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Abstract

In this paper we provide the first microeconometric estimates of the hazards to
matching on both sides of a labour market, decomposed into their constituent
parts. Namely, the rate at which job-seekers and vacancies contact each other,
and the probability that these contacts result in a match. This allows us
to determine whether it becomes harder for agents to match as time passes
because they receive fewer contacts or because contacts are less likely to be
successful.

In the raw data the decline in the matching rate is driven by a decline in the
contact rate, and not by any fall in the probability of a match conditional on a
contact. We estimate a two-sided matching model to determine whether this
result is caused by omitted observed or unobserved heterogeneity in job-seekers
and vacancies. It also allows us to estimate the parameters of the individual
components of the matching function. We find that the same result applies as
in the raw data: the decline in the matching rate on both sides of the market
is driven by the decline in the contact rate.
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1 Introduction

Search theory is becoming the dominant paradigm in explaining micro- and

macro- labour-market phenomena, see Mortensen & Pissarides’ recent (1998,

1999) surveys. Examples include the “flows approach” to the study of labour

markets, and how movements in the Beveridge Curve can explain whether the

labour market has become more or less effective over time. See, for example,

Blanchard & Diamond (1989, 1992). Other policy issues are often discussed

in a search framework, see, for example, Manning’s recent (2001) discussion

on labour-market interventions and Marimon & Zilibotti (2000) on whether

worksharing policy can reduce unemployment. Of course, search theory has

also been central in modelling the impact of benefits on unemployment duration

— Lancaster (1979), Meyer (1990), and many studies in between — and what

causes long-term unemployment (Jackman, Layard & Pissarides 1989).

Burdett & Coles (1999) identify four key assumptions of the search and match-

ing literature. The three that are relevant to labour markets are (i) Poisson

arrival rates, that is, the process that generates contacts between employers

and workers is a Poisson; (ii) random matching, that is, if an employer con-

tacts a worker, it is assumed the worker’s identity is a random draw from all

possible workers; and (iii) there exists an encounter function. To quote Bur-

dett & Coles (1999) directly: “deep in the heart of all search and matching

models is . . . an encounter function . . . which relates the numbers of encounters

per unit of time [contacts] as a function of [stocks of] unemployed workers and

vacancies”. In other words, the encounter function is a production function

that generates a flow of contacts. If all contacts lead to matches (hires), it is

also the matching function. In the real world, and also in theoretical models

that have heterogeneous agents, not all contacts lead to matches and so the

probability of a match is also modelled.

These three assumptions are deeply embedded in the search and matching lit-

erature. It is therefore important to establish whether they are observed in real

world data. However, most evidence is based on aggregate time series data or

data on individual unemployment durations, and therefore provides estimates

of the matching function only. As noted by Petrongolo & Pissarides (2002),

“. . . aggregate matching functions and individual hazard rates conceal more

than one structural dimension. They are both a composite of the mechanics

of the meeting technology and the willingness of firms and workers to accept
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the other side’s offer.”

In this paper we use micro-level data from a well-defined labour market to

estimate directly the individual components of the matching function. We

are able to decompose both the employer and worker hazard functions into a

matching probability and the arrival rate of applicants from the other side of

the market. In particular, we estimate the hazards to matching on both sides

of the market, examine whether they are downward-sloping, and if they are,

establish whether it is because job-seekers/vacancies receive fewer applicants

or whether the matching probabilities decline with duration.

The decomposition of the matching function sheds light in particular on the

assumption of random matching. An alternative assumption about the meeting

technology is that workers and vacancies do not meet randomly over time,

but are able to use a marketplace to search the other side of the market.

This assumption, referred to as non-random matching is almost exclusively

associated with Melvyn Coles and collaborators, who provide a persuasive

alternative view as to how agents search and match with each other. This is

the stock-flow matching model.1 To test this model formally we require micro-

level data which contains the identity of each pair who contact and match.

In the next section, we present a stylised version of the two-sided random

matching model. In Section 3, we describe the institutional background to the

youth labour market in the UK in the late 1980s and then describe fully the

information we observe in our dataset of contacts and matches. In Section 4

we set the two-sided search model of Section 2 in a stochastic environment,

from which we develop the econometric methodology. In Section 5 we discuss

our results. Section 6 concludes.

2 Theoretical framework

The model we outline here is a stylised version of the random matching model;

a companion paper discusses more fully how the stock-flow matching model

of Coles and collaborators generalises the model presented here (Andrews,

Bradley, Stott & Upward 2003), and thereby develops a formal test of random

matching. There are stocks of vacancies V and job seekers U (all of whom

1The best exposition is Coles & Smith (1998), but also see Coles & Petrongolo (2003).
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are assumed unemployed) attempting to meet and eventually form matched

pairs. The rate at which they randomly contact each other per period is

λ(U, V ), where λ() has the same properties as a production function (concave

and increasing in both arguments). If λ(U, V ) also exhibits constant returns

to scale, the average number of contacts per vacancy is

λe(θ) = λ/V = λ(U/V, 1)

and is decreasing in labour-market tightness θ ≡ V/U . Similarly, the average

number of contacts per job seeker is

λw(θ) = λ/U = λ(1, V/U)

and is increasing in θ. The corresponding hazards are:

he(θ) = λe(θ)µ(θ) hw(θ) = λw(θ)µ(θ), (1)

where µ is joint probability that a worker finds an employer acceptable and an

employer finds a worker acceptable. In some two-sided search models µ(θ) is

an increasing function in slack markets and then becomes a decreasing function

in tighter markets.

The aggregate matching (or hiring) function can be obtained by aggregating

either hazard over the corresponding stock of market participants:

δ(U, V ) = V he(θ) = V λe(θ)µ(θ) (2)

= Uhw(θ) = Uλw(θ)µ(θ) = λ(U, V )µ(θ). (3)

This shows how the matching function δ is decomposed into the contact func-

tion and the matching probability. It will exhibit constant returns to scale if

λ(θ) does the same.

