra refinement of the DF wild bootstrap DGP and
test statistic being asymptotically independent is that the population errors are
symmetric. Thus, testing for symmetry under heteroskedastic errors may also
provide guidance on the efficacy of the Davidson and Flachaire procedure. In
this case, some practitioners may want to implement the proposed skewness test
together with an omitted variable test procedure. If so, an investigation into
asymptotic insensitivity of the proposed skewness test to omitted variables is of
importance, since if it is asymptotically sensitive to omitted variables, inferences
based on the proposed skewness test may be misleading.

The test for skewness, which is one part of the popular Jarque and Bera
(1987) normality test, could be used independently of that for excess kurtosis.
However, Jarque and Bera skewness test is derived under normality assumption,
which is too strong to test only for skewness. In view of this, Godfrey and Orme
(1991) have derived a nonnormality robust test for skewness, under the assump-
tion of homoskedastic errors. However, they provided no Monte Carlo evidence
of the finite sample behaviour of the test. This paper therefore extends their
procedure by relaxing the homoskedastic error assumption and by investigating
the finite sample behaviour of various tests for skewness.

The plan of this paper is as follows. The model and tests are described
in section 2. The asymptotic sensitivity of the proposed test to omitted vari-
ables is discussed in section 3. The wild bootstrap and fast double bootstrap
schemes and Monte Carlo simulation are described in section 4. Finally, section
5 contains some concluding remarks.

2 The Test Statistic

Consider a linear regression model
vy =x,B84+u,t=1,..,n (1)

where y; is a random dependent variable, x; is a (k x 1) strictly exogenous
regressor vector with its first element equal to unity for all ¢, 8 is a (k x 1)
parameter coeflicient vector, and the error terms u; are independently but not
necessarily identically distributed (inid). Tn general, we can formulate the het-
eroskedastic errors as u; = o(X¢)e:, where o(x;) is a scaling factor which is
some (unknown) function of x;, and the &; are independently and identically
distributed (#id) random variables, having a zero mean and a unit variance. Tt
is assumed that 0 < E[u?|x;] = 02 < oo, with 02 = 02(x;).2 For simplicity, it
is also assumed that plim, ,..(n" !>}, x;x}) = M, which is a finite positive

2However, note that we do not assume o4 > 0, that is, o4 could be negative. This has
some importance on the “potential problem” that will be discussed later.



definite (k¥ x k) matrix, and all moments of order up to six of u; exist and are
finite. OLS estimation gives y; = xé,@ + 1i; with an obvious notation. Under
heteroskedastic errors, we test the symmetry of each u;, since it has different
distribution. That is, the null hypothesis is

Hy : B[ud|x,] = 0.

Note that, in this case, if we assume homoskedasticity, such that 0? = o2, the

null hypothesis becomes the symmetry of all identically distributed errors, thus,
the null hypothesis would be E[u3] = 0.

2.1 Testing for Skewness under Homoskedasticity

Jarque and Bera (1987) proposed a score test of normality, which tests for
skewness and kurtosis jointly. The test for skewness is

n 2
JBn, =n"" (Z u?) /66°,
t=1

? =n 1Y 7 4?2 is an estimator for the error variance in (1). Under

where &

the normality assumption and 0? = 02, JB, A x2(1).
Godfrey and Orme (1991) have derived a non-normality robust test for skew-
ness, which is

n 2
GO, =n"" (Z a?’) /Pco,
t=1

where go = n 1Y, 48 + 96° — 66% (n~ 1 Y1, @f). Under v, is 4id(0,02),
GO, LA x2(1). Note, as pointed out by Godfrey and Orme (1991), that un-
der the normality assumption, n~ '3 a¢ % 150% and n~ ' 37 af B 304,
so that 9qo converges to 60°%, as it should. Under non-normal error, 65° is
inconsistent for the asymptotic variance of n-3% Z:;l @3, and so JB, becomes
asymptotically invalid, since JB, LA Ax2(1), with A = plimdgo/66°.3

Testing based on White’s (1980) HCCME is routinely adopted in empirical
work. However, the finite sample behaviour of such procedure can be very poor;
Chesher and Jewitt (1987). The recently proposed wild bootstrap procedure by
Davidson and Flachaire (2001), the DF wild bootstrap, enjoys a refinement over
first order asymptotic theory provided the errors are symmetric. Thus testing
for symmetry under heteroskedastic errors may provide guidance on the efficacy
of the Davidson and Flachaire procedure. Such a test generalises the statistic
proposed by Godfrey and Orme (1991), and is developed in the following two
sections.

2.2 Testing for Skewness under Heteroskedasticity

Consider first the asymptotic distribution of n—1/2 S 42 under heteroskedas-
ticity. Define X = (x,,...,X,)’ and assume (since B-08= op(1)) that the fol-

3Godfrey and Orme (1991) provided no Monte Carlo evidence on the finite sample be-
haviour of their test. We will do so later.



lowing exist and are finite:

n n n
plimn 1 Z ilx; = plimn ! Z ulx; = plimn ! Z Elul |x]x;
=1 =1 =1
= q¥ (A1)
n n n
plimn~! Z W2x;x, = plimn ! Z u2x;x} = plimn Z Bu?|x:] %%,
t=1 =1 =1
= G (A2)
n n n
plimn 'Y a4} = plimn 'Y uf =plimn 'Y Eluf|x]
t=1 =1 =1
= ﬁ67 (AB)

with 7 = 2,4. Dealing initially with n1/2 Z:;l 11'?, a Taylor series expansion
around 8 = (3 yields

n-1/2 Za? = p1/2 Zu? -3 (nl ZU?X£> n'/? (B - /8) +0p(])
i=1 i=1 i=1
= p /2 Z lu? -3 (nl Zufxé) <n71X,X)71 XUy
i=1 i=1

= n V2 Z (uf — 3q(2)’M71xt) ugtop(1)
=1

+0,(1)

= nfl/QZwt—l-op(]). (2)

Now Flw;|x;| = Elu}|x¢] — 3q2'M 1%, E[u;|%;] = 0 and E[w}|x;] = n(x;) > 0
such that n=1 Y7 m(x;) —n ' Y, w? = 0,(1) with

phm (nl ZU}?) = ﬂﬁ — 6q(2)/M*1q(4) + 9q(2),M71GM71q(2).

t=1

Then a suitable Central Limit Theorem (CLT) ensures that

—1/2 7 ~1 n 2
T 2um Y 4 g ) and T Qa1 )T 4oy (3)

(1 Yo wd)’? Y

As n1/2 i, 43 and n- 1/2 >+, we have the same asymptotic distribution,
by (2), we have
_ L3\ 2
n! (Z?:l u?) N XQ(])
(n=1 320, w?)
From the assumption (A1)-(A3), we see that n= 2> [ wZ —n 'Y  w? =
0p(1) where



Thus, an asymptotically valid non-normality and heteroskedasticity robust test
for skewness is obtained as

. 2
GOh, =n~! (Z a?) /BGon, (4)
t=1

where 9gop, =n" 1Y 7| @?, and above arguments ensure that GOh,, LA x2(1),
under the null hypothesis, F[u3|x;] = 0.%
Note that n~ 1>} | w? can be written as n~ 'w'w, where w is a (n X
1) vector whose typical element is w;, and the corresponding consistent vari-
ance estimator can be written as n~!W'W. Also the test indicator can be
3

written as Y, , 4 = ¢/W, where ¢ is a (n x 1) vector consisting of 1, be-
cause Y, ;3 (n 1Y 7, G4fx}) (n’IX’X)ilxtat = 0 from the normal equa-
tions. Defining a (n x n) diagonal matrix ﬂ(j):diag(ag), a (n x 1) vector
a¥) = (@d,..,a@l), j = 1,..,6 and P, = X(X'X) "X/, the asymptotically
valid test statistic is readily obtainable as n minus residual sum of squares from

1

regressing ¢ on W, where w = ﬂ(l)ﬁ(g) —3UWP,a? (nx1).

2.3 Potential Inconsistency

The heteroskedasticity robust test, introduced above, has the following potential
problem. Recall that the heteroskedastic errors in (1) are u; = o(x¢)es, where
o(x;) is a scaling factor which is some (unknown) function of x;, and the ¢; are
14d(0, 1). Theorem 1 of Davidson and Flachaire (2001; p.8) assumes that “the er-
ror terms are mutually independent with mean zero and distributions symmetric
about the origin”. Therefore, under heteroskedasticity, our interest is to test in
symmetry of each u;, thus the null hypothesis is E[u3|x;] = E[o(x;)3e3|x;] = 0,
or equivalently, E[e}] = 0.

However, the test indicator employed previously has the property that 71 Z:”Zl a?-
n 13" Eul] = o0p(1),> and the inconsistency of the test arises because
E[u3] = 0 need not imply that E[u}|x;] = 0. For example, suppose that o(x;)
is a function of x; such that E[o(x;)3] = 0, and E[e}] = 7 # 0. In this case
E[ud|x;] = o(x;)3T # 0, however, E[u}] = E,[o(x;)37] = 0. That is, based on
(4), we may accept the null hypothesis even though F[u?|x;] # 0, and the test
is inconsistent under this alternative.

Note that E[u3|x;] can be regarded as a function of x;, since E[u|x;] =
g(x¢)E[e3] with g(x;) = o(x;)3. This suggests that a check of whether E[u3g(x;)] =
0 is appropriate, since with skewed errors E[u3g(x;)] = E[g(x;)?¢%] # 0 because
E[g(x;)?] > 0. Tn general the function g(x;) is unknown, so some proxy, say
a (r x 1) vector function % (-) can be used, where ¥(x;) is correlated to g(x;).
The test indicator is then such that

n1 Za;”w(xt) 2opt ZE[Q(Xt)¢(Xt)€?] #0.

4However, the test is potentially inconsistent under E(u}|x;) # 0; see below.
5Standard asymptotic theory tells that n =1 37 42 —n =137, u? = 0p(1) and the law
of large number ensures that n =1 Y7 ud —n=1 3P | E[ul] = 0p(1).



Following discussion similar to the above, under heteroskedasticity it can be
.. . i _
shown by a similar O, (1) expansion of n=2 Y7, @$1p(x,) that

a® eV wa® L2,
where ¥ is (n x r) matrix whose typical row is ¥(x;)’, and
V=900 4+ 90'0?P, 0P, 0Pw — 6w/ TWP, 0w,

As a parametric proxy of 1(x¢), test regressors used by Ramsey’s (1969)
RESET test or White’s (1980) heteroskedasticity test may be an appropriate
choice.

The standard RESET test is based on the result that the conditional expecta-
tion of residuals of misspecified linear models, F|ii;|X;], can be approximated by
the polynomials of conditional expectation of dependent variables E [yt|xt]j =
(xé,@)j, j = 2,3. For the present case we set ¥ (x;) = ((xé,@)z,(xé,@)B)’ with
r = 3. Note that ,@ is used instead of B since it is not observable, but this
replacement does not affect the asymptotic results (see Chapter 2) under the
null. This test statistic is called GOh_R,,.

As in White’s (1980) heteroskedasticity test, we choose 1 (x;) = vech(x:x})
with r = k(k + 1)/2. For both cases, consistency requires non-zero correlation
between %(x;) and 0(x;). This test statistic is called GOh_W,,.

Another interesting testing procedure is that based on Whang’s (2000) non-
parametric test for misspecified functional form, which is consistent under het-
eroskedasticity, and generalised in Whang (2001). Whang’s test uses a gener-
alised Cramer-Von Mises test, and is powerful against n~1/2 local alternatives.
(Whang’s test does not depend on a smoothing parameter, unlike Zheng’s (1996)
non-parametric approach.) The asymptotic distribution of Whang’s test statis-
tic is case dependent, so the test is not asymptotically pivotal in Beran’s (1988)
sense. The bootstrap method yields asymptotically valid critical values, but
here, the double bootstrapping is also of interest. As Beran (1988) shows, single
bootstrapped non-asymptotically pivotal test only yields the same order of the
error in rejection probability as the first order approximation, but the double
bootstrap vields further refinement.®

To explain Whang’s approach, consider data v, = (y;,x}) that may be het-
eroskedastic, and an (kx 1) unknown parameter vector 8, and 6, is a pseudo-true
parameter vector such that 0 2 6,. We are interested in testing the moment
condition E[e(y;; 0, )|x;]

Ho : Ele(yi;0,)|x;] = 0 almost surely for some 6, € ©
Hy : FEle(y;;60,)|x:] #0 for all 6 € ©.

Under either the null or alternative, E|e(y;; 0)|x;] = m(0;x;) for all 8 € ©.
Then, under the null hypothesis, there exists a 6, such that m(8,;x;) = 0.
Note that under the alternative, no 8, satisfies m(0,;x;) = 0.

SWhang (2001) proposed recentering in bootstrap resampling to impose the null hypothesis,
however, in our case, the DF wild bootstrap can impose the null hypothesis as shown later,
and there is no need of recentering.



Whang (2000) proposes a generalised Cramer-Von Mises statistics.” Define

ri(z) = W(Xi < z)
= HﬁFFI[’(xim < 2|

H,(z) = n’IZeim(z),

where T(Zim < 2p) is an indicator function and subscript m denotes mth row
of the vectors x; and z. Let X = {x;;¢ > 0} so that

E lnl Zeiri(zﬂx
= nt Zm(e*;xi)ri(z)

E[Hy(2)|X]

P ) =0, under Hyp
- /x<z m (8,5 x)dC (x) { # 0, under H; for at least one z and 6,

where G(-) = plim,,_,, Y., Gi(+), and G;(x) is the empirical distribution of
{xi :i=1,...,n}. Note that [ _p.m(8.;%)dG(x) could be zero but there may
exist some z such that

| mix0iG) = ¢(6.52) 2 0.

This “device” prevents Whang test from failing to detect alternatives in any
direction, and is therefore useful for our purposes. Now define

ﬁn(xi) = nfé Zéjrj (Xi).
J
The Whang test statistic is

Wn =n! Z {Hn(xi)}2

where W, = O, (1) under the null. Tts asymptotic distribution is unknown,
then, bootstrapping W, yields valid inference; see Whang (2000, 2001). Note
that, consistency follows from the fact that®

n W, 5 /g(e*; x)2dG(x) > 0

where

£(0.;x) #0 under Hy for some x but
£(0,;x) =0 under Hy for all x,

so that W, = O,(n) under H;.

"It is based on the work of Andrews (1997).
8Note that

[ I
n W, =n"! Z Ln71 Z Sjrj(xi)J .
i k]



For testing the skewness of errors in heteroskedastic models, Whang’s test
statistic would be

LA 2
Whang, =n"*! Z {Hn(xfg)}
t=1

with x}" = (%¢2, ..., Tex) is the regressor (with the constant term removed), where

Ho(xp) =n "2 all(x; < x})

s=1

where T(x! < x}) = ¥ _, [T (z¢m < )] with T(24, < 2,,) being an indicator
function
]7 if Tim S Tm

Tn this section, a heteroskedasticity and nonnormality robust test for skew-
ness in linear regression model is derived. Also, the “potential inconsistency”
under which GOh,, may have no power is pointed out. To overcome this prob-
lem, modified test statistics, GOh-W,, and GOh_W,, that are based on RESET
and White approach, as well as Whang’s nonparametric test are proposed.

