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1 Introduction

Kahneman and Tversky (1979) provided us with a powerful descriptive theory for decision under risk

that integrates behavioral findings from psychology into economics. The three major advancements

of original prospect theory concern reference dependence (outcomes are gains or losses relative to

a reference point), loss aversion (a loss leads to greater disutility than the utility of a comparative

gain) and sign dependence (decision weights for gains differ from those for losses). Later, in Tversky

and Kahneman (1992), prospect theory2 (PT) was extended to uncertainty and ambiguity by incor-

porating the requirements of rank-dependence introduced by Quiggin (1981, 1982) for risk and by

Schmeidler (1989) for ambiguity, and it received a sound preference foundation by using the tools

underlying continuous utility measurement developed in Wakker (1989); see also Wakker and Tversky

(1993). Due to its ability to incorporate and account for sign-dependent probabilistic risk attitudes,

ambiguity attitudes, reference-dependence, loss aversion and diminishing sensitivity in outcomes and

probabilities, PT has become one of the most well-known descriptive theories for risk and uncertainty

(Starmer 2000, Kahneman and Tversky 2000, Wakker 2010).

The aim of this paper is to provide a behavioral preference foundation for PT for decision under

risk without assuming prior knowledge of a reference point. To position our contribution it is im-

portant to briefly recall the existing PT-foundations for risk. Remarkably, it took many years since

the 1979’ model to develop the first foundations of PT for decision under risk; this was done by

Chateauneuf and Wakker (1999). Later, Kothiyal, Spinu and Wakker (2011) provided foundations of

PT for continuous probability distributions. More recently, Schmidt and Zank (2012) derived PT with

endogenous reference points by exploiting sign dependence and diminishing sensitivity of the utility.

All these theoretical developments assumed that the set of outcomes is endowed with a sufficiently

rich structure that allows for the derivation of continuous cardinal utility.

2Some authors prefer to distinguish the original prospect theory of Kahneman and Tversky (1979) from the modern

version, cumulative prospect theory, of Tversky and Kahneman (1992). Indeed, as Wakker (2010, Apendix 9.8) clarifies,

in general these models make different predictions. Here we restrict attention to the modern version, and hence, we use

the shorter name prospect theory.
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This paper takes a different approach to obtain foundations for PT. It does not assume richness of

the set of outcomes but, instead, it follows the traditional approach pioneered by von Neumann and

Morgenstern (1944) of using the natural structure given by the probability interval. This approach has

been used to derive preference foundations for rank-dependent utility (RDU) by Chateauneuf (1999),

Abdellaoui (2002) and Zank (2010); specific parametric probability weighting functions were provided

by Diecidue, Schmidt and Zank (2009), Abdellaoui, l’Haridon and Zank (2010) and Webb and Zank

(2011). Neither of these results have looked at PT-preferences,3 although, intuitively, most of those

preference foundations for RDU can be extended to PT if the reference point is given. In the absence

of this information such extensions become a challenge. This may explain why until now PT has not

been derived using the “probabilistic approach.” We fill this gap and show that PT can be obtained

from preference conditions where objective probabilities are given and the set of outcomes can be very

general. The reference point in our approach is revealed through probabilistic risk behavior and its

existence is not assumed a priori. This shows that, also in this respect, our model extends all existing

PT-foundations for risk. There is a related literature discussing reference point formation in dynamic

settings (Shalev 2000, 2002, Rabin and Kőszegi 2006, Kőszegi 2010). Our work is complementary as

it provides existence results for reference points in the traditional static framework.

The importance of having sound preference foundations for decision models, in particular for PT,

has recently been reiterated by Kothiyal, Spinu and Wakker (2011, pp. 196—197). If a continuous

utility is not available, as a result of outcomes being discrete (e.g., as in health or insurance), the

relationship between the empirical primitive (i.e., the preference relation) and the assumption of PT

becomes unclear, which is undesirable. In that case one can no longer be sure that the predictions

and estimates are in line with the behavior underlying the preferences. The conditions presented here

are necessary and sufficient for PT and, therefore, they help to clarify which assumptions one makes

by invoking the model. In particular, the new foundations highlight the difference between expected

3An exception is Prelec (1998), where PT is assumed, however, the key preference condition there requires a continuous

utility.
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utility, RDU and PT in a transparent way.

Our key preference condition is based on the idea of probability midpoint elicitations. If we know

the reference point, our condition simply requires that elicited probability midpoints are independent

of the outcomes (i.e., the stimuli) used to derive those midpoints, whenever all outcomes are of the

same sign (i.e., either all outcomes are gains or all are losses). Indeed, under PT the probability

weighting function for probabilities of gains may be different to the probability weighting function for

probabilities of losses. This feature, called sign-dependence, has widely been documented (Edwards

1953, 1954, Hogarth and Einhorn 1990, Tversky and Kahneman 1992, Abdellaoui 2000, Bleichrodt,

Pinto, and Wakker 2001, Etchard-Vincent 2004, Payne 2005, Abdellaoui, Vossmann and Weber 2005,

Abdellaoui, l’Haridon and Zank 2010).4 The original elicitation technique for nonparametric proba-

bility weighting functions was presented by Abdellaoui (2000) and Bleichrodt and Pinto (2000). They

invoke utility measurements prior to the elicitation of probability weighting functions. A simplified

version of this method appeared recently in van de Kuilen and Wakker (2011) and requires a single util-

ity midpoint elicitation. In contrast, the method of Wu, Wang and Abdellaoui (2005) can be applied in

the probability triangle and does not necessitate utility midpoint elicitation. We assume probabilities

are given and extend these methods to derive PT axiomatically. In this way we obtain preference

conditions that are empirically meaningful jointly with the provision of behavioral foundations of PT

for decision under risk.

