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Abstract

This paper argues that seasonal adjustment will generally induce noninvertible mov-
ing averages and examines the consequences for the distributions of (zero frequency)
unit root test statistics for I(1) and near-integrated processes. The seasonal adjust-
ment procedure analyzed is the two-sided X-11 seasonal adjustment �lter, which
generally leads to a high order MA component in the adjusted series. As standard
unit root tests do not satisfactorily deal with high order noninvertible MAs, in-
ferences (even asymptotically) about the presence of unit roots can be unreliable
for seasonally adjusted data. We illustrate these e¤ects analytically and through
Monte Carlo simulation, for the Augmented Dickey-Fuller, Phillips-Perron, the M-
type and the Variance Ratio unit root tests applied with a variety of detrending
procedures.
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1 Introduction

Seasonal adjustment is routinely applied to macroeconomic time series by o¢ cial statis-
tical agencies around the world, with these adjusted values then employed in the analyses
undertaken by commentators and researchers. It is not surprising, therefore, that many
authors have studied whether seasonal adjustment distorts the underlying properties of
time series; Wallis (1974) and Sims (1974) are pioneering works on this topic, while more
recent analyses include del Barrio Castro and Osborn (2004), Ericsson, Hendry and Tran
(1994), Ghysels and Perron (1993), Ghysels and Liebermann (1996), and Matas-Mir, Os-
born and Lombardi (2008). Although these studies establish nontrivial consequences for
seasonal adjustment in terms of shortrun properties, the general conclusion with re-
spect to longrun properties is reassuring, with seasonal adjustment found to have no
asymptotic impact on tests under the null hypothesis of (zero frequency) integration and
cointegration; see, in particular, Ghysels and Perron (1993) and Ericsson et al. (1994).
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These reassuring results about longrun properties, however, rest on an invertibil-
ity assumption that may be invalid for seasonally adjusted data. To be more speci�c,
due to the nature of the �lters embedded in the commonly applied methods of X-11
and X-12-ARIMA, seasonal adjustment using these procedures will generally give rise
to noninvertible moving average terms in the adjusted data; see Maravall (1993) and
Bell (2012) for details. Therefore, if unit root tests do not satisfactorily deal with non-
invertible moving average components, then inferences (even asymptotically) about the
presence of unit roots can be unreliable for seasonally adjusted data.
The present paper studies the consequences of seasonal adjustment for a range of

unit root tests, using both analytical and Monte Carlo simulation methods. In addition
to the parametric Augmented Dickey-Fuller test (Dickey and Fuller, 1979) [ADF ], we
examine the Phillips-Perron (1988) test [PP ], the Variance Ratio test of Breitung (2002)
[V RT ] and the M-type tests ([MZ�], [MZt], [MSB]) proposed by Stock (1999) and
popularized by Perron and Ng (1996). The analysis we undertake is related to that of
Galbraith and Zinde-Walsh (1999), who examine the impact of moving average compo-
nents on ADF tests. However, in contrast to their assumption of invertibility, we focus
on the noninvertible moving average case and, more speci�cally, on the e¤ect of seasonal
adjustment. Also, although Ghysels and Perron (1993) examine the impact of seasonal
adjustment on unit root tests, they assume invertibility.
Indeed, the issue we study has not, to our knowledge, been considered previously

in the literature. Maravall (1993) discusses the noninvertibility implication of seasonal
adjustment, and hence recommends that unit root tests based on autoregressive aug-
mentation should not be undertaken with seasonally adjusted data. However, he does
not analyze the resulting asymptotic distributions. Although the Monte Carlo analyses
of Ghysels (1990), Ghysels and Perron (1993) and Smith and Otero (2002) indicate size
problems for univariate unit root or cointegration tests after seasonal adjustment, this
is seen to be a �nite sample issue. In contrast, we examine analytically the a¤ect on the
asymptotic distributions of unit root tests, then considering �nite sample results in the
light of those �ndings.
The paper is organized as follows. Section 2 contains some general discussion of sea-

sonal adjustment and unit roots. Section 3 then analytically examines theADF;PP; V RT;
MZ�, MZt and MSB (zero frequency) unit root tests in the presence of seasonal ad-
justment under near integration, followed by a Monte Carlo study in Section 4. Section
5 concludes.