3 Sensitivity of the Heteroskedasticity Robust
Skewness Test to Omitted Variables

Here we consider the sensitivity of the skewness test to omitted variables in
heteroskedastic models, since one might want to check the skewness of het-
eroskedastic disturbances before testing for omitted variables in order to check
the efficacy of the DF wild bootstrap. In this case, the sensitivity of skewness
test is of some importance. Godfrey and Orme (1994) investigated the insensi-
tivity of the skewness test in homoskedastic regression models. Their approach
can be used for heteroskedastic models as well, and the discussion follows.
Following Godfrey and Orme (1994), consider a model

Y = Xéﬁ + Zé7n+ut7 (5)

where u; is homoskedastic i3d(0, 02) or heteroskedastic inid(0,02), v, = n~ /28,

8'8 <oo. The alternative fitted model is denoted as y; = x.8 + Zi:)i—l—ﬂt. Con-
sider first the unweighted test for skewness. Since i; = %; +x}(8 — 8) + 2,4 by
standard regression theory,

n n _ . 3
w2 = o2 LB ) + i)
=1 =1
= 2N a4 Y@ X(B - B+ A} +o,(1)
t=1 t=1
n1/2 Zﬁ? +3n1 Z@? {210} + 0, (1),
t=1

t=1

with ; being a residual vector from regressing z; on X;, since 4 —§//n =

Op(nil/z) and (/@ - B) = _(22;1 théf1 Z?=1 Xi 2y :Op(nil/Q)- As Z?=1 Z=



0 because x; includes unity,

I/QZ“ =n 1/2Zu +3nY { 1/22 }5+0p() (6)

where 52 = n~1 Y7 @?. With the symmetric errors, n= /237" @3 = O,(1).
Note that inside of {- } of the second term of (6) is Koenker’s studentised het-
eroskedasticity test indicator with test regressors Z;. Under the homoskedastic-
ity, {-} is O,(1), then the second term becomes O,(n~/2) so

WY = Y i 1), M
t=1

which tells that this test for skewness is asymptotically locally insensitive to the
omitted variable under the homoskedasticity. However, under the heteroskedas-
ticity, the second term in (6) can be O,(1), and local insensitivity will be lost.

However, under the local heteroskedasticity, in a sense that the second term
in (6) is still O,(n~"'/2), then (7) holds as well as the local insensitivity of the
heteroskedasticity robust test for skewness to the omitted variable. To see this,
consider heteroskedasticity characterised by

o} = h(a +1;€) = hy(€)

where h;(0) = 02 > 0, h'(¢;) = dh(c;)/de; # 0 with ¢; = a+rj€, h(0) = A/(0) =
1, r; is a vector causing heteroskedasticity, and § = n~1/2¢, ¢'¢ < co. Then,
since % = us — X}(8 — B) — z;(¥ — ) by standard OLS theory,

i = up = 2ux, (B~ B) — 2wz, (3~ )
+2(B — B)'x:2,( =) + (B — B)'xex;(B = B) + (7 — 7)'zezt (¥ — ).

Thus, inside of {-} in (6) is
n*lﬂz (@ —5%) 5 = n*l/QZafzt
=1 t=1
= n V2 Zufzt +0,(1)
t=1

= n’l/QZ (u? — 0®) & + 0p(1),

t=1

sincen ' Y1 x;x) andn 'Y} 2,2, are O, (1), and (B—08), (F—7), n ' Y1, X},
and n~ ' Y7 u#z, are O,(n~1/2). Now a mean value expansion of h;(€) yields
Bluf] = h(a+rg)
= h( )+ h'(e)r €
= o’ + 1 (c)rié,

where ¢; = a+ ;€ and € € (£,0). Since n? Sy (u% — E(uf)) Z: = Op(1) by



a standard CLT, we can write

ﬁ\

N =
[
—~

<
o

I
=

S
o
=
N

I

ﬁ\

N
[

(u? —0% - h’(Et)réﬁ) Zs

o
Il
-
o
Il

1

I
3
o
NE

n
(uf —0%) %, — n? Z h'(c;)r,€%,.
=1

o
Il

1

Now, ¢ converges to 0 and h/(¢;) goes to 1, a Uniform Law of Large Numbers
gives

n

n’%Zh’(Et)rgit = n’IZh’(Et)rQQZt
t=1

t=1

= 0 'Y B +o,(1),
t=1

which is O(1). Putting all together, under the local heteroskedasticity,

n71/2z (&? _ 52) 7, = nfl/QZ (u? — 02) Ze + 0p(1)
t=1

t=1

n
= p /2 Zugzt +0,(1)

t=1
n

= n°3% Z (uf — E(u?)) Z + op(1)

t=1

(u? —0®) g —n" iE[ztré]Q + o0p(1).

1 t=1

Il

ﬁ\

W=
NE

t

Finally, as =% S7_, (u2 — 02) %, 5 N(0,2),
n~Y2N" (@ - 6%) 3 5 N(M,E),
=1

where X is —n 1Y} | E[Zxr;]¢ and E =plimn 1Y " | 0257,

Therefore, under the local heteroskedasticity, inside of {-} of the second term
of (6) remains Op (1) and the second term overall becomes 0,(1), then asymptotic
local insensitivity of the skewness test to the omitted variable holds.

Now consider the insensitivity of the modified test to omitted variables. A
similar discussion to the above gives

) = 0 B8 s i
t=1 t=1
= a2y @ik + 30 VRS @e(x) {xQ(B -B)+ zé’)’} + 0p(1)
=1 t=1
= V2N aip(x) + 30y A {(x0)E;0} + 0p(1),
t=1 t=1

10



and the second term becomes Op(1) in general, thus the modified indicator
is asymptotically sensitive to local omitted variables in homoskedastic or het-
eroskedastic models.

Therefore, in general, no omitted variable should be assumed before the
proposed heteroskedasticity robust skewness tests are implemented. This has
an important implication for the testing procedure, as explained below.

When a practitioner employs the DF' wild bootstrap procedure for testing
omitted variables in heteroskedastic models, he may want to test the efficacy
of this procedure by using the proposed skewness test before conducting the
omitted variable test. In that case, he should use the OLS residuals from the
regression model including all the potential regressors for proposed skewness
test.? After that, he may proceed to the omitted variable test in heteroskedastic
models together with DF wild bootstrap procedure, but he should use the
residuals of restricted models to obtain reliable test results, as Davidson and
Flachaire (2001) and Godfrey and Orme (2002) suggest.

4 Wild Bootstrap Procedure

Bootstrap methods can achieve asymptotic refinements over first order theory by
constructing the empirical distribution of the (test) statistic through re-sampling
from the null model assuming the original estimates define the “true” data gen-
erating process (DGP). However, under unknown heteroskedasticity, the con-
ventional (non-parametric) bootstrap does not work since it cannot mimic the
“true” DGP. To overcome this problem, the wild bootstrap is advocated by Wu
(1986) and further developed by Liu (1988) and Mammen (1993).1° Generally,
the wild bootstrap resamples the data as y; = X;B + u;*, where

up* = f(le)St, (8)

in which f(4;) is a transformation of the OLS residual i, and s; is an éid random
variable with E[s;] =0 and var[s;] = 1, drawn from a pick distribution. Under
fiy) = ty, Eluf*|ye, %] = @E[s;] = 0 and Var[u*|y;,x;] = @2E[s?] = 42,
and this suggests that the wild bootstrap can adequately mimic the unknown
heteroskedastic DGP in the sense of providing asymptotically valid inference.

A number of wild bootstrap procedures have been proposed. Liu (1988)
proposed a pick distribution

s; = di fi + Eldi|E[fi],

where d; and f; are independent, and
1 1
di ~ N (5 (\/17/6+\/1/6) ,5>
1 1
fi o~ N<§ (\/]7/ —\/]/6) 5)7

90f course, inclusion of too many irrelevant regressors will cause loss of power of the
proposed test.

10Freedman’s (1981) (y,X) bootstrap (“case resampling”), which is also asymptotically
justified under heteroskedasticity, is inferior performance to wild bootstrap, in general. See
the evidence in Davidson & Flachaire (2001) and discussion in Horowitz (2001).

11



s; satisfies E[s;] = 0 and var[s;] = 1, which is called pick distribution.
Mammen (1993) proposed the following two pick distribution, which satisfy
E[s;] =0, E[s?] =1, and E[s3] = 1. The first one, PD, is

(= (V5 =1) /2 with probability (v5+1) /25
= { (\/5 + 1) /2 , otherwise ’

and the second one, PDs is

si= (9:/V2) + (nE=1) /2,

where g; and h; are TND(0,1).
Recently Davidson and Flachaire (2001) proposed the wild bootstrap, called
DF wild bootstrap, which uses f(#;) = || and a pick distribution where

1 with probability 0.5
S =
7 =1 with probability 0.5.

Clearly this satisfies E[s;] = 0, var[s;] = 1, and E[s3] = 0.

Confining our interest to testing for skewness under heteroskedasticity, this
bootstrap DGP can impose the null hypothesis of symmetry, since E[u;*3|y;, x;] =
@3 E[s3] = 0. Thus this bootstrap method is suitable for our test. It is also of
relevance in the context of the original proposal by Davidson and Flachaire
(2001). They analysed the wild bootstrap refinement, when applied to the ¢-
test based on the Heteroskedasticity Consistent Covariance Matrix Estimator
(HCCME), analytically using Edgeworth expansion.!! Tt was shown that the
wild bootstrap, in general, does not possess the full asymptotic refinements that
the standard bootstrap procedure enjoys in the id case. Generally the error in
rejection probability of the wild bootstrapped t-test statistic is at most O, (n’%)
which is the same order as that of asymptotic test statistic.!?

However, as Davidson and MacKinnon (1999) demonstrated more generally,
if the test statistic and bootstrap DGP are asymptotically independent, the fur-
ther refinement is available. Tn particular, if the error terms have distributions
that are symmetric about the mean of zero, all HCCME-based t-test statistics
are asymptotically independent of the DF' wild bootstrap DGP. According to
their analysis, the error in rejection probability becomes at most O, (n’g) To
show the conditions for asymptotic independence, Lemma 1 of Davidson and
Flachaire (2001) is reproduced here:

Lemma 1 A mean-zero random variable u which has zero probability mass on
the origin and the density of which is symmetric about the origin is the product
of two independent random variables: the absolute value |u| and the sign sgn(u).

Because of this lemma, under the null hypothesis, the test statistic is asymp-
totically independent of the absolute values |i;| of the residuals, and conse-
quently also of the DF' wild bootstrap DGP.

1 For more detail, see Davidson & Flachaire (2001), section 4 and the appendix.

12With asymmetric error, if Liu’s (1988) condition, E[s?] =1, is satisfied, the ERP becomes
at most Op (n™1). We do not consider this variant of wild bootstrap since it does not impose
the null hypothesis for the skewness test.
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Consider the alternative model to (1)
y=XB+zy+u,t=1,...,n (9)

with z is a (n x 1) regressor vector. The null hypothesis is v = 0. The estimated
alternative model by OLS is y = X8 + z¥ + @; with obvious notation. By the
standard regression theory,

qo= (Z,sz)71 z’Mxy
= v+ (z’MXz)71 z'Mxu.
Thus the asymptotic variance of 4 can be consistently estimated as
(z’MXz)72 z’Mx My z,

where 2 = diag(a%), based on the restricted residuals. Thus, under the null
hypothesis v =0

1/2

t=2'Mxy/ (z’MXQMXz) 4 N(0,1).

AsQisa diagonal matrix, z’Mx My z can be expressed as
n
> (Mxz); i
=1
with (Mxz), = m;z, where m; is the tth row of M x. Then, ¢ is asymptotically
equal to
Z?:l (MXz)t U

(S, vxnp?ad)

since Mxy = Mx@ = Mxu. Let us write u; = |u;|s;, where s; is the sign of
uz. Also let us write p; = (Mx2z), |us|. Then t is asymptotically equal to

Z?=1 DiSi
n 1/2°
()Y

By Lemma 1, the p; and the s; are independent. Thus, conditional on the p;,

T =

the s; are mutually independent and 7 AN (0,1). This asymptotic distribution
is independent of p; and so of |u|, therefore, t is asymptotically independent of
|u;| and DF wild bootstrap DGP.

The above proof illustrates the importance of the symmetry assumption
on the error terms for the refinement of the DF wild bootstrap, since if the
population error is skewed, the error in rejection probability reduces to the same
order of first order theory. Therefore, testing skewness under heteroskedastic
error is of great importance together with the DF wild bootstrap.

Also, observe from the lemma that their “symmetry” means the symmetry in
distribution of each u;. If we formulate the heteroskedastic error as u; = o(x;)ey,
the symmetry of ¢; implies that of u; = o(x;)e;. Therefore the efficacy of their
procedure depends on whether E[e?] = 0 or not, and using procedures for this
have been discussed previously.
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We are therefore interested in testing for skewness in a heteroskedastic
model. Since the null imposes symmetry, an obvious wild bootstrap scheme
is that of Davidson and Flachaire. We now address the question of whether
this wild bootstrap scheme is asymptotically independent of the skewness test
statistic, thereby providing an asymptotic refinement over first order asymptotic
theory.

We know from (3) that the GOh,, is asymptotically equal to

(i w)”

n-1 21;1 wt2

(10)

Now define
Qt=|ut|3 - 3q(2)M71Xt|Ut|7

+1,1fut>0
S = .
-1, ifu <0

¢: and s; are independent from the Lemma 1 of Davidson and Flachaire (2001)7
because s; and |u;| are independent if the distribution of each wu; is symmetric.
Then we can write

_ n 2 _ n 2
not (3o, we) _n (Ot @)
—1 n 2 —1 n 2 +0P(]) (]])
ol e Wy nl ) g 4

Thus, the asymptotic distribution of (10) conditional on the ¢; is chi-squared
with 1 degree of freedom, which is independent of the g, so of the |u;|. Therefore,
if the distribution of each u; is symmetric, the test statistic is asymptotically
independent of bootstrap DGP, and the error in rejection probability of the
bootstrapped heteroskedasticity robust skewness test has smaller order than
the asymptotic one.

Now consider the modified test statistics, GOh,-R and GOh,-W . Define a
(n x r) matrix T

T=|U®w - 3ju|YpP, U w

where |U|(j) = diag(|ug|),j =1,3. Also define A, whose typical row is a (1 x7)
vector

ay=|u|*p(x;)".

Tt can be shown that
a®eV wa® = s A(T'T) 1A's +0,(1).

Thus, the asymptotic distribution conditional on A and T is chi-squared with
r degrees of freedom, which is independent of A and T, so of |u|. Therefore,
if the distribution of each u; is symmetric, the test statistic is asymptotically
independent of bootstrap DGP.

4.0.1 Fast Double Bootstrap

As stated above, it is known that the test for skewness (or kurtosis) is severely
undersized even in large samples under homoskedasticity. For example, Table 2
of Jarque and Bera (1987) shows that the estimated actual 5% and 10% critical
values for their normality test (using 10,000 replications) with n = 100, are
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4.29 and 3.14, respectively. These values correspond to 11.7% and 20.8% sig-
nificance levels using X2(2) distribution. Even with n = 500, these are 4.82 and
3.91, which correspond to 9.0% and 14.2% significance levels. Thus, it is conjec-
tured that the actual rejection probabilities based on finite sample asymptotic
distribution of the proposed heteroskedasticity robust skewness test statistic
may not be in good agreement with those predicted by asymptotic theory. One
possible reason is that for test for skewness, up to sixth moment of the error
term to be estimated, and the estimation of such higher order moments by using
the sample counterpart can be very inefficient with finite sample (see Chesher
and Spady (1991)).

The use of double bootstrap is of some interest, because its error in rejec-
tion probability is smaller order than that of single bootstrap (see Chapter 2 for
more detailed discussion). The asymptotic independence of the test statistic and
the bootstrap DGP also justifies the use of the fast double bootstrap method,
proposed by Davidson and MacKinnon (2000). Tn general, the full double boot-
strap, which is suggested by Beran (1988) in order to obtain further refinement,
increases the computational cost drastically. For example, if we generate 499
first stage bootstrap samples and generate 99 second level bootstrap samples,
it is necessary to compute 1+ 499 + 99 x 499 = 49901 test statistics.!® As the
single bootstrap only requires computation of 1 + 499 = 500 test statistics, it
is a large computational burden. However, the fast double bootstrap requires
only 14 499 x 2 = 999 test statistics. Also the error in rejection probability
of fast double bootstrap has smaller order than the single bootstrap, given the
asymptotic independence of the test statistic and bootstrap DGP.