Our elicitation tool for probability midpoints is based on joint shifts in probabilities away from

intermediate outcomes. Additionally, and central to our preference foundation for PT, is the incorpo-

ration of a behavioral test for sign-dependence. We invoke consistency of probability shifts to worse

outcomes and consistency of probability shifts to better outcomes for given pairs of prospects. If no

sign-dependence is revealed, the two midpoint consistency requirements become compatible and, thus,

4Sign-dependence is one of the consequences of reference dependence. The latter serves as the key explanation for

prominent phenomena like the disparity between willingness to pay and willingness to accept (Kahneman, Knetsch, and

Thaler 1990, Bateman et al. 1997, Viscusi, Magat and Huber 1987, Viscusi and Huber 2012), the endowment effect

(Thaler 1980, Loewenstein and Adler 1995), and the status quo bias (Samuelson and Zeckhauser, 1988).
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they imply RDU. In that case it is impossible to obtain a distinction of outcomes into gains and losses

by looking at probabilistic risk attitudes. However, if sign-dependence is present, an incompatibility

of the two consistency properties is revealed. As a result outcomes can be divided into two disjoint

sets with consistency of probability midpoints holding on each set. That is, there must be a special

outcome, i.e., the reference point, that demarcates the set of gains from the set of losses. In the

presence of standard preference conditions, the two principles of consistency are sufficient to obtain

either RDU (i.e., absence of reference points), a special case of PT, or genuine PT with sign-dependent

probability weighting. In addition, some extreme forms of optimistic and pessimistic behavior are per-

mitted. Although these are compatible with PT, the corresponding preference functionals are more

general. Specifically, if consistency reveals that there is only one gain, it may not be possible to

separate the weighting function for gain probabilities from the utility of that gain due to asymptotic

behavior for probabilities close to one. Similarly, consistency may reveal that there is only one loss

and the weighting function for loss probabilities is unbounded at 1. As our objective is to avoid any

structural assumptions on the set of outcomes we cannot exclude these extreme cases. The derived

class of preference functionals can be combined as general prospect theory.

Next we present preliminary notation and recall the standard preference condition with implica-

tions thereof. In Section 3 we elaborate and present our main preference condition and the theorem.

Extensions are discussed in Section 4 and the concluding remarks in Section 5 are followed by an

appendix with proofs.

2 Preliminaries

In this section we recall the standard ingredients for decision under risk and the traditional preference

conditions that are shared by expected utility and prospect theory.
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2.1 Notation

Let  denote the set of outcomes. Initially, we make several simplifying assumptions. In Section 4,

these are relaxed to demonstrate the full generality of our approach. First, we assume a finite set of

outcomes, such that  = {1     }, with  ≥ 4. A prospect is a finite probability distribution over

. Prospects can be represented by  = (1 1;    ;  ) meaning that outcome  ∈  is obtained

with probability  , for  = 1     . Naturally,  ≥ 0 for each  = 1      and
P

=1  = 1. Let L

denote the set of all prospects.

A preference relation < is assumed over L, and its restriction to subsets of L (e.g., all degenerate

prospects where one of the outcomes is received for sure) is also denoted by <. The symbols Â (strict

preference) and ∼ (indifference) are defined as usual. We assume that no two outcomes in  are

indifferent; they are ordered from best to worst, i.e., 1 Â · · · Â . As in this section the outcomes

are fixed we drop them from the notation without loss of generality.

Recall, that under expected utility (EU) prospects are evaluated by

(1     ) =

X
=1

() (1)

with a utility function, , which assigns to each outcome a real number and is strictly monotone (that

is,  agrees with the preference ordering over outcomes: () ≥ () ⇔  <  ,   ∈ {1     }).

Under EU the utility is cardinal, i.e., it is unique up to multiplication by a positive constant and

translation by a location parameter.

A more general model is rank-dependent utility (RDU) where prospect  = (1     ) is evaluated

by5

(1     ) =

X
=1

[(1 + · · ·+ )− (1 + · · ·+ −1)]() (2)

Utility is similar to EU, however, RDU involves a weighting function for probabilities,  that is

5As usual, we use the convention that the sum


=  = 0 when   .
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uniquely determined. Formally, the weighting function, , is a mapping from the probability interval

[0 1] into [0 1] that is strictly increasing with (0) = 0 and (1) = 1. In this paper the axiomatically

derived weighting functions are continuous on [0 1]. There is, however, empirical and theoretical

interest in discontinuous weighting functions at 0 and at 1 (Kahneman and Tversky 1979, Birnbaum

and Stegner 1981, Bell 1985, Cohen 1992, Wakker 1994, 2001, Chateauneuf, Eichberger and Grant

2007, Webb and Zank 2011, Andreoni and Sprenger 2009, 2012). We discuss relaxing the continuity

assumption at the extreme probabilities in Section 4. It is well known that RDU reduces to EU if 

is linear.

The main model of interest in this paper extends RDU by incorporating reference-dependence: the

model assumes an outcome  ∈ , 1 ≤  ≤  exists, such that outcomes preferred to it are gains

and outcomes worse than it are losses. This may have the implication that, in contrast to RDU, the

weighting function will depend on whether the weighted (decumulative) probabilities are those of gains

or of losses. For this reason the term sign-dependence is used to highlight that the nonlinear treatment

of decumulative probabilities depends on the sign of the outcome attached to each probability. Under

Prospect Theory (PT) prospect  = (1     ) is evaluated by

 (1     ) =
P−1

=1 [
+(1 + · · ·+ )−+(1 + · · ·+ −1)]()

+
P

=[
−( + · · ·+ )− −(+1 + · · ·+ )]()

(3)

where () = 0; + and − are continuous and strictly increasing probability weighting functions

for decumulative probabilities of gains and losses, respectively. Under PT the utility is a ratio scale

(i.e., it is unique up to multiplication by a positive constant) and the weighting functions are uniquely

determined. If the dual probability weighting function for losses, ̂−() := 1 − −(1 − ) for all

 ∈ [0 1], is identical to +, then PT reduces to RDU. In that case we do not have sign-dependence.