2 Seasonal Adjustment and Unit Roots

This section provides background discussion of seasonal adjustment, focussing on its
implication of noninvertibility at seasonal frequencies, and unit root tests.

2.1 The X-11 symmetric �lter

Virtually all seasonal adjustment procedures are based on an unobserved components
speci�cation, for which the additive version is

yut = St + Tt + It (1)

where yut is the unadjusted (observed) time series, while St, Tt and It are the seasonal,
trend and irregular components respectively. The components St and Tt may be deter-
ministic or, more typically, stochastic, with the three components assumed to be driven
by mutually independent processes.
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As described by Wallis (1974), Ghysels and Osborn (2001, chapter 4) and others,
seasonal adjustment by X-11 involves the application of a sequence of linear �lters1 .
Therefore, the seasonally adjusted, or �ltered, series yft can be represented as

yft = y
u
t � bSt = bTt + bIt = q(L)yut (2)

where L is the usual lag operator. Except for observations near the beginning and end
of the sample period, the �lter q(L) is a two-sided symmetric �lter of the form

q(L) =
�kX
i=k

qiL
i (3)

in which qi = q�i, i = 1; :::; k. Wallis (1974) graphically shows the implied linear
coe¢ cients for the X-11 �lter, with Laroque (1977) and Ghysels and Perron (1993)
tabulating these for the quarterly and monthly data, respectively. Although the �lter
weights qi sum to unity, they are not all positive. It is also noteworthy that while
the linear �lter is an approximation to X-11, this captures the essential features of the
seasonal adjustment procedure (Ghysels and Osborn, 2001, pp. 100-101). Also, while
X-11 has largely been replaced by X-12-ARIMA, and more recently X-13ARIMA-SEATS
(U.S. Census Bureau, 2013), the symmetric X-11 �lter retains its core role for seasonal
adjustment; see Findley et al. (1998), the discussion in Ghysels and Osborn (2001, pp.
106-108) and the documentation in U.S. Census Bureau (2013).
The extent of the two-sided symmetric �lter q(L), represented by k in (3), is about

seven years in either direction (Wallis, 1974). Observations towards the beginning and
end of the available sample (when su¢ cient values are not available for (3) to be em-
ployed) are seasonally adjusted in X-12-ARIMA using asymmetric �lters and/or fore-
casting and backcasting (see Findley et al., 1998). Nevertheless, the two-sided �lter q(L)
provides the essential element of seasonal adjustment through these procedures and we
follow previous researchers in focussing on the implications of this �lter.
Bell (2012) documents the unit root properties of seasonal adjustment �lters; in

particular, his Lemma 1 catalogues those for the two-sided X-11 symmetric linear �lter
and implies the estimated seasonal component bSt has the formbSt = (1� L)3(1� L�1)3!(L)yut

= �L�4(1� L)6!(L)yut (4)

where !(L) is a linear two-sided �lter. In practice observed macroeconomic series contain
at most two zero frequency autoregressive (AR) unit roots, but the transformation used
to obtain bSt in (4) employs sixth order di¤erencing. In terms of the seasonally adjusted
series itself, Bell (2012) further establishes (using our notation) that the two-sided �lter
can be written as

q(L) = U(L)(1 + L�1)!�(L) = L�1U(L)(1 + L)!�(L) (5)

where U(L) is the moving annual summation operator U(L) = 1 + L + � � � + Ls�1; , s
is the frequency of observations per year (s = 4 or 12 for quarterly or monthly data,
respectively) and !�(L) is another two-sided polynomial in L. Indeed, Bell (2012, p.458)
further notes that, to a good approximation,

q(L) � U(L)U(L�1)!y(L) = L�s+1[U(L)]2!y(L) (6)