The above discussion suggests that under the null of symmetric errors, the
DF wild bootstrap and fast double bootstrap may exhibit better finite sample
behaviour than that of the asymptotic test. Tn the next section, we investigate
the finite sample behaviour of those tests.

4.1 Monte Carlo Design

To investigate the finite sample behaviour of the proposed skewness tests, size
and power, the following Monte Carlo study was implemented.'* The model is

k
ytzﬁl—}—Zﬁij—l—ut,t:1,...,n. (12)
i=2

with & = 3,4,6. The set of the regressors with & = 6 is taken from Godfrey
(1998) set 2: s is drawn from a uniform distribution with parameters 1 and
31; z43 is drawn from a log-normal distribution with in(x¢3) ~ N(3,1). z4, 25,
and x4 are serially correlated such that

Tig = 0.9$t4 + Vg
Tz = 0.637155 + Vi
e = 0.3T¢6 + Vs,

13We can reduce the number of bootstrap sampling substantially by adapting the stoppage
rule advocated by Nankervis (2001), however, the fast double bootstrap still seems much
cheaper.

14 All computations were performed using Gauss 3.2.52 on UNIX (Aptech Systems Inc.,
1999).
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Table 1: Coefficient of variation of the error variances
n || HET1 | HET2 | HET3
50 0.795 0.796 0.804
3 &0 0.792 0.778 0.806
100 0.791 0.822 0.883
50 0.795 0.796 0.802
4 &0 0.792 0.778 0.811
100 0.791 0.822 0.885
50 0.795 0.796 0.808
5 &0 0.792 0.778 0.799
100 0.791 0.822 0.880

with vy being independently, normally distributed such that E[z;] = 0 and
var(zy] = 1, for 1 = 4,5,6. All coefficients are set to 1, namely, 3, = 1,
j =1,...,k, without loss of generality.'> The number of the observations were
set to n = 50, 80, and 100.

As explained before, generally the population error can be written as

Uy = O€y,

where o, is the non-stochastic scaling factor and ¢; is an #id(0,1) random vari-
able. Under homoskedasticity, we set 0; = 1 without loss of generality, since the
invariant results of Breusch (1980) apply. We closely follow the heteroskedastic
schemes of Godfrey and Orme (2002). Three distinct heteroskedastic schemes
are investigated; the first scheme, called HET'1, is

O¢ = (] —dt)—’—(sdt,
0,t=1,..,n/2
d — ) PREER]
¢ {1715:1,...,71,

which is used by MacKinnon and White (1985), for § = 2.9. The second het-
eroskedastic scheme, H K12, is

where v, = 0.0000775 and 7y, = 2v,, I = 2,...,6. The final heteroskedastic
scheme, HE'T'3, is

k
Utzexp )\ /61+26]th s t:],...,n,
j=2

for A = 0.0054. The values of 8, 4, and A are chosen such that the coefficient of
variation of the error variance be about 0.8 with n = 50 and k& = 3. These values
are fixed for all designs, thus the coeflicient of variation of the error variance
slightly varies across the designs; see Table 1.

For estimating the actual size of the test, ¢; is drawn from four symmetric
distributions; the standard normal distribution, SIV; the student’s ¢ distribution

15Note that for RESET type tests, 3 should not be 0, since if 3 = 0, then the test variable
x'3 converges to zero.

16



with 7 degrees of freedom, ¢(7); the uniform distribution from —1 to 1, UN;
and the bimodal mixture normal which drawn from N(—1.5,1) and N(1.5,1)
with probability 0.5, M N. For estimating the power of the tests under various
#id errors, €; is drawn from three different asymmetric distributions; the log-
normal distribution In(N(0, 1)), LN; the chi-square distribution with 2 degrees
of freedom x2(2); and with 8 degrees of freedom, x2(8). All of these errors are
standardised.

We used 5000 replications and 499 bootstrap samples to estimate the rejec-
tion probabilities of the test. Following Godfrey and Orme (2002), we adopted
the following measure for assessing how close the finite sample significance levels
are to the nominal value. Suppose that the sample rejection rate is «,, which
satisfies H,, : ay, < a, < ay, where 0 < o < ay <1 and ay — ay, is assumed
to be O(1), and oy + ar, = 2a, « is the nominal size. The asymptotic signifi-
cance level of the test H, is set to 5% here. Then we reject H,, if the estimated
size is outside of the interval

1— 1—
(aL _ 1.645-\/w,a[]+1.645\/w>

as R — oo, where R(= 5000) is the number of replication.’® Tn the experiments,
the rejection probabilities is estimated for the nominal levels of 1%, 5%, and
10%. Here, the results for 5% and 10% levels are reported. If the evidence is
consistent with the claim that o« — 0.5 < o, < a4+ 0.5 (resp. a—10<a, <
a + 1.0), the estimated levels are regarded as “good” (resp. “satisfactory”).
We call the former confidence interval as +0.5% interval and the latter as 1%
interval. With 5% level, 0.5% and +1% intervals are (4.018%,6.030%) and
(3.544%, 6.552%), respectively, and with 10% level, +0.5% and +1% intervals
are (8.818%,11.213%) and (8.334%, 11.728%), respectively.

Furthermore, Chesher and Jewitt (1987) argued that if there are points of
high leverage, there can be big downward bias in the HCCME with finite sample.
But, if the “hat matrix”, Py = X(X'X) !X', is well balanced, by chance,
such bias does not occur. Thus, it is important that the set of regressors in
the experiment is not well balanced in order to investigate the finite sample
behaviour of the test statistic in general circumstances. Denoting the diagonal
elements of Py as h;, and the average of h; as h, following Belsley et al. (1980),
we call h; is a high leverage point if ht/ﬁ > 2. Tn our design, for n = 50, 80, 100
with all k£, we have at least 2,4,6 high leverage points respectively, and the
maximum ht/ﬁ are at least 2.39, 3.56, 3.13, respectively; see Table 2. We
did not use transformed OLS residuals 7, which are used in MacKinnon and
White (1985) and Davidson and Flachaire (2001), because in our preliminary
experiment, there was no compelling evidence that the use of, say, f(i) =
i/ (1 — x,(X'X) " !x;)| with n = 80 and k = 4 improves the behaviour of the
test.

To investigate the finite sample behaviour of the modified skewness tests
and the Whang’s test under the “potential inconsistency”, the following het-
eroskedastic scheme is used. The model is

yr =B+ Boxre +u, t=1,...,n.

16]t seems reasonable to treat rejection probability as being normally distributed with R =
5000.
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Table 2: Maximum leverage points and number of leverage points

k n M Maximum Leverage | Leverage Points
3 50 4.62 3
80 5.13 4

100 5.45 6

4 50 3.51 2
80 3.88 6

100 4.14 9

6 50 2.39 2
80 3.56 6

100 3.13 6

where x;2 is drawn from normal distribution mean zero and variance 10. All
coeflicients are set to 1, namely, 5, = 85 = 1 without loss of generality. The
heteroskedastic error is formulated as u; = 0sc;, and HET4 is set as

Oy = 0.81}2

so that E[o3e?|z] = 0, even when E[e3] # 0. We set n = 100 with 5000 replica-
tions, 199 bootstrap sample is used for single bootstrap, and 199 first bootstrap
and 99 second bootstrap sample are used for double bootstrap. Homoskedastic
errors, and HET'1, 3, and 4 are considered.’”

4.2 Simulation Results

First of all, we compare the finite sample behaviour of JB,, GO,,, GOh,,, and
the DF wild bootstrapped GOh,, and fast double bootstrapped GOh,, are
compared.

4,2.1 Size

Under Homoskedasticity Table 3~5 gives the results for the estimated size
of the tests. Even under the ideal conditions for JB,, with homoskedastic nor-
mal errors with n = 100, tends to be undersized with all &, as illustrated above.
Under nonnormal errors, JB,, severely overrejects with ¢(7) and is undersized
with UN errors for all designs which is consistent to the analysis in the previous
section. Table 6 gives the number of times in groups of 3 experiments that the re-
jection frequencies are consistent with the claim that the true significance level
is within 0.5% (1.0%) of nominal levels of 5% and 10%, under homoskedas-
ticity. As can be seen, GO,, which is asymptotically valid under nonnormal
homoskedastic errors, gives just 16 out of 72 experiments being “good” and 38
being “satisfactory”. GOh,, has better performance, giving 35 out of 72 experi-
ments being “good” and 49 being “satisfactory”. In contrast to these asymptotic
critical values, the DF' wild bootstrap of GOh,, can successfully control the size.
63 out of 72 experiments are “good” and 68 are “satisfactory”. Furthermore,
for N = 80 and 100, all 48 experiments are “good”.

17 As the HET?2 and HET3 exhibited very similar effect on the behaviour of the proposed
skewness test, HET?2 is omitted from the investigation for the modified tests and Whang’s
test.
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Table 3: E§t5ignated size of the tests: kff03

I n — 100

Homo HET1 HET2 HET3 |Homo HET1 HET2 HET3 |Homo HET1 HET2 HET3

JB,, asy|| 0.54°%% 872 3.14 3.26 0.60 ** 12.74 5.66 6.02 0.76 ** 13.52 8.52 9.64
GO, asy|| 022 * 080** 0.10 * 010 * 0.48** 0.86** 008 * 0.10 * 044 ** 072** 006 * 004 *
1% GOhy asy|| 0.36** 1,16 ** 0,26 * 0.28 * 0.48 ** 1,14 ** 0.48 **  0.34 **| 0.56 ** 1,08 **  0.40 ** 0,36 **
GOhy bts|| 1.32 %% 2,16 * 1.46** 1,52 %% 1.26 ** 1,48 ** 1,26 **  1.40 **[ 1,04 ** 1.44 *¥* 1,22 ** 1,18 **
GOhp 2bts|| 1.64 ** 2,70 2.08 * 2,14 * 1.28 ** 1.54 ** 1.46 ** 1.52 **¥ 1.02 ** 1.54 **  1.68 **  1.48 **

JBy asy|| 3.02 18.20 8.04 8.18 3.38 23.62 12.50 13.12 3.74 * 25.14 16.36 16.02

GO, asy|| 3.56 5.74 ** 2,38 2.28 3.04 * 5.60** 2,00 1.88 3.04 * 5.62** 140 1.18
SN 5% GOhyp asy|| 4.46**  7.14 3.86 * 3.74 * 4.34** 6.68 5.00 ** 5,10 ** 4.48 **  6.62 3.00 * 4,02 **
GOhy bts|| 6.46 * 7.40 7.08 6.76 5.50 ** .28 6.26 * 6.44 *| 5.42 ** 570 ** 542 **¥ 548 **
GOhy 2bts|| 6.42 *  7.42 7.98 8.04 5.64 ** 6.00 ** 8.16 * 6.58 5.50 ** 5.62 ** 5.78 ¥*  5.40 **

JBy, asy|| 6.36 27.02 12.60 13.18 7.18 31.06 17.98 19.12 7.68 33.76 22.34 23.16

GO, asy|| 9.16** 12.88 6.42 6.50 0.46 ** 12.62 5.80 5.18 0.68 ** 11.84 4.26 3.98
10% GOhy asy|| 10.28 ** 15.26 9.54 ** 0,08 ** 10.22 ** 13.94 11.44 * 10.96 **| 10.34 ** 13.00 11.26 * 11.18 **
GOhy bts|| 11.22 * 12.28 12.18 11.94 10.50 ** 11,32 12.26 12.10 10.34 ** 10.38 ** 10.50 ** 10.46 **
GOhp 2bts|| 11.42 * 12,34 13.08 12.84 10.78 *¥* 11.12 ** 11.84 11.78 10.54 ** 10.38 ¥* 10.52 ** 10.64 **

JBy asy|| 8.52 23.44 10.92 11.06 12.96 30.16 17.50 17.80 14.46 33.42 21.26 21.06
GO, asy|| 0.28 * 066** 024 * 020 * 0.36%* 046** 012 * 010 * 014 * o024 * 012 * 010 *
1% GOhy asy|| 0.34** 1,04 ** 0,62 **  0.42 ** 0.48 ** 0,00 **  0.54 **  0.48 **| 0.34 ** 0,40 **  0.48 ** 0,40 **
GOhy bts|| 1.44 ** 2,68 2.30 * 2,20 ¥ 1.28*% 1,02 * 1.70** 1.68 **¥ 1.18 ** 1.16 ** 1.44 *¥* 1,30 **
GOhy 2bts|| 2.02 * 3.58 3.08 3.10 1.60 **  1.08 * 1.76 ** 1.78 **[ 1.34 ** 1.42 *¥* 1.66 ** 1.68 **

JBy, asy|| 16.40 35.04 10.56 20.00 21.30 42,56 26.02 27.74 24.50 14.82 31.76 33.36

GO, asy|| 3.18 5.52 ** 2,64 2.58 3.58 * 4.24 ** 2,32 1.02 3.56 * 412 ** 1.04 1.64
t(7) 5% GOh, asy|| 4.36** 7.08 4.80 ** 4,54 ** 4,40 ** 572 ** 6,02 ** 500 ** 4,14 ** 518 ** 4,74 ** 4,02 **
GOhp bts|| 6.20 * 830 7.98 8.00 5.66 **  6.18 * 6.84 7.02 5.20 ** 5,10 **  5.76 ** 5,02 **
GOhp 2bts|| 6.54 * 0.04 8.48 8.72 5.78 ¥* 822 * 8.46 * 6.76 5.10 ** 4,04 ** 5,70 ** .28 *

JBp asy|| 22.28 1414 26.38 27.10 28.54 10.78 34.02 34.52 31.54 50.68 30.56 41.32

GOpn asy|| 90.04** 1282 7.40 7.14 8.72 * 10.38 **  6.58 6.40 8.72 * 0,08 ** 532 4.98

10% GOhp asy|| 11.36 * 16.36 11.54 * 11.10 ** 10.14 ** 12.72 12.90 12.72 10.10 ** 11.70 * 12.98 13.08
GOhp bts|| 11.18 ** 13.50 13.20 12.88 10.42 ** 11.26 * 12.28 12.28 0.88 ** 10.44 ** 10.70 ** 10.78 **
GOhp 2bts|| 11.62 * 13.62 14.02 14.02 10.72 ** 11.04 ** 11.58 * 11.78 0.82 ** 10.44 ** 10.66 ** 10.68 **
JBp asy|| 0.00 * 002 * 042 ** 044 *% 0.00 * 0.04 * 0.82** 0098 *¥ 0.00 * 0.04 * 1.24 ** 1.50 **
GOpn asy|| 0.64** 070 ** 0.20 * 0.20 * 0.68** 0.86** 014 * 0.20 * 088 ** 056** 014 * 012 *
1% GOhy asy|| 0.92** 074 ** 022 * 0.24 * 0.80** 0.76** 0.40** 0.38 ** 1.00** 0.62** 022 * 028 *
GOhy bts|| 1.74**  1.268 ¥* 1,08 ** 1,24 **% 1.42 ** 1,16 ** 1,20 ** 1,32 **[ 1,38 ** 0.80 **  1.38 ** 1,28 **
GOhp 2bts|| 1.64 **  1.30 ¥*  1.44 *%¥ 1,62 **% 1.48 ** 1,22 ** 1,48 ** 1.62 **| 140 ** 0.78 ¥* 1.66 ** 1,58 **
JB, asy|| 0.14 0.56 2.00 2.24 0.08 0.46 3.40 3.84 *| 0.06 0.28 450 **  5.56 *F

GO, asy|| 3.50 4.02 ** 1,74 1.90 4.04 ¥* 522 ** 1,82 2.04 4.34 ** 3,76 * 1.28 1.42

UN 5% GOhy asy|| 3.96 * 4,02 ** 3,02 3.22 4.30 ** 454 ** 3,24 3.32 4.70 **  3.86 * 2,76 2.88
GOhy bts|| 5.88** 5.38 ** 554 ** 572 %% 548 ** 504 ** 512 %% 544 ** 576 ** 4,06 ¥* 504 ** 514 **
GOhy 2bts|| 6.10 * 5.80 ** 6.12 * 6.60 5.64 ¥* 5,40 ** 5,40 ** 5.78 **| 5.86 ** 4,32 ** 5.58 **  5.46 **
JBy,, asy|| 0.56 1.90 4.62 5.08 0.52 1.50 6.56 7.60 0.52 1.04 878 * 10.14 **