As mentioned in the introduction, several preference foundations for PT have been proposed using

the approach based on continuous utility. Foundations with general continuous utility include Tversky
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and Kahneman (1992), Wakker and Tversky (1993), Chateauneuf and Wakker (1999), Köbberling and

Wakker (2003, 2004), Wakker (2010), Kothiyal, Spinu and Wakker (2011), and Schmidt and Zank

(2012). Derivations of CPT with specific forms of the utility function (linear/exponential, power,

and variants of multiattribute utility) have been provided in Zank (2001), Wakker and Zank (2002),

Schmidt and Zank (2009). Bleichrodt, Schmidt and Zank (2009) assume attribute specific reference

points for derivations of functionals that combine PT and multiattribute utility. In the next subsection

we present the standard preference conditions that all functionals presented in this section have to

satisfy.

2.2 Traditional Preference Conditions

This subsection presents the classical preference conditions that are necessary for EU, RDU and PT.

We are interested in conditions for a preference relation, < on the set of prospects L that represent

< by a function,  , that assigns a real value to each prospect, such that for all  ∈ L

 < ⇔  ( ) ≥  ()

A requirement for the representation is that < is a weak order, i.e., the following axiom holds:

Weak Order: The preference relation < is complete ( <  or  4  for all  ∈ L) and

transitive.

Further requirements are those of first order stochastic dominance and of continuity in probabilities.

Dominance: The preference relation satisfies first order stochastic dominance (or monotonicity in

decumulative probabilities) if  Â  whenever
P

=1  ≥
P

=1  for all  = 1      and

 6= .

Continuity: The preference relation < satisfies Jensen-continuity on the set of prospects L if

for all prospects  Â  and  there exist   ∈ (0 1) such that  + (1 − ) Â  and
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 Â + (1− ).6

A monotonic weak order that satisfies Jensen-continuity on L also satisfies the stronger Euclidean-

continuity on L (see, e.g., Abdellaoui 2002, Lemma 18). Further, the three conditions taken together

imply the existence of a continuous function  : L → R strictly increasing in each decumulative

probability, that represents <.7 The latter follows from results of Debreu (1954).

2.3 Additive Separability Over Decumulative Probabilities

In this subsection we present a separability or independence property that is shared by EU, RDU and

PT. It is formulated as a preference condition involving common elementary shifts in the probabilities

of outcomes. Given the prospect  ∈ L we denote the prospect resulting from an elementary shift of

probability  from outcome  to the adjacent outcome +1 in  as the prospect

+1 := (1      −  +1 +  +2     )

Whenever we use this notation, it is implicitly assumed that  ≥   0 and  ∈ {1      − 1}.

Similarly, we write +1 for the prospect that results from an elementary probability shift of  from

outcome +1 to outcome  in  (whereby +1 ≥   0,  ∈ {1     −1} is implicit in this notation).

In general, we write  for a (not necessarily elementary) shift of probability from outcome  to

 of prospect  .

Expected utility satisfies the following property of invariance of the preferences under common

elementary probability shifts.

Independence: The preference relation < satisfies independence of (common elementary) probabil-

ity shifts (IPS)

 < ⇔ +1 < +1

6The -probability mixture of  with  is the prospect  + (1− ) = (1 + (1− )1      + (1− )).
7This function may be unbounded at  or 1.
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whenever  +1 +1 ∈ L.

We demonstrate that IPS is necessary for EU. Substitution of Eq. (1) in the preceding equivalence

gives

 < ⇔
X

=1

() ≥
X

=1

()

Adding [(+1)− ()] to both sides of the latter inequality, one obtains the equivalence +1 <

+1, whenever  +1 +1 ∈ L. Sufficiency of IPS, in the presence of weak order, first

order stochastic dominance and J-continuity, has been shown in Webb and Zank (2011, Theorem 5).

RDU and PT generally violate IPS. However, they satisfy a restricted version of the principle:

Comonotonic Independence: The preference relation < satisfies comonotonic independence of

(common elementary) probability shifts (CIS) if

 < ⇔ +1 < +1

whenever  +1 +1 ∈ L such that
P

=1  =
P

=1 .

CIS says that common elementary probability shifts maintain the preference between two prospects

if the two prospects offer identical “good news” probabilities of obtaining outcome  or better. That

is, the decumulative probabilities of obtaining  or a better outcome is the same in both prospects.

Obviously, this is equivalent to saying that the cumulative probability of obtaining +1 or a worse

outcome is the same in both prospects, so they have identical “bad news” probabilities. Therefore,

CIS requires that elementary shifts in probabilities between common decumulative probabilities of out-

comes are permitted. If one writes prospects as (de)cumulative distributions over , one immediately

observes that this CIS translates into an independence requirement on a rank-ordered or comonotonic

set of probability distributions, hence the name for CIS. Substitution of RDU from Eq. (2) into the
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preceding equivalence gives

 < 

⇔
X

=1

[(1 + · · ·+ )− (1 + · · ·+ −1)]() ≥
X

=1

[(1 + · · ·+ )− (1 + · · ·+ −1)]()

This inequality remains unaffected if to both sides we add [( + +1 + )) − ( + +1)](+1)

and subtract [() − ( − )](), where  :=
P

=1  =
P

=1  is set. Thus, we obtain the

equivalence to +1 < +1, whenever  +1 +1 ∈ L such that
P

=1  =
P

=1  .