1This is true for the additive form of (1) with default options and consequently also for the form which
is additive after taking logarithms. The multiplicative version of X-11 is also viewed as approximately
linear; see Bell (2012).
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where !y(L) is again a two-sided �lter.
The factor U(L) in (5) implies that the �lter annihilates the full set of AR unit roots at

seasonal frequencies if these are present in yut , in addition to annihilating deterministic
seasonal e¤ects. However, even if yut is seasonally integrated with an AR polynomial
containing U(L), the additional smoothing factor (1 +L) leads the adjusted series to be
noninvertible unless yut contains two seasonal AR unit roots at the Nyquist frequency.
Indeed, (6) further implies that the X-11 �lter e¤ectively annihilates not just a single set
of unit roots at all seasonal frequencies, but two such sets. Since observed series typically
do not contain even one full set AR seasonal unit roots (see, among others Beaulieu and
Miron, 1993, Osborn, 1990, or the discussion in Ghysels and Osborn, 2001, pp.90-91),
the MA component of adjusted series in practice will (at least approximately) include
one or more unit roots at all seasonal frequencies.
The general message is that time series seasonally adjusted using X-11 will be non-

invertible at seasonal frequencies, possibly with multiple unit roots. Although our focus
is on the X-11 �lter, it is noteworth that the use of model-based adjustment (for ex-
ample, using the TRAMO-SEATS procedure of Gomez and Maravall, 1997, or within
X-13ARIMA-SEATS) does not avoid this issue. Indeed, Bell (2012) also shows that
symmetric �nite model-based adjustment �lters contain the exact factor U(L)U(L�1) =
[U(L)]2, so that issues arising from noninvertibility after seasonal adjustment apply
across all commonly applied seasonal adjustment procedures.

2.2 Unit root tests

The regression
yt = 'yt�1 + vt (7)

is the basis of all zero frequency unit root tests, with the relevant null hypothesis ' = 1
or, equivalently, � = ' � 1 = 0. The disturbance innovations vt in (7) may exhibit
temporal dependence and/or heteroskedasticity, with the limiting distribution of the
normalized bias and t-ratio statistics for testing this null hypothesis given by Phillips
(1987, Theorem 3.1). As shown by Phillips (1987), the distribution of tests for ' = 1 in
(7) depends on unknown parameters related to the serial correlation of the innovations.
The two widely used approaches proposed to deal with this problem are those of Dickey
and Fuller (1979), which deals with serial correlation by augmenting the test regression
(7) with lagged di¤erences of yt, and the nonparametric serial correlation correction
methodology of Phillips (1987) and Phillips and Perron (1988).
The seminal study of Schwert (1989) found ADF unit root tests to be poorly sized

when vt in (7) has an MA component that nearly cancels with the zero frequency unit
root. The analyses of Galbraith and Zinde-Walsh (1999) and Gonzalo and Pitarakis
(1998) show why such distortions occur. In particular, these studies establish the de-
pendence of the size distortions on the order of augmentation adopted, so that (with
�nite augmentation) distortions exist even asymptotically. However, while Galbraith
and Zinde-Walsh (1999) and Gonzalo and Pitarakis (1998) analytically examine the
implications of MA components in the disturbance of (7), both assume these to be in-
vertible. Nevertheless, Galbraith and Zinde-Walsh (1999) hint at the importance of this
assumption, by noting that the size distortions in the ADF test are particularly di¢ cult
to deal with in the presence of a near-noninvertible MA root.
In contrast to the ADF test, which relies on an AR approximation to a MA, the PP

approach uses observed residuals from (7) to mimic the autocorrelation properties of vt,
typically up to some maximum lag. Provided that the value employed for this maximum
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lag is su¢ ciently large, this approach is particularly attractive in the context of MA
processes.
The typical assumption in unit root analyses (for example, Ghysels and Perron, 1993,