GO, asy|| 7.38 10.82 **  5.28 5.90 8.70 * 10.50 **  4.84 5.36 0.60 ** 872 * 4.10 4.44

10% GOhy, asy|| 8.42 * 10.36 ** 652 6.90 9.10 ** 046 ** 7.56 7.90 0.88 ** 8,08 ** .04 7.48
GOh,, bts|| 10.30 ** 10.02 ** 10.44 ** 10.64 **| 10.46 ** 0,08 ** 0,84 ** 10.16 **| 11,10 ** 0.30 ** 0.24 ** 0,80 **
GOhy, 2bts|| 10.70 ** 10.44 ** 11.72 * 12.00 10.90 ** 10.36 ** 10.22 ** 10.40 **| 11.12 ** 0,76 ** 10.00 ** 10.18 **

JBy asy|| 0.00 * 0.68 ** 0.60 ** 0.66 *¥| 0.00 * 0.80 ** 1.60 ** 1.68 **| 0.00 * 0.78 ** 2.56 3.24
GOy asy|| 0.22 * 048 ** 014 * 016 * 0.64** 0.82** 026 * 0.22 * 054 ** 062*" 018 * 016 *
1% GOhy asy|| 0.42 **  0.52 ** 0,24 *  0.26 * 0.86 ** 0.84 ** 0.42 **  0.42 **| 0.62 ** 0.78 **  0.36 ** 0,38 **
GOhy bts|| 1.36**  1.68 ** 1,00 ** 1,10 ** 1.60 ** 1,38 ** 1,40 ** 1.46 **| 1,16 ** 1.10 ** 1,22 ** 1,24 **
GOhp 2bts|| 1.44 **  1.78 ¥* 1,40 ** 1,58 ** 1.60 **  1.46 ** 1,54 ** 1.58 **| 1,20 ** 1.34 ¥*  1.62 **  1.48 **

JBy asy|| 0.22 3.18 312 3.28 0.38 1,02 ** 5.20 ** 6.08 *| 0.20 1.22 **  7.40 5.48

GOy asy|| 2.52 4.64 ** 1,68 1.90 3.86 * 4.68 ** 1.84 1.86 3.78 *  4.76 **  1.486 1.50

MN 5% GOhy, asy|| 3.26 4.08 ** 2,50 2.60 4.28 ** 5,06 ** 364 * 3.74 * 3,06 * 512** 200 3.32
GOhy bts|| 5.26** 576 ** 516 ** 544 ** 5.54 ** 508 ** 4,04 ** 522 **[ 4,86 ** 5.04 ¥* 476 ** 522 **
GOhy, 2bts|| 5.46 **  6.10 * 5.76** 6.38 * 5.74 ** 5,10 ** 5,04 ** 5.28 **| 4,78 ** 5.18 ¥* 5,10 ** 5,36 **

JBy asy|| 0.88 6.86 5.06 6.42 1.34 844 * 0.40 ** 10.20 **| 1.08 8.50 * 12.16 13.50

GO, asy|| 7.24 10.48 **  4.84 5.38 8.76 * 11.04 ** 5,12 5.26 7.82 10.26 ** 4,22 4.24

10% GOhy asy|| 8.04 10.72 **  6.00 7.00 0.22 ** 11.02 **  7.86 7.86 8.46 * 10.92 **  7.70 8.30
GOhy bts|| 9.96 ** 10.28 ** 10.20 ** 10.28 ** 10.70 ** 0,04 ** 0,58 ** 0.06 **| 0,52 ** 10.06 ** 0,18 ** 0,32 **
GOhp 2bts|| 10.26 ** 10.74 ** 11.30 * 11.46 * 10.70 ** 10.06 ** 0.66 ** 0.08 **| 0,74 ** 10.36 **  0.46 ** 0,88 **

Note:

Homo denotes homoskedastic errors; H ET1,2,3 denotes

heteroskedastic schemes explained section 4.1.

asy denotes asymptotic critical value; bts denotes single DF wild bootstrap; 2bts denotes Davidson & MacKinnon’s fast double bootstrap.
* denotes that the estimate is consistent with the true significance level being between -1% and +1% from its nominal level.
** denotes that the estimate is consistent with the true significance level being between -0.5 % and +0.5 % from its nominal level.
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Table 4: Estimated size of the tests: k=4
|\H n — 50 n — 80 n — 100

omo HET1 HET?2 HET3 Homo HETI1 HET2 HET3 Homo HETI1 HET2 HET3

JBpn asy 0.42 ** 6.58 2.60 2.80 0.48 ** 10.36 5.24 5.70 0.66 ** 11.50 7.82 8.84

GOpn asy 0.18 * 0.40 ** 0.10 * 0.12 % 0.42 ** 0.60 ** 0.06 * 0.08 * 0.42 ** 0.56 ** 0.06 * 0.02

1% GOhp asy 0.42 ** 0.74 ** 0.28 * 0.28 * 0.44 ** 0.02 ** 0.48 ** 0.40 ** 0.66 ** 1.08 ** 0.40 ** 0.36
GOhp bts 1.24 ** 1.88 * 1.38 ** 1.26 ** 1.04 ** 1.04 * 1.10 ** 1.20 ** 1.12 ** 1.70 ** 1.16 ** 1.12
GOhp 2bts 1.52 ** 2.38 1.80 * 1.88 * 1.26 ** 1.88 * 1.54 ** 1.56 ** 0.98 ** 1.68 ** 1.54 ** 1.48

J B, asy 2.20 14.66 6.92 7.10 3.20 20.76 12.22 12.88 3.50 22.94 15.34 16.22

GO, asy 3.24 4.26 ** 2.10 2.16 3.00 * 4.50 ** 1.92 1.86 4.08 ** 4.46 ** 1.38 1.20

SN 5% GOhy asy 4.28 ** 6.34 * 4.02 ** 4.00 *  4.64 ** 6.76 5.00 ** 5.02 ** 4,00 ** 6.22 * 4.34 ** 4.38
GOhy  bts 6.14 * 6.86 6.40 * 6.14 * 5.50 ** 6.18 * 6.24 * 6.28 * 5.60 ** 5.66 ** 5.54 ** 5.58
GOhp 2bts 6.26 * 7.30 7.12 7.18 5.76 ** 6.16 * 6.12 * 6.42 * 5.70 ** 5.34 ** 5.04 ** 5.66

J By asy 5.32 22.10 11.26 ¥ 11.58 * 6.88 28.46 17.28 18.16 7.32 31.12 21.58 22.18

GOy asy 8.66 * 0.78 ** 6.14 6.22 9.58 ** 10.24 ** 5.90 5.28 0.88 ** 10,42 ** 4.34 4.02

10% GOhy asy|| 10.14 ** 13,00 9.50 ** 9.12 ** 11.06 ** 13.52 11.70 * 11.42 *| 10.62 ** 12.06 12.04 11.78
GOhy  bts|| 11.00 ** 12.40 11.78 11.76 11.16 ** 11.38 * 12.16 12.20 10.40 ** 10.24 ** 10.96 ** 10.60
GOhpn 2bts|| 11.26 * 12.56 12.88 12.98 11.22 * 11.32 * 11.68 * 11.78 10.54 ** 10.38 ** 10.68 ** 10.56
JBp asy 7.34 20.04 9.42 9.78 12.08 27.08 16.78 17.14 13.82 30.64 20.72 21.50

GOy asy 0.34 ** 0.42 ** 0.28 * 0.22 * 0.34 ** 0.30 * 0.08 0.14 0.16 * 0.32 * 0.12 * 0.10

1% GOhp asy 0.54 ** 1.20 ** 0.78 ** 0.64 ** 0.52 ** 0.62 ** 0.58 ** 0.58 ** 0.34 ** 0.64 ** 0.46 ** 0.42
GOhy  bts 1.60 ** 2.88 2.24 * 2.32 ¥ 1.32 ** 1.88 * 1.98 1.96 1.08 ** 1.24 ** 1.46 ** 1.48
GOhyp 2bts 2.38 4.16 2.98 3.08 1.46 ** 2.18 * 2.02 * 1.08 * 1.30 ** 1.48 ** 1.66 ** 1.76
JByp asy|| 14.36 31.70 17.76 18.50 20.20 38.84 26.08 27.00 23.40 42.30 31.06 32.38

GOy asy 3.36 4.32 ** 2.74 2.58 3.66 * 3.02 2.24 2.06 3.72 * 3.28 1.92 1.62

t(7) 5% GOhp asy 5.56 ** 7.84 5.56 ** 5.20 **  4.84 ** 5.54 ** 6.64 6.50 *[ 4.62 ** 5.34 ** 5.18 ** 5.54
GOhy  bts 6.62 9.40 8.04 8.20 5.64 ** 6.30 * 7.08 7.24 5.26 ** 5.32 ** 5.76 ** 5.86
GOhy 2bts 7.00 9.74 8.92 8.92 5.68 ** B8.72 6.78 6.84 5.20 ** 5.44 ** 6.02 ** 6.24
JBy asy|| 20.92 40.18 24.84 25.10 27.32 46.82 32.92 33.60 30.52 48.68 38.76 40.64

GOy asy 0.12 ** 10.70 ** 7.18 7.08 8.74 * 8.64 * 6.42 6.26 8.44 * 8.68 * 5.46 5.08

10% GOhy  asy|| 13.56 17.10 13.28 12.64 11.48 * 13.72 13.56 13.34 10.94 ** 12,24 14.16 14.50
GOhy  bts|| 11.90 14.80 13.82 13.52 10.52 ** 11.64 * 12.18 12.28 0.06 ** 10.34 ** 10.76 ** 10.96
GOhp 2bts|| 11.60 * 14.62 14.28 14.14 10.66 ** 11.58 * 11.76 11.76 0.02 ** 10.16 ** 10.96 ** 10.76
JB,, asy 0.00 * 0.04 * 0.30 * 0.36 ** 0.00 * 0.02 * 0.78 ** 0.04 ** 0.00 * 0.04 * 1.02 ** 1.30

GO, asy 0.48 ** 0.44 ** 0.16 * 0.20 * 0.72 ** 0.68 ** 0.16 * 0.16 * 0.82 ** 0.84 ** 0.14 * 0.14

1% GOhp asy 0.76 ** 0.28 * 0.24 * 0.24 * 0.72 ** 0.40 ** 0.38 ** 0.32 * 0.86 ** 0.52 ** 0.20 * 0.28
GOhy  bts 1.46 ** 1.04 ** 0.88 ** 0.98 ** 1.24 ** 0.82 ** 1.14 ** 1.32 ** 1.28 ** 0.90 ** 1.08 ** 1.20
GOhp 2bts 1.48 ** 1.02 ** 1.22 ** 1.42 ** 1.38 ** 1.00 ** 1.32 ** 1.50 ** 1.42 ** 1.06 ** 1.50 ** 1.46
JBp asy 0.14 0.74 1.66 1.84 0.08 0.52 3.42 3.72 *F 0.04 0.48 4.00 * 5.28

GOy asy 2.84 4.50 ** 1.34 1.54 3.46 5.44 ** 1.58 1.82 3.92 * 5.18 ** 1.32 1.46

UN 5% GOhy, asy 3.28 3.46 2.66 2.68 3.66 * 3.82 * 3.28 3.36 4.20 ** 3.80 * 2.86 3.00
GOhy  bts 5.30 ** 4.96 ** 5.08 ** 5.32 ** 5.26 ** 4.88 ** 5.00 ** 5.56 ** 5.76 ** 4.28 ** 4.64 ** 5.22
GOhp 2bts 5.66 ** 5.32 ** 5.84 ** 6.16 *| 5.34 ** 5.14 ** 5.12 ** 5.72 ** 5.88 ** 4.26 ** 5.18 ** 5.38
JBpn asy 0.42 2.18 4.14 4.32 0.54 2.08 6.40 7.40 0.42 1.90 8.24 9.40

GOy asy 6.48 10.86 ** 4.74 5.24 7.94 11.60 * 4.92 5.20 8.80 * 10.70 ** 4.00 4.48

10% GOhy  asy 7.16 8.56 * 6.10 6.48 8.20 8.42 * 7.34 7.66 0.18 ** 8.10 6.98 7.50
GOhy  bts 0.58 ** 0.02 ** 9.50 ** 90.58 ** 10.34 ** 0.74 ** 10.04 ** 10.24 ** 10.68 ** 8.74 * 0.24 ** 9.72
GOhp 2bts|| 10.12 ** 10.52 ** 10.86 ** 10.84 ** 10.66 ** 10.18 ** 10.48 ** 10.62 **| 10.02 ** 0.28 ** 0.78 ** 9.68
JByp asy 0.00 * 0.52 ** 0.54 ** 0.54 ** 0.00 * 0.80 ** 1.42 ** 1.62 ** 0.00 * 0.66 ** 2.28 * 2.96

GOy asy 0.36 ** 0.38 ** 0.12 * 0.10 * 0.50 ** 0.50 ** 0.22 * 0.20 * 0.42 ** 0.54 ** 0.18 * 0.16

1% GOhy  asy 0.46 ** 0.26 * 0.24 * 0.24 * 0.58 ** 0.52 ** 0.30 * 0.34 ** 0.52 ** 0.44 ** 0.40 ** 0.44
GOh,  bts 1.44 ** 1.34 ** 1.06 ** 1.08 ** 1.32 ** 1.18 ** 1.26 ** 1.34 ** 1.06 ** 0.92 ** 0.96 ** 1.04
GOhy, 2bts 1.48 ** 1.50 ** 1.36 ** 1.40 ** 1.52 ** 1.28 ** 1.30 ** 1.38 ** 1.22 ** 0.02 ** 1.14 ** 1.32
JBpn asy 0.22 2.64 2.84 2.90 0.26 3.70 ¥ 4.72 FF 5.56 *F 0.18 3.02 *F 6.84 7.86

GOpn asy 2.44 3.82 * 1.58 1.78 3.50 4.36 ** 1.86 1.84 3.62 * 4.62 ** 1.48 1.58

MN 5% GOhyp asy 3.20 3.64 * 2.84 2.92 3.82 * 3.08 * 3.24 3.38 3.92 * 4.38 ** 2.96 3.32
GOhp bts 4.08 ** 5.28 ** 4.64 ** 5.18 ** 5.36 ** 5.00 ** 4.96 ** 5.24 ** 5.02 ** 4.82 ** 4.88 ** 5.10
GOhp 2bts 5.08 ** 5.34 ** 5.60 ** 5.04 ** 5.44 ** 5.22 ** 5.02 ** 5.28 ** 5.12 ** 5.22 ** 4.72 ** 5.02
JBpn asy 0.94 5.50 5.56 5.78 1.14 7.40 0.08 ** 0.88 **¥ 0.98 8.32 10.98 ** 12,50

GOpn asy 6.36 8.06 ** 4.72 5.02 8.16 10.26 ** 4.78 5.06 7.82 10.60 ** 4.38 4.36

10% GOhy, asy 7.60 9.22 ** 6.66 6.88 8.84 ** 0.64 ** 7.66 7.84 8.50 * 9.90 ** 7.82 8.34
GOhp bts 0.84 ** 0.04 ** 9.54 ** 9.72 ** 10.10 ** 10.14 ** 9.60 ** 10.04 ** 9.68 ** 10.04 ** 0.26 ** 9.40
GOhy 2bts 0.92 ** 10.62 ** 10.64 ** 10.88 **| 10.22 ** 10.40 ** 9.72 **  10.14 ** 0.00 ** 10.10 ** 0.32 ** 9.62

Note:
Homo denotes homoskedastic errors; H BT1,2,3 denotes heteroskedastic schemes explained section 4.1.

asy denotes asymptotic critical value; bts denotes single DF wild bootstrap; 2bts denotes Davidson & MacKinnon’s fast double bootstrap.
* denotes that the estimate is consistent with the true significance level being between -1% and +1% from its nominal level.