The preceding calculations show that CIS is necessary for RDU. Similarly, it can be shown that CIS

is necessary for PT. Both models require additional properties in order to distinguish them. However,

CIS and the preference conditions in the previous subsection, imply that an additive separability

property across outcomes holds for the representing function  . The result is formulated next and its

proof follows from results of Wakker (1993) for additive representations on comonotonic sets.

Lemma 1 The following two statements are equivalent for a preference relation < on L:

(i) The preference relation < on L is represented by an additive function

 ( ) =

−1X
=1

(

X
=1

) (4)

with continuous strictly increasing functions 1     −1 : [0 1]→ R which are bounded with the

exception of 1 and −1 which could be unbounded at extreme decumulative probabilities (i.e.,

1 may be unbounded at 1 and −1 may be unbounded at 0).

(ii) The preference relation < is a Jensen-continuous weak order that satisfies first order stochastic

dominance and comonotonic independence of common elementary probability shifts.

The functions 1     −1 are jointly cardinal, that is, they are unique up to multiplication by a

common positive constant and addition of a real number. ¤
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Next we focus on the condition that, if added to Lemma 1, delivers general PT. We present this

principle in the next Section.

3 Consistent Probability Midpoints

In this section we present consistency requirements for elicited probability midpoints. To motivate the

term “probability midpoint”, suppose we have two prospects  over outcomes {1 2 3 4}. Let

 = ( 0 1− − ) and  = ( 0 1− − ) with    such that  ∼ . A probability shift of

− from 3 to 1 in prospect  requires a shift of probability − from 3 to 1 in prospect  in or-

der to obtain indifference between the resulting prospects. Thus, we obtain (−)31 ∼ (−)31.

The conditions presented in the previous section ensure that such prospects  and probability 

exist if  and  (and, therefore,  and ) are sufficiently close. Figure 1 below illustrates these indif-

ferences in the probability triangle with outcomes 1 3 and 4.

  x1 

x4 
x3  

1 

1 0 p q 

α 

β 

γ 

Figure 1: Elicited probability midpoint .
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Substituting the additive representation in Eq. (4) into the preceding two indifferences, we obtain

 ∼ ⇔ 1() + 2() + 3(1− ) = 1() + 2() + 3(1− )

and

( − )31 ∼ ( − )31⇔ 1() + 2() + 3(1− ) = 1() + 2() + 3(1− )

Taking the difference between the resulting equations implies

[1() + 2()]− [1() + 2()] = [1() + 2()]− [1() + 2()]

Thus,  is a probability midpoint between  and  for the sum of functions 1 + 2 of Eq. (4).

Suppose that we know more about preferences, specifically, assume that the preference is a PT-

preference and that 3 is a gain (Case 1). Then substitution of Eq. (2) into the indifferences  ∼ 

and ( − )31 ∼ ( − )31, subtraction of the second equation from the first, and cancellation of

common terms give

+()− +() = +()− +() (5)

That is,  is a probability midpoint between  and  for the probability weighting function for gains

+ (see Figure 2).
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Figure 2: Equally spaced good news probabilities.

In practice one elicits midpoints by fixing the probabilities    and asking for the probability

 that makes a person indifferent between prospects  and . Figure 3 presents such an elicitation

question.

 
x1

x4 

x3

p 

α 

1-α-p 

x1  

x4 

x3 

q

β ? 

1-β-q ? 
~

Figure 3: Eliciting standard sequences of probabilities.

Figure 3 indicates that replacing  in the left prospect with  (thus, shifting probability  −  from

3 to 4) requires some appropriate probability being shifted from 3 to 1 in the prospect on the

right in order to obtain indifference. The required probability shift from 3 to 1 is then found to be

 − . Subsequently,  is replaced by  in the left prospect and one asks for the probability mass
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that needs to be shifted from 3 to 1 in order to maintain the indifference. This way one obtains

−. Continuing with this elicitation process, behavior reveals a standard sequence of equally spaced

probabilities based on the the initial probability shift  −  from 3 to 4 as unit of measurement.

Sequences of elicited probability midpoints are not meaningful unless they are independent of

the outcomes used to elicit the sequence and the measurement unit  − . Therefore, consistency in

measuring such standard sequences is required. For example, instead of shifting − and − from

3 to 1, shifting the same probabilities from 3 to 2 should also leave the indifference unaffected.

That is, ( − )32 ∼ ( − )32 should be obtained. Indeed, Eq. (5) follows from substitution of

PT in  ∼  and in (−)32 ∼ (−)32, subtraction of the second equation from the first, and

cancellation of common terms.

Next we continue our analysis but assume that 2 is a gain while 3 is the reference point (Case

2) or a loss (Case 3). In Case 2 the indifferences  ∼  and ( − )31 ∼ ( − )31, substitution

of PT into these indifferences, subtraction of the second equation from the first and cancellation of

common terms, give

[+()− 2+() + +()](1) = 0

The latter holds only if  is a probability midpoint between  and  for +. The same conclusion

is obtained if PT is substituted into  ∼  and ( − )32 ∼ ( − )32. Thus, consistency in

probability shifts is obtained.

Let us now turn to Case 3 (2 is a gain and 3 is a loss). Then, substituting PT into the indifferences

 ∼  and ( − )31 ∼ ( − )31 implies

[+()− 2+() + +()](1) = [
−(1− )− 2−(1− ) + −(1− )](3)
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and substituting PT in the second pair of indifferences  ∼  and ( − )32 ∼ ( − )32 implies

[+()− 2+() + +()](2) = [
−(1− )− 2−(1− ) + −(1− )](3) (6)

Combining the two equations we obtain

[+()− 2+() + +()](1) = [
+()− 2+() + +()](2)

which holds only if [+()− 2+() + +()] = 0 (as (1)  (2) is assumed). Equivalently, this

means that  is a probability midpoint between  and  for +. But then, substitution into Eq. (6)

says that 1− is a probability midpoint between 1− and 1− for the probability weighting function

−. Reformulated in terms of the dual of − it means that  is a probability midpoint between 

and  for ̂−. If this holds for all elicited midpoints, then sign-dependence becomes meaningless and

preferences are represented by RDU.