Elliot, Rothenberg and Stock, 1996, Galbraith and Zinde-Walsh, 1999) is that the process
for vt is stationary and invertible. However, it is obvious that application of the linear
X-11 �lter to an unadjusted series in (7) yields

yft = 'y
f
t�1 + q(L)vt (8)

and hence, from the discussion of the preceding subsection, the transformed disturbances
will contain one or more MA unit roots at seasonal frequencies. This paper focuses
on the unstudied issue of the impact of a noninvertible moving average component on
the distributions of conventional zero frequency unit root tests, both under the null
hypothesis and for near-integrated cases. Our analysis includes not only the ADF test,
which may have particular di¢ culties in this context since it requires approximating
the noninvertible MA by an AR augmentation, but also PP tests and the M -statistic
variant of the PP approach proposed by Stock (1999), both of which e¤ectively adopt
an MA representation. Nevertheless, these latter tests require estimation of the long-run
variance of q(L)vt in (8), which in turn implies that its noninvertible nature be captured
adequately. Finally, we examine the variance ratio approach of Breitung (2002) which
does not require estimation of any nuisance parameters.

3 Asymptotic Distributions

This section discusses the near-integrated processes that we analyze, and then presents
results for the asymptotic distributions for a range of unit root tests applied to the
seasonally adjusted series.

3.1 Zero frequency near-integrated processes

To illustrate the implications of seasonal adjustment, we assume that the true data
generating process (DGP) for the original, unadjusted, data series (yut ) is the near-
integrated nonseasonal process

yut = exp
� c
T

�
yut�1 + �t; t = 1; 2; :::; T (9)

'T = exp
� c
T

�
�
�
1 +

c

T

�
where, for simplicity, we assume that the �t innovations follow �t � iid

�
0; �2�

�
. However,

it is possible to extend the results presented here allowing weak dependence in �t without
altering the qualitative conclusions drawn from the analysis of (9). When c = 0, (9)
is a random walk process. Although it may appear unrealistic to seasonally adjust
such a nonseasonal process, nevertheless it is informative because all the autocorrelation
characteristics of this I(1) process are induced by adjustment, therefore allowing us to
focus on the impact of the �lter. Further, analysis of this process maximizes the extent of
noninvertibility induced by the �lter, and in this sense represents a "worst case" scenario.
When c is "small" and c < 0, the process of (9) is near-integrated at the zero frequency,
so that our analysis covers this a DGP of this form, in addition to I(1) processes.
At this point it is important to consider the nature of the starting value yu1 . As

in Elliott, Rothenberg and Stock (1996), one possible assumption is that it satis�es
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T�1=2yu1 ! 0, for which a speci�c example is the so-called conditional case. However,
the arguments of Pantula, Gonzalez-Farias and Fuller (1994) are persuasive that the
conditional case is not tenable for macroeconomic data. Hence we follow their proposal
and employ the unconditional case, whereby yu1 follows the same DGP as the other
sample observations. More precisely, we assume that yu1 =

P[�T ]+k
i=0 'iT �1�i for � � 0

and in which k > 0 is the length of the seasonal adjustment �lter in (3); see (for example)
Canjels and Watson (1997) and Rodrigues and Taylor (2004) for similar starting value
assumptions. Note that we introduce k in the upper limit of the summation in order
to facilitate the starting value assumption made below for the �ltered observations;
Rodrigues and Taylor (2004) employ a corresponding assumption when working with
seasonal data.
We analyze the e¤ect of linear X-11 seasonal adjustment �lter, as widely used in prac-

tice and discussed in the previous section. Consequently, the process after adjustment is
given by

yft = exp
� c
T

�
yft�1 + ut; t = 1; 2; :::; T (10)

where, from (3), ut =
kP

i=�k
qjij�t+i = q(L)�t. Although in practice observations y

f
t for

t = 1; :::; T are computed from un�ltered values from periods 1 � k to T + k, we treat
(9) as a DGP. For this process, we make the following assumptions:

Assumption A.1 The error term ut (t = 1; :::; T ) is generated as ut =
kP

i=�k
qjij�t+i =

q(L)�t, with �t � iid
�
0; �2�

�
for t = �k + 2; :::; T + k.

Assumption A.2 The initial condition is given by yf1 =
P[�T ]

i=0 '
i
Tu1�i with � > 0.