** denotes that the estimate is consistent with the true significance level being between -0.5 % and +0.5 % from its nominal level.
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Table 5: Estimated size of the tests: £k =6
I n — 50 n — 80 n — 100

|Homo HETI1 HET?2 HET3 Homo HETI1 HET?2 HET3 Homo HETI1 HET?2 HET3

JBp asy 0.34 ** 4.56 1.82 * 1.90 * 0.38 ** 8.44 3.70 4.14 0.70 ** 0.78 7.12 7.70
GOp asy 0.24 * 0.52 ** 0.08 * 0.10 * 0.44 ** 0.50 ** 0.18 * 0.16 * 0.44 ** 0.44 ** 0.06 * 0.04 *
1% GOhy, asy 0.46 ** 1.36 ** 0.44 ** 0.46 ** 0.54 ** 1.16 ** 0.86 ** 0.80 ** 0.66 ** 0.82 ** 0.36 ** 0.38 **
GOhy bts 1.18 ** 2.24 * 1.26 ** 1.28 ** 1.34 ** 1.80 * 1.46 ** 1.54 ** 1.12 ** 1.64 ** 1.14 ** 1.08 **
GOhyp 2bts 1.28 ** 2.56 1.74 ** 1.74 ** 1.56 ** 1.74 ** 1.46 ** 1.56 ** 1.10 ** 1.82 * 1.48 ** 1.48 **

J By, asy 1.62 12.40 5.34 FF .28 ¥ 2.48 18.70 9.56 9.94 3.10 19.92 14.68 15.02

GO, asy 2.84 4.54 ** 1.90 1.92 3.72 * 5.04 ** 2.28 2.14 4.04 ** 3.06 * 1.52 1.42
SN 5% GOh, asy 4.50 ** 8.18 4.14 ** 4.00 * 5.16 ** 7.70 6.08 * 6.00 ** 5.32 ** 6.52 * 5.26 ** 5.32 **
GOhy  bts 5.84 ** 7.32 6.10 * 6.00 ** 5.64 ** 6.40 * 6.54 * 6.66 5.66 ** B6.00 ** 5.20 ** 5.32 **
GOhqy, 2bts 5.74 ** 7.30 6.02 6.04 5,02 ** 6.40 * 6.34 * 6.68 5.78 ** 5,02 ** 5.64 ** 5.66 **

JByp asy 3.94 18.68 0.26 *F 0.88 ¥ 5.84 26.62 15.08 15.92 6.64 27.02 20.32 21.26

GOy asy 8.32 10.64 ** 5.90 5.62 0.04 ** 11.56 * 5.96 5.74 0.60 ** 0.14 ** 4.60 4.44

10% GOh,, asy|| 10.58 ** 17.00 10.12 ** 0.86 ** 11.40 * 16.12 12.54 11.04 11.66 * 13.66 12.36 12.28
GOhy  bts|| 10.64 ** 12,64 12.00 11.64 * 10.62 ** 11,70 * 12.30 11.80 10.00 ** 10.08 ** 10.72 ** 10.76 **
GOhy 2bts 10.92 ** 12,62 13.28 12.94 10.68 ** 11.40 * 12.22 12.30 10.80 ** 10.62 ** 10.72 ** 10.96 **

JBp asy 5.60 15.76 7.02 7.18 10.32 24.86 13.94 14.36 12.44 27.88 19.28 19.90
GOy asy 0.24 0.52 ** 0.22 * 0.22 * 0.32 * 0.40 ** 0.12 0.14 * 0.20 * 0.24 * 0.16 * 0.16 *
1% GOhy, asy 0.84 ** 1.94 * 0.96 ** 0.80 **| 0.68 ** 1.32 ** 1.18 ** 1.08 ** 0.60 ** 0.88 ** 0.72 ** 0.68 **
GOhy  bts 2.00 * 3.40 2.16 * 2.16 * 1.38 ** 2.06 * 2.14 * 2.10 * 1.10 ** 1.48 ** 1.48 ** 1.50 **
GOhy 2bts 2.10 * 3.84 2.66 2.50 1.70 ** 2.48 2.04 * 2.08 * 1.38 ** 1.72 ** 1.88 * 1.82 *

JBp asy 11.82 26.84 14.56 14.78 18.30 36.40 23.56 24.14 21.54 38.08 20.18 30.36

GOy asy 2.88 4.52 ** 2.64 2.62 3.54 3.68 * 2.30 2.18 3.40 2.64 2.12 1.78

t(7) 5% GOhyp asy 7.36 11.50 6.90 6.50 * 6.04 * 8.26 7.96 7.52 5.60 ** 8.72 6.96 7.22
GOhy  bts B6.78 10.00 8.06 8.04 5.86 ** 7.08 7.24 7.44 5.38 ** 6.08 * 5.74 ** 5.00 **
GOhy 2bts 6.78 0.00 8.32 8.44 5.86 ** 7.22 6.02 6.82 5.52 ** 6.20 * 5.02 ** 5.82 **

JBy asy|| 17.28 34.08 20.84 20.92 24.28 44.46 30.16 30.74 28.78 44.98 36.42 37.98

GO4  asy 0.30 ** 10.76 ** 7.14 7.12 0.38 ** 0.56 ** 7.10 6.46 8.78 * 7.86 5.62 5.28

10% GOh,, asy|| 15.72 22.34 14.90 15.08 13.44 16.80 15.90 15.54 13.54 14.76 16.38 16.62
GOhy  bts|| 12,12 16.08 13.78 13.72 11.02 ** 12,42 13.24 13.10 10.56 ** 11,12 ** 10.88 ** 11.02 **
GOhqy, 2bts|| 11.96 15.50 14.10 13.98 10.56 ** 11,04 12.42 12.20 10.32 ** 11,20 ** 10.82 ** 10,02 **
J B, asy 0.00 * 0.02 * 0.12 * 0.16 * 0.00 * 0.04 * 0.38 ** 0.46 ** 0.00 * 0.06 * 0.72 ** 1.02 **
GO, asy 0.26 * 0.22 * 0.10 * 0.04 * 0.44 ** 1.08 ** 0.28 * 0.26 * 0.42 ** 1.36 ** 0.10 * 0.08 *
1% GOhy, asy 0.50 ** 0.44 ** 0.30 * 0.32 * 0.52 ** 0.58 ** 0.34 ** 0.32 * 0.48 ** 0.46 ** 0.34 ** 0.36 **
GOhy  bts 1.24 ** 0.74 ** 0.82 ** 0.96 **| 0.98 ** 1.10 ** 0.76 ** 0.94 ** 0.98 ** 0.74 ** 1.00 ** 1.12 **
GOhy 2bts 1.28 ** 1.04 ** 1.08 ** 1.22 ** 1.02 ** 1.16 ** 0.98 ** 1.04 ** 1.20 ** 0.86 ** 1.12 ** 1.22 **
JBp asy 0.08 0.38 1.28 1.40 0.08 0.74 2.14 2.36 0.02 1.04 3.36 4.40 **

GOy asy 2.20 3.76 * 1.18 1.36 3.12 5.74 ** 1.70 1.82 3.32 7.18 1.12 1.28

UN 5% GOhy asy 3.02 3.42 2.22 2.26 3.48 3.58 * 3.16 3.34 3.22 3.90 * 2.54 2.66
GOhy  bts 4.74 ** 4.20 ** 4.32 ** 4.88 ** 4.06 ** 4.30 ** 4.28 ** 4.52 ** 5,22 ** 4.90 ** 4.32 ** 4.64 **
GOhp 2bts 5.02 ** 4.64 ** 5.24 ** 5,42 ** 5.16 ** 4.80 ** 4.66 ** 4,04 ** 5,70 ** 5.08 ** 4.86 ** 4,08 **

JBp asy 0.34 1.34 3.24 3.44 0.38 2.24 4.48 5.04 0.24 3.32 7.00 8.30

GOy asy 5.52 8.80 * 4.04 4.44 6.68 12.36 4.64 5.30 7.54 13.92 3.74 4.08

10% GOh,, asy 6.34 7.90 6.04 6.26 6.80 8.34 * 6.98 7.16 7.78 8.24 6.58 6.80

GOhy  bts 8.74 * 8.04 ** 8.82 ** 0.20 ** 0.00 ** 0.34 ** 0.20 ** O.58 **| 10.04 ** 0.52 ** 8.56 * 8.72
GOh4, 2bts 0.88 ** 0.76 ** 10,16 ** 10.62 **[ 10.44 ** 0,78 ** 0,54 ** 0.78 **| 10.54 ** 10.02 ** 0,16 ** 0,24 **

JBy asy 0.00 * 0.40 ** 0.18 * 0.26 * 0.00 * 0.70 ** 1.00 ** 1.10 ** 0.00 * 0.84 ** 2.02 * 2.54
GOy asy 0.04 * 0.22 * 0.00 * 0.00 * 0.38 ** 0.70 ** 0.16 * 0.18 * 0.32 * 0.44 ** 0.14 * 0.12 *
1% GOhy asy 0.20 * 0.42 ** 0.18 * 0.18 * 0.52 ** 0.70 ** 0.32 * 0.34 ** 0.46 ** 0.42 ** 0.30 * 0.38 **
GOh,  bts 0.90 ** 0.96 ** 0.68 ** 0.70 ** 1.08 ** 1.10 ** 0.92 ** 0.92 ** 1.04 ** 1.00 ** 0.84 ** 1.02 **
GOhy, 2bts 1.04 ** 1.20 ** 0.86 ** 0.90 **| 1.24 ** 1.28 ** 0.96 ** 1.00 ** 1.20 ** 0.904 ** 1.18 ** 1.34 **

JBp asy 0.10 1.80 1.84 1.82 0.22 3.48 3.62 * 4.02 ** 0.28 3.88 * 5.06 ** 7.18

GOp asy 1.96 3.56 * 1.24 1.44 3.10 4.84 ** 1.60 1.74 3.02 5.28 ** 1.28 1.44

MN 5% GOhyp asy 2.98 3.88 * 2.54 2.54 3.86 * 4,22 ** 3.60 * 3.48 3.46 4.30 ** 3.24 3.48
GOhy bts 4.82 ** 4.66 ** 4.10 ** 4.26 ** 5.26 ** 4.78 ** 4.74 ** 4,02 ** 4.52 ** 5.04 ** 4.46 ** 4.68 **
GOhy 2bts 4.84 ** 5.38 ** 4,06 ** 5.02 ** 5,34 ** 5,28 ** 4.74 ** 4.84 ** 5.08 ** 4,00 ** 4,38 ** 4.68 **
JBp asy 0.50 4.48 3.84 4.20 1.12 7.12 6.74 7.64 0.92 8.18 10.50 ** 11.56 *

GOp asy 5.44 8.54 * 4.10 4.42 7.02 11.04 ** 5.08 5.46 7.04 11.28 * 3.82 3.96
10% GOhy, asy 6.94 0.58 ** 6.08 6.20 7.94 0.88 ** 7.90 7.92 7.64 0.60 ** 7.88 8.40 *
GOhy bts 8.00 ** 9,22 ** 8.00 ** 9.02 ** 0.50 ** 9,32 ** 9,40 ** 9.70 ** 9.16 ** 10.00 ** 8.04 ** 9.16 **
GOhy 2bts 0,54 ** 0.86 ** 0.80 ** 10.16 ** 10.14 ** 0.82 ** 0.66 ** 10,12 ** 0.08 ** 0.88 ** 0,14 ** 0,28 **

Note:

Homo denotes homoskedastic errors; H BT1,2,3 denotes heteroskedastic schemes explained section 4.1.
asy denotes asymptotic critical value; bts denotes single DF wild bootstrap; 2bts denotes Davidson & MacKinnon’s fast double bootstrap.
* denotes that the estimate is consistent with the true significance level being between -1% and +1% from its nominal level.

** denotes that the estimate is consistent with the true significance level being between -0.5 % and +0.5 % from its nominal level.
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Table 6: The number of times of experiments under homoskedasticity for 5 and 10 percent nominal levels that the estimated size is marked

¥k and *

(a) Numbers of times that the estimated size is marked ** of the nominal size 5% and 10%

SN £(7) UN MN Total Subtotal
n—50 n— 80 n—100{n —50 n— 80 n— 100|n — 50 n — 80 n — 100/ n — 50 n — 80 n — 100 n—50 n— 80 n — 100
5% 10% 5% 10% 5% 10%|6% 10% 5% 10% 5% 10%|5% 10% 5% 10% 5% 10%|5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%l|
JBp asy][ 0O 0 0 ©0 o o o 0 0O ©0 O ©O 0O O 0O ©O0 0O o0 0 ©0 O O 0 O of o o o o o 0
GOp asy| 0 1 o 3 2 3 0o 3 0o 1 0o oo o1 o 1 1 o o o o o o 16 0 4 1 4 3 4
GOhy asyl| 3 3 3 2 3 202 o 2 1 3 200 o1 1 2 2o o1 2 o o 35 3 7 6 8 8
GOhy bts|| 1 2 3 3 3 3 o 1 3 3 3 3 3 =2 3 3 3 3 3 3 3 3 3 3 63 7 812 12 12 12
GOhyp 2bts|] 1 1 3 2 3 3 o o 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 60 6 712 11 12 12
out of I 3 3 3 3 3 3] 3 3 3 3 3 3] 3 3 3 3 3 3] 3 3 3 3 3 3 72[12 12 12 12 12 12|
(b) Numbers of times that the estimated size is marked * of the nominal size 5% and 10%
SN t(7) UN MN Total Subtotal
n—50 n— 80 n—100{n —50 n— 80 n— 100|n — 50 n — 80 n — 100/ n — 50 n — 80 n — 100 n—50 n— 80 n — 100
5% 10% 5% 10% 5% 10%|6% 10% 5% 10% 5% 10%|5% 10% 5% 10% 5% 10%|5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%|
JBp asy]| O 0 0 ©O0 1 o 0O 0 O 0 O ©O 0O O 0 ©O0 0O O 0O 0 O O O O i o o o o0 1 0
GOy asyl|| 1 2 3 3 3 3 3 2 3 2 3 0 01 1 2 200 o1 1 2 o 31 5 7 8 9 8|
GOhy asyl| 3 3 3 3 3 3 2 1 3 2 3 201 1 2 1 2 2o o3 2 2 2 49 6 511 8 10 )
GOhy bts|| 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 6810 1012 12 12 12
GOhpy 2bts]] 3 3 3 3 3 3 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 6910 11 12 12 12 12
out of I3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3] 3 3 3 3 3 3 72[12 12 12 12 12 12
Notes:

** denotes that the estimate is consistent with the true significance level being between -0.5 % and +4-0.5 % from its nominal level.
* denotes that the estimate is consistent with the true significance level being between -1 % and +1 % from its nominal level.

22



Table 7: The number of times of experiments for 5 and 10 percent nominal levels that the estimated size is marked ** and *

(a) Numbers of times that the estimated size is marked ‘**’ of the nominal size 5% and 10%

| SN | £(7) | UN | MN | Total| Subtotal
n—50 n—80 n—100n— 50 n—80 n — 100/n — 50 n — 80 n — 100/ n — 50 n — 80 n — 100 n — 50 n— 80 n — 100
5% 10% 5% 10% 5% 10%|5% 10% 5% 10% 5% 10%|5% 10% 5% 10% 5% 10%|5% 10% 5% 10% 5% 10%| 5% 10% 5% 10% 5% 10%
JB, asyl 2 2 o o o o o o o o o o o o o o 4 2/ 0 o0 5 4 2 2 23 2 2 5 4 6 4
GOy, asy 3 3 4 4 5 3 5 1 3 1 il 2 2 4 1 2 21 2 3 3 3 2 62 8 1211 11 10 10
GOhy, asy|| 5 © 8 3 8 3 6 1 6 1 o 21 1 2 =2 2 3 1 3 3 5 3 3 09013 14 19 11 22 11
GOhy bts|| 2 2 3 312 12( o 1 3 311 12[12 11 12 12 12 9[ 12 12 12 12 12 12| 204/ 26 26 30 30 47 45
GOhp 2bts]| 1 1 4 312 12/ 0 0 3 4 o 12/ 8 1012 12 12 12[10 10 12 12 12 12| 105/ 19 21 31 31 45 48§
out of [T12 12 12 12 12 12[12 12 12 12 12 12[12 12 12 12 12 12[12 12 12 12 12 12 288/ 48 48 48 48 48 48|

(b) Numbers of times that the estimated size is marked ‘*’ of the nominal size 5% and 10%

£(7) UN MN Total Subtotal
n—50 n—80 n— 100 n— 50 n—80 n— 100|n — 50 n — 80 n — 100/ n — 5O n — 80 n — 100 n—50 n— 80 n— 100
5% 10% 5% 10% 5% 10%|5% 10% 5% 10% 5% 10%|5% 10% 5% 10% 5% 10%|5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%|

JB, asy]| 2 4 0 0 1 0 O
GOy asyl| 3 4 6 5 6 5 3
GOhy asy|l[10 o o 7 11 8| 7
GOhy bts|| 7 411 6 12 12| 1
3 1
2 2

[} 0 o o o o 1 0 5 3 o 0 8 5 4 4 371 2 4 9 5 10 7|
4 6 3 5 3 3 4 3 4 4] 3 3 4 4 b 3| 98/ 12 15 18 18 18 17|
8 2 9 3 2 3 b 4 b 3 3 3 9 5 4 6| 135/ 22 18 31 18 29 17
5 5 12 12|12 12 12 12 12 12[12 12 12 12 12 12| 23232 29 40 35 48 48|
5
2

GOhp 2bts|| 3 10 7 12 12
out of [T12 12 12 12 12 12[1

6 12 12/ 11 11 12 12 12 12[12 12 12 12 12 12| 227| 27 28 39 37 48 48
12 12 12[12 12 12 12 12 12[12 12 12 12 12 12[ 288[48 48 48 48 48 48|

vl = woo

-
-

Notes:
** denotes that the estimate is consistent with the true significance level being between -0.5 % and 40.5 % from its nominal level.
* denotes that the estimate is consistent with the true significance level being between -1 % and +1 % from its nominal level.
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Performance of GO,, and GOh,, deteriorates as k increases. With n = 100
and k = 3 when error is £(7), all rejection probabilities for 5% and 10% are
“good”, and when UN, they fall into the +£0.5% interval. On the other hand,
With n = 100 and k = 6 when errors are ¢(7), only rejection probability for 10%
falls into +1% interval and when errors are U N, none falls into either intervals.
Similar performance is found for GOh,,.

Under Heteroskedasticity With the heteroskedastic normal errors, JB,
severely overrejects the null. For example, with n = 100 and & = 6, un-
der HET1, HET?2, and HET3 schemes, the rejection probabilities for 5% are
19.92%, 14.68%, and 15.02%, respectively. With the heteroskedastic normal or
non-normal errors, GO,, behaves relatively well with HET'1 scheme, however, it
is severely undersized systematically with the multiple heteroskedastic schemes,
HET?2 and HET3. For example, with n = 100 and £ = 6 and UN errors, un-
der HET1, HET?2, and HET3 schemes, the rejection probabilities for 10% are
13.92%, 3.74%, and 4.06%, respectively. These evidences confirm the necessity
of controlling the heteroskedasticity for skewness test. However, GOh,, consis-
tently overrejects when errors are SN and ¢(7), and is undersized when errors
are UN. Table 7 gives the number of times in groups of 12 experiments that
the rejection frequencies are consistent with the claim that the true significance
level is within 0.5% (1.0%) of nominal levels of 5% and 10%. Consequently, the
asymptotic critical values of GO,, give only 62 out of 288 being “good” and 98
of 288 being “satisfactory”. The asymptotic critical values of GOh,, have better
performance, however, they give just 90 out of 288 being “good” and the wild
bootstrap critical values give 135 of 288 being “satisfactory”.

The DF wild bootstrapped GOh,, enjoys a success in controlling the size
with large n. As can be seen from Table 7, the bootstrap critical values of
GOh,, give 204 out of 288 being “good” and 232 of 288 being satisfactory. In
particular, with » = 100, 92 out of 96 experiments are “good”, and all 96
are “satisfactory”. By contrast, the asymptotic critical values of GOh,, with
n = 100 give only 33 out of 96 being “good” and 46 of 96 being “satisfactory”.
Tn our experiments, there is no evidence that the fast double bootstrap affords
further refinement over single DF wild bootstrap. The number of “good” and
“satisfactory” of the fast double bootstrapped GO#h,, is even slightly fewer than
the single DF wild bootstrap. Still, though, DF bootstrap does not behave
universally “good”, especially when n = 50 and 80, since only about 2/3 of the
experiments are “good”.

4,2.2 Power

Table 8~10 gives the estimated power of the tests. Overall, the superiority
of the DF wild bootstrapped GOh,, over other tests (except Jarque and Bera
test) is really remarkable. Of course, it is not possible to compare the power
of the tests directly, since the estimated size of asymptotic critical values of
the tests had poor agreement with its nominal levels. However, given that
the asymptotic critical values of GO, and GOh, does not have a very bad
agreement with their nominal levels under homoskedastic errors with n = 100,
the comparison of the powers may be suggestive. With &k = 3 and n = 100 at 5%
nominal levels under homoskedastic log-normal errors, the rejection frequencies
of asymptotic critical values of GO, and GOh,,, are 43.78%, 49.54%, while

24



that of DF wild bootstrap critical value of GOh,, is 99.76%. With the same
setting but under homoskedastic chi-square errors with 8 degrees of freedom,
the rejection frequencies of asymptotic critical values of GO,, and GOh,,, are
73.48%, 76.96%, while that of DF wild bootstrap critical value of GOh,, is
93.70%.

Table 8: Estimated power of the tests: k =3

| n — 50 n — 80 n — 100
Homo HET1 HET2 HET3 |Homo HET1 HET2 HET3|Homo HET1 HET2 HETS3

JBpn asy|| 97.64 90.16 096,38 06.34 (100.00 99.04 99.86 99.84|100.00 99.66 099.98 99.98
GOp asy|| 11.36 3.88 10.60 10.42 | 14.58 6.06 12,94 12,58 | 17.22 7.76 13.56 13.24

1% GOh,, asy|| 17.06 7.52 15.94 15.62| 19.62 11.78 21.62 21.44| 21.82 11.80 21.86 21.70
GOhy,, bts|| 86.98 51.42 75,62 76.22 | 97.80 83.46 02,40 02.56| 98.92 03.22 04.80 94.66
GOhyp 2bts|| 89.92  61.32  76.72 77.42 | 95.84 84.54 89.08 88.72| 96.90 92.76 93.38 93.06

JBp asy|| 99.46 94,18 98.72 98.70 [100.00 99.56 99.96 99,96 [100.00 99,90 99.98 99.98

GOy asy|| 35.94 19.08 32,94 32.48| 41.40 27.04 37.92 37.44| 43.78 30.96 38.06 37.26

LN 5% GOh,; asy|| 46.00 31.06 45.56 45.00 | 48.22 36.46 52.14 51.04| 49.54 37.70 52.66 52.44
GOhy, bts|| 96.38 74.74 90.34 90.50 | 99.34 94,92 097.66 97.60| 99.76 08.34 08.12 97.98

GOhy 2bts|| 97.44  79.14 90.46  90.70 | 99.54 95.10 96.90 96.90| 99.86 08.84 08.84 98.74

JBp asy|| 99.74 05,98 99,18 99.24 (100.00 99.76 99.96 99,98 |100.00 99.94 100.00 99.98

GOy, asy|| 56.10 38.38 51.22 50.86| 59.84 47.30 57.14 56.70| 62.08 ©51.54 57.18 56.58

10% GOh, asy|| 66.32 52,70 65.22 65.16 | 66.30 56.36 69.78 69.30| 67.74 58.26 71.12 70.84
GOh,, bts||[ 98.40 84.46 94.68 094.62| 99.74 097.56 98.70 98.62| 99.82 00.26 08.98 98.92
GOhy, 2bts|| 98.76  86.46  94.38 94.56 | 99.68 97.64 98.22 98.12 | 99.98 00.52 00.32 99.32

JBp asy|| 84.32 75.16 81.068 81.00 (| 99.24 95.48 97.64 97.60| 99.86 98.70 99.36 99.32
GOp asy|| 21.66 5.84 1594 15.38| 35.76 11.12 26.92 25.38| 45.68 15.74 30.88 28.94

1% GOhyp asy|| 27.06 8.82 19.62 19.18 | 41.54 17.18 37.42 36.34| 51.12 21.12 43.54 42.10
GOhy bts|| 83.94 3954 6586 65.74| 99.24 7556 89.34 88.96| 99.90 88.34 093.76 93.50
GOhp 2bts|| 84.02 47.88 66.46 67.48 | 9642 7524 84.56 84.10| 96.94 86.78 91.74 091.24

JBy asy|| 95.02 85.54 91.66 91.62 | 99.94 08.26 99.42 00.38] 99.98 09.46 090.80 99.80

GOp asy|| 55.88 26.68 46.42 45.28 | 71.42 42,12 59.84 57.86| 76.20 51.92 62.12 60.90

X2(2) 5% GOhy, asy|| 63.96 35.38 55.26 54.14 | 76.24 5056 74.62 73.56| 80.12 59.04 79.70 79.16
GOh,, bts|| 96.46 66.54 84.76 84.78| 99.94 02,58 ©06.88 96.60[100.00 97.40 08.26 098.12

GOh,, 2bts|| 96.66 70.18 85.24 84.94| 99.94 02,56 96.24 96.06[100.00 97.52 98.34 98.30

JBp asy|| 97.44 89.86 95.16 95.26  99.98 99.068 99.72 09.68| 99.98 099.68 99.96 99.98

GOy, asy|| 75.84 47.56 66,02 64,92 | 86.02 65.48 77.62 76.36| 88.68 72.72 78.32 76.98

10% GOh,; asy|| 82.14 58.78 75.08 74.38 | 89.00 72.74 88.38 87.64| 91.10 77.94 91.76 91.44
GOhy;, bts|| 98.48 77.90 90.34 90.48 | 99.96 96.12 98.32 98.28 |100.00 99.02 99.38 99.30
GOhy 2bts|| 98.46 7994  90.28 90.32 | 99.96 96.34 98.10 98.04 |100.00 98.94 99.42 99.30

JBy asy|| 29.86 38.48 30.72 31.12| 59.36 61.56 ©56.74 56.82| 75.24 74.56 71.24 71.24
GOy asy 7.34 2.00 4.36 4.04 | 22.086 3.92 10.58 9.60 | 35.82 6.30 13.92 12.10

1% GOh,,  asy 9.72 3.10 5.78 5.18 | 25.52 5.70 15.80 14.58| 39.92 8.78 20.96 19.44
GOhy,  bts|| 30.74 858 21.20 20.78 | 62.36 16.54 41.70 40.34| 78.26 20.58 51.98 50.36
GOhyp 2bts|| 33.48 10.78 23.90 23.28 | 59.58 17.52 41.38 40.46| 74.66 21.54 51.76 50.32

JBp asy|| 51.46 51.54 49.40 49,50 80.52 74.18 75.08 75.28| 90.24 84.68 85.18 84.64

GOy, asy|| 34.82 13,50 24.04 22,94 | 61.30 22,82 39.02 36.26| 73.48 31.60 42.64 39.94

X2(8) 5% GOhy, asy|| 40.68 17.70 28.12 26.96 | 65.98 28.40 51.26 48.48| 76.96 37.76 60.14 58.04
GOh,;, bts|| 58.16 21.98 44.36 43.66 | 85.54 37.86 67.44 65.92| 93.70 47.96 75.04 73.58

GOhy, 2bts|| 58.92 22,76  45.96  45.92 | 85.14 37.54 67.02 65.92 | 093.22 47.12 75.58 74.46

JBp asy|| 63.82 59,22 60.16 60,24 88.00 80.10 82.92 82.82| 94.80 88.44 90.54 90.24

GO, asy|| 56.50 26.74 41.96 40.72 | 81.92 42,54 59.14 56.76| 88.36 53.72 61.40 58.30

10% GOh,; asy|| 61.94  33.30 47.70 46.78 [ 84.96 49.08 69.50 67.68| 90.66 59.22 77.92 75.92
GOhy;, bts|| 71.46 32,24 57.34 56.94 | 92,46 52,68 77.60 76.56| 97.22 63.14 83.88 82.64
GOh,, 2bts|| 71.74 32,70 58.96 5856 | 92.22 51.82 78.00 76.74| 97.20 62.34 84.10 82.80

Notes:
Homo denotes homoskedastic errors; HET1,2,3 denotes heteroskedastic schemes explained section 4.1.
asy denotes asymptotic critical value; bts denotes single DF wild bootstrap; 2bts denotes fast double bootstrap.
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Table 9: Estimated power of the tests: k =4