For Cases 1 and 2 we have concluded that genuine PT (that is, PT with sign-dependence) and

the requirement of consistency in probability shifts leads to a meaningful statement of  being a

probability midpoint between  and  for + independent of outcomes, as long as 3 is a gain or the

reference point. When 3 is a loss, sign-dependence and consistency cannot hold jointly. Our first

property states the consistency requirement for general prospects but without a priori knowledge of

whether we have sign-dependence.

Good News Midpoint Consistency: The preference relation < satisfies consistency in probability

midpoints above  or good news midpoint consistency (GMC) at   ∈ {2     } if

 = ( 0     0      ) ∼  = ( 0     0      )

and ( − )1 ∼ ( − )1

imply ( − ) ∼ ( − )
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for all  ∈ {1      − 1} whenever      are probabilities such that  ( − )1 and

( − )1 are well-defined.8

It can be verified that RDU satisfies GMC at  for all  = 2     . This has been shown in Zank

(2010). Further, RDU also satisfies a property, dual to GMC, defined next.

Bad News Midpoint Consistency: The preference relation < satisfies consistency in probability

midpoints at  or bad news midpoint consistency (BMC) at   ∈ {1     − 1} if

 = (1      0     0 ) ∼  = (1      0     0 )

and ( − ) ∼ ( − )

imply ( − ) ∼ ( − )

for all  ∈ {+ 1     } whenever      are probabilities such that  ( − ) and

( − ) are well-defined.9

In contrast to RDU, genuine PT does satisfy GMC at  only for  ∈ {2     } and it satisfies

BMC at  only for  ∈ {      − 1}. Unless PT-preferences agree with RDU, there are no further

outcomes, except the reference point , where both GMC and BMC hold. Usually, in applications of

PT we do not know the reference point. However, the preceding consistency properties for probability

midpoints can serve as a test for detecting at which outcome one of the properties fails. Thus, GMC

and BMC provide a critical test for PT-preferences through sign-dependence for elicited probability

midpoints. We build this test into the next preference condition.

Sign-Dependent Midpoint Consistency: The preference relation < satisfies sign-dependent

probability midpoint consistency (SMC) if for each outcome ,  ∈ {2      − 1} the prefer-

ence satisfies good news midpoint consistency at  or bad news midpoint consistency at  (or

8 In this definition we have included the case  = 2, which holds trivially, for completeness.
9Similar to GMC, in this definition we have included the case  = − 1, which holds trivially, for completeness.
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both).

Let us look at the implications of SMC. First, consider that  ∈ {3     − 1} is such that GMC

holds at  . Let  be maximal with this property. That is, there is no    such that GMC holds

at  . If  ≤  − 1 then BMC holds at  for all  =       − 1. Let  be minimal with the

property that BMC holds at . Two cases can occur:

(i)  = , in which case we have sign-dependence. Then we can set  := , and  is a (unique)

reference point;

(ii)    , in which case we have no sign-dependence, thus no reference point.

Suppose now that  = 2 and there is no    such that GMC holds at  . Then BMC

holds at  for all  =       − 1. Then we obtain Case (i) above with  =  = 2 and sign-

dependence. Therefore, either we have sign-dependence and a unique reference point, or we do not

have sign-dependence, and hence no reference point. As our main result below shows, Case (ii) gives

RDU, the special case of PT without reference dependence, and if 3 ≤ =  ≤ − 2 then Case (i)

gives genuine PT.

The cases  =  = 2 and  =  =  − 1, however, warrant special attention. The reason for

this is the possible unboundedness of the functions 1 at 1 and of −1 at 0 as stated in Lemma 1. For

example, representing functionals of the following form are compatible with all preference conditions

presented above:

 ( ) = 1(1) +

X
=2

[−( + · · ·+ )−−(+1 + · · ·+ )]() (7)

where  and − are as in PT and 1 converging to ∞ at 1 is as in Lemma 1 above, or

 ( ) =

−2X
=1

[+(1 + · · ·+ )− +(1 + · · ·+ −1)]() + −1(1− −1) (8)
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where  and + are as in PT and −1 converging to −∞ at 0 (i.e., when −1 approaches 1) is as in

Lemma 1 above.

Specifically one can choose 1(1) = [
1
1−1 ](1) and −1(1− ) = [

1−

]() in Eqs. (7) and

(8) above. In the first case (Eq. (7)) one can think of a patient who has been diagnosed with a

severe disease, such as cancer. The various available treatments can lead to outcomes of which the

best one is 1 = “healed”. It should be obvious that this outcome is so attractive that any treatment

with even the smallest positive probability for 1 will be superior to any other treatment that has

zero probability for 1. Another related example is documented in Thaler and Johnson (1990) and

analyzed in Barberis, Huang and Santos (2001). After having faced a series of losses, many investors

attempt to break even by taking additional risks despite the chances to break even being small. By

contrast, the second representation above (Eq. (8)), can be thought of an extreme form of pessimism,

where the possible loss  is extremely unattractive and any prospect with positive likelihood for 

will be regarded as inferior to a prospect with zero probability for . Individuals exhibiting this form

of pessimism are willing to buy insurance at prices far above the actuarially fair value to avoid the

loss .

Behavior described above with extreme optimism for a good outcome or extreme pessimism for a

bad outcome is not excluded here. Instead, we allow for such preferences and we refer to the resulting

representations as “generalized” prospect theory, that is, PT including the cases of  = 2 and 1 in

Lemma 1 unbounded, or  = − 1 and −1 in Lemma 1 unbounded. We can now present our main

result.

Theorem 2 The following two statements are equivalent for a preference relation < on L:

(i) The preference relation < on L is represented by generalized prospect theory, with the functions

1 or −1 in Lemma 1 possibly unbounded.

(ii) The preference relation < is a Jensen-continuous weak order that satisfies first order stochas-
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tic dominance, comonotonic independence of common elementary probability shifts, and sign-

dependent probability midpoint consistency.

Whenever 1 and −1 are bounded, the probability weighting functions are uniquely determined.

If further + 6= ̂−, the reference point is unique and the utility function is a ratio scale; otherwise, if

+ = ̂−, utility is cardinal. If 1 (or −1) is unbounded then − (+) is uniquely determined and

1 (or −1) and  are jointly cardinal with () = 0 restricting the location parameter of  to 0. ¤

4 Extensions

In the previous sections we have assumed that we have strictly ordered outcomes. The strict ordering

can be relaxed if there are at least four strictly ordered outcomes. If  is finite all results remain

valid if we take representatives for each set of indifferent outcomes. These outcomes will then be given

the same utility value. If, however,  is infinite, then results remain valid for each finite subset of

outcomes  that contains at least four outcomes that are strictly ordered. We can then extend the

PT-representations on the sets of prospects over the different finite subsets,  and  0, to a general

PT-representation by using the fact that the representations on any such sets of prospects over  and

of prospects over  0 must agree with the representation on the set of prospects over  ∪  0. Hence a

common PT-representation must exist over prospects with finite support in the possibly infinite .

If there are only three strictly ordered outcomes, the sign-dependent probability midpoint con-

sistency principle is trivially satisfied. In that case, we require stronger tools to obtain additive

separability (Lemma 1). We can still derive an additive representation by using stronger conditions

like the Thomsen condition or triple cancellation as in Wakker (1993, Theorem 3.2). Those additive

functions can be seen as the product of utility times the corresponding weighting function and we

immediately obtain generalized PT. To obtain the special case of RDU, we have to additionally invoke

the probability tradeoff consistency principle of Abdellaoui (2002) or a refinement of that principle as

proposed in Köbberling and Wakker (2003). For fewer than three strictly ordered outcomes first order
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stochastic dominance and weak order are sufficient for an ordinal representation of preferences.

In our derivation of PT it has been essential that the weighting functions are continuous at 0 and

at 1. Discontinuities at these extreme probabilities are, however, empirically meaningful. We could

adopt a weaker version of Jensen-continuity that is restricted to prospects that have common best and

worst outcomes with positive objective probability. Such conditions have been used in Cohen (1992)

and more recently in Webb and Zank (2011) where probability weighting functions are derived that

are linear and discontinuous at extreme probabilities. These weighting functions can then be described

by two parameters one for optimism and one for pessimism. As Webb and Zank show, this relaxation

of continuity in probabilities comes at a price. They require additional structural assumptions for

the preference in order to obtain consistency of the parameters across sets of prospects with different

minimal and maximal outcomes. Also, specific consistency principles that imply the uniqueness of

these parameters are required. We conjecture that in our framework such consistency principles can be

formulated for nonlinear weighting functions that are discontinuous at 0 and at 1. A formal derivation

of PT with such weighting functions is, however, beyond the scope of this paper.

5 Conclusion

The focus of this paper has been on sign-dependence, the different treatment of probabilities depending

on whether the latter are attached to gains or to losses. We have complemented existing foundations

for PT in the “continuous utility approach” with preference foundations based on the “continuous

weighting function approach” by adopting and extending a familiar tool from empirical measurement of

probability weighting functions, the midpoint consistency principle. Preference midpoints for outcomes

are a useful tool for the analysis of risk attitudes captured by utility. It was recently shown by Baillon,

Driessen and Wakker (2012), how these midpoint based tools facilitate the analysis of ambiguity

preferences and time preferences. We have demonstrated how similar midpoint tools can be adapted

for the analysis of PT-preferences. Our method facilitates the analysis of probabilistic risk attitudes
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and, therefore, complements the utility-based approach. Further, we have shown how the probability

midpoint principle can be employed to identify reference points in an efficient and tractable manner.

Appendix: Proofs

As can be observed from the equations for RDU, PT and Eqs. (7) and (8), and also from the additively

separable preference representation in Lemma 1 very frequently we use cumulated probabilities as

variables. For the proofs it will be convenient to use an alternative notation for prospects, following

Abdellaoui (2002) and Zank (2010). In the decumulative probabilities notation  = (̃1     ̃), where

̃ =
P

=1  denotes the probability of obtaining outcome  or better,  = 1     .10 Obviously,

̃ = 1. Naturally, all preference conditions can be re-written in terms of decumulative probabilities.

Proof of Lemma 1: The proof of the lemma follows from results for additive representations

on rank-ordered sets in Wakker (1993, Theorem 3.2 and Corollary 3.6). That statement (i) implies

statement (ii) is immediate from the properties of the functions    = {1     − 1}. As we have a

preference relation < defined on a rank-ordered set of decumulative probabilities (i.e., a rank-ordered

subset of [0 1]−1) and < satisfies weak order, Jensen-continuity and first order stochastic dominance,

we also have Euclidean continuity (by Lemma 18 in Abdellaoui 2002) for <. First order stochastic

dominance comes down to strong monotonicity in decumulative probabilities. Further, as  ≥ 4, and

our independence of common elementary probability shifts comes down to coordinate independence

of Wakker (1993), statement (ii) of Theorem 3.2 of Wakker is satisfied. Then statement (i) of the

lemma follows from statement (i) of Theorem 3.2 of Wakker, the only difference being that our strong

monotonicity implies that the functions    = {1      − 1} are strictly increasing. Uniqueness

results are as in Wakker’s Theorem 3.2. This concludes the proof of Lemma 1. ¤

Proof of Theorem 2: The derivation of statement (ii) from statement (i) follows from Lemma

1 and the analysis preceding the theorem in the main text on the consistency of elicited probability

10Similarly, in the cumulative probabilities notation  = (1 1− ̃1     1− ̃−1) where entries denote the probability
of obtaining outcome  or less,  = 1     .
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midpoints under PT.

We now prove that statement (ii) implies statement (i) of the theorem. Assume that < on L

is a weak order that satisfies first order stochastic dominance, independence of common elementary

probability shifts and sign-dependent probability midpoint consistency. Then, by statement (i) of

Lemma 1 the preference < on L is represented by an additive function

 ( ) =

−1X
=1

(̃) (9)

with continuous strictly increasing functions 1     −1 : [0 1] → R which are bounded except 1

and −1 which could be unbounded at extreme probabilities.

Next we restrict our analysis to decumulative probabilities different from 0 or 1 to, for now, avoid

the problems with the unboundedness of 1 and −1. Following the analysis in the main text preceding

Theorem 2, SMC implies that either there is no sign-dependence or we have a unique reference point

  ∈ {2      − 1}. If we do not have sign-dependence, SMC comes down to the consistency in

probability attitudes of Zank (2010), which implies that RDU holds. Therefore, we consider the case

that we have sign-dependence.

Assume first that 2   ≤ − 1. For any  ∈ (0 1) and   0 let () be the open neighborhood

around  with Euclidean distance . Take any    ∈ () such that

−1X
=1

[()− ()] =

−1X
=1

[()− ()] (10)

For sufficiently small   0, by continuity of the functions   =       − 1, there exists lotteries

 ∈ L with
−1X
=1

() +

−1X
=

(̃) =

−1X
=1

() +

−1X
=

(̃)
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and

−1X
=1

() +

−1X
=

(̃) =

−1X
=1

() +

−1X
=

(̃)

Before we proceed with the proof we introduce some simplifying notation. For any nonempty subset

 ⊂ {1      − 1} we write  for prospect  with ̃ replaced by  ∈ [0 1] for all  ∈ . Clearly,

for  to be a well-defined prospect,  must include all indices between and including the smallest

(min{ :  ∈ }) and the largest (max{ :  ∈ }) in . With this notation, the latter two equations are

equivalent to the respective indifferences

 ∼  and  ∼ 

where  = {1      − 1} meaning that the decumulative probabilities    are attached to gains.

Consider the case    (and note that the case    is completely analogous). By first order

stochastic dominance it follows that   . Further, sign-dependent probability midpoint consistency

requires that

\ ∼ \

for all  = {1     }  ∈ \{ − 1}. First take  = 1. Then, substitution of Equation (9) into

 ∼  implies

−1X
=1

() +

−1X
=

(̃) =

−1X
=1

() +

−1X
=

(̃)

and substitution of Equation (9) into 1\{1} ∼ 1\{1} gives

1() +

−1X
=2

() +

−1X
=

(̃) = 1() +

−1X
=2

() +

−1X
=

(̃)
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Taking the difference of the two latter equations and cancelling common terms implies

−1X
=2

[()− ()] =

−1X
=2

[()− ()]

Similarly, joint substitution of Equation (9) into  ∼  and 1\{1} ∼ 1\{1}, taking

differences and cancelling common terms, imply

1()− 1() = 1()− 1() (11)

Similarly, if  = 2, we obtain

−1X
=3

[()− ()] =

−1X
=3

[()− ()]

and

2X
=1

[()− ()] =

2X
=1

[()− ()]

and using Equation (11) we obtain

2()− 2() = 2()− 2()

By induction on  we conclude that if Equation (10) holds then for all  = 1      − 1 we have

()− () = ()− ()

That the converse holds is immediate. We conclude that for any  ∈ (0 1) and sufficiently small   0
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for    ∈ () we have

−1X
=1

[()− ()] =

−1X
=1

[()− ()]

⇔

()− () = ()− () for all  = 1      − 1

This means that locally the functions  ,  = 1      − 1, are proportional and also proportional

to their sum, which we denote  +. Global proportionality follows from local proportionality and

continuity. It follows that positive constants 1     −1 and real numbers 1     −1 exist such that

(·) = 
+(·) +    = 1      − 1

Following Proposition 3.5 of Wakker (1993) the functions  can be taken finite at 0 and 1, and can

continuously be extended to all of [0 1].

Similar arguments, now applying consistency for probability midpoints of losses, can be used to

derive proportionality of the functions  − :=
P−1

=  and  ,  =      −1 whenever 2 ≤   −1.

Proposition 3.5 of Wakker (1993) applies again saying that the functions  can be taken finite at 0 and

1, and can continuously be extended to all of [0 1]. We conclude that positive constants      −1

and real numbers      −1 exist such that

(·) = 
−(·) +    =      − 1

Next, for the case that 2    − 1, we derive the weighting functions for probabilities of gains

and losses and the utility for outcomes. We fix  +(1) +  −(1) = 1 and (0) = 0 for  = 1     − 1

and (1) = 0 for  =       − 1, thereby fixing the scale and location of the otherwise jointly
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cardinal functions  . Then, 1 = · · · = −1 = 0 must hold and it follows that  +(1) = 1. We define

+(̃) :=  +(̃) =

−1X
=1

(̃) +

−1X
=

(1)

Therefore, +(0) = 0 +(1) = 1 and + is strictly increasing and continuous on [0 1], and is, indeed,

a well-defined probability weighting function. It is the probability weighting function for probabilities

of gains.

Next we derive −. First we define

̂(̃) :=
 −(̃)
 −(0)

=

P−1
=1 (0) +

P−1
= (̃)P−1

=1 (0) +
P−1

= (0)


This is a well-defined function given that the  ’s  =      −1, are strictly increasing and bounded,

and thus, (̃)  0 for all  =      − 1, whenever ̃  1 such that the denominatorP−1
=1 (0)+P−1

= (0) 6= 0 and finite. It follows that the function ̂ has the following properties: ̂(1) = 0 and

̂(0) = 1 and ̂ is strictly decreasing and continuous on [0 1]. We set

̃−(̃) := 1− ̂(̃) =
 −(0)−  −(̃)

 −(0)


for each ̃ ∈ [0 1], which gives us the dual weighting function for probabilities of losses. A useful

rearrangement of this equation gives

 −(̃) =  −(0)[1− ̃−(̃)]

From ̃− we obtain − through −(̃) = 1− ̃−(1− ̃) for all ̃ ∈ [0 1].

Next we derive the utility function for outcomes. From the derivation of + and (·) = 
+(·)  =

1      − 1, we obtain

(·) = 
+(·)  = 1      − 1
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and from the derivation of ̃− and (·) = 
−(·)  =      − 1 we obtain

(·) = 
−(0)[1− ̃−(·)]  =      − 1

Noting that the degenerate prospect that gives  for sure is expressed as the prospect 0{1−1}(1     1),

for each  = 1     , we define utility as follows:

() :=  (0{1−1}(1     1))

=  −(1)

= 0

Moving backwards, for  =  − 1     1 we iteratively define

() := (+1) + 

And for  =  + 1      we iteratively define

() := (−1) + −1 −(0)

These definitions of utility for gains and losses imply that the ordering of the utility for outcomes is

(1)  · · ·  (), thus in agreement with the ordering according to the preference <.

Next, substitution into  ( ), gives

 ( ) =

−1X
=1

(̃) +

−1X
=

(̃)

=

−1X
=1


+(̃) +

−1X
=


−(0)[1− ̃−(̃)]
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Note that for  = 1      − 1 we have  = () − (+1) and for  =       − 1 we have


−(0) = (+1)− (). Substitution into the preceding equation gives

 ( ) =

−1X
=1

+(̃)[()− (+1)] +

−1X
=

[(+1)− ()][1− ̃−(̃)]

=

−1X
=1

[+(̃)− +(̃−1)]() +
−1X
=

[(+1)− ()][1− ̃−(̃)]

where, in the latter equation, the term relating to probabilities of gains has been rearranged using the

properties that +(̃−1) = 0 for  = 1 and (+1) = 0 for  =  − 1. Next we rearrange the term

relating to probabilities of losses. After substitution of ̃−() = 1− −(1− ), we obtain

 ( ) =

−1X
=1

[+(̃)− +(̃−1)]() +
X

=+1

[()− (−1)]−(1− ̃−1)

Rearranging we obtain

 ( ) =

−1X
=1

[+(̃)− +(̃−1)]() +
X

=+1

[−(1− ̃−1)− −(1− ̃)]() =  ( ) (12)

where in the derivation of the latter expression for loss probabilities we have used that (−1) = 0

for  =  + 1 and −(1− ̃) = 0 for  =  (recall that ̃ = 1). We conclude that the representation

 of < on L is, in fact, a genuine PT-functional.

Cases  = 2 and  =  − 1 are problematic as we may have unboundedness at 0 or 1. If  = 2

and 1 is bounded at 1, or if  = − 1 and −1 is bounded at 0, we can simply repeat the preceding

analysis and derive genuine PT. If, however,  = 2 and 1 is unbounded at 1, we can derive 
− and

 for losses (i.e., for   = 3     ) by using similar arguments as in the preceding analysis (i.e.,

following the case 2 ≤   − 1); nothing more can be said about 1, thus, generalized PT as in Eq.

(8) is obtained. Similarly, if  = − 1 and −1 is unbounded at 0, we can derive + and  for gains

(i.e., for   = 1     −1) by using similar arguments as in the preceding analysis (i.e., following the
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case 2   ≤ − 1), thus, generalized PT as in Eq. (7) is obtained. Hence, generalized PT represents

< on L. This concludes the derivation of statement (i) from statement (ii) in Theorem 2.

To complete the proof of the theorem we need to derive the uniqueness results for the weighting

functions and utility. For bounded 1 and −1 we have fixed the scale and location of the otherwise

jointly cardinal functions    = 1     − 1 in order to derive + and −. That is, given any other

representation of preferences that is additively separable as in Lemma 1, fixing scale and location

as required in the proof above will lead to the same probability weighting functions. This shows

that the weighting functions + and − are uniquely determined. From the definition of the utility

function  it is clear that the only freedom we have in defining utility is the starting value at the

reference point  (i.e., the location parameter) and a scaling parameter due to the jointly cardinal

functions    = 1      − 1. So, utility can, at most, be cardinal. However, in order to rewrite 

in the form of the PT-functional it is critical that () = 0. Otherwise, if () 6= 0, the terms

+()() and ()
−(1− ) will appear in Equation (12). With these terms added in Equation

(12) a functional is obtained that violates first order stochastic dominance and continuity, hence, it

cannot be a representation of < on L. This means that  must be a ratio scale. This is somewhat

different if one of 1 or −1 are unbounded. In the first case − is uniquely determined but  which

must satisfy (2) = 0, and 1 are jointly cardinal. In the second case 
+ is uniquely determined and

 which must satisfy (−1) = 0, and −1 are jointly cardinal.

This concludes the proof of Theorem 2. ¤
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