There is a large microeconometric literature that has estimated the hazard

out of unemployment using unemployment duration data,2 but there is far less

evidence for vacancies.3 Search in a stationary environment predicts that the

hazard is constant, although most estimates show declining hazards. This is

thought to be due to either some form of negative duration dependence or

unmodelled unobserved heterogeneity. Assuming the latter can be controlled

2See van den Berg (1999, Footnote 1) for a recent list of contributions and surveys.
3See, for example, van Ours & Ridder (1991, 1992, 1993), Barron, Berger & Black (1997),

Burdett & Cunningham (1998), and Russo & van Ommeren (1998), Andrews, Bradley &
Upward (2001a).
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for using appropriate econometric techniques (see below), negative duration

dependence can arise either because the arrival rate of suitable offers falls

and/or the matching probability falls, as seen in decomposing the hazard in

(1) above.4 Other microeconometric studies do not estimate either hazard

directly. Some have estimated the hiring function δ(U, V ) directly5 or the

matching probability6 or better still, have decomposed the hiring function into

λ and µ (see equation 3).7 However, the great majority of empirical work on

the hiring function has used aggregate time-series data.8

This paper is the first we are aware of to estimate hazards from both sides

of the same market using microeconomic data, and which decomposes both

hazards into their constituent parts.

3 The data

The data we use are the computerised records of the Lancashire Careers Ser-

vice. The Careers Service holds records on all youths aged between 15 and 18,

including those who are seeking employment. We observe every vacancy noti-

fied by employers to the Careers Service between March 1988 and June 1992.

About 30% of job vacancies are notified to the Careers Service. Job vacancies

for which the Careers Service is not the method of search are not included in

the data. Job vacancies require both high- and low-quality job seekers, and are

representative of all entry-level jobs in the youth labour market. It follows that

our data are representative of all job seekers, because we observe all contacts

between notified job vacancies and job seekers.

Each contact, and therefore each match, in the labour market covered by

the Careers Service data originates from a stock of job-seekers and a stock

of vacancies. Job-seekers can come from one of four labour market states:

unemployment, employment, in training, in education. Each vacancy is filled

by one of these types of job-seeker, or it is “lapsed” or it is censored. A vacancy

is said to have lapsed if it is withdrawn from the Careers Service database.9

4See van Ours (1990) for vacancies and van den Berg (1990) for unemployment.
5See Lindeboom, van Ours & Renes (1994), Anderson & Burgess (1997), and Broersma

& van Ours (1999).
6See Teyssière (1996) and Andrews, Bradley & Upward (2001b).
7See van Ours & Lindeboom (1996).
8See Petrongolo & Pissarides (2001) for a comprehensive survey.
9Andrews et al. (2001a) discuss the process of lapsing in more detail.
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There are very few censored observations in these data because the sampling

period is long in relation to the typical duration of a vacancy. Job vacancies

can either be filled via the Careers Service, or filled by some other means. Each

job-seeker finds one of these types of vacancy, or she leaves the labour market

and stops actively searching, or she is censored.10

The primary unit of observation is a contact, c, and the associated binary

variable m takes the value unity if a match occurs. In this paper, we examine

only contacts and matches between job vacancies filled via the Careers Service

and unemployed job-seekers. There are 25, 267 such contacts, resulting in 2, 761

matches. Associated with each contact is the identity of the job-seeker i and

vacancy j (itself associated with an employer).

The data are observed roughly every calendar month, and the duration of each

interval is known to the day. Hereafter, we refer to each interval as a ‘month’,

denoted τ . We observe the day on which the job-seeker i became unemployed.

We also observe the number of contacts received by each job-seeker i for each

month i was unemployed, ciτ , τ = 1, . . . , Ti, and the associated number of

matches, miτ . By definition, miτ = 0 except for the last month, whenmiTi
= 1,

and only if a match occurs (the spell can be censored by the end of the sample).

We do not observe exactly when each contact took place (including the final

successful contact), only the month in which it occurred. In our empirical

work we therefore estimate hazards and matching probabilities as functions of

elapsed duration measured to the nearest month, as is standard in discrete-time

duration models. However, we do observe the start and end date of each spell

dated to the nearest day, and we use this information to calculate more precise

measures of time at risk within a month. The only inaccuracy here comes

about because there is likely to be a gap between the date of the successful

contact and the start date of the resulting job. For spells which end within a

month, the end date is taken to be either the last day of the month in which

the contact takes place, or the start date of the resulting job spell, whichever

occurs first. This will always be an overestimate of time at risk within a month.

Total search duration for job-seeker i is given by ti =
∑Ti

τ=1 tiτ , where tiτ is

the time spent unemployed each month (roughly 30 days except for the first

and last months). Ti is the integer number of months, wholly or partly, spent

10A job seeker who stops searching and leaves the labour market is the analogue of a
vacancy which lapses.
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unemployed. Similarly, the total number of contacts is given by ci =
∑

τ ciτ

and the total number of matches is given by mi =
∑

τ miτ (again, mi = 1

unless the spell is censored).

To summarise, when modelling search duration, we have a monthly unbalanced

panel of observations for each job-seeker, i = 1, . . . , N , τ = 1, . . . , Ti, where the

variables being modelled are the number of contacts and the number of matches

per month. Exactly the same considerations apply to vacancies, except that

all of Tj, cjτ , mjτ , cj, mj, and tj are now indexed j. Consequently, we have a

second monthly unbalanced panel of observations for each vacancy.

For each contact/match, we observe the following vector of information for the

covariates:

(τ, i, j, U, V, τw, τ e,xw,xe, ω),

where

• U is the stock of job-seekers. This varies by month through the duration

of the job-seeker’s spell of unemployment or employer’s vacancy spell;

• τw is the current duration of the spell of unemployment (measured in

months) and is used to construct piecewise linear duration dummies;

• a vector of characteristics xw, observed at the beginning of the spell;

• V is the stock of vacancies. This varies by month through the duration

of the job-seeker’s spell of unemployment or employer’s vacancy spell;

• τ e is the current duration of the spell of the vacancy (measured in

months) and is used to construct piecewise linear duration dummies;

• a vector of characteristics xe, observed at the beginning of the spell;

• the wage ω on offer by the employer (if observed).

In fact, the stocks of unemployed job-seekers and vacancies do not vary by

i or j, but by the labour market in which the job-seeker and employer are

located. The data cover the whole of Lancashire, a county in the United

Kingdom that comprises 14 geographically distinct towns/cities (in fact, lo-

cal authority districts). The issue here is whether the stocks should vary by

these 14 districts, being distinct labour markets, or whether the same value
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should be used irrespective of where in Lancashire the match takes place, or

something in between. For the intermediate case, we group Lancashire into

just 3 labour markets (West, Central and East), recognising that job-seekers

can travel between certain towns when looking for work. When we specify

just three “districts” in Lancashire, 96% of all matches take place between an

unemployed job seeker and job vacancy from the same district. This number

drops to 75% when Lancashire is treated as 14 districts, which is convincing

evidence that the 3 district specification is the best one.11

There are two other issues concerning the stocks of U and V . In a companion

paper (Andrews et al. 2003), we test the stock-flow matching model of Coles,

Smith and Petrongolo against the special case of random matching. This

involves decomposing the stock of unemployed job-seekers U into stocks of

new job-seekers u, ie all those who have been unemployed less than k weeks,

and the rest, Ū . The same decomposition applies to vacancies: V = V̄ + v.

As noted, the decomposition of the matching hazard into the contact function

and the matching probability allows us to test whether the stock-flow matching

model is consistent with the behaviour of the arrival rate of contacts or the

matching probability (or both, or neither).

Second, temporal aggregation bias is an important issue in this literature, and

is discussed at length by Burdett, Coles & van Ours (1994), Gregg & Petrongolo

(1997) and Coles & Petrongolo (2003). In the context of monthly data, the

problem arises in not observing the instantaneous hiring rate, but rather flows

over a discrete period (a month). The assumptions one needs to adjust the

stock measures depend on how quickly agents are matching, which itself is

being modelled, and so there is a simultaneity bias. Coles & Petrongolo (2003)

estimate matching functions using a quite sophisticated technique that deals

with this problem. In our data this may well be a problem, as our stocks are

monthly, in fact observed at the beginning of the month.

We can now be more precise about the models we seek to estimate in the rest of

this paper. Instead of models for he, hw, λe, λw and µ based on Equation (1),

11Throughout Huber/White standard errors correct for within labour-market correlations
between job-seekers/vacancies.
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we estimate

λw = λw(U, V, τw,xw, ω)

λe = λe(U, V, τ e,xe, ω)

µ = µ(U, V, τw, τ e,xw,xe, ω).

This clearly shows that the arrival rate of vacancies to job-seekers only depends

on the current duration of the job-seeker τw and his/her characteristics xw, and

not those of the vacancies τ e,xe. τ e,xe only affect the hazard via the matching

probability. Similar considerations apply to vacancies. The exit hazard are

hw(U, V, τw, τ e,xw,xe, ω) = λw(U, V, τw,xw, ω)µ(U, V, τw, τ e,xw,xe, ω)

he(U, V, τw, τ e,xw,xe, ω) = λe(U, V, τ e,xe, ω)µ(U, V, τw, τ e,xw,xe, ω).

giving the five functions we seek to estimate (note that the µ function is iden-

tical for both sides of the market). These hazards are potentially influenced by

variables from the other side of the market—because we observe the identity

of both partners in a match—which is very unusual in empirical studies of

unemployment hazards.

It is standard to parameterise the contact function, the matching probability

and hence the matching function hw and he as Cobb-Douglas, which means

that U and V enter all five functions in logs as follows:

log λw = (α1 − 1) logU + β1 log V (4)

log λe = α2 logU + (β2 − 1) log V (5)

log µ = α3 logU + β3 log V (6)

log hw = (α4 − 1) logU + β4 log V (7)

log he = α5 logU + (β5 − 1) log V. (8)

Once estimated, we can decompose the effect of any covariate that affects

either exit hazard to see whether its effect is via the matching probability, or

the arrival rate of agents from the other side of the market.

∂ log hw

∂ logU
=

∂ log µ

∂ logU
+
∂ log λw

∂ logU
.

For example, do job-seekers searching in a labour market with a high stock of

unemployed job seekers have a lower unemployment hazard because they con-

tact fewer vacancies or because there is a lower probability of success, once con-

tacted? Similarly, thinking about unemployment duration τw, is the standard
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finding that unemployment hazards fall due to falling arrival rate of applicants,

falling matching probabilities, or both?

4 Econometric issues

4.1 A basic statistical model

In this subsection, we set the two-sided search model of Section 2 in a stochastic

environment. Recall that we have stocks of unmatched vacancies, denoted V ,

and unmatched job-seekers, denoted U , attempting to meet (or contact) each

other in a particular market. The standard assumption in this literature is

that pairs are drawn randomly from U and V and meet each other according

to a Poisson process. This is the contact or encounter function. Seen from

the point of view of a single job-seeker, the number of vacancies he encounters

every period, denoted C, is also Poisson distributed:

C ∼ Poisson(λw). (9)

λw is the Poisson parameter, and denotes the average number of contacts

per job-seeker each period. The probability density of observing a particular

realisation c is

p(c) =
e−λw

(λw)c

c!
, c = 0, 1, 2, . . . . (10)

Every time a vacancy is encountered, the pair either consummates the meeting

by matching with each other, or they do not. The probability that a given

meeting results in a match is denoted µ. Unsuccessful meetings return to the

stocks of U and V ; the resulting flow of hires per period is denoted M . Then

the number of hires that result from C meetings is distributed as a Binomial:

M |C ∼ Binomial(µ,C) (11)

or the probability density of observing m matches given c contacts is

p(m|c) = c!µm(1− µ)c−m

m!(c−m)!
, m = 0, 1, 2, . . . c. (12)

It is easily shown that the marginal distribution for the number of hires per

period is also Poisson distributed (see Section 4.2):

M ∼ Poisson(λwµ). (13)
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Intuitively, if λw vacancies are encountered on average each period and a pro-

portion µ of them match on average, then the average matching rate of job-

seekers is λwµ ≡ hw. If C is Poisson distributed, so must be M .

From the joint density of observing m and c

p(m, c) = p(c)p(m|c) = e−λw
(λw)cµm(1− µ)c−m

m!(c−m)!

λw and µ can be estimated. With a sample of observations on pairs of contacts

and matches (mi,ci), i = 1, . . . , n, the log-likelihood � of observing the sample

is

� = −nλw + log λw
∑

ci + log µ
∑

mi + log(1− µ)
∑

(ci −mi) + const.

The first order conditions give expressions for ML estimates λ̂w and µ̂:

∂�

∂λw
= −n+

∑
ci

λw
= 0 ⇒ λ̂w =

∑
ci

n
(14)

∂�

∂µ
=

∑
mi

µ
+

∑
(mi − ci)

1− µ
= 0 ⇒ µ̂ =

∑
mi∑
ci

(15)

This demonstrates that λw and µ can be estimated separately, from equations

(10) and (12) respectively, rather than using the joint density. With a sample

of data on only mi the ML estimate of the average matching rate is given by:

ĥw ≡ λ̂wµ̂ =
∑

mi/n, (16)

which emphasises the point that only if we observe data on both hires and

contacts can the average matching rate be decomposed into the average contact

rate λw and the matching probability µ.12

To summarise, equations (9), (11) and (13) will be used to estimate param-

eterisations of λw, µ, and hw ≡ λwµ respectively in the rest of this paper,

where the precise specifications for λw, µ, and hw were given at the end of

Section 3. In words, we shall estimate the parameters of the contact function

using count-data techniques using our monthly panel of contacts/matches; we

shall estimate the parameters of the hazard function using the same data,

and third we shall estimate µ by estimating binary choice models on the sam-

ple of contacts, using m as the dependent variable. However, we are able to

12When λw and µ are parameterised by regression functions, the decomposition holds
exactly only when categorical data are used throughout.
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estimate models that go beyond the basic Poisson assumption by modelling

unobserved heterogeneity using random and fixed-effects techniques, by ex-

ploiting the longitudinal nature of the data, as well as model baseline hazards

using non-parametric duration dummies.

We then estimate these three models for the employer side of the market, which

means that we also estimate a count data model for the number of job-seekers

arriving to a given vacancy (thereby estimating λe), the number of vacancy

hires per period (thereby estimating he ≡ λeµ), and a binary choice model for

the probability that a contact matches (thereby estimating µ). In theory there

is a single binary choice model for µ, which is a function of characteristics

of both sides of the market, namely (U, V, τw, τ e,xw,xe, ω). In the empirical

work we actually estimate a separate model for each side of the market, namely

µe(U, V, τ e,xe, ω) and µw(U, V, τw,xw, ω).

4.2 Econometric techniques

Consider the result illustrated in the previous subsection, namely that if con-

tacts are distributed Poisson (λw), then matches are distributed Poisson (λwµ)

(the same applies to λeµ on the other side of the market). This is an example

of a Poisson-stopped Binomial (Winkelmann 1997, Cameron & Trivedi 1998).

Paraphrasing Cameron & Trivedi (1998), now assume that the number of con-

tacts is no longer Poisson distributed, but has mean λ and variance σ2. Now

define Xi, i = 1, . . . , n, as a sequence of c iid Bernoulli trials, in which each Xi

takes only one of two values, 0 or 1, with probabilities 1−µ and µ respectively.

Then M , the number of matches, is given by M =
∑c

i=1 Xi. Using the Law of

Iterated Expectations

E(M) = E[E(M |C)] = E(Cµ) = µE(C) = λµ

Var(M) = Var[E(M |C)] + E[Var(M |C)] = (σ2 − λ)µ2 + λµ.

The actual distribution of M depends on the distribution of C.

This result provides the link between the count-data technique we use for

contacts and the count-data technique we use for matches, and will also allow us

to decompose estimates from matches E(M) = λµ into estimates for contacts

E(C) = λ, and the probability of a match given a contact E(M |C) = µ.

We estimate the following three econometric models:
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1. ciτ and miτ are both estimated as Pooled-Poisson count models. In-

evitably, the data will be over-dispersed, and so we introduce an individ-

ual effect (unobserved heterogeneity) term into both count models:

ciτ ∼ Poisson(λiτ ) λiτ = E(miτ |xiτ , a
c
i) = exp(log a

c
i + xiτβ

c)

miτ ∼ Poisson(hiτ ) hiτ = E(miτ |xiτ , a
m
i ) = exp(log a

m
i + xiτβ

m)

(We suppress superscript w and e for notational clarity.) This means

that

2. ciτ and miτ are estimated as Poisson fixed-effects models, where the ai

are incidental parameters that are concentrated out of the likelihood

or

3. ciτ and miτ are estimated as Poisson random-effects models, with either

Gamma distributed or Normal distributed individual effects. If Gamma,

ai ∼ Gamma(δ, δ)

so that E(ai) = 1) and Var(ai) = 1/δ. If Normal,

log ai ∼ Normal(0, σ2
δ )

In all 3 cases, µiτ = Pr(miτ = 1) is estimated as a Logit:

miτ |miτ ∼ Binomial(µiτ ) µiτ = E(miτ |ciτ ,xiτ ) = Λ(xiτβ)

These techniques are well-established and we therefore do not provide further

details (but see, in particular, Cameron & Trivedi (1998, chapter 9)).

If the link function for the binary choice model were exponential rather than

logistic, it follows that βm = β+βc. Convergence is typically poor because it

is the Logistic that is the Canonical link. It is easy to show that, for the Logit,

βm = β[1− Λ(xiτβ)] + βc (17)

where Λ(xiτβ) is replaced by its sample average. As the average matching

probability is about 0.1, this means that the Logit estimates need scaling by

0.9.
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4.3 Non-parametric hazards

For each contact, we observe the current duration of unemployment for the job-

seeker, τw, and the time the vacancy has been open, τ e, where τ is measured in

‘months’. Because we have no a priori view about the shape of the hazard of

arrival rate of applicants, λw(τw) and λe(τ e), or matches, hw(τw) and he(τ e), or

the matching probability, µ(τw, τ e), we model their shapes non-parametrically.

Specifically, we define 12 dummy variables for each ‘month’ the spell has lasted:

1(τ = 1), . . . , 1(τ = 10), 1(τ = 11, 12), and 1(τ ≥ 13)

for both sides of the market.

5 Results

5.1 Raw data, hazards and matching probabilities

Table 1 describes all the raw data needed to estimate h, λ and µ for both sides

of the market. As explained in Section 3, the data are effectively a monthly

panel, with monthly duration τ = 1, . . . , 13, shown in column (1).

Consider first the totals over all durations in both panels (a) and (b). There are

25, 267 contacts (column 3) of which 2, 761 (column 2) result in matches. The

overall matching probability is given by µ̂ =
∑

iτ miτ/
∑

iτ ciτ , and is therefore

0.109 (column 7). These are the same matches and contacts seen from both

sides of the market, and therefore the same numbers appear in the Total row in

both panel (a) and panel (b). Using Equation (16), where n is replaced by the

number of days at risk (column 4), dividing 2, 761 matches by 3, 235, 810 for

job-seekers gives an average hazard of 0.00085. Note that this is a daily hazard

rate, because we are dividing by the number of days at risk. The corresponding

hazard for employers is 0.00301, nearly 4 times higher, because the total days

at risk are correspondingly lower. The ratio of the days at risk is an estimate

of labour-market tightness, θ, therefore.

Similarly, dividing 25, 267 by the total days at risk gives the average contact

rates for both sides of the market. These are again in the same 1:4 ratio, and

both are about 10 times higher than the corresponding hazard rates, because

µ̂ = 0.109.
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(1) (2) (3) (4) (5) (6) (7) (8) (9)

(a) Job-Seekers
τ

∑
i miτ

∑
i ciτ

∑
i tiτ ĥw λ̂w µ̂w

∑
i 1iτ

∑
i tiτ∑
i 1iτ

1 684 10783 613051 0.00112 0.01759 0.06343 34657 17.69
2 824 5540 759901 0.00108 0.00729 0.14874 29176 26.05
3 484 3337 544566 0.00089 0.00613 0.14504 19617 27.76
4 355 2145 394597 0.00090 0.00544 0.16550 13342 29.58
5 155 1160 225311 0.00069 0.00515 0.13362 7944 28.36
6 97 709 164508 0.00059 0.00431 0.13681 5715 28.79
7 51 438 124784 0.00041 0.00351 0.11644 4141 30.13
8 44 317 96664 0.00046 0.00328 0.13880 3107 31.11
9 23 210 70104 0.00033 0.00300 0.10952 2363 29.67
10 11 168 52715 0.00021 0.00319 0.06548 1813 29.08
11-12 16 212 76362 0.00021 0.00278 0.07547 2424 31.50
13+ 17 248 113247 0.00015 0.00219 0.06855 3688 30.71

Total 2761 25267 3235810 0.00085 0.00781 0.10927 127987 25.28

(b) Vacancies
τ

∑
i miτ

∑
i ciτ

∑
i tiτ ĥe λ̂e µ̂e

∑
i 1iτ

∑
i tiτ∑
i 1iτ

1 1895 16334 191109 0.00992 0.08547 0.11602 14154 13.50
2 470 4855 190954 0.00246 0.02542 0.09681 7584 25.18
3 108 1306 117603 0.00092 0.01111 0.08270 4179 28.14
4 70 993 90781 0.00077 0.01094 0.07049 3056 29.71
5 63 487 62467 0.00101 0.00780 0.12936 2159 28.93
6 35 315 46396 0.00075 0.00679 0.11111 1697 27.34
7 23 295 39594 0.00058 0.00745 0.07797 1316 30.09
8 27 201 34673 0.00078 0.00580 0.13433 1070 32.40
9 25 138 27561 0.00091 0.00501 0.18116 878 31.39
10 10 73 18868 0.00053 0.00387 0.13699 645 29.25
11-12 17 85 30602 0.00056 0.00278 0.20000 988 30.97
13+ 18 185 65170 0.00028 0.00284 0.09730 2036 32.01

Total 2761 25267 915778 0.00301 0.02759 0.10927 39762 23.03

Table 1: Raw data, hazards and matching probabilities
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A similar analysis applies to each row of the table, except that µ̂w
τ 	= µ̂e

τ . For

example, column (3) of panel (a) shows that job-seekers receive 10, 783 contacts

in the first month of their search duration, and column (2) shows that 684 of

those contacts result in a match. Column (4) shows that total days at risk

in this first month are 613, 051.13 Our estimate of the worker hazard to a

successful contact is given in column (5), and comes from Equation (16).

ĥw
1 =

∑
i mi1∑
i ti1

= 0.00112

From Equation (14), the contact function reported in column (6) is estimated

from

λ̂w
1 =

∑
i ci1∑
i ti1

= 0.01759,

and the matching probability in column (7) is

µ̂w
1 =

∑
i mi1∑
i ci1

= 0.06343.

It is clear from the above that one can also calculate ĥw
τ as the product of λ̂

w
τ

and µ̂w
τ .

Column (8) reports the total number of workers and vacancies “at risk” in each

duration category. There are 34, 657 job-seekers and 14, 154 vacancies in total,

all of whom are at risk in month 1. Finally, column (9) is an estimate of the

total number of days at risk per worker or vacancy in that duration category.

The 34, 657 workers at risk in month 1 were at risk for 17.69 days. As noted

already, this is an over-estimate because we overestimate column (4).

In Figure 1 we plot the estimates of h, λ and µ for both sides of the market

from Table 1. Panels (a) and (b) show that the hazard to a successful contact

is declining with duration for both workers and vacancies. This is the standard

result in most of the microeconometric literature, although these are the first

results we are aware of which show both sides of the same market. The most

obvious difference between panels (a) and (b) is the extent to which the hazard

falls after one month, and the overall level of the hazard. The data come from

a slack labour market (θ < 1) and therefore vacancies exit faster than job-

seekers. In addition, the exit hazard for vacancies collapses after the first

month, whereas that for jobs-seekers declines only slowly.

13Note that this is an overestimate, as explained in Section 3.
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(a) Matching hazard, job-seekers

Duration (months)
1 2 3 4 5 6 7 8 9 10 11 12 13

0

.00025

.0005

.00075

.001

.00125

(b) Matching hazard, vacancies

Duration (months)
1 2 3 4 5 6 7 8 9 10 11 12 13

0

.001

.002

.003

.004

.005

.006

.007

.008

.009

.01

(c) Contact hazard, job-seekers

Duration (months)
1 2 3 4 5 6 7 8 9 10 11 12 13

0

.0025

.005

.0075

.01

.0125

.015

.0175

.02

(d) Contact hazard, vacancies

Duration (months)
1 2 3 4 5 6 7 8 9 10 11 12 13

0

.01

.02

.03

.04

.05

.06

.07

.08

.09

.1

(e) Matching probability, job-seekers

Duration (months)
1 2 3 4 5 6 7 8 9 10 11 12 13

0

.02

.04

.06

.08

.1

.12

.14

.16

.18

.2

(f) Matching probability, vacancies

Duration (months)
1 2 3 4 5 6 7 8 9 10 11 12 13

0

.02

.04

.06

.08

.1

.12

.14

.16

.18

.2

Figure 1: Raw hazards and matching probabilities
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Panels (c)–(f) decompose the job-seeker and vacancy hazard into the contact

hazard and the matching probability. It is immediately clear, that on both

sides of the market, the declining matching hazard is due entirely to a decline

in the number of contacts. Indeed, the matching probability actually increases

with duration both for job-seekers and vacancies over a certain range. This

result is consistent with the idea that a fall in either the job-seeker’s or the

firm’s reservation utility offsets the decline in the contact rate.

We should also note that the large fall in the contact rate observed on both

sides of the market is consistent with the non-random or stock-flow matching

model. If there is a marketplace in which job-seekers and vacancies can contact

each other quickly, we would expect very high initial contact rates. But once

this initial period is over, agents only contact new entrants on the other side

of the market, and the contact rate therefore falls sharply.

Of course, these contact hazards are also consistent with the random matching

model if one assumes either (a) that there is considerable heterogeneity in

job-seekers and vacancies, leading to spurious duration dependence or (b) if

there is genuine duration dependence as a result of the “quality” of job-seekers

and vacancies declining with duration. The latter seems unlikely, however,

over such a short period, and in particular we do not think that vacancies’

characteristics change with duration. However, the former is a real possibility,

because we have not controlled for any observed or unobserved differences of

the job-seekers and vacancies. To deal with this issue we now estimate the

matching hazard, the contact hazard and the matching probability using the

econometric methods outlined in Section 4.2.

5.2 Estimates of random matching models

Table 2 reports estimates of Equations (4) to (8) across four different specifica-

tions. Panel (a) is the “baseline” specification, which is reported for comparison

with estimates of the matching function from aggregated data. This specifi-

cation imposes a constant (exponential) baseline hazard for both matches and

contacts. Panels (b)–(d) allow the hazards and the matching probability to

vary with τ by using the monthly piecewise-constant hazard specified in Sec-

tion 4.3.
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Panel (b) is the pooled-Poisson model. The estimates in panels (c) and (d)

also allow for unobserved heterogeneity (overdispersion) in the Poisson models.

Panel (c) reports the Poisson random-effects model, while panel (d) reports the

Poisson fixed-effects model. For each estimate we report the coefficients on U

and V . Under constant returns in the matching function we would expect

α + β = 1 in the matching and contact functions, and α + β = 0 in the

matching probability.

Our estimates of α and β generally show a slight but significant degree of

increasing returns to scale (α+β > 1) in the matching function. The estimates

in the h column are approximately equal to the sum of the estimates in the λ

and µ columns — see Equation (17). The novelty of our results is that from

Equation (3) we can decompose this effect across the contact function and the

matching probability. So, for example, in panel (a) the elasticity of hw with

respect to unemployment is −0.167, and that this effect is being driven by the
elasticity of U with respect to contacts (−0.147) rather than the probability
of a match (−0.009). Even more unusually we can also see the same effects on
the other side of the same market. The elasticity of he with respect to U is

0.442 and this must be driven again by the increase in the number of contacts

(0.487) rather than any effect on the matching probability.14

However, panel (a) does not allow for any variation in the baseline hazard in

any of the estimates, and therefore estimates of α and β are potentially unre-

liable. To see why this might be the case, suppose that the “true” matching

probability for the unemployed is sharply declining with duration, for what-

ever reason. Time periods and districts with higher stocks of U will tend to

have a larger proportion of long-duration job-seekers with lower exit hazards.

Thus the elasticity of hw and λw with respect to U might be negative because

of the composition of the pool of job-seekers rather than because of genuine

congestion effects.

In panel (b) we can see that although estimates of α and β are quite similar

for hw and he, the decomposition is quite different. The elasticity of hw with

respect to U is −0.152, but this is driven by the elasticity of the matching
probability (−0.142) rather than the contact rate (0.024). This suggests that

14Note that in panel (a) the estimates of µw and µe are identical because these estimates
do not include τw or τe. The standard errors differ because for estimates of µw we cluster
on the district of the job-seeker, and for estimates of µe we cluster on the district of the
vacancy.
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the negative impact of high unemployment on unemployment durations does

not arise because of congestion or competition between job seekers in terms of

contact rates. Rather, it arises because, once a contact is made, the probability

of a match is significantly lower. Since the matching probability is the joint

probability that the both the worker and the firm find that other side’s offer

acceptable, this is strong evidence that it is the firm effect which dominates.

That is, as unemployment increases firms become more selective. We expect

µ to be homogeneous of degree zero, so that α + β = 0, but this is strongly

rejected on both sides of the market.

The other potential inconsistency in these estimates arises because of unob-

served heterogeneity. Job-seekers and vacancies differ in their “quality”, ai and

aj, in ways that are unobserved in the data. As noted in Section 4.2, this leads

to overdispersion in the data. It should be stressed that this will only lead to

inconsistent estimates of α and β if the ai and aj terms are correlated with

the other right hand side variables. In this case the right hand side variables

are the stocks of job-seekers and vacancies in each district month, and it is not

obvious that these will be correlated with unobserved characteristics of indi-

vidual job-seekers and vacancies. Of more importance is the fact that we wish

to estimate the relationship between h, λ, µ and elapsed duration. As is well

known, failure to control for heterogeneity when estimating baseline hazards

may lead to spurious duration dependence.

The panel nature of our data allows us to control for unobserved heterogeneity

both as a random and a fixed effect, reported in panels (c) and (d) of Table 2. It

turns out that estimates of α and β on the worker’s side of the market are quite

robust to unobserved heterogeneity at the individual level, whether modelled

as a fixed or a random effect. This is consistent with the idea that U and V are

essentially exogenous to the characteristics of individual job-seekers. On the

vacancy side of the market, however, models with unobserved heterogeneity

produce quite different estimate of β. For example, the elasticity of he and

λe with respect to the stock of vacancies moves from −0.207 (0.047) (pooled
model) to −0.107 (0.040) (random effects) to 0.160 (0.189) and insignificant

(fixed effects). This implies that the unobserved quality of the vacancies in our

data are correlated with the stocks of V in each district-month.

What effect does controlling for U , V and unobserved heterogeneity have on

the estimates of the baseline hazards? Figure 2 plots the estimated baseline
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(a) Matching hazard, job-seekers

Duration (months)
1 2 3 4 5 6 7 8 9 10 11 12 13

0
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.001

.00125

(b) Matching hazard, vacancies
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(c) Contact hazard, job-seekers
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(d) Contact hazard, vacancies
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(e) Matching probability, job-seekers
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(f) Matching probability, vacancies
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Figure 2: Hazards and matching probabilities, random matching model
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hazard from panel (c) in Table 2.15 The baseline hazards remain very similar to

those plotted from the raw data (Figure 1), although the exit rate for vacancies

is considerably higher. The basic story remains very clear: declining exit rates

for both job-seekers and vacancies is a result solely of declining contact rates.

If we believe that we have controlled successfully for the heterogeneity of job-

seekers and vacancies, this is a genuine effect of duration dependence.

5.3 Estimates of non-random matching models

In Andrews et al. (2003) we develop a statistical test for the hypothesis that the

data are generated by the stock-flow matching model, rather than the random

matching model. Here, we give only the intuition behind the method.16 We

first separate the data between job-seekers and vacancies which are “old” and

those which are “new”. By “old” we mean having been in the market for more

than one month. This notion of “old” and “new” corresponds quite closely to

the theoretical notion of the “stock” and the “flow”.

The argument is then quite simple. New vacancies and job-seekers can match

with any agent from the other side of the market, because by definition they

will not previously have been sampled. In contrast, once the job-seeker or

vacancy becomes old they can only match with “new” agents from the other

side of the market, because all other potential matches must have been already

rejected.

The empirical implication of this is threefold. First, either the contact rate

or the probability of a match should reduce sharply once the initial period is

over. We have already seen that this is the case for the contact function both

in the raw data (Figure 1) and the econometric estimates (Figure 2). Second,

an estimate of the matching function should show that for old job-seekers the

stock of new vacancies v is a significant factor in determining the contact and

exit rate, over and above the total stock of all vacancies, V . Similarly, the stock

of new job-seekers u should be significant over and above the total stock of all

job-seekers U . Third, the collapse in the matching rate should be a result of

the collapse in the numbers of suitable partners on the other side of the market

as the initial period of search ends.

15All hazards are plotted using the mean values of U and V .
16For a fuller exposition, see Andrews et al. (2003), in particular Section 3.
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Thus, if we estimate a matching function which includes a correctly specified

measure of old and new stocks, the resulting hazard should be approximately

constant.

In Table 3 we report estimates of a suitably parameterised stock-flow matching

model. We use a random-effects specification for the estimates of h and λ, and

a pooled specification for the estimates of µ. As before, we estimate three

models on both sides of the market: the matching rate h, the contact rate λ

and the matching probability µ. The top panel gives estimates for “new” job-

seekers and vacancies, the bottom panel for “old” job-seekers and vacancies.

We are most interested in the relationship between “old” job seekers and va-

cancies and the stock of “new” agents on the other side of the market, given in

the bottom panel of Table 3. First, note that the elasticity of hw with respect

to v is positive and significant (0.133 (0.055)), over and above the estimated

elasticity of hw with respect to V . In other words, a job-seeker who has been in

the market for more than a month has a significantly higher exit rate if there

is a larger stock of “new” vacancies on the other side of the market. Under

random matching, the coefficient on log v should be zero. Exactly the same

effect is observed on the other side of the market: the elasticity of he with

respect to u is also positive and strongly significant (0.193 (0.064)).

Does this effect come from an increase in the number of contacts (λ) or an

increase in the probability of a match? It appears to be both, although the

effect on µ is larger on both sides of the market. The elasticity of both λw and

µw with respect to v is positive and significant (0.069 (0.022)) and 0.168(0.030)

respectively). On the other side of the market, the elasticities of both λe and

µe with respect to u are both positive and significant, and again the latter is

larger and more significant.

Our final piece of evidence comes from the resulting hazards, plotted from the

estimates of h, λ and µ in Table 3. As we noted earlier, if the decline in the

overall hazard is a result of the collapse in the numbers of suitable partners

on the other side of the market, then once we have controlled for this the

hazard should be flat. In Figure 3 we plot the estimated hazards and matching

probabilities from the model estimated in Table 3. It is noticeable that these

hazards decline far less than the equivalent hazards from the estimates which

included only the total stock of U and V as covariates. We can see in particular

that the contact hazard is now almost flat, which is strongly suggestive that
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(a) Matching hazard, job-seekers

Duration (months)
1 2 3 4 5 6 7 8 9 10 11 12 13

0

.00025

.0005

.00075

.001

.00125

(b) Matching hazard, vacancies

Duration (months)
1 2 3 4 5 6 7 8 9 10 11 12 13

0

.001

.002

.003

.004

.005

.006

.007

.008

.009

.01

(c) Contact hazard, job-seekers

Duration (months)
1 2 3 4 5 6 7 8 9 10 11 12 13

0

.0025

.005

.0075

.01

.0125

.015

.0175

.02

(d) Contact hazard, vacancies

Duration (months)
1 2 3 4 5 6 7 8 9 10 11 12 13

0

.01

.02

.03

.04

.05

.06

.07

.08

.09

.1

(e) Matching probability, job-seekers

Duration (months)
1 2 3 4 5 6 7 8 9 10 11 12 13

0

.04

.08

.12

.16

.2

.24

.28

.32

.36

.4

.44

.48

(f) Matching probability, vacancies

Duration (months)
1 2 3 4 5 6 7 8 9 10 11 12 13

0

.04

.08

.12

.16

.2

.24

.28

.32

.36

.4

.44

.48

Figure 3: Hazards and matching probabilities, stock-flow model
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the fall observed in the raw data is due to the sudden reduction in the number

of suitable partners. This is entirely consistent with the stock-flow model.

6 Conclusions

A large empirical literature has estimated and tested various components of

the search and matching framework, but very few estimates have allowed one

to decompose the rate at which agents successfully match into the rate at

which they contact, and the probability that a contact results in a match.

Uniquely, we have been able to do this simultaneously for both sides of the

same market. We have been able to do both in this paper. This allows us to

shed considerable light on some of the fundamental assumptions of the search

and matching framework.

We find that in the raw data the decline in the matching rate for both job-

seekers and vacancies is driven by a sharp decline in the contact rate, and

not by any fall in the probability of a match conditional on a contact. We

then estimate a two-sided matching model in order to determine whether this

result is caused by omitted observed or unobserved heterogeneity in job-seekers

and vacancies. It also allows us to estimate the parameters of the individual

components of the matching function. We find that the same result applies as

in the raw data: the decline in the matching rate on both sides of the market

is driven by the decline in the contact rate.

We then estimate a more general matching model, one which nests the random

matching model, in order to test whether the stock-flow matching model is

consistent with the data. Our results are strongly suggestive that it is the

decline in the number of suitable partners which occurs once an initial period

has passed which is responsible for the sharp decline in the contact rate and

hence the matching rate.

26



References

Anderson, P. & Burgess, S. (1997), Empirical matching functions: estimation and
interpretation using disaggregate data, Working Paper 5001, National Bureau
of Economic Research, February.

Andrews, M., Bradley, S., Stott, D. & Upward, R. (2003), Testing theories of labour
market matching, Discussion paper, University of Manchester, March.

Andrews, M., Bradley, S. & Upward, R. (2001a), Employer search, vacancy dura-
tion, and skill shortages: an analysis of vacancies in the youth labour market,
Discussion paper, University of Nottingham, June.

Andrews, M., Bradley, S. & Upward, R. (2001b), ‘Estimating the probability of a
match using micro-economic data for the youth labour market’, Labour Eco-
nomics 8, 335–57.

Barron, J., Berger, M. & Black, D. (1997), Employer search, training and vacancy
duration. Upjohn Institute for Employment Research, Kalamazoo: Michigan.

Blanchard, O. & Diamond, P. (1989), ‘The Beveridge Curve’, Brookings Papers on
Economic Activity 1, 1–60.

Blanchard, O. & Diamond, P. (1992), ‘The flows approach to labor markets’, Amer-
ican Economic Review 82, 354–59.

Broersma, L. & van Ours, J. (1999), ‘Job searchers, job matches and the elasticity
of matching’, Labour Economics 6, 77–93.

Burdett, K. & Coles, M. (1999), ‘Long-term partnership formation: marriage and
employment’, Economic Journal 109, F307–334.

Burdett, K., Coles, M. & van Ours, J. (1994), Temporal aggregation bias in stock-
flow models. CEPR Discussion Paper No. 967.

Burdett, K. & Cunningham, E. (1998), ‘Toward a theory of vacancies’, Journal of
Labor Economics 16, 445–78.

Cameron, A. & Trivedi, P. (1998), Regression Analysis of Count Data, Cambridge
University Press, Cambridge.

Coles, M. & Petrongolo, B. (2003), A test between unemployment theories using
matching data. Mimeo, January.

Coles, M. & Smith, E. (1998), ‘Marketplaces and matching’, International Economic
Review 39, 239–55.

Gregg, P. & Petrongolo, B. (1997), Random or non-random matching? Implications
for the use of the UV curve as a measure of matching effectiveness. CEP
Discussion Paper No. 348.

Jackman, R., Layard, R. & Pissarides, C. (1989), ‘On vacancies’, Oxford Bulletin of
Economics and Statistics 51, 377–94.

27



Lancaster, T. (1979), ‘Econometric methods for the duration of unemployment’,
Econometrica 47, 939–56.

Lindeboom, M., van Ours, J. & Renes, G. (1994), ‘Matching employers and workers:
an empirical analysis of the effectiveness of search’, Oxford Economic Papers
46, 45–67.

Manning, A. (2001), Monopsony and the efficiency of labour-market interventions.
CEP Discussion Paper No. 514.

Marimon, R. & Zilibotti, F. (2000), ‘Employment and distributional effects of re-
stricting working time’, European Economic Review 44, 1291–1326.

Meyer, D. (1990), ‘Unemployment insurance and unemployment spells’, Economet-
rica 58, 757–82.

Mortensen, D. & Pissarides, C. (1998), Job reallocation, employment fluctuations
and unemployment differences, in M. Woodford & J. Taylor, eds, ‘Handbook
of Macroeconomics’, North-Holland, Amsterdam, chapter 18, pp. 1171–228.

Mortensen, D. & Pissarides, C. (1999), New developments in models of search in
the labor market, in O. Ashenfelter & D. Card, eds, ‘Handbook of Labor Eco-
nomics’, Vol. 3B, Elsevier, Amsterdam, chapter 39, pp. 2567–627.

Petrongolo, B. & Pissarides, C. (2001), ‘Looking into the black box: a survey of the
matching function’, Journal of Economic Literature 39, 390–431.

Petrongolo, B. & Pissarides, C. (2002), Scale effects in markets with search, Discus-
sion Paper 3648, CEPR, November.

Russo, G. & van Ommeren, J. (1998), ‘Recruitment methods and vacancy duration’,
Bulletin of Economic Research 50, 155–66.

Teyssière, G. (1996), ‘Matching processes in the labour market: an econometric
study’, Labour Economics 2, 421–35.

van den Berg, G. (1990), ‘Search behaviour, transitions to non-participation and the
duration of unemployment’, Economic Journal 100, 842–865.

van den Berg, G. (1999), ‘Empirical inference with equilibrium search models of the
labour market’, Economic Journal 109, F283–306.

van Ours, J. (1990), An empirical analysis of employers’ search, in J. Hartog, G. Rid-
der & J. Theeuwes, eds, ‘Panel Data and Labor Market Studies’, North-Holland,
Amsterdam, pp. 191–214.

van Ours, J. & Lindeboom, M. (1996), “Seek and ye shall find”: an empirical analysis
of the matching of job seekers and vacancies. Paper presented at Labour Market
Changes and Income Dynamics conference.

van Ours, J. & Ridder, G. (1991), ‘Cyclical variations in vacancy durations and
vacancy flows: an empirical analysis’, European Economic Review 35, 1143–
1155.

28



van Ours, J. & Ridder, G. (1992), ‘Vacancies and the recruitment of new employees’,
Journal of Labor Economics 10, 138–155.

van Ours, J. & Ridder, G. (1993), ‘Vacancy durations: search or selection?’, Oxford
Bulletin of Economics and Statistics 55, 187–198.

Winkelmann, R. (1997), Econometric Analysis of Count Data, Springer, Berlin.

29