n — 50 n — 80 n — 100
Homo HET1 HET2 HET3 |Homo HET1 HET2 HET3|Homo HET1 HET2 HETS3
JBp asy) 0.24 2.72 2.06 2.02 0.76 10.086 6.04 6.58 1.48 20.32 10.80 11.90
GOy asy 5.50 6.18 1.72 1.68 | 17.14 22.96 4.54 4.12| 27.50 39.86 5.24 4.90
1% GOhy asy 6.20 5.26 2.58 2.62 | 17.22 18.50 6.60 6.32 | 27.40 34.20 8.10 7.72
GOhy bts|| 10.86 10.94 6.94 7.00 | 23.14 27.06 13.14 12.54| 33.16 40.18 17.48 16.48
GOhyp 2bts|[ 10.80  10.98 7.82 8.02 | 21.20 25.20 13.28 12.68| 30.54 37.30 18.36 17.32
JBp asy) 2.34 13.486 7.42 7.90 7.22 34,22 16.96 17.98| 11.80 50.28 26.18 27.02
GOy asy|| 20.56 27.28 10.34 10.94 | 40.64 54,88 18.12 17.88| 53.26 70.52 20.32 19.66
LN 5% GOhyp asy|| 21.20 2446 12,78 12.76 | 40.64 49.52 21.50 20.46| 52.88 66.96 27.36 25.46
GOh,, bts|[ 26,12 29.32 18.48 18.50| 45.00 53.52 28.20 27.30| 56.48 68.06 34.56 32.78
GOh,, 2bts|| 26.20 29.16 19.48 19.72 | 44.26 52.50 28.58 27.92| 55.88 67.22 35.20 33.34
J By asy] 6.72 25.08 14.08 14.82| 16.54 50.86 26.74 28.24| 25.72 66.90 37.22 38.46
GOy, asy|| 32.54 43,26 20.00 20.60| 53.86 69.86 30.24 30.74| 66.16 82.50 32.66 31.30
10% GOhy, asy|| 33.44 40,10 21,50 21.34 | 54,20 65.48 33.38 31.92| 65.90 79.58 39.06 37.88
GOhy, bts|| 37.34  41.46 26.74 26.98 | 57.20 66.88 39.44 38.42| 68.58 79.98 44.28 42.78
GOhy 2bts|| 37.58 41.68 28.68 28.44 | 56.74 66.56 30.94 30.18| 68.48 79.32 45.32 44.02
JB, asy|| 79.56 73.92 76,10 76,56 98.76 95.84 97.22 97.26| 99.80 08.66 99.16 99.12
GO, asy|| 20.36 5.84 14.80 14.22 | 35.90 11.26 26.46 25.12| 45.42 16.00 30.98 28.92
1% GOhy asy|| 20.60 12,16 22.18 21.60| 46.02 22.16 40.08 38.76 | 53.90 26.42 46.46 45.20
GOhy bts|| 79.08 45.84 61.04 61.28 | 98.64 80.88 88.20 87.18| 99.88 91.30 03.54 92.70
GOhyp 2bts|| 79.14 54.06 62.36  62.78 | 95.08 80.38 83.72 83.14| 96.76 89.86 901.20 90.74
JBp asy|| 92.76 85.50 89.66 89.74( 99.86 9852 09.16 09.16| 99.96 99.60 099.80 99.78
GOy asy|| 55.54 27.02 45,40 44,60 | 71.24 42,58 59.58 57.36| 76.18 51.66 62.22 60.72
x2(2) 5% GOhy, asy|| 68.70 43,02 59.28 5850 78,90 57.16 76.44 75.12| 81.86 63.78 82.04 81.42
GOhy,, bts|| 94.26 72,42 82,16 81.94 | 99.88 94.88 96.40 96.14|100.00 98.30 98.24 98.08
GOhy 2bts|| 94.80  75.22 82,50 82.74 | 99.90 05,12 95.94 95.52 | 99.96 08.40 098.34 98.04
JBp asy|| 96.12 90,94 093,70 093.80 [ 99.98 99.26 99.62 099,58 | 99.98 99.78 99.98 99.96
GOy, asy|| 75.32 48,56 65.48 64.78| 85.84 66,20 77.18 75.84| 88.84 73.10 78.32 76.96
10% GOhy, asy|| 85.22 65,64 78,60 77.86| 90.36 77.44 89.42 88.64| 92.26 81.32 02.72 92.56
GOhy,, bts|| 97.46 82.68 88.98 88.88| 99.96 097.80 98.08 97.98|100.00 99.36 99,34 99.24
GOh,, 2bts|| 97.56 83.58 88.96 89.14 | 99.06 07.84 97.84 97.78100.00 99.26 990.38 99.28
JBp asy|| 25.20 35.58 26,52 27.20( 55.72 60.72 53.76 54.22| 72.40 73.84 69.02 68.78
GOy asy 5.84 1.68 3.80 3.58 | 20.76 3.42 9.66 8.88 | 34.36 5.80 13.32 12.04
1% GOhy asy 9.52 4.02 6.08 5.58 | 27.40 7.26 16.00 15.08| 41.06 10.60 21.48 20.24
GOhyp bts|| 27,92 11.34 18,68 18.26 | 59.16 20.80 39.24 38.28| 74.92 26.24 50.34 48.18
GOhy 2bts|[ 20.72  13.88  20.86  21.14 | 57.12 22,92 38.80 37.48| 71.90 27.08 50.22 48.44
JBp asy|| 46.80 49,52 45.08 45.26( 77.52 74.02 71.88 72.36| 88.68 84.04 83.44 83.32
GO, asy|| 32.92 11.92 22,42 21.46| 60.28 22,46 37.60 35.36| 72.82 31.52 41.74 39.58
x2(8) 5% GOhy, asy|| 41.72 20,62 20,54 28.28 | 67.16 33.20 51.06 48.58| 77.74 42.68 61.60 59.50
GOhy, bts|| 54.78 27.08 41.50 40.62 | 83.40 4490 65.44 64.06| 92.72 54.14 74,40 72.98
GOhy 2bts|| 55.54  28.36 42,92 42,42 | 83.14 4512 65.26 64.16| 92.46 53.56 74.34 73.04
JB, asy|| 58.92 57.90 55.80 56.40 86.48 80.22 81.10 81.12| 93.68 88.42 89.30 89.02
GOp asy|| 53.92 25,68 39.82 38.90| 80.34 43.24 57.12 54.74| 87.56 54.44 60.56 57.32
10% GOhy asy|| 62.14 37.42 40.18 48.36 | 84.76 54.46 69.26 67.48| 90.76 63.80 77.90 76.18
GOhy bts|| 68.48 37.60 54.96 54.44| 91.34 58.64 76,50 75.34| 96.58 68.52 82.82 81.68
GOhp 2bts|| 68.36  38.26 55.94 55.44 | 91.00 5832 76.56 75.14| 96.56 67.96 83.14 81.72

Notes:

Homo denotes homoskedastic errors; H ET1, 2, 3 denotes heteroskedastic schemes explained section 4.1.
asy denotes asymptotic critical value; bts denotes single DF wild bootstrap; 2bts denotes fast double bootstrap.
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Table 10: Estimated power of the tests: &k = 6

| n — 50 n — 80 n — 100
Homo HET1 HET2 HETS3 |Homo HET1 HET2 HET3|Homo HET1 HET2 HETS3

JBp asy) 0.12 1.10 1.10 1.28 0.44 7.40 4.00 4.40 1.02  14.02 9.02 9.88
GOy asy 3.22 4.70 1.28 1.26 | 13.32 18.78 4.02 3.92 | 22,52 27.42 4.32 3.98

1% GOhy asy 4.18 4.50 2.14 2.16 | 13.38 14.06 5.96 5.58 | 22.06 19.42 7.28 7.00
GOhy, bts 7.88 7.96 4.82 4.86 | 18.74 19.66 10.60 10.44| 28.12 26.26 15.36 14.54
GOhyp 2bts 8.02 8.50 5.38 5.46 | 17.60 1840 10.50 10.48 | 25.96 24.62 16.12 14.90
JBp asy) 1.42 8.98 4.82 5.14 4.64 27.16 13.06 14.10 9.16 38.10 22,96 24.06
GOy asy|| 15.32 21.34 7.84 7.08 | 34.24 4896 17.08 17.08| 47.20 59.18 18.56 18.30

LN 5% GOhyp asy|| 16.30 20.56 10.16 10.14 | 33.68 41.46 19.88 19.40| 46.82 48.58 25.18 23.94
GOh,, bts|[ 21.48 23.16 15.14 14.86| 40.12 43.42 25.56 24.92| 52.56 51.78 31.84 30.36
GOh,, 2bts|| 22.06 23.22 16.38 16.46 | 40.22 43.18 25.92 25.20| 51.78 51.44 32.36 30.76

J By asy] 4.14 18.28 10.04 10.62 [ 13.28 43.88 22.60 23.60| 21.46 53.34 33.90 34.78

GOy, asy|| 26.04 36,44 17.12 17.58 | 47.94 64.60 29.46 29,58 | 62.34 72,12 30.92 29.92

10% GOhyp asy|| 27.22 34,56 17.90 17.64 | 47.36 57.48 30.76 29.70| 61.52 62.62 36.74 35.56
GOhy, bts|| 32,50 3490 23.84 23.62| 52,54 57.78 36.18 35.28| 65.30 64.26 42.48 41.02
GOhy 2bts|| 33.36  35.86  26.08 25.74 | 53.16 57.58 37.16 36.20| 65.56 64.50 43.30 41.82

JB,, asy|| 67.66 63.52 64,48 64,32 97.28 93.42 05.52 05.56| 99.60 08.72 08.68 98.66
GO, asy|| 18.34 4.98 13.80 13.14 | 35.52 10.98 26.88 25.16| 45.26 15.92 30.74 28.48

1% GOhy asy|| 34.40 17.48 26.48 25.84| 52.64 28.30 46.54 44.88| 59.66 37.98 53.26 52.10
GOhy, bts|| 68.16 37.64 52.32 51.74 | 95.90 72.82 85.30 84.52| 99.44 901.10 92.38 91.86
GOhyp 2bts|| 67.88 42,38 52.08 52.32 | 93.60 74.56 80.76 80.46| 96.62 90.20 89.58 89.10

JBp asy|| 86.12 78,48 82.62 82.64( 99.66 97.62 08.70 98.74| 99.92 09,50 09.70 99.68

GOy asy|| 52.34 25,28 42,78 41.96 | 70.56 42,36 59.96 58.32| 75.92 51.72 61.74 60.68

x2(2) 5% GOhy, asy|| 73.74 53.32 63.68 63.14 | 83.28 65.16 80.64 79.54| 85,96 72.44 84.92 84.62
GOhy,, bts|| 89.76 66.02 76.64 76.24 | 99.66 92.00 95.72 95.64| 99.98 08.62 07,94 97.88

GOhy 2bts|| 89.74 67.02  76.38  76.12 | 99.62 92,52 95.34 95.10]100.00 99.00 98.00 97.76

JBp asy|| 92.80 84.96 89.48 89.46  99.82 98.78 99.50 99.42| 99.98 99.74 099.88 99.84

GOy, asy|| 72.94 46,52 63.24 62.44 | 85.74 65,82 77.20 76.34| 88.72 73.36 78.04 76.86

10% GOhy, asy|| 89.04 73,50 81.20 80.54 | 93.74 83.44 92,56 02,20 94.48 87.04 04.82 04.46
GOhy;, bts|| 95,24 77.82 85.90 85.44 | 99.86 96.48 97.90 97.72]100.00 99.48 99.20 99.02
GOh,, 2bts|| 94.86 77.10 85.52 84.74 | 99.88 96.66 97.78 97.50]100.00 99.52 90.16 99.08

JBp asy|| 17.74 27.66 19,56 19.90 ( 48.16 54.70 47.28 48.16| 66.68 71.04 64.10 64.84
GOy asy 5.00 1.70 3.54 3.30 | 18.80 3.62 9.06 8.48 | 32.32 5.20 12.80 11.32

1% GOhy asy|| 11.00 5.70 7.60 7.58 | 27.40 9.74 18.10 16.90| 43.02 15.50 24.74 23.66
GOhy bts|| 22,36 1010 14.98 14.96 | 52.64 18.76 35.58 34.80| 70.84 31.26 46.84 45.12
GOhyp 2bts|[ 23.50 11.52 16.40 16.56 | 51.58 20.52 35.06 34.68 | 67.96 32.62 47.12 45.60

JBp asy|| 36.84 41.70 36,58 37.02( 71.00 69.46 66.90 67.32| 85.16 82.58 80.78 80.88

GO, asy|| 28.18 11.76 20.02 19.36 | 57.46 22,58 37.08 35.10| 70.74 30.72 40.94 38.56

x2(8) 5% GOhy, asy|| 40.94 26,04 20,92 2042 (| 67.94 3802 51.82 49.80| 79.62 50.82 63.02 60.70
GOhy,, bts|| 48.20 25,70 38.00 37.52| 79.24 41.48 61.64 60.32| 90.46 59.94 71.82 70.60

GOhy 2bts|| 48.86 2494 38.68 38.40 | 78.78 41.68 61.96 60.52 | 90.38 59.44 72,22 71.00

JB, asy|| 50.02 5050 47.36 47.66 ( 81.90 76.42 77.00 76.80| 91.76 87.92 87.18 87.14

GOy asy|| 49.00 24,76 36.40 35.44 | 78.18 42,02 57.22 55.24| 86.48 54.42 59.48 56.74

10% GOhy asy|| 61.50 43.02 48.04 47.42 | 85.40 57.38 70.68 68.86| 91.70 70.24 78.40 77.12
GOhy bts|| 62.46 36.64 49,00 49.36 | 88.50 55.26 74,12 73.02| 95.26 72.90 81.26 80.32
GOhp 2bts|| 61.76  35.30 50.38 50.28 | 88.34 54.72 74.34 73.14| 95.14 72.02 81.36 80.38

Notes:
Homo denotes homoskedastic errors; H BT1,2.,3 denotes heteroskedastic schemes explained section 4.1.
asy denotes asymptotic critical value; bts denotes single DF wild bootstrap; 2bts denotes fastbts double bootstrap.
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However, with log-normal errors, as & increases from 3 to 4 and 6, the above
extremely higher rejection frequencies of DF' wild bootstrap over asymptotic
critical value disappears very quickly. With & = 4 and n = 100 at 5% nom-
inal levels under homoskedastic log-normal errors, the rejection frequencies of
asymptotic critical values of GO,, and GOh,,, are 53.26%, 52.88%, while that of
DF wild bootstrap critical value of GOh,, is 56.48%. On the other hand, with
chi-square errors the effect of increase in &k on the test statistics is particularly
slight.

Heteroskedasticity also affects greatly the power of both conventional tests
and DF' wild bootstrap test, and it seems that the heteroskedasticity reduces
the power. On the whole, HFET'1 scheme reduces the power most, and HET?2
and HET3 have very similar numerical effect on the power. However, the DF
wild bootstrapped GOh,, always maintains higher power than the asymptotic
GOh,,. For instance, with & = 4 and n = 100 at 5% nominal levels, under
homoskedastic chi-square with 8 degrees of freedom errors, the homoskedas-
tic error gave rejection frequencies of asymptotic critical values and DF wild
bootstrap critical values of GOh,, are 77.74% and 92.72%, while under H ET'1
they are 42.68% and 54.14%, under HET?2 61.6% and 74.4%, and under HET3
59.50% and 72.98%.

4.2.3 Modified Tests and Whang Test - Under the “Potential Incon-
sistency”

A Monte Carlo simulation has been implemented to investigate the finite sample
behaviour of the proposed tests, under homoskedasticity, HET1, HET3, and
HETH4; see Table 11 & 12.1® We compared the DF wild bootstrapped GOh,,,
GOh_R,, GOh.W,,, Whang,, and double bootstrapped Whang,,.

Size First of all, the DF wild bootstrapped Whang, often overrejects the
null hypothesis, with ¢(7) errors. Also there is a tendency that as the degree of
heteroskedasticity becomes severer, the overrejection becomes stronger. With
HET1 at 5% nominal level, whose coefficient of variation is 0.31, the estimated
size for 5% nominal level with ¢(7) errors is 8.48%, but with HET4, whose
coefficient of variation is 1.33, the estimated size with £(7) errors is 11.22%
and here even with standard normal errors the estimated size is 8.20%. On
the other hand, with HET4 the DF wild bootstrapped GOh.,, GOh_R,,, and
GOA_W,, have at least a satisfactory agreement of the estimated frequencies
with the nominal size. Whang,’s overrejection may be due to the fact that
it is a non-asymptotically pivotal test, thus the single bootstrap just gives the
error in rejection probability of the same order of first order approximation. Tn
this situation, double bootstrap can give further refinement (Beran 1988). Now
the estimated rejection frequencies of the double bootstrapped Whang, have
much better agreement with the nominal size. For example, the estimated size
of double bootstrapped Whang, with ¢(7) errors under HET'4 becomes 7.26%
compared with 11.22% using the single bootstrap.

18 Observe that the rejection frequencies of the same asymptotic test (eg. GOhy) with the
same n and k£ under homoskedasticity in Table 3~5 & Table 8~10 and Table 11 &12 are not
identical, due to the stoppage rule used for single bootstrap.
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Table 11: Estimated size and power of the

modified tests and Whang test

n — 100 n — 100
|Homo HET1 (coefficient of variation of the error variances: 0.313)
SN £(7) UN MN LN x2(2) x2%(8) SN £(7) UN MN LN x2(2) x%(®)
JTBy,, asy] 0.86 ** 14.74 0.00 * 0.02 *100.00 00.98 78.12 2.48 18.78 0.00 * 0.02 *100.00 00.94 75.00
GOy asy| 0.36 ** 0.34 ** 070 ** 0.70 ** 16,64 45.84 36.60 0.36 ** 0.32 * 0.00 ** 046 ** 1528 30.22 28.16
GOhy,  asy| 0.42 ** 0,40 ** 0.78 ** 0.84 ** 18,568 48.40 39.02 0.40 ** 0.32 * 0.06 ** 054 ** 17,10 42.06 30.66
GOh_Ry, asy| 0.08 * 004 * 0.36** 014 * 678 680 1.00** 016 * 0.14 * 0.34** 020 * 578 512 0.88 **
1% GOh-W,, asy| 0.08 * 0.06 * 048 ** 018 * 2524 44.24 15.02 0.22 * 0.18 * 0.46 ** 0.30 * 22.76 38.08 11.00
GOhy,  bts| 0.00 ** 1,10 ** 1.06 ** 1.36 ** 00,56 00.88 78,02 0.08 ** 1,10 ** 1.66 ** 1.02 ** 00,30 00.86 67.48
GOh-Ry, bts 0.02 ** 0,00 ** 1.42 ** 0,02 ** 26,06 27.14 7.66 1.14 ** 1,12 ** 1,30 ** 1.44 ** 22,02 22.00 6.38
GOh-Wy, bts| 0.02 ** 092 ** 1.44 ** 1,02 ** 69,04 82.20 43,30 1.02 ** 1.12 ** 1.40 ** 1.44 ** 65.38 76.24 32.56
Whangy bts| 0.86 ** 1.62 ** 1.36 ** 0,02 ** 00,48 08.76 64.46 1.02 ** 1.82 * 0.08 ** 0.88 ** 00,44 08.54 55.76
Whang,, dbts| 1.02 ** 1.30 ** 1.60 ** 1.48 ** 08.38 07.48 50.42 1.18 ** 1.66 ** 1.36 ** 1.16 ** 08.42 06.62 50.68
JTBy,, asy| 3.02 * 24.86 0.04 0.32  100.00 100.00 O1.76 7.80  20.32 0.14 0.62 100.00 00.08 00.14
GOy asy| 3.84 * 3.26 4.12 ** 3.82 * 43,80 76.88 75.72 4.00 * 3.62 * 4.48 ** 3,52 42,32 73.10 67.68
GOhy,  asy| 4.26 %% 3,64 * 4.48 ** 4,18 ** 46,32 78.08 77.42 4.32 ** 3,88 * 4.70** 3.88 * 4544 75.50 69.60
GOh-Ry, asy| 1.86 1.74 2.88 1.64 27,04 31.18 0.86 1.60 1.08 2.44 2.14 24.88 26.26 8.78
5% GOh-Wy, asy| 2.40 2.20 3.52 2.56 58.36 70.24 51.24 2.00 2.32 2.76 2.76 55.58 74.34 41.86
GOhy,  bts| 5.40 ** 5.48 ** 5,12 ** 528 ** 00,84 100.00 94.34 5.12 ** 5.38 ** 5.84 ** 522 ** 00,76 100.00 89.66
GOh-R,, bts 4.64 ** 4,82 ** 500 ** 4,80 ** 48,68 53.42 22.36 4.62 ** 5.24 ** 5,54 ** 546 ** 43,72 46.04 10.34
GOh-W,, bts| 4.86 ** 474 ** 504 ** 556 ** 83,86 03.68 71.50 4.08 ** 5,14 ** 5,52 ** 554 ** 81.60 00.58 59.90
Whangy bts| 5.40 ** 7.38 6.28 * 5.64 ** 00,08 100.00 89.64 5.88 ** 8.48 5.78 ** 474 ** 00,08 00.08 84.44
Whangy, dbts| 5.58 ** 572 ** 6.28 * 6.16 * 00,20 00.76 87.54 5.68 ** 6.06 * 5.86** 550 ** 00,18 00.54 80.72
JTBp  asy| 820 32.58 0.44 1.30 100.00 100.00 95.74 |13.82  37.08 0.80 2.24  100.00 100.00 94.50
GOy asy| 0.50 ** 0.18 ** 0.06 ** 0,12 ** 62,24 80.36 80.78 0.64 ** 0,32 ** 0,44 ** 8,02 60.42 87.20 84.20
GOhy asy|| 10.14 ** 0,82 ** 0,62 ** 0,52 ** 65.20 00.66 00.66 |10.04 ** 10,20 ** 0,04 ** 850 * 63.38 88.84 85.72
GOh_R,, asy| 5.30 6.08 6.80 4.90 46,06 52.26 22.66 5.34 6.62 6.12 5.70 43.04 46.48 20.14
10% GOh-Wy, asy| 7.14 6.76 8.12 7.08 77.30 01.84 71.08 6.58 7.44 7.26 6.50 75.08 88.82 62.10
GOhy, bts|| 10,20 ** 10,46 ** 10.88 ** 10,56 ** 00,86 100.00 07.58 [10.42 ** 10,32 ** 10,04 ** 0,82 ** 00.84 100.00 04.48
GOh-Ry, bts 0.38 ** 0.88 ** 10.78 ** 0.06 ** 60.82 66.02 33.06 0.32 ** 10.38 ** 10.56 ** 10.58 ** 56,40 60.78 29.58
GOh-W,, bts| 0.78 ** 10.22 ** 11.32 * 10.64 ** 80,54 06.70 82.82 0.86 ** 10.40 ** 11,02 ** 10.70 ** 88,60 05.74 72.80
Whangy, bts|| 10,02 ** 13,68 11,50 * 11.16 ** 100.00 100.00 05.30 [11.92  14.88  10.96 ** 10.42 ** 100.00 100.00 01.72
Whangy dbts||  10.66 ** 10,06 ** 10.52 ** 11,52 * 00.58 100.00 04.32 [11.08 ** 11.26 * 11.10 ** 10.64 ** 00.64 00.92 89.76
Notes:
Homo denotes homoskedastic errors; H BT1,2,4 denotes heteroskedastic schemes explained section 4.1,
asy denotes asymptotic critical value; bts denotes single DF wild bootstrap; dbts denotes full double bootstrap.
* denotes that the estimate is consistent with the true significance level being between -1 % and +1 % from its nominal level,
** denotes that the estimate is consistent with the true significance level being between -0.5 % and +0.5 % from its nominal level.
Table 12: Estimated size and power of the modified tests and Whang’s test
n — 100 n — 100
HBTS3 (coefficient of variation of the error variances: 0.312)|H ET4 (coefficient of variation of the error variances: 1.33)
SN £(7) UN MN LN x2(2) x2%(8) SN £(7) UN MN LN  x2(2)  x2%(8)
JB,, asy|| 1.72 ** 16.96 0.00 * 0.12 *100.00 09.90 76.78 41.32 52,02 1508 22.36  82.44  68.70  52.38
GOy, asy|| 0.24 * 028 * 0.64 ** 0.46 ** 1562 40.76 28.90 0.60 ** 0.40 ** 0.70 ** 0.72 ** 0.00 * 0.16 * 0.38 **
GOhy, asy|| 0.36 ** 0,40 ** 0.76 ** 0,46 ** 18,50 45.50 33.26 0.02 *¥* 0,72 ** 0,00 ** 0,04 ** 0,76 ** 1,08 ** 1,08 **
GOh-Ry asy|| 0.06 * 012 * 018 * 018 * 7.58 848 1.56 **| 0,14 * 048 ** 016 * 024 *1842  14.08 2.82
1% GOh-W, asy|| 0.14 * 0.10 * 0.62 ** 0.24 * 24,34 43.62 15.00 0.48 ** 0.66 ** 0.30 * 0.24 *18.38  10.92 2.16 *
GOhy bts|| 1.00 ** 1,06 ** 1,32 ** 1,02 ** 00,50 00.84 72.10 1.28 ** 1,38 ** 1,38 ** 1,56 ** 6.86 4.30 2.02 *
GOh-Ry bts|| 1.20 ** 1,06 ** 1,26 ** 1,20 ** 26,44 30.02 8.88 1.62 ** 2,16 * 1.22 ** 1.42 **42,02  37.22  10.40
GOR-W,, bts|| 1.06 ** 0.86 ** 1,36 ** 1,28 ** 67.34 7940 41.22 1.42 %% 1,04 * 1,28 ** 1,32 ** 47,14  33.48 8.04
Whangy bts|| 1.12 ** 1,46 ** 0,04 ** 0,68 ** 00,30 08.78 62.80 1.56 ** 3,22 0.66 ** 0.60 ** 31.04  17.86 5.30
Whangy dbts|| 1.18 ** 1,42 ** 1,32 ** 1,10 ** 08.06 07.26 58.58 1.00 * 2.68 1.14 ** 1,32 ** 24,32 14.44 4.68
JB, asy|| 6.08 *27.16 0.26 0.64 100.00 100.00 90.28 52.84  63.16 20.14  34.84  86.38  75.74  62.86
GOy, asy|| 3.14 2.84 5.16 ** 4,08 ** 41.76 73.62 66.72 4.82 %% 3,02 * 554 ** 4,48 ** 1,08 2.00 3.52
GOhy, asy|| 3.86 * 3.54 4.64 ** 4,04 ** 45,68 77.40 71.94 6.64 5.88 ** 7,02 5.80 ** 4.66 ** 7,20 6.74
GOh-Ry, asy|| 1.72 1.72 2.54 2.32 27.82 33.94 11.26 3.00 3.72 * 3.18 3.16  46.56  45.62  16.20
5% GOh-W,, asy|| 2.62 2.62 3.80 * 3.14 57.06 78.88 49.58 3.66 * 4.04 ** 2,62 2,42 47.94  40.26  13.58
GOhy, bts|| 5.08 ** 522 ** 572 ** 512 ** 00,80 100.00 92.00 5.82 ** 5.86 ** 578 ** 5,32 ** 11,64 8.82 6.28 *
GOh-Ry bts|| 4.82 ** 4,00 ** 556 ** 550 ** 47,02 5590 24.48 5.74 ** 6.38 * 6.12 * 504 **62.80  60.12  24.22
GOR-W,, bts|| 5.18 ** 5.26 ** 504 ** 552 ** 82,62 02.48 68.06 6.28 * 6.24 * 518 ** 562 **67.3¢ 56,90  21.02
Whangy bts|| 5.16 ** 7.22 5.46 ** 4,68 ** 00,06 00.96 88.62 8.20 1.22 4.26 ** 4.44 ** 50,78  41.10  18.52
Whangy dbts|| 5.10 ** 552 ** 530 ** 5.04 ** 00.04 00.72 87.30 6.48 * 7.26 5.36 ** 5.08 **31.74  27.62  13.16
JBy, asy|[11.04 ** 34.26 1.00 2.42  100.00 100.00 95.32 59.60 60.068 37.74 42.70 88.04  79.80  68.44
GO, asy|| 8.02 7.66  10.34 ** 0.06 ** 61.76 87.12 84.70 11.02 ** 10.06 ** 12,58  10.36 ** 4,82 6.60 8.86 **
GOh,, asy|| 0.82 ** 0,26 ** 8,06 ** 802 ** 65.06 89.20 88.08 15.08 13.36 15.28 13,18 11.44 * 14,56 14,90
GOh-Ry, asy|| 5.54 5.86 6.34 5.82 46.62 55.16 24.46 0.36 ** 10.02 ** 0.00 ** 8.78 *64.76  66.14  31.82
10% GOh-Wy, asy|| 7.62 7.80 0.18 ** 7,62 76.24 00.72 70.10 10.24 ** 10.72 ** 6.88 7.06 66.66  62.08  26.52
GOhy, bts|| 9.92 ** 0,78 ** 0,00 ** 0,04 ** 00,88 100.00 06.02 11.30 * 10.38 ** 10.58 ** 0,72 ** 15,52 13,72  11.74
GOh-Ry, bts|| 9.64 ** 0,56 ** 10.14 ** 10,22 ** 60.42 68.48 37.06 11.00 ** 11,38 * 11.34 * 11.14 ** 72,74  71.906  35.54
GOR-W,, bts|[10.12 ** 10,14 ** 11,08 ** 10.68 ** 88.06 05.94 709,72 11.72 *11.24 * 078 ** 10,06 ** 77.34  60.52  30.66
Whangy, bts||10.70 ** 13,42 10,04 ** 0,84 ** 100.00 00.98 04,38 15.26 10,10  10.30 ** 10.24 ** 60.46  54.98  20.68
Whangy dbts||10.40 ** 10,56 ** 10.72 ** 10,36 ** 00,50 00.94 03,30 11,92 12,44  10.64 ** 10.18 ** 30.82 _ 30.30 __ 21.70
Notes:

Homo denotes homoskedastic errors; H BT1,2,4 denotes heteroskedastic schemes explained section 4.1.
asy denotes asymptotic critical value; bts denotes single DF wild bootstrap; dbts denotes full double bootstrap.

* denotes that the estimate is consistent with the true significance level being between -1 % and +1 % from its nominal level.

** denotes that the estimate is consistent with the true significance level being between -0.5 % and 40.5 % from its nominal level.
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Power Given the good agreements of the rejection frequencies and the nominal
size of the bootstrapped tests, we may be able to rank the tests according to the
estimated power from the same table. Under homoskedasticity with HFET'1 and
HET3, the DF wild bootstrapped GOh,, has the highest power. The single and
double bootstrapped Whang,, exhibit almost the same power as GOh,,’s. Then,
GOA_W,, has slightly lower power than the double bootstrapped Whang,, and
GOh_R,, has the lowest power.

Under “potential inconsistency”, HFET4, as we anticipated, the DF' wild
bootstrapped GOh,, has very little power. On the other hand, the single boot-
strapped GOh_R,,, GOh_W,,, Whang,, and the double bootstrapped W hang,
have reasonable power. GOA_R, has the highest power with chi-squared er-
rors and GOh_W,, has the highest power with log-normal errors. The single
bootstrapped Whang, has lower power than the single bootstrapped GOh_R,
and GOh_W,, and furthermore, the double bootstrapped Whang, decreases
the power substantially.

On balance, when one is sure that there is no “potential inconsistency”, the
single DF' bootstrapped GOh,, may be the best choice among the tests con-
sidered here. However, given a possible existence of “potential inconsistency”,
the double bootstrapped Whang, may be the best choice among the tests.
Having seen the relatively lower power of the double bootstrapped Whang,
under “potential inconsistency”, an employment of it together with the single
bootstrapped GOh-R,,, GOh_-W,, might be practical.

5 Conclusions

In this paper, new asymptotically valid heteroskedasticity and nonnormality
robust tests for skewness has been derived based on standard first order asymp-
totic theory and the use of the wild bootstrap. The finite sample performances
of these skewness tests in the linear regression models have been examined. The
evidence shows that the existence of the unknown heteroskedasticity affects the
performance of the skewness tests, JB,, test and GO,, test as expected. For the
heteroskedasticity robust version of GO,, test, GOh,,, the evidence shows that
using the first order asymptotic theory to obtain the critical value does not give
a good control over the finite sample significance levels.

The ability of wild bootstrap (Davidson and Flachaire 2000) and the fast
double bootstrap (Davidson and MacKinnon 2000) schemes to produce more
reliable procedures has been examined. The evidence shows that with a mod-
erately large sample size, their wild bootstrap enjoys a remarkable success in
controlling the size, whilst maintaining high power. Indeed, under the null of
symmetric errors, the use of the DF wild bootstrap is fully justified and also
provides, in theory, an asymptotic refinement over asymptotic critical values.
This is because the heteroskedasticity robust tests for skewness and the DF wild
bootstrap DGP are asymptotically independent. There is not a strong evidence
that the fast double bootstrap yields the better performance over single DF
wild bootstrap.

Also, the “potential inconsistency”, under which such tests may fail to detect
the alternatives, is pointed out. The modified parametric tests and Whang’s
(2000) non-parametric test are proposed to avoid the “potential inconsistency”
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of the test. As the Whang test is non-asmptotically pivotal, the double boot-
strapped Whang test is proposed to gain further refinements. The evidence
shows that the double bootstrapped Whang test works remarkably well, main-
taining high power across designs. Interestingly, though, the power of Whang
test is reduced when used in conjunction with the double bootstrap under the
heteroskedasticity scheme H E'T'4, which renders the parametric tests inconsis-
tent. However, when there is a strong evidence of the existence of “potential
inconsistency”, the DF wild bootstrapped modified parametric tests are recom-
mended. Note that the modified parametric tests do not behave well with the
asymptotic critical values, but do much better with the bootstrap.

Finally it is shown that the proposed skewness test and the modified tests
are asymptotically sensitive to the omitted variables. Therefore, when one uses
the proposed skewness test to check the efficacy of Davidson and Flachaire’s
wild bootstrap procedure for omitted variable tests, he should use the residuals
from the estimated model with a full set of regressors.

Topics for further research includes; 1) further investigation of Whang test
in the context of condition moment test under heteroskedasticity; 2) comparison
of the wild bootstrap and semiparametric test such as Robinson (1987).
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