Note that Assumption A.1 requires the iid process for �t to extend for k periods prior
to and after the sample period for yft , in order to take account of the two-sided �lter at
each end of the sample. Assumption A.2 is the unconditional starting value assumption
as made by Canjels and Watson (1997), and is compatible with the k � 1 pre-sample
unadjusted observations being of analogous form to that assumed for yu1 .
As discussed in subsection 2.1, the X-11 seasonal adjustment �lter applied to (9)

results in the presence of seasonal unit roots in the MA of ut in (10). Clearly, therefore,
the �ltered process retains the near-AR unit root of (9), but is distorted through the
complicated and noninvertible moving average introduced in the disturbances ut. Using
the Beveridge-Nelson (1981) decomposition, the �ltered series can be written (see the
Appendix) as:

yft = '
t�1
T yf1 +

t�2X
j=0

'jTut�j

= 't�1T yf1 +

t�2X
j=0

'jT q('
�1
T )�t�j +

kX
j=1

�t+j

kX
i=j

qi'
i�j
T +

kX
j=1

�2�j

kX
i=j

qi'
t�2+k�i
T

�
k�1X
j=0

�t�j

kX
i=j+1

qi'
j�i
T �

k�1X
j=0

�2+j

kX
i=j+1

qi'
t�2+i
T (11)

for t = 2; :::; T . Expression (11) allows us to obtain the distributions of the unit root test
statistics.
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We analyze the e¤ect of seasonal adjustment in the local to unity framework for the
ADF and PP tests, together with the nonparametric approaches of the M-type (MZ�;
MZt; MSB) and V RT tests. The case the ADF test with no augmentation is considered
in the next subsection, which illustrates the implications of the autocorrelation induced
by the �lter, with the usual AR augmentation allowed in subsection 3.3, while the PP
and other tests are considered in subsequent subsections.

3.2 No correction for autocorrelation

Application of the DF test regression (7) to the �ltered process of (10) yields

T ('̂T � 'T ) =
T�1

PT
t=1 y

f
t�1ut

T�2
PT

t=1

�
yft�1

�2

t('̂T�'T ) = T ('̂T � 'T )�

vuuutT�2
TP
t=1

�
yft�1

�2
�̂2u

(12)

where �̂2u is the OLS estimator of the variance of ut. The following proposition shows
how the asymptotic distributions of the unit root test statistics depend on the X-11 �lter
coe¢ cients qi of (3); the proof of this, and subsequent propositions, can be found in the
Appendix.

Proposition 1 For an unadjusted series following the near integrated process of (9) to
which the symmetric linear �lter of (3) is applied, then

T ('̂T � 1))

R 1
0
Jc (�; r) dW (r) + 1

2

"
1�

kP
i=�k

q2i

#
R 1
0
Jc (�; r)

2
dr

(13)

while the asymptotic distribution for the t-ratio statistic is

t('̂T�1) ) c

sZ 1

0

Jc (�; r)
2
dr

vuut kX
i=�k

q2i +

R 1
0
Jc (�; r) dW (r) + 1

2

"
1�

kP
i=�k

q2i

#
qR 1

0
Jc (�; r)

2
dr

s
kP

i=�k
q2i

: (14)

Here, and throughout the paper, ) indicates convergence in distribution, Jc (�; r) is an
Ornstein-Uhlenbeck process and W (r) is a standard Brownian motion de�ned in the
appendix.

The distribution of the normalized bias in (13) is shifted to the right compared
with the usual DF near-integrated case, due to the presence of the numerator term"
1�

kP
i=�k

q2i

#
, which is equal to 0:174 and 0:214 for quarterly and monthly data, re-

spectively. In the case of the distribution of the t-ratio, (14) is a¤ected not only by the
numerator term as in (13), but also by a scaling e¤ect of the square root of the sum of
the squared �lter weights. This latter e¤ect is also substantial, being 0:909 and 0:887 in
the quarterly and monthly cases, respectively. Overall, under the null hypothesis (c = 0)
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we anticipate that the seasonally adjusted random walk process will result in undersized
DF test statistics when no allowance is made for the autocorrelation in this process. An
important issue, therefore, is the extent to which allowing for autocorrelation mitigates
these e¤ects.

3.3 Autoregressive augmentation

Now consider the more realistic case where the ADF regression

�yft = �y
f
t�1 +

pX
i=1

�pi�y
f
t�i + ept (15)

is applied to the �ltered series of (10), when the DGP is again the near-integrated process
(9). Note also that in (15) � = c=T as

�
1�

�
1 + c

T

�
L
�
= �+(c=T )L and all coe¢ cients

are indexed by p, the order of augmentation employed. The MA process induced by
seasonal adjustment is not fully accounted by AR augmentation. However, since the
autocorrelation function of �yft with c = 0 can be computed from the �lter coe¢ cients
of q(L), then the pseudo-true coe¢ cients �pi (i = 1; :::; p) resulting from the application
of least squares to (15) are also known. More precisely, de�ning �p as the p�p covariance
matrix with i; jth element given by E[�yt�i�yt�j ] and p as the p � 1 vector with ith
element E[�yt�i�yt], then

�p = ��1p p (16)

where �p = (�p1; :::; �
p
p)
0.

As shown in the Appendix, since

ept = ut �
pX
i=1

�pi ut�i

then, using ut = q(L)�t, it follows that e
p
t is a two-sided MA of the form

ept = �p(L)�t

= (�p�kL
�k + � � �+ �p�1L�1 + �

p
0 + �

p
1L+ � � �+ �

p
k+pL

k+p)�t (17)

where k is the maximum lag of the seasonal adjustment �lter in (3). For a speci�c data
frequency (typically quarterly or monthly) and given p, the implied (asymptotic) mov-
ing average coe¢ cients of (17) can be obtained analytically. The following proposition
establishes how these MA coe¢ cients a¤ect the distributions of the ADF test under the
null and local alternatives.

Proposition 2 For an unadjusted series following the near integrated process of (9), the
ADF regression (15) applied to the �ltered series of (10) has normalized bias and t-ratio
test statistics that satisfy:

T �̂) c+
�p (1)

R 1
0
Jc (�; r) dW (r) +AR 1
0
Jc (�; r)

2
dr

(18)

and

t�̂ ) c

sZ 1

0

Jc (�; r)
2
dr
p
B +

�p (1)
R 1
0
Jc (�; r) dW (r) +AqR 1

0
Jc (�; r)

2
dr
p
B

(19)
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with

A = �p (1)
kX
i=1

qi �
kX
i=1

�p�i

iX
j=1

qj +
k+1X
i=1

�pi

i�1X
j=0

qj +

k+pX
i=k+2

�pi

kX
j=0

qj (20)

B =

k+pX
i=�k

(�pi )
2 (21)

where �pi are de�ned in (17) and �
p(1) =

Pk+p
i=�k �

p
i .

Note that these results are similar to those reported by Galbraith and Zinde-Walsh
(1999, Proposition 1) for the limiting null distribution of the ADF test in the presence of
an invertible moving average process. In particular Galbraith and Zinde-Walsh (1999)
show in their Propositions 2 and 3, that if p is such that p = O (� lnT ), � > 0, then
their scale factor tend to one and the numerator of their shift factor tend to zero. But
in our situation the results of Propositions 2 and 3 in Galbraith and Zinde-Walsh (1999)
do not apply, because their proof that A tends to zero and �p (1) =

p
B to one depends

on the assumption that all roots of the polynomial �p (L) = q(L)�p(L) lie outside the
unit circle. As shown in Bell (2012) and discussed above, the �lter q (L) associated with
X-11 seasonal adjustment has unit roots at all seasonal frequencies. Finally, also note
that the results Said and Dickey (1984), Beck (1974) and Chang and Park (2002) do
not apply here, because the polynomial q (L) does not have a convergent in�nite order
autoregressive representation.
Table 1 collects the values of the shift and scale terms in (19) for di¤erent values

of p (the order of augmentation) when the X-11 �lter is applied to a quarterly series.
The usual asymptotic distribution for near-integrated case will apply when the scalingsp
B = 1, �p(1)=

p
B = 1 and shift A=

p
B = 0, while the null distribution for the ADF

test (where c = 0) requires only the second and third of these to hold.
The results show that, although the X-11 �lter is noninvertible, the AR augmentation

takes su¢ cient account of the induced autocorrelation that the Dickey-Fuller asymptotic
distribution applies to the t-ratio test statistic for an I(1) process when a high level of
augmentation is applied. This result does not appear to have been previously available,
due to the invertibility assumption made in previous studies, such as Ghysels and Perron
(1993). Moreover, the implication drawn by Maravall (1993) that ADF tests should not
be applied to seasonally adjusted series due to noninvertibility is overly cautious.
For practical purposes, however, it is also notable that the scaling e¤ect �p(1)=

p
B

substantially shifts the distribution to the right when a moderately large augmentation,
such as p = 20, is applied, with this shift further enhanced by the positive scale e¤ect
for values of p that are multiples of the seasonal frequency of 4. This points to the
test being under-sized. Further, as p increases

p
B declines, although not monotonically.

For given c, this term indicates the power loss from using �ltered data, for which the
induced autocorrelation is accounted for by AR augmentation. The e¤ects of these shift
and scaling terms are further investigated in the next section.

3.4 Phillips-Perron approach

Phillips (1987) and Phillips-Perron (1988) propose correcting the normalized bias and
t-ratio statistics to take account of serial correlation through the use of

Z (�̂) = T �̂� 1
2

�
s2l � s2u

�
T�2

TP
t=1

�
yft�1

�2 (22)
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and

Z (t�̂) =

�
sl
su

�
t�̂ �

1

2

�
s2l � s2u

�
sl

s
T�2

TP
t=1

�
yft�1

�2 (23)

respectively, where

s2u = T
�1

TX
t=1

û2t (24)

s2l = T
�1

TX
t=1

û2t + 2T
�1

pX
i=1

w (i;m)
TX

t=i+1

ûtût�i (25)

in which m is the truncation parameter or bandwidth, ût (t = 1; : : : ; T ) are the residuals
from an ordinary least squares estimation of (12) with no augmentation and w(i;m) is
a weighting (or kernel) function used to ensure that the estimated longrun variance s2l
is nonnegative. Proposition 3 gives the resulting asymptotic distributions of the �ltered
data under near-integration.

Proposition 3 For an unadjusted series following the near integrated process of (9), the
PP test statistics of (22) and (23), applied to the seasonally adjusted series of (10), have
asymptotic distributions

Z (�̂))

R 1
0
Jc (�; r) dW (r) + 1

2

("
1�

kP
i=�k

q2i

#
�
 
2

pP
i=1

w (i;m)
k�iP
j=�k

qjqj�i

!)
R 1
0
Jc (�; r)

2
dr

(26)

and

Z (t�̂))
R 1
0
Jc (�; r) dW (r)qR

Jc (�; r)
2
dr

s
kP

i=�k
q2i + 2

pP
i=1

w (i;m)
k�iP
j=�k

qjqj�i

+
1

2

"
1�

kP
i=�k

q2i

#
�
 
2

pP
i=1

w (i;m)
kP

j=�k+i
qjqj�i

!
qR

Jc (�; r)
2
dr

s
kP

i=�k
q2i + 2

pP
i=1

w (i;m)
kP

j=�k+i
qjqj�i

: (27)

Note that both (26) and (27) are functions of the X-11 �lter coe¢ cients; in particular,
these lead to shift and scale terms appearing in these expressions. Hence, in order for the
distributions to be free asymptotically from these nuisance parameters, the shift term
must tend to zero and that the scale term tend to one.
Now, for the shift term"

1�
kX

i=�k
q2i

#
�

0@2 pX
i=1

w (i;m)
kX

j=�k+i
qjqj�i

1A (28)

1�
kP

i=�k
q2i = q (1)

2 �
kP

i=�k
q2i = 2

kP
j=�k+1

j�1P
i=1

qjqj�i as q (1)
2
= q (1) = 1. Consequently,

the choice of an appropriate bandwidth m and kernel will cause (28) to tend to zero.
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Further, note that the denominator scale factor

$ =

vuut kX
i=�k

q2i + 2

pX
i=1

w (i;m)
k�iX
j=�k

qjqj�i (29)

is an estimator of q (1)2 = 1, and hence (again with appropriate choice of bandwidth and
kernel), will tend to one.
Table 1 also shows computed the shift and scale terms (28) and (29), respectively,

for the Bartlett kernel

w(i;m) = 1� i

(m+ 1)
; i = 1; 2; :::;m; (30)

for di¤erent values of m, again when the quarterly X-11 �lter is applied. These con�rm
that the terms do have e¤ects that disappear for large values of m. Nevertheless, it is an
empirical matter whether the bandwidths typically used are su¢ ciently wide to capture
the high order MAs resulting from seasonal adjustment in practice. The Monte Carlo
analysis of the next section sheds light on this question.

3.5 Variance ratio and M type tests

Finally we examine the asymptotic distributions of the variance ratio test (V RT ) of
Breitung (2002), given by

V RT = T�2

PT
t=1

�Xt

j=1
yj

�2
XT

t=1
y2t

(31)

together with tests proposed by Stock (1999) and popularized by Perron and Ng (1996),
which are

MSB =

0B@T�2
XT

t=1
y2t�1

s2l

1CA
1=2

(32)

MZ� =
T�1y2T � s2l
2T�2

X
y2t�1

(33)

where s2l is an estimator of the long run variance, given by (25) in the preceding subsec-
tion. The unit root test statistic given by

MZt =MSB �MZ� (34)

proposed by Perron and Ng (1996) is also considered. The following proposition gives
the asymptotic distributions for all these statistics for the near-integrated DGP.

Proposition 4 For an unadjusted series following the near integrated process of (9), the
tests statistics of (31), (32), (33) and (34) applied to the seasonally adjusted series of
(10), have asymptotic distributions

V RT )
R 1
0

�R r
0
Jc (�; g) dg

�2
drR 1

0
Jc (�; r)

2
dr

(35)
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MSB )
 R 1

0
Jc (�; r)

2
dr

$2

!1=2
: (36)

MZ� )

�
Jc (�; r)

2 �$2
�

2
R 1
0
Jc (�; r)

2
dr

(37)

MZt )

�
Jc (�; r)

2 �$2
�

2
qR 1

0
Jc (�; r)

2
dr

(38)

where $2 is de�ned in (29).

Note that the distribution of the V RT test in (35) is free from nuisance parameters
and hence is una¤ected by seasonal adjustment; this is also the case for the MSB, MZ�
and MZt tests, provided that $2 satisfactorily estimates q (1)2 = 1. The asymptotic
properties of $ for the Bartlett kernel as the bandwidth m increases are investigated in
Table 1, labelled there as the PP scale factor.

3.6 Mean e¤ects and detrending

Purely for simplicity of exposition, the discussion above does not allow for deterministic
terms. However, results collected in propositions 1 to 4 extend in a straightforward way
to deterministic components. In conjunction with the zero mean stochastic process (9),
assume the observed unadjusted series is given by

xut = y
u
t + �

u
t (39)

where �ut is the deterministic component, with �
u
t =

Ps
j=1 �jt�s+�t where �jt is a zero-

one dummy variable for season j and � is the trend coe¢ cient. As noted in subsection 2.1,
the seasonal unit roots embedded in the X-11 �lter annihilate seasonal intercept e¤ects,
while Bell (2012) shows that the symmetric �lter reproduces linear (and, indeed, higher
order) trends2 . Therefore, after application of the symmetric X-11 �lter, the adjusted
series corresponding to (39) is xft = y

f
t + �

f
t where �

f
t = � + �t and � is constant over

seasons.
Application of unit root tