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ABSTRACT

This paper makes two contributions in relation to the use of information criteria for inference

on structural breaks when the coefficients of a linear model with endogenous regressors may

experience multiple changes. Firstly, we show that suitably defined information criteria yield

consistent estimators of the number of breaks, when employed in the second stage of a two-stage

least squares (2SLS) procedure with breaks in the reduced form taken into account in the first

stage. Secondly, a Monte Carlo analysis investigates the finite sample performance of a range of

criteria based on BIC, HQIC and AIC for equations estimated by 2SLS. Versions of the consistent

criteria BIC and HQIC perform well overall when the penalty term weights estimation of each

break point more heavily than estimation of each coefficient, while AIC is inconsistent and badly

over-estimates the number of true breaks.

Keywords: structural breaks, information criteria, instrumental variables estimation

JEL codes: C13, C26



1 Introduction

Information criteria are routinely used to select a specific model from a range of time-invariant

linear specifications. It is not surprising, therefore, that a number of authors extend the approach

by proposing versions of these criteria for the purpose of estimating the number of structural

breaks in linear models. For example, Yao (1988) considers a version of the criterion of Schwarz

(1978) [referred to as BIC] for this purpose while Ninomiya (2005) develops a version of the Akaike

(1973) criterion [AIC].1 Yao (1988) establishes that his criterion is consistent for estimation of

the number of breaks in the mean of an i.i.d. Gaussian process, while the arguments of Bai (2000)

indicate that a wider range of penalty functions - although not AIC - will similarly deliver a

consistent estimate of this key parameter.2

A further important difference between Yao’s (1988) and Ninomiya’s (2005) criterion is the

weight attached to the estimated break date in the penalty function: Yao (1988) effectively

counts each break date estimated as equivalent to a single coefficient while the analytical results

obtained by Ninomiya (2005) lead him to increase the weight on break date estimation to three

times that of a coefficient. While Ninomiya’s (2005) analysis applies only to a mean shift model,

Hall, Osborn, and Sakkas (2012) show that his arguments extend to a variety of regression

models estimated via least squares. Indeed, Hall, Osborn, and Sakkas (2013) provide a Monte

Carlo analysis of the finite sample performance of a range of consistent information criteria for

structural break inference in the linear OLS context, finding that a modified BIC-based penalty

function and a version of the criterion of Hannan and Quinn (1979) [HQIC] both perform well

when a relative weighting of three is applied for break date estimation. In particular, the use

of this relative weighting scheme in the penalty function substantially reduces the problem of

spurious break detection found in the study of Bai and Perron (2006) when using BIC.

However, economic models often include endogenous regressors, rendering OLS-based tech-

niques inappropriate. Very recently, Hall, Han, and Boldea (2012) and Boldea, Hall, and Han

(2012) have extended the OLS approach of Bai and Perron (1998) to develop a hypothesis test-

ing methodology for structural break inference in the two stage least squares [2SLS] context.

Although this methodology provides researchers with techniques that are (asymptotically) valid

for 2SLS, nevertheless it has the practical disadvantage that the method involves dividing the

1Also see Liu, Wu, and Zidek (1997) and Zhang and Siegmund (2007).
2Bai’s (2000) analysis is in the context of vector autoregressions.
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sample into sub-samples over which the reduced form is judged stable. With the moderate sam-

ple sizes often available to practitioners, this sample splitting can lead to the partitions having

relatively few observations over which testing can be conducted for the structural form equation.

Motivated by these considerations, the present paper extends the information criteria ap-

proach to structural break estimation in linear models with endogenous regressors estimated by

2SLS. More explicitly, we establish generic conditions under which information criteria methods

yield consistent estimation of the number of breaks in the structural equation. These condi-

tions cover penalty functions that both behave as a function of the sample size like either BIC

or HQIC and also attach to each estimated break either the same or three times the weight

as an estimated coefficient. However, in line with other results relating to model specification,

including Shibata (1976), methods based on AIC are not consistent and may asymptotically

over-estimate the number of true breaks. Although our approach requires breaks in the reduced

form equation(s) to be appropriately taken into account, implementation does not require the

sample used for break inference in the structural form to be split based on the reduced form

partitions.

The paper also undertakes an extensive Monte Carlo analysis of the performance of infor-

mation criteria for the estimation of the number of breaks in a structural equation estimated by

2SLS, examining versions of BIC, HQIC and AIC that count an estimated break as effectively

equivalent to one and three individual coefficients, respectively. In line with our OLS analysis

in Hall, Osborn, and Sakkas (2013), we find that BIC and HQIC perform well when combined

with the higher relative weight of three for break estimation and this applies in cases with both

i.i.d. and positively autocorrelated disturbances.

The outline of the paper is as follows. Section 2 discusses the assumptions made on the

structural equation of interest to the researcher, with the consistency of the information criteria

approach in the 2SLS context established in Section 3. The results of our Monte Carlo study

are detailed in Section 4, with conclusions drawn in Section 5.
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2 The Structural Equation

Consider the case in which the equation of interest is a structural relationship from a simultaneous

system, with this equation exhibiting m breaks, such that

yt = x′tβ
0
x,i + z′1,tβ

0
z1,i + ut, i = 1, ...,m+ 1, t = T 0

i−1 + 1, ..., T 0
i (1)

where T 0
0 = 0 and T 0

m+1 = T , where T is the total sample size. Thus, yt is the dependent

variable, while xt is a p1×1 vector of endogenous explanatory variables, z1,t is a p2×1 vector of

exogenous variables including the intercept, and ut is a mean zero error. We define p = p1 + p2.

As usual in the literature, we require the break points to be asymptotically distinct.

Assumption 1 T 0
i = [Tλ0i ], where 0 < λ01 < ... < λ0m < 1.3

As a structural equation, we allow the explanatory variables, xt, to be correlated with the

errors, ut and xt requires a reduced form representation to be estimated using appropriate

instruments. This estimation is done a priori in the first stage of a Two Stage Least Squares

(2SLS) procedure. Furthermore, we allow for this reduced form to be subject to discrete shifts

in the sample period,

x
′

t = z
′

t∆
(i)
0 + v

′

t, i = 1, 2, . . . , h+ 1, t = T ∗i−1 + 1, . . . , T ∗i (2)

where T ∗0 = 0 and T ∗h+1 = T . The vector zt = (z′1,t, z
′
2,t)
′ is q× 1 and contains variables that are

uncorrelated with both ut and vt and are appropriate instruments for xt in the first stage of the

2SLS estimation. The parameter matrices are ∆
(i)
0 = (δ

(i)
1,0, δ

(i)
2,0, ..., δ

(i)
p1,0

), each with dimension

q × p1, and each δ
(i)
j,0 is dimension q × 1 , for j = 1, ..., p1. The points {T ∗i } are assumed to be

generated as follows.

Assumption 2 T ∗i = [Tπ0
i ], where 0 < π0

1 < . . . < π0
h < 1.

Note that the break fractions in the reduced form, π0 = [π0
1 , π

0
2 , . . . , π

0
h]′, may or may not

coincide with the breaks in the structural equation, λ0 = [λ01, λ
0
2, . . . , λ

0
m]′. Also note that (2)

can be re-written as follows

xt(π
0)
′

= z̃t(π
0)
′
Θ0 + v

′

t, t = 1, 2, . . . , T (3)

3[ · ] denotes the integer part of the quantity in the brackets.
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where Θ0 = [∆
(1)′

0 ,∆
(2)′

0 , . . .∆
(h+1)′

0 ]
′
. z̃t(π

0) = ι(t, T ) ⊗ zt, ι(t, T ) is a (h + 1) × 1 vector with

first element I{t/T ∈ (0, π0
1 ]}, h+1th element I{t/T ∈ (π0

h, 1]}, kth element I{t/T ∈ (π0
k−1, π

0
k]}

for k = 1, 2, . . . , h and I{·} is an indicator variable that takes the value one if the event in the

curly brackets occurs.

Let π̂ = [π̂1, π̂2, . . . , π̂h]′ denote estimators of π0. It is assumed these estimators satisfy the

following condition.

Assumption 3 π̂ = π0 + Op(T
−1)

This condition would be satisfied if, for example, the break dates in the reduced form are

estimated by applying Bai and Perron’s (1998) methodology or consistent information criteria

equation by equation and then pooling the estimates of the break fractions. Let x̂t(π̂) denote

the resulting fitted values that is,

x̂t(π̂)′ = z̃t(π̂)′Θ̂T (π̂) = z̃t(π̂)′

(
T∑
t=1

z̃t(π̂)z̃t(π̂)′

)−1 T∑
t=1

z̃t(π̂)x′t (4)

where z̃t(π̂) is defined analogously to z̃t(π
0) based on the estimator of the true break points in

the reduced form.

To facilitate our analysis we impose the following assumptions:

Assumption 4 (i) ht = (ut, v
′
t)
′⊗zt is an array of real valued (p+1)q×1 random vectors defined

on the probability space (Ω,F , P ), VT = V ar[
∑T
t=1 ht] is such that diag[ξ−1T,1, . . . , ξ

−1
T,(p+1)q] =

Ξ−1T is O(T−1) where ΞT is the (p + 1)q × (p + 1)q diagonal matrix with the eigenvalues

(ξT,1, . . . , ξT,(p+1)q) of VT along the diagonal; (ii) E[ht,i] = 0 and, for some d > 2, ‖ht,i‖d < Γ <

∞ for t = 1, 2, . . . and i = 1, 2, . . . n where ht,i is the ith element of ht; (iii) {ht,i} is near epoch

dependent with respect to {gt} such that ‖ht−E[ht|Gt+ζt−ζ ]‖2 ≤ νζ with νζ = O(ζ−1/2) where Gt+ζt−ζ

is a sigma- algebra based on (gt−ζ , . . . , gt+ζ); (iii) {gt} is either φ-mixing of size ζ−d/(2(d−1)) or

α-mixing of size ζ−d/(d−2); (iv) VT (r) = V ar[T−1/2
∑[Tr]
t=1 ht] satisfies VT (r)→rV uniformly in

r ∈ [0, 1] where V is a pd matrix.

Assumption 5 V ar[ut] = σ2
u, Cov[ut, vt] = Σuv, and V ar[vt] = Σv, for all t.

Assumption 6 rank{Υ0
i } = p where Υ0

i =
[
∆

(i)
0 , Π

]
, for i = 1, 2, · · · , h + 1 where Π′ =

[Ip2 , 0p2×(q−p2)], Ia denotes the a× a identity matrix and 0a×b is the a× b null matrix.
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Assumption 7 For ] = 0, ∗, there exists an l] > 0 such that for all l > l], the minimum

eigenvalues of Ail = (1/l)
∑T ]

i +l

t=T ]
i +1

ztz
′
t and of Āil = (1/l)

∑T ]
i

t=T ]
i −l

ztz
′
t are bounded away from

zero for all i = 1, ..., ν] + 1 where ν0 = m and ν∗ = h.

Assumption 8 T−1
∑[Tr]
t=1 ztz

′
t
p.u→ QZZ(r) uniformly in r ∈ [0, 1] where QZZ(r) is positive

definite for any r > 0 and strictly increasing in r. QZZ(r)−QZZ(s) is positive definite for any

r > s.

Assumption 4 allows substantial dependence and heterogeneity in (ut, v
′
t)
′ ⊗ zt but at the

same time imposes sufficient restrictions to deduce a Functional Central Limit Theorem for

T−1/2
∑[Tr]
t=1 ht; see Wooldridge and White (1988). This assumption also contains the restrictions

that the implicit population moment condition in 2SLS is valid - that is E[ztut] = 0 - and

the conditional mean of the reduced form is correctly specified. Assumption 5 restricts the

unconditional variance and covariances of the structural equation and reduced form errors to be

constant over time. Assumption 6 implies the standard rank condition for identification in IV

estimation in the linear regression model4 because Assumptions 4(ii), 6 and 8 together imply

that

T−1
[Tr]∑

t=[sT ]+1

zt[x
′
t, z
′
1,t]

p→ [QZZ(r)−QZZ(s)]Υ0 = QZ,[X,Z1](r, s) uniformly in r > s+ε, r, s ∈ [0, 1]

(5)

where QZ,[X,Z1](r, s) has rank equal to p for any r, s (satisfying the above conditions). Note this

assumption implies q ≥ p. Assumption 7 requires that there be enough observations near the

true break points in either the structural equation or reduced form so that they can be identified

and is analogous to the extension proposed in Bai and Perron (1998) to their Assumption A2.

3 Consistency of an Information Criterion

Suppose now that a researcher knows neither the number nor the location of the breaks in the

structural equation. Consider the case where an arbitrary number n breaks are estimated at

τ(n) = [τ1, τ2, . . . , τn]
′

with 0 < τ1 < τ2 < . . . < τn < 1, τ0 = 0, and τn+1 = 1. Then, the

second stage of 2SLS can begin with the estimation of (1) via OLS for each possible n-partition

4See e.g. Hall (2005)[p.35].
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of the sample that is,

yt = x̂t(π̂)
′
β∗x,i + z′1,tβ

∗
z1,i + ũt(π̂), i = 1, ..., n+ 1; t = Ti−1 + 1, ..., Ti; (6)

where Ti = [τiT ], and the regressors xt are estimated using the fitted values of the first stage of

2SLS, x̂t(π̂). We further assume that

Assumption 9 Equation (6) is estimated over all partitions (T1, ..., Tn) such that Ti − Ti−1 >

max{q − 1, εT} for some ε > 0 and ε < infi(λ
0
i+1 − λ0i ) and ε < infj(π

0
j+1 − π0

j ).

Assumption 9 requires that each segment considered in the estimation contains a positive

fraction of the sample asymptotically; in practice ε is chosen to be small in the hope that the

last part of the assumption is valid. Letting β∗i
′ = (β∗x,i

′, β∗z1,i
′)′, for a given n-partition, the

estimates of β∗ = (β∗1
′, β∗2

′, ..., β∗n+1
′)
′

are obtained by minimizing the sum of squared residuals

ST (T1, ..., Tn; β) =

n+1∑
i=1

Ti∑
t=Ti−1+1

{
yt − x̂t(π̂)′βx,i − z′1,tβz1,i

}2
with respect to β = (β1

′, β2
′, ..., βn+1

′)
′
. We denote these estimators by β̂(τ(n)). The estimators

of the break points, (T̂1, ..., T̂n), are then defined as

τ̂(n) = (T̂1, ..., T̂n) = arg min
T1,...,Tn

ST

(
T1, ..., Tn; β̂(τ(n))

)
(7)

where the minimization is taken over all possible partitions, (T1, ..., Tn). The 2SLS estimates of

the regression parameters, β̂(τ̂(n)) = (β̂′1, β̂
′
2, ..., β̂

′
n+1)′, are the regression parameter estimates

associated with each of the estimated partitions.

The estimators τ̂(n) and β̂(τ̂(n)) are calculated conditional on n. While the above considers

arbitrary n, we seek an estimator for the true number of structural breaks m, which is typically

unknown a priori. Hall, Han, and Boldea (2012) - HHB hereafter - propose a method for

estimation of m based on the sequential application of certain test statistics for parameter

variation. Here we consider an alternative approach based on minimization of the following

information criterion (IC),

IC (τ(n);n, π̂) = ln
[
σ̂2(τ(n);n, π̂)

]
+K(n, T ), (8)
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where

σ̂2(τ(n);n, π̂) = (T − p)−1RSS(τ(n);n, π̂), (9)

RSS(τ(n);n, π̂) =

n∑
j=1

RSSj(τ(n);n, π̂), (10)

RSSj(τ(n);n, π̂) =

[τjT ]∑
t=[τj−1T ]+1

{
yt − x̂t(π̂)′β̂x,i − z′1,tβ̂z1,i

}2

, (11)

and K(n, T ) is a deterministic penalty term governed by the following Assumption,

Assumption 10 K(n, T ) = o(1) as T → ∞, it is a strictly increasing function of n, and

TK(n, T )→∞ as T →∞.

Then, the estimated number of breaks, denoted n̂, is the value that minimizes the IC, that

is

n̂ = argminn∈N IC (τ(n);n, π̂) . (12)

where N = {0, 1, . . . , N}. The associated estimators of the break locations are τ̂(n̂). N is the

maximum number of breaks considered and we assume this is large enough to ensure m ∈ N :

Assumption 11 N ≥ m.

The proof of consistency of our method rests on the limiting properties of RSS(τ(n);n, π̂).

The following lemma presents the limiting behaviour of RSSj(τ(n);n, π̂).

Lemma 1 Let yt be generated by (1), xt be generated by (2), x̂t(π̂) be generated by (4) and

Assumptions 1-9 hold. Then, for segment j of the data, t = [τj−1T ] + 1, . . . , [τjT ],

(i) If λ0i−1 ≤ τj−1, τj ≤ λ0i then

T−1RSSj(τ(n);n, π̂)
p.u→ (τj − τj−1)Γi.

(ii) If there exists i and κ > 0 such that λ0i , λ
0
i+1, . . . , λ

0
i+κ ∈ [τj−1, τj ] then

T−1RSSj(τ(n);n, π̂)
p.u→ (λ0i − τj−1)Γi + (λ0i+1 − λ0i )Γi+1 + . . .

+ (λ0i+k − λ0i+κ−1)Γi+κ + (τj − λ0i+κ)Γi+κ+1 + F

8



where Γi = σ2
u + 2Σuvβ

0
x,i + β0′

x,iΣvβ
0
x,i.

p.u→ denotes limit in probability, that exists uniformly in

a segment defined by τj−1 + ε < τj, for ε > 0 and τj−1, τj ∈ [0, 1]. F is a positive constant (that

is defined in the proof) which depends on τj−1, τj, certain limit matrices and the parameters of

the model.

Lemma 1 demonstrates the impact of neglected breaks on the residual sum of squares in seg-

ment j. Part (i) states that if there are no neglected breaks then T−1RSSj(τ(n);n, π̂) converges

to the (scaled) variance (τj − τj−1)Γi; part (ii) shows that if there are neglected breaks then

T−1RSSj(τ(n);n, π̂) converges to its scaled variance plus a positive constant. Notice that the

scaled variance in question is that of ut + β0′
x,ivt, and this reflects both the error ut and the

measurement error inherent in the substitution of x̂t(π̂) for xt.

Given the additivity of RSS(·) in RSSj(·), the results in Lemma 1 can be used to deduce

the limiting behaviour of T−1RSS(·) for any partition. For any partition with no neglected

breaks, T−1RSS(·) converges to Γ =
∑n
i=1 Γi and for any partition with at least one neglected

break T−1RSS(·) converges to Γ + ξ, ξ > 0. This behaviour, combined with Assumptions 10

and 11 implies the consistency of n̂ for m, and this combined with HHB[Theorem 1] implies the

consistency of τ̂(n̂)]. This is stated formally in the following theorem.

Theorem 1 Under Assumptions 1-11,

[n̂, τ̂(n̂)]
p.u→ [m,λ0]

where λ0 = [λ01, . . . , λ
0
m]′ is the collection of the true break fractions in (1).

Remark 1: To implement the estimation procedure, it is necessary to pick a penalty term that

satisfies Assumption 10. A natural choice that leads to a consistent IC is

K(n, T ) = [(n+ 1)p+ kn] ln(T )/T, (13)

which is associated with BIC, because this choice has been found to work well in other settings.

Applied in this 2SLS context, the proposal of Yao (1988) sets k = 1, and this penalty gives

the criterion that we refer to simply as BIC. However, the analysis of Hall, Osborn, and Sakkas

(2012) suggests that k = 3 may be appropriate, and we refer to the resulting criterion as SBBIC,

indicating structural break SIC, since this treats the estimation of break dates as having a distinct

9



weight from that of the individual coefficients of (6). Following Hall, Osborn, and Sakkas (2013)

who consider the OLS case, we also employ two versions of HQIC, with

K(n, T ) = 2[(n+ 1)p+ kn] ln[ln(T )]/T (14)

for k = 1 (referred to as HQIC) and k = 3 (SBHQIC). These criteria using the penalty (14) also

satisfy Assumption 10. However, the choice associated with AIC (Akaike (1974)), where

K(n, T ) = 2[(n+ 1)p+ kn] /T (15)

does not satisfy Assumption 10 and its yields an estimator that has a zero probability of choosing

too few breaks but a non-zero probability of choosing too many breaks in the limit. Once again,

we use k = 1 (labelled as AIC in the results) and k = 3 (SBAIC).

Remark 2: HHB propose a methodology for estimation of m based on the sequential applica-

tion of tests for various forms of parameter variation. If these tests are performed with a fixed

significance level then the resulting estimator of m has a zero probability of underfitting but a

non-zero probability of overfitting in the limit due to the non-zero probability of type one errors

inherent in the decision rules for the tests. Simulation results in HHB suggest that the tendency

to overfit can be substantially reduced by using 1% significance levels; nevertheless, the resulting

estimator of the number of breaks is not consistent. This may be seen as an advantage of the

IC approach.

Remark 3: A further difference between HHB’s approach and the IC approach is in terms of the

assumptions about the limiting behaviour of the instrument cross-product matrix. The theory

underlying certain tests employed in HHB’s methodology requires the standardized partial sum

instrument cross-product matrix to be linear in the sampling fraction within the assumed regimes

under the appropriate null that is, T−1
∑T 0

i−1+[rT ]

t=T 0
i−1+1

ztz
′
t
p→ rQi, uniformly in r ∈ (0, λ0i − λ0i−1],

where Qi is a pd matrix of constants. This rules out changes in the mean and variance of the

instruments at different times from the changes in the structural parameters. This assumption

is more restrictive than Assumption 8. Thus the IC approach is potentially more robust to such

changes in the behaviour of zt (in the limit).
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4 Simulation Evidence

The first subsection outlines the set-up employed for our Monte Carlo analysis, with results

discussed in the second subsection.

4.1 Methodology

We assess the performance of the aforementioned information criteria in a variety of cases with

different numbers and locations of breaks in both the reduced form (RF) and structural form

(SF) equations of (1) and (2). These nine cases are given in Table 1 and include models with no

RF breaks and zero to two SF breaks; one RF break and zero to two SF breaks, including the

case where one break is coincidental in both equations (Case 5) and non-coincidental (Case 7);

two RF breaks and one or two SF breaks. For each case we investigate the effect of sample size

(T = 120 and 240), break magnitude, autocorrelation, and the effect of explanatory power in

first stage (RF) breaks estimation on the second stage (SF) breaks estimation. The focus is on

the scenario most relevant in practice, where the number and locations of breaks are unknown in

both equations and the same IC is applied for structural break inference in each of these. Tables

2 to 9 present the empirical probability of each IC to pick 0, 1, 2, or ≥ 3 breaks in the RF and

SF for each case, based on a sample of 2000 replications of the data generating processes (DGPs)

discussed below. The results shown present RF results once for all cases with the same RF since

by keeping the seed of the pseudo-random number generator the same these estimations give

identical results. The cases with the same RF are separated in the tables with horizontal lines.

We consider DGPs for which the SF equation includes a constant and one endogenous vari-

able, so in our experiments (1) becomes

yt = β1,i + β2,ixt + ut i = 1, ...,m+ 1.

All cases of no breaks use β1 = 0.5, with β2 = 0.1 in Tables 2 to 5 and β2 = 1 in Tables 6 to

9. When breaks exist in the SF, we use the same coefficient values as in the no breaks case, but

alternate the coefficients’ sign between segments. These choices of coefficient values were made

in order to present meaningful and comparable results, where ICs do not pick the true number

11



of breaks 100% of the time, or have effectively no power. In the cases of one break this becomes

yt =

 β1 + β2xt + ut if t ≤ [λ1T ]

−β1 − β2xt + ut if t > [λ1T ]

while for two breaks we set

yt =


β1 + β2xt + ut if t ≤ [λ1T ]

−β1 − β2xt + ut if [λ1T ] < t ≤ [λ2T ]

β1 + β2xt + ut if t > [λ2T ].

The simulated RF equations based on (2) are

xt = z′t∆j + vt j = 1, ..., h+ 1,

where zt contains q = 4 instruments and an intercept. The coefficient values for the intercept are

the same as in the SF but the regressor coefficients, common across regressors, are determined so

that they yield R2 = 0.3 or R2 = 0.5 that is ensured by using δ =
√
R2/(q − q ×R2) (see Hahn

and Inoue (2002)). Performance of the IC under these different cases of explanatory power are

presented as different rows of results. Across segments, the signs of the RF coefficients alternate

as in the SF equations.

We use two different dynamic structures, each presented in different tables, to generate the

ut, vt as well as the instruments zt. In the case of i.i.d errors we draw from a multivariate

(six-dimensional) standard normal distribution, where the errors have Cov[ut, vt] = 0.5 and

are uncorrelated with the instruments while the instruments have Cov[zit, zjt] = 0 ∀i 6= j. To

explore the effect of autocorrelation in the behaviour of the IC we simulate each case with AR(1)

processes for both the SF errors ut = φuut−1 + εt, and the instruments zi,t = φzzi,t−1 + εit. We

set the autoregressive parameter to 0.5 for both, and to ensure that V ar[ut] = 1 we set V ar[εt] =

(1−φ2u)V ar[ut], while to retain Cov[ut, vt] = Cov[(1−φuL)−1εt, vt] = 0.5 we set Cov[εt, vt] = 0.5.

Similar considerations for the AR(1) in the instruments means setting V ar[εit] = (1−φ2z)V ar[zit].

Finally, when searching for the break locations we allow for a maximum of five breaks, set a

trimming parameter (ε in Assumption 9) of 0.10, that is, the minimum length of a segment can

be 10% of the sample size) and use the efficient search algorithm developed in Bai and Perron

(2003).

The presentation of the results is as follows. Tables 2 and 3 give the results for the small

sample size (T = 120) and the “small” breaks (β2 = 0.1) for the two different dynamic structures,
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i.i.d and AR(1) respectively. Tables 4 and 5 change to the larger sample size (T = 240) and the

next four tables (6 to 9) repeat the models of tables 2 to 5 but for the larger magnitude of breaks

given by β2 = 1. To aid interpretation within these tables, the highest empirical probability of

detecting the true number of breaks is shown in bold for each case considered.

4.2 Results

When no breaks occur in the DGP for either the SF or the RF equations (h = 0, m = 0), Case

1 of Tables 2, 4, 6 and 8 show a good performance of BIC when the disturbances are i.i.d..

More explicitly, the BIC criterion, employing k = 1 in (13), performs very well in not detecting

spurious breaks in the RF, with good results consequently also seen in the SF when there is no

autocorrelation. Even with the smaller sample size of T = 120, spurious breaks are infrequently

detected by BIC (Tables 2 and 6). However, any such spurious breaks are removed by the use

of the criterion SBBIC, which applies a higher weight of k = 3 to break date estimation. As

may be anticipated, the use of HQIC leads to the estimation of some spurious breaks in both

the reduced and structural form equations, with this feature being more marked for the SF. An

increase in the sample size from T = 120 to T = 240 reduces spurious break detection in the

SF from around 13%-15% to about 10%-11% (compare Table 2 with Table 4, and Table 6 with

Table 8). Use of the modified criterion SBHQIC, however, eliminates the vast majority of these,

resulting in less than 1% spurious SF breaks for Case 1 across Tables 2, 4, 6 and 8.

Compared to the performances of these criteria, the use of the inconsistent AIC yields poor

inference on the number of breaks when none apply in the DGP. This is particularly marked

when the penalty term (15) employs k = 1, which effectively counts each break date estimated

as equivalent to a single coefficient, and leads to three or more spurious breaks being detected in

the clear majority of replications with i.i.d. disturbances. While the number of spurious breaks is

reduced by the use of SBAIC, these nevertheless occur in a substantial percentage of replications,

standing at around 18% in the most favourable scenario of Table 8.

Turning to the DGPs with autocorrelation, notice firstly that autocorrelation in the RF

regressors with h = 0 in Tables 3, 5, 7 and 9 leads to very similar break detection results for the

RF compared to when the regressors are i.i.d. However, when breaks occur (h = 1 or 2) and the

sample size is relatively small, autocorrelation reduces the accuracy of RF break detection by
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the BIC-based and HQIC-based methods in Tables 3 and 7 compared with Tables 2 and 6. The

AIC-based methods are always poor and autocorrelated regressors have little effect on their RF

performance.

Although the BIC-based and HQIC-based criteria remain consistent in the presence of sta-

tionary autocorrelation, it is clear that the positively autocorrelated AR(1) disturbances lead to

a deterioration of performance for all criteria applied to the SF when this experiences no breaks

5. However, allocating the heavier weight to break date estimation in SBBIC and SBHQIC alle-

viates this feature. For example, for Case 1 in Table 3, BIC yields spurious breaks in more than

40% of the replications, which is reduced to less than 7% by SBBIC, with the corresponding

percentages for HQIC and SBHQIC being 83% and 32%, respectively, with these performances

improving marginally with T = 240 in Table 5. Not surprisingly, a stronger role for the SF

regressors (β2 = 1) also leads to improved performances for these consistent criteria in Tables

7 and 9, with the marked improvement shown by BIC, HQIC and SBHQIC particularly note-

worthy. AIC and SBAIC also show an increased tendency to detect spurious breaks with AR(1)

rather than i.i.d. disturbances, but they remain poor in comparison to the consistent criteria.

Indeed, this is always the case irrespective of the number of true breaks, and hence we do not

explicitly discuss these criteria further.

In Case 2, where a single break applies in the SF but the RF is stable (h = 0, m = 1),

SBBIC is the most accurate method in terms of the correct detection of the SF break with

i.i.d. disturbances in Tables 2, 4, 6 and 8. This is followed in accuracy by SBHQIC, with these

results corresponding with this corresponding to their good performances in our OLS study, in

Hall, Osborn, and Sakkas (2013). While BIC does well in Table 2, when the magnitudes of

the SF coefficients and the magnitudes of the changes are relatively small, it has a tendency

to over-estimate the number of breaks for the larger magnitudes in Table 6. However, and not

surprisingly, HQIC has a greater tendency than BIC to over-estimate the number of breaks.

The presence of any break is more difficult to detect when two reverting breaks apply with

a stable RF (Case 3, with h = 0, m = 2) in these tables, so that BIC, SBBIC and SBHQIC

often erroneously imply no breaks are present, with this being particularly a feature of Table 2.

5Since there is generally only modest deterioration in the detection of RF breaks with autocorrelated regressors,

the deterioration in performance in the SF can be attributed primarily to autocorrelation in the second stage

model itself.
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However, this is largely eliminated for the larger sample size and/or larger coefficient magnitudes

(Tables 4, 6 and 8), except sometimes for SBBIC. Note in Table 6 that the RF R2 plays an

important role for the performance of SBBIC, with the poor fitted values resulting from the

DGP with relatively low explanatory power causing this criterion to often detect no breaks in

the SF, whereas the higher R2 value leads to much improved detection of the two breaks.

As in Case 1 where no breaks occur, the presence of unmodelled AR(1) disturbances leads to

an increased tendency for all criteria to detect spurious breaks in the SF (compare Cases 2 and 3

for Table 2 with Table 3, and similarly Tables 4 and 5, 6 and 7, 8 and 9). Although with T = 240

and β2 = 1 in Table 9, SBBIC has very good accuracy for detection of the true number of breaks

in the SF with positively autocorrelated errors, its performance is less impressive at the other

extreme of T = 120 and β2 = 0.1 in Table 3 where it often under-specifies the numbers of true

breaks, especially in Case 3 when m = 2. On the other hand, BIC, SBHQIC and (especially)

HQIC often over-estimate the number of breaks for Cases 2 and 3 in this latter table.

Since the consistent criteria BIC, SBBIC, HQIC and SBHQIC correctly detect the presence

of a single RF break in the vast majority of replications across Cases 4 to 7, the characteristics

just discussed largely continue to apply when h = 1. This is can be seen particularly in Tables

8 and 9, where T = 240 and β2 = ±1, and the results for Cases 4 to 7 match the corresponding

Cases 1 to 3 where h = 0. Other settings, however, show a greater influence from estimation of

RF breaks.

For the same SF coefficients as in Tables 8 and 9, but with the smaller sample size of T = 120,

Tables 6 and 7 illustrate the additional difficulties that apply when the DGP exhibits RF breaks.

Compared with results for h = 0, SBBIC more often under-estimates the number of SF breaks

for Cases 4 to 7 when the RF R2 is low at 0.3, but the performance largely matches that with

h = 0 when R2 is 0.5. Further, the relative timing of breaks in the reduced and structural forms

plays a role with this criterion. In Tables 6 and 7, for example, m = 1 is more often correctly

specified using SBBIC for Case 5 (when π1 = λ1 = 0.5) than for Case 7 (where π1 = 0.3,

λ1 = 0.6). On the other hand, for the smaller breaks in Tables 2 and 3, where β2 = 0.1 , SBBIC

(and in general BIC) has better performance for Case 7 than Case 5. Overall, the performance

of SBHQIC is more robust to the timing of these breaks.

When h = 2 in Cases 8 and 9 with T = 120, BIC and (to a greater extent) SBBIC often miss

the presence of any RF break, particularly when the coefficients are of smaller magnitude and
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R2 = 0.3. Table 6, for example, shows how this leads to a deterioration of the performance of

these criteria for the detection of SF breaks compared with the situation when R2 = 0.5, with

this being particularly clear for Case 9 with two SF breaks. This feature is also seen, but to a

lesser extent, in the number of SF breaks detected by SBHQIC. The different performances of

SBBIC for the two RF scenarios in Case 9 extends also to T = 240 in Tables 8 and 9. This applies

despite the criterion correctly detecting two RF breaks in 91-95% of replications, suggesting a

role for the estimation of the RF break dates themselves, and not simply the number of these.

Overall, these simulation results indicates that best performing criteria are SBBIC and SB-

HQIC. The former works well for the detection of breaks in both the reduced and structural

form equations across many of the cases considered, but can fail to detect any breaks when two

breaks of the reverting form are present in the SF. With breaks of such reverting form, the use

of SBHQIC more satisfactorily detects the presence of breaks, but at the cost of over-specifying

the number of breaks in other cases. The heavier weighting of break date estimation implied

by the use of k = 3 in (13) and (14) generally works better than k = 1, while the inconsistent

AIC-based criteria do not appear to be useful if the correct detection of the number of breaks is

an important consideration.

5 Conclusions

This paper makes two contributions in relation to the use of information criteria for inference

on structural breaks when the coefficients of a linear model with endogenous regressors may

experience multiple changes. Firstly, we show that suitably defined information criteria yield

consistent estimators of the number of breaks, when employed in the second stage of a two-stage

least squares (2SLS) procedure with breaks in the reduced form taken into account in the first

stage. Secondly, a Monte Carlo analysis investigates the finite sample performance of a range of

criteria based on BIC, HQIC and AIC for equations estimated by 2SLS. Versions of the consistent

criteria BIC and HQIC perform well overall when the penalty term weights estimation of each

break point more heavily than estimation of each coefficient, while AIC is inconsistent and badly

over-estimates the number of true breaks.
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Appendix

Mathematical Appendix

Proof of Lemma 1

Case(i) Assume that (1) is stable for t = [τj−1T ] + 1, . . . , [τjT ], where τi denotes the estimated

break fraction, so that for some i,

yt = x′tβ
0
x,i + z′1,tβ

0
z1,i + ut t = [τj−1T ] + 1, . . . , [τjT ]. (16)

Let β̂j be the 2SLS estimator of β0
i = [β0′

x,i, β
0′
z1,i

]′ based on (16) using x̂t(π̂) defined in (4), and

define wt(π) = [x̂t(π)′, z′1,t]
′. Then, we have

β̂j =

∑
j

wt(π̂)wt(π̂)′

−1∑
j

wt(π̂)yt = β0
i +

∑
j

wt(π̂)wt(π̂)′

−1∑
j

wt(π̂)ũt(π̂),

where
∑
j denotes

∑[τjT ]

[τj−1T ]+1 and

ũt(π̂) = yt − wt(π̂)
′
β0
i . (17)

To facilitate the analysis of RSSj(τ(n);n, π̂) (henceforth RSSj), we consider yt − wt(π̂)
′
β̂j .

Defining ũt(π
0) and x̂t(π

0) analogously to ũt(π̂) and x̂t(π̂), it can shown that (17) implies

yt − wt(π̂)
′
β̂j = ũt(π

0) +
[
x̂t(π

0)
′
− x̂t(π̂)

′
]
β0
x,i − wt(π̂)

′

∑
j

wt(π̂)wt(π̂)′

−1

×
∑
j

wt(π̂)ũt(π̂). (18)

From (18), it follows that

T−1RSSj = T−1
∑
j

(At +Bt − Ct)2, (19)

where At = ũt(π
0), Bt =

[
x̂t(π

0)
′ − x̂t(π̂)

′
]
β0
x,i, and

Ct = wt(π̂)
′

∑
j

wt(π̂)wt(π̂)′

−1 [Tr]∑
t=[Ts]+1

wt(π̂)ũt(π̂).

We now consider in turn the terms obtained by multiplying out the quadratic in (19).
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First for A2
t : using (16) and substituting for x̂t(π

0) from (3), we have

T−1
∑
j

ũt(π
0)2 = T−1

∑
j

{
yt − wt(π0)′β0

i

}2
= T−1

∑
j

{
ut + [xt − x̂t(π

0)]′β0
x,i

}2
= T−1

∑
j

{
ut + v

′

tβ
0
x,i − z̃t(π0)

′
[
Θ̂T (π0)−Θ0

]
β0
x,i

}2

. (20)

Θ̂T (π0) is the (infeasible) OLS estimator constructed using the true reduced form break fractions

{π0} as the break dates, and as such, may be decomposed as

Θ̂T (π0) = Θ0 +

(
T∑
t=1

z̃t(π
0)z̃t(π

0)
′

)−1 T∑
t=1

z̃t(π
0)v
′

t.

Substituting this formula into (20) we obtain

T−1
∑
j

A2
t = T−1

∑
j

{at + bt − ct}2 , (21)

where at = ut, bt = v
′

tβ
0
x,i, and ct = z̃t(π

0)
′
(∑T

t=1 z̃t(π
0)z̃t(π

0)
′
)−1∑T

t=1 z̃t(π
0)v
′

tβ
0
x,i.

By Assumptions 4 and 5, it follows that for the terms a2t , b
2
t , and 2atbt in (21), respectively

we have,

T−1
∑
j

u2t
p.u→ (τj − τj−1)σ2

u,

T−1
∑
j

β0′

x,ivtv
′

tβ
0
x,i

p.u→ (τj − τj−1)β0
x,iΣvβ

0
x,i,

T−12
∑
j

utv
′

tβ
0
x,i

p.u→ (τj − τj−1)2Σuvβ
0
x,i.

For the remaining terms in (21), using Assumptions 2 and 8 we have T−1
∑[Tr]
t=[Ts]+1 ztz

′
t
p.u→

QZZ(r) − QZZ(s) = MZZ(s, r) for r > s + ε is also pd and monotonically increasing. Also by

Assumptions 2 and 8, it follows that

T−1
T∑
t=1

z̃t(π
0)z̃t(π

0)′
p.u→ Q̃ZZ(1),

also pd, where Q̃ZZ(1) is the block diagonal matrix diag(Q1, Q2, . . . Qh+1) and Qi = QZZ(π0
i )−

QZZ(π0
i−1) and we set π0

0 = 0, π0
h+1 = 1. Then, for a segment of the data t = [τj−1T ] +

1, . . . , [τjT ], it follows that

T−1
[τjT ]∑

t=[τj−1T ]+1

z̃t(π
0)z̃t(π

0)′
p.u→ Q̃(τj−1, τj) in τj−1, τj , (τj > τj−1 + ε) and pd, (22)
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where - assuming π0
i < τj−1 ≤ π0

i+1 and π0
i+` < τj ≤ π0

i+`+1 without loss of generality -

Q̃(s, r) = [0(h+1)q×iq, A(τj−1, τj), 0(h+1)q×(h−i−`−1)q] and A(τj−1, τj) is the block diagonal matrix

diag{QZZ(π0
i+1)−QZZ(τj−1), Q(i+ 2), . . . , Q(i+ `), QZZ(τj)−QZZ(π0

i+`)}.

Furthermore, it follows from Assumptions 2 and 4, that T−1/2
∑[Tr]
t=1 z̃t(π

0) ⊗ {(ut, vt′)′} is

Op(1) via a central limit theorem. The above suffice to show that for the remaining terms in

(21) we have, T−1
∑
j atct

p.u→ 0, T−1
∑
j btct

p.u→ 0 and T−1
∑
j c

2
t
p.u→ 0.

Combining these results regarding the term A2
t in (19) it follows that

T−1
∑
j

A2
t
p.u→ (τj − τj−1)Γi (23)

with Γi defined in Lemma 1.

The term involving B2
t in (19) can be written as

T−1
∑
j

B2
t = T−1

∑
j

β0′
x,i

[
x̂t(π

0)− x̂t(π̂)
] [
x̂t(π

0′)− x̂t(π̂)′
]
β0
x,i

= β0′
x,i

T−1∑
j

[
x̂t(π

0)x̂t(π
0)
′
+ x̂t(π̂)x̂t(π̂)′ − 2x̂t(π

0)x̂t(π̂)′
]β0

x,i. (24)

The following results will determine the probability limit of (24). From Assumptions 3 and 8 it

follows that

T−1
T∑
t=1

z̃t(π̂)z̃t(π̂)′ = T−1
T∑
t=1

z̃t(π
0)z̃t(π

0)′ + op(1)
p.u→ Q̃ZZ(1) (25)

and also,

T−1
∑
j

z̃t(π̂)z̃t(π
0)′

p.u→ Q̃(τj−1, τj). (26)

From Assumptions 3, 4, and 8 it follows that

T−1
T∑
t=1

z̃t(π̂)x′t = T−1
T∑
t=1

z̃t(π
0)x′t + op(1)

p.u→ Q̃ZZ(1)Θ0 (27)

By (25), (27), and (4),

T−1
∑
j

x̂t(π̂)x̂t(π̂)
′

= T−1
T∑
t=1

xtz̃t(π̂)
′

(
T∑
t=1

z̃t(π̂)z̃t(π̂)
′

)−1∑
j

z̃t(π̂)z̃t(π̂)
′

×

(
T∑
t=1

z̃t(π̂)z̃t(π̂)
′

)−1 T∑
t=1

z̃t(π̂)x′t

p.u→ Θ
′

0Q̃
′

ZZ(1)Q̃−1ZZ(1)Q̃(τj−1, τj)Q̃
−1
ZZ(1)Q̃ZZ(1)Θ0

= Θ
′

0Q̃(τj−1, τj)Θ0 (28)
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which is pd by the construction of Q̃(τj−1, τj). Similarly, we have

T−1
∑
j

x̂t(π
0)x̂t(π

0)
′ p.u→ Θ

′

0Q̃(τj−1, τj)Θ0. (29)

For the last term in (24), we combine (25), (26), (27), and (4), and use Assumption 2 to deduce

that

2T−1
∑
j

x̂t(π
0)x̂t(π̂)

′
= 2T−1

T∑
t=1

xtz̃t(π0)
′

(
T∑
t=1

z̃t(π0)z̃t(π0)
′

)−1∑
j

z̃t(π0)z̃t(π̂)
′

×

(
T∑
t=1

z̃t(π̂)z̃t(π̂)′

)−1 T∑
t=1

z̃t(π̂)x′t

p.u→ 2Θ
′

0Q̃(τj−1, τj)Θ0. (30)

Combining (28), (29), and (30), the probability limit of (24) is

T−1
∑
j

B2
t
p.u→ 0. (31)

Now consider the terms involving Ct in (19). Start by considering
∑
j wt(π̂)ut(π̂). If we expand

ũt(π̂) similarly to (18), and substitute for x̂t(π̂), then from (4) we obtain

∑
j

wt(π̂)ũt(π̂) =
∑
j

wt(π̂)
{
ũt(π

0) +
[
x̂t(π

0)
′
− x̂t(π̂)

′
]
β0
x,i

}
.

Thus, we have

∑
j

x̂t(π̂)ũt(π̂) =

T∑
t=1

xtz̃t(π̂)
′

(
T∑
t=1

z̃t(π̂)z̃t(π̂)
′

)−1 ∑
j

z̃t(π̂)ũt(π0)

+
∑
j

z̃t(π̂)z̃t(π0)
′

(
T∑
t=1

z̃t(π0)z̃t(π0)
′

)−1 T∑
t=1

z̃t(π0)x
′

tβ
0
x,i

−
∑
j

z̃t(π̂)z̃t(π̂)
′

(
T∑
t=1

z̃t(π̂)z̃t(π̂)
′

)−1 T∑
t=1

z̃t(π̂)x
′

tβ
0
x,i

 . (32)

From (25), (26), and (27), the last two terms inside the brackets in (32) cancel out asymptotically.

The same equations and also Assumption 4, after expanding ũt(π0) similarly to (21), give

T−1
∑
j

z̃t(π̂)ũt(π0) = T−1
∑
j

z̃t(π̂)ut + T−1
∑
j

z̃t(π̂)v
′

tβ
0
x,i

−T−1
∑
j

z̃t(π̂)z̃t(π0)

(
T∑
t=1

z̃t(π0)z̃t(π0)
′

)−1 T∑
t=1

z̃t(π0)v
′

tβ
0
x,i

p.u→ 0 (33)
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and therefore it follows from (32) that,

T−1
∑
j

x̂t(π̂)ũt(π̂)
p.u→ 0. (34)

It can also be shown via similar arguments that

T−1
∑
j

z1,tũt(π̂)
p.u→ 0. (35)

Using (34)-(35), together with (28) and (30) it follows that the limiting behaviour of the terms

involving Ct in T−1RSSj are:

T−1
∑
j

C2
t

p.u→ 0 (36)

2T−1
∑
j

AtCt
p.u→ 0 (37)

2T−1
∑
j

BtCt
p.u→ 0 (38)

The last remaining term of T−1RSSj involves 2AtBt,

T−1
∑
j

AtBt = T−1
∑
j

ũt(π
0)
[
x̂t(π

0)
′
− x̂t(π̂)

′
]
β0
x,i

= T−1
∑
j

[
ũt(π

0)x̂t(π
0)
′
− ũt(π0)x̂t(π̂)

′
]
β0
x,i

Using (21), and (4) the first term inside the summation can be expanded as

T−1
∑
j

ũt(π
0)x̂t(π

0)
′

= T−1
∑
j

ut + v
′

tβ
0
x,i − z̃t(π0)

′

(
T∑
t=1

z̃t(π
0)z̃t(π

0)
′

)−1 T∑
t=1

z̃t(π
0)v
′

tβ
0
x,i


×z̃t(π̂)′

(
T∑
t=1

z̃t(π̂)z̃t(π̂)′

)−1 T∑
t=1

z̃t(π̂)x′t

p.u→ 0

since by Assumption 4, T−1
∑[Tr]
t=[Ts]+1 utz̃t(π

0)
p.u→ 0 and T−1

∑[Tr]
t=[Ts]+1 v

′

tz̃t(π
0)

p.u→ 0. Also

using the same arguments and (25), and (27), T−1
∑
j ũt(π

0)x̂t(π̂)
′ p.u→ 0 as well, resulting in

T−1
∑
j

AtBt
p.u→ 0. (39)

Collecting the results regarding the limit of T−1RSSj in (19), found in (23), (31), (36), (37),

(38), and (39), it follows that

T−1RSSj
p.u→ (τj − τj−1)Γi. (40)
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Case (ii): we first consider the case where segment j contains one neglected break and then

discuss how the argument extends to more than one neglected break. Let the neglected break

be at λ0i so that the model is

yt = x
′

tβ
0
x,i + z

′

1,tβz1,i + ut, t = [τj−1T ] + 1, ..., [λ0iT ]

yt = x
′

tβ
0
x,i+1 + z

′

1,tβz1,i + ut, t = [λ0iT ] + 1, ..., [τjT ]. (41)

Then the residual sum of squares in this segment, RSSj , may be decomposed as

T−1RSSj = T−1
[λ0

iT ]∑
t=[τj−1T ]+1

[
yt − wt(π̂)

′
β̂j

]2
+ T−1

[τjT ]∑
t=[λ0

iT ]+1

[
yt − wt(π̂)′β̂j

]2
= ξ1 + ξ2, say, respectively. (42)

We focus on ξ1. Substituting for yt from (17), we have

ξ1 = T−1
[λ0

iT ]∑
t=[τj−1T ]+1

[
wt(π̂)

′
β0
i + ũt(π̂)− wt(π̂)

′
β̂j

]2

= T−1
[λ0

iT ]∑
t=[τj−1T ]+1

[
ũt(π̂)− wt(π̂)

′
(
β̂j − β0

i

)]2

= T−1
[λ0

iT ]∑
t=[τj−1T ]+1

[
ũt(π̂)2 − 2ũt(π̂)wt(π̂)

′
(
β̂j − β0

i

)
+
(
β̂j − β0

i

)′
wt(π̂)wt(π̂)

′
(
β̂j − β0

i

)]
. (43)

The first term in this sum can be written as, ũt(π̂)2 =
[
ũt(π

0) +
(
x̂t(π̂)

′ − x̂t(π0)
′
)
β0
x,i

]2
. Using

the results in the proof of Case (i) above for the limits of the terms involving sums of A2
t , B

2
t ,

and AtBt, found in (23), (31), and (39), it can be shown that,

T−1
[λ0

iT ]∑
t=[τj−1T ]+1

ũt(π̂)2
p.u→ (λ0i − τj−1)Γi. (44)

To proceed we need to derive plim
(
β̂j − β0

i

)
where

β̂j =

∑
j

wt(π̂)wt(π̂)′

−1∑
j

wt(π̂)yt. (45)
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Using similar arguments to (28) and (34) we have that

T−1
∑
j

x̂t(π̂)x̂t(π̂)′
p.u→ Ῡ

′

0Q̃(τj−1, τj)Ῡ0 (46)

where Ῡ0 = [Θ0, Π̄], Π̄ = ıh+1 ⊗Π, and

∑
j

wt(π̂)yt = T−1
[λ0

iT ]∑
t=[τj−1T ]+1

wt(π̂)
[
wt(π̂)

′
β0
i + ũt(π̂)

]

+T−1
[τjT ]∑

t=[λ0
iT ]+1

wt(π̂)
[
wt(π̂)

′
β0
i+1 + ũt(π̂)

]
p.u→ Ῡ

′

0Q̃(τj−1, λ
0
i )Ῡ0β

0
i + Ῡ′0Q̃(λ0i , τj)Ῡ0β

0
i+1. (47)

Combining (45), (46), and (47) results in

plim
(
β̂j − β0

i

)
p.u→
{

Ῡ′0Q̃(τj−1, τj)Ῡ0

}−1 {
Ῡ′0Q̃(τj−1, λ

0
i )Ῡ0β

0
i + Ῡ′0Q̃(λ0i , τj)Ῡ0β

0
i+1

}
− β0

i .

(48)

Furthermore, β0
i can be written as,

β0
i =

{
Ῡ′0Q̃(τj−1, τj)Ῡ0

}−1 {
Ῡ′0Q̃(τj−1, τj)Ῡ0

}
β0
i

=
{

Ῡ′Q̃(τj−1, τj)Ῡ0

}−1 {
Ῡ′0Q̃(τj−1, λ

0
i )Ῡ0β

0
i + Ῡ′0Q̃(λ0i , τj)Ῡ0β

0
i

}
.

Substituting this into (48) and after some algebra it is shown that

plim
(
β̂j − β0

i

)
p.u→
{

Ῡ′0Q̃(τj−1, τj)Ῡ0

}−1
Ῡ′0Q̃(λ0i , τj)Ῡ0

(
β0
i+1 − β0

i

)
= P1. (49)

P1 is ensured to be non-zero because Q̃(r, s) is a block diagonal matrix and each block is positive

definite via Assumption 9, and also β0
i+1 6= β0

i .

Going back to ξ1, it follows that from (34), (35), (49) and (46) that the last two terms in (43)

have the following probability limits

T−1
[λ0

iT ]∑
t=[τj−1T ]+1

ũt(π̂)wt(π̂)′
(
β̂j − β0

i

)
p.u→ 0 (50)

and

(
β̂j − β0

i

)′ [λ0
iT ]∑

t=[τj−1T ]+1

wt(π̂)wt(π̂)
′
(
β̂j − β0

i

)
p.u→ P

′

1Ῡ′0Q̃(τj−1, λ
0
i )Ῡ0P1 > 0, (51)

since Q̃(r, s) is positive definite and P1 6= 0.
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Collecting the results from (44), (50), and (51),

ξ1
p.u→ (λ0i − τj−1)Γi + P

′

1Ῡ′0Q̃(τj−1, λ
0
i )Ῡ0P1 > (λ0i − τj−1)Γi. (52)

Analogously for ξ2, we have

ξ2
p.u→ (τj − λ0i )Γi+1 + P

′

2Ῡ′0Q̃(λ0i , τj)Ῡ0P2 > (τj − λ0i )Γi+1 (53)

where

P2 =
{

Ῡ′0Q̃(τj−1, τj)Ῡ0

}−1
Ῡ′0Q̃(τj−1, λ

0
i )Ῡ0

(
β0
i − β0

i+1

)
6= 0.

T−1RSSj
p.u→ (λ0i − τj−1)Γi + (τj − λ0i )Γi+1 + F1 (54)

where

F1 = P
′

1Θ
′

0Q̃(τj−1, λ
0
i )Θ0P1 + P

′

2Θ
′

0Q̃(λ0i , τj)Θ0P2 > 0. (55)

This line of argument extends to more than one neglected break. We now show how two

neglected breaks in a segment of the structural equation extend the case discussed above. To

do this, we must evaluate the limiting distribution of RSSj in a segment where there are two

neglected breaks, denoted λ0i , and λ0i+1. Therefore, the data generation process is

yt = x′tβ
0
x,i + z

′

1,tβ
0
z1,i + ut, t = [τj−1T ] + 1, ..., [λ0iT ]

yt = x′tβ
0
x,i+1 + z

′

1,tβ
0
z1,i + ut, t = [λ0iT ] + 1, ..., [λ0i+1T ] (56)

yt = x′tβ
0
x,i+2 + z

′

1,tβ
0
z1,i + ut, t = [λ0i+1T ] + 1, ..., [τjT ].

The RSS for this segment can be decomposed as,

T−1RSSj = T−1
[λ0

iT ]∑
t=[τj−1T ]+1

(
yt − wt(π̂)

′
β̂j

)2
+ T−1

[λ0
i+1T ]∑

t=[λ0
iT ]+1

(
yt − wt(π̂)

′
β̂j

)2

+T−1
[τjT ]∑

t=[λ0
i+1T ]+1

(
yt − wt(π̂)

′
β̂j

)2
= ξ1 + ξ2 + ξ3. (57)

Focusing on ξ1, as in (43), this term can be written as

ξ1 = T−1
[λ0T ]∑

t=[τj−1T ]+1

[
ũt(π̂)2 − 2ũt(π̂)wt(π̂)

′
(
β̂j − β0

i

)
+
(
β̂j − β0

i

)′
wt(π̂)wt(π̂)

′
(
β̂j − β0

i

)]
. (58)
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where β̂j is defined as in (45). To analyse the limit of β̂j , note that (46) holds within the scenario

considered here. However, this time we have but in this case,

∑
j

wt(π̂)yt = T−1
[λ0

iT ]∑
t=[τj−1T ]+1

wt(π̂)
[
wt(π̂)

′
β0
i + ũt(π̂)

]

+ T−1
[λ0

i+1T ]∑
t=[λ0

iT ]+1

wt(π̂)
[
wt(π̂)′β0

i+1 + ũt(π̂)
]

+ T−1
[τjT ]∑

t=[λ0
i+1T ]+1

wt(π̂)
[
wt(π̂)

′
β0
i+2 + ũt(π̂)

]
and so

∑
j

wt(π̂)yt
p.u→ Ῡ′0Q̃(τj−1, λ

0
i )Ῡ0β

0
i + Ῡ′0Q̃(λ0i , λi+1)Ῡ0β

0
i+1

+ Ῡ′0Q̃(λ0i+1, τj)Ῡ0β
0
i+2.

By a similar argument like the one that lead to (48), for plim
(
β̂x,j − β0

x,i

)
here it follows that

plim
(
β̂j − β0

i

)
p.u→

{
Ῡ′0Q̃(τj−1, τj)Ῡ0

}−1 {
Ῡ′0Q̃(τj−1, λ

0
i )Ῡ0β

0
i + Ῡ′0Q̃(λ0i , λ

0
i+1)Ῡ0β

0
i+1

+ Ῡ′0Q̃(λ0i+1, τj)Ῡ0β
0
i+2

}
− β0

i . (59)

We can rewrite β0
i as

β0
i =

{
Ῡ′0Q̃(τj−1, τj)Ῡ0

}−1 {
Ῡ′0Q̃(τj−1, τj)Ῡ0

}
β0
i

=
{

Ῡ′0Q̃(τj−1, τj)Ῡ0

}−1 {
Ῡ′0Q̃(τj−1, λ

0
i )Ῡ0 + Ῡ′0Q̃(λ0i , λ

0
i+1)Ῡ0

+Ῡ′0Q̃(λ0i+1, τj)Ῡ0

}
β0
i

Then, after substituting this equation into (59) and rearranging terms, we obtain

plim
(
β̂j − β0

i

)
p.u→

{
Ῡ′0Q̃(τj−1, τj)Ῡ0

}−1
{

Ῡ′0Q̃(λ0i , λ
0
i+1)Ῡ0(β0

i+1 − β0
i )

+ Ῡ′0Q̃(λ0i+1, τj)Ῡ0(β0
i+2 − β0

i )
}

= K1, say. (60)

This expression can be used to construct an equivalent to (51), but with K1, that together with

(44) and (50) give that the limit of ξ1 is

ξ1
p.u→ (λ0i − τj−1)Γi +K

′

1Ῡ′0Q̃(τj−1, λ
0
i )Ῡ0K1. (61)
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Analogously, we have

ξ2
p.u→ (λ0i+1 − λ0i )Γi+1 +K

′

2Ῡ′0Q̃(λ0i , λ
0
i+1)Ῡ0K2 (62)

with

K2 =
{

Ῡ′0Q̃(τj−1, τj)Ῡ0

}−1 {
Ῡ′0Q̃(τj−1, λ

0
i )Ῡ0(β0

i − β0
i+1) + Ῡ′0Q̃(λ0i+1, τj)Ῡ0(β0

i+2 − β0
i+1)

}
and,

ξ3
p.u→ (τj − λ0i+1)Γi+2 +K

′

3Ῡ′0Q̃(λ0i+1, τj)Ῡ0K3 (63)

with

K3 =
{

Ῡ′0Q̃(τj−1, τj)Ῡ0

}−1 {
Ῡ′0Q̃(τj−1, λ

0
i )Ῡ0(β0

i − β0
i+2) + Ῡ′0Q̃(λ0i , λ

0
i+1)Ῡ0(β0

i+1 − β0
i+2)

}
.

Combining the above (61), (62), and (63) concludes that

T−1RSSj
p.u→ (λ0i − τj−1)Γi + (λ0i+1 − λ0i )Γi+1 + (τj − λ0i+1)Γi+2 + F2 (64)

where

F2 = K
′

1Ῡ′0Q̃(τj−1, λ
0
i )Ῡ0K1 + K

′

2Ῡ′0Q̃(λ0i , λ
0
i+1)Ῡ0K2

+K
′

3Ῡ′0Q̃(λ0i+1, τj)Ῡ0K3 > 0. (65)

To see that F2 is positive definite consider the following. Since Q̃(r, s) is positive definite for

any r > s and Ῡ0 is full rank, it suffices to show that not all K1, K2, and K3 can be zero. By

(60), K1 is defined as the plim
(
β̂j − β0

i

)
and analogously K2 and K3 are plim

(
β̂j − β0

i+1

)
, and

plim
(
β̂j − β0

i+2

)
respectively. From the solution for, say K1, given in (60), it can be deduced

that there can exist a combination of break locations and parameter values for which K1 is zero.

The intuition for this is that β̂j , that is estimated over t = [τj−1T ] + 1, . . . , [τjT ], happens to

converge to β0
i . But if this is the case then at least one of K2 and K3 will be non zero since

β0
i 6= β0

i+1 6= β0
i+2 by the assumption that segment j has two neglected breaks. Therefore, the

sum of terms involving those three in (65) will be strictly positive.

The same argument to the case of two neglected breaks in the segment extends to cases with

more than two neglected breaks but the proofs are supressed here for brevity. Instead, we present

the general form of RSSj , for κ neglected breaks, that is

T−1RSSj(τ(n);n, π̂)
p.u→ (λ0i − τj−1)Γi + (λ0i+1 − λ0i )Γi+1 + . . .

+ (λ0i+k − λ0i+k−1)Γi+k + (τj − λ0i+k)Γi+k+1 + F.
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where F is a positive definite matrix defined as,

F = K
′

1Ῡ
′

0Q̃(τj−1, λ
0
i )Ῡ0K1 +K

′

2Ῡ
′

0Q̃(λ0i , λ
0
i+1)Ῡ0K2 + . . . + K

′

κῩ
′

0Q̃(λ0i , λ
0
i+1)

where Kς is defined as

Kς =
{

Ῡ
′

0Q̃(τj−1, τj)Ῡ0

}−1 {
Ῡ
′

0Q̃(τj−1, λ
0
i )Ῡ0(β0

i − β0
i+ς−1) + Ῡ

′

0Q̃(λ0i , λ
0
i+1)Ῡ0(β0

i+1 − β0
i+ς−1) + . . .

+Ῡ
′

0Q̃(λ0i+κ−1, τj)Ῡ0(β0
i+κ − β0

i+ς−1)
}

for ς = 1, 2, . . . , κ+ 1.

Proof of Theorem 1

Lemma 1 can be used to establish a proof for the consistency of the information criterion

I (τ(n);n, π̂) in selecting the true number of breaks. This can be achieved by considering the

possible cases where the 2SLS procedure may over-fit, under-fit or correctly identify the true

number of breaks (m) in the model. Firstly denote

Γ(λ0,m, β0) =

m+1∑
j=1

(λj − λj−1)
(
σ2
u + 2Σuvβ

0
j + β0′

j Σvβ
0
j

)
where with λ0 = (λ01, λ

0
2, . . . , λ

0
m)′ and β0 = (β0′

1 , β
0′

2 , . . . , β
0′

m+1)′. Γ(λ0,m, β0) is then the sum

of the Γi (23) across all segments of the data. In the cases where there are neglected breaks

in one or more segments, using the results of Case (ii) in (54) and (64) we can show that

by adding the terms involving Γi, i = 1, 2, . . . ,m + 1 across segments, the break fractions of

the incorrectly estimated breaks (τj , τj−1) will cancel out and so the limit of all terms involving

V ar[ut, v
′

t|zt] will be Γ(λ0,m, β0). To illustrate this, consider the case where for only one segment

j s.t. [τj−1T ] + 1, . . . , [τjT ] there is one neglected break λj (as shown in (54)). Then,

Γ(τ(n), n;λ0, β0) = (λ01 − 0)Γ1 + . . . + (τj−1 − λ0j−1)Γj + (λ0j − τj−1)Γj + (τj − λ0j )Γj+1 + F1

+ (λ0j+1 − τj)Γj+1 + . . . + (1− λ0m)Γm+1

= (λ01 − λ00)Γ1 + . . . + (λ0j − λ0j−1)Γj + (λ0j+1 − λ0j )Γj+1 + . . . + (1− λ0m)Γm+1 + F1

= Γ(λ0,m, β0) + F1

since the true vectors of coefficients β0
j are stable in each segment j.

27



Also, it follows directly from the analysis of Case (ii) that a straight forward generalization

to the case of a segment with more than two neglected breaks will result in a limit function with

the basic characteristics of (64). Denote F (τ(n), λ0) the collection of any terms of the form of F1

(55), F2 (65), or the equivalent of the general case of more than two neglected breaks, that will

exist when any number of segments [τj−1T ] + 1, . . . , [τjT ] include one, two, or more neglected

breaks. As shown in Lemma 1(ii), all these terms will be strictly positive.

Then, the behaviour of the information criterion can be examined in the following cases:

(1) if n = m. The estimation procedure has identified the correct number of breaks. The

following two scenarios are possible,

(1.1) if τ(n) = λ0 then there will not be neglected breaks in any segment and by Case (i),

I (τ(n);n, π̂)
p.u→ Γ(λ0,m, β0)

(1.2) if τ(n) 6= λ0 then there must exist j s.t. [τj−1T ] + 1, . . . , [τjT ] contains at least one

neglected break, and therefore

I (τ(n);n, π̂)
p.u→ Γ(λ0,m, β0) + F (τ(n), λ0)

where F (τ(n), λ0) > 0

(2) if n < m. The estimation procedure has under-fitted the model. Then there must exist a

segment j s.t. [τj−1T ] + 1, . . . , [τjT ] contains at least one neglected break, and

I (τ(n);n, π̂)
p.u→ Γ(λ0,m, β0) + F (τ(n), λ0)

where F (τ(n), λ0) > 0

(3) if n > m. Then the following two scenarios are possible

(3.1) if τ(n) does not contain λ0 then there must exist j s.t. [τj−1T ] + 1, . . . , [τjT ] includes

at least one λ0i and

I (τ(n);n, π̂)
p.u→ Γ(λ0,m, β0) + F (τ(n), λ0)

where F (τ(n),m) > 0

(3.2) if τ(n) contains λ0 consider

DT =
{
I (τ(n);n, π̂)− I

(
λ0;m

)}
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and

DT = T ln
{

Γ̂(τ(n);n, β̂)/Γ̂(λ0;m,β0)
}

+ T {K(q, n, T )−K(q,m, T )}

= −QLRT + T {K(q, n, T )−K(q,m, T )}

where QLRT is the quasi likelihood ratio test for H0 : τ(n) = λ0 which is a nested test as τ(n) ∈

λ0. Under itsH0 by standard argumentsQLRT = Op(1), and since T {K(q, n, T )−K(q,m, T )} p.u→

+∞ it follows that

DT →∞.

Taken together, cases (1), (2), and (3) imply desired result.
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Table 1: Simulation cases

Case h m π1 π2 λ1 λ2

1 0 0 - - - -

2 0 1 - - 0.5 -

3 0 2 - - 0.3 0.6

4 1 0 0.5 - - -

5 1 1 0.5 - 0.5 -

6 1 2 0.5 - 0.3 0.6

7 1 1 0.3 - 0.6 -

8 2 1 0.3 0.6 0.5 -

9 2 2 0.3 0.6 0.2 0.4

Notes: h: number of breaks in the reduced form; m: number of breaks in the structural form; π1, π2: locations

of reduced form breaks (as fractions of sample size); λ1, λ2: locations of structural form breaks;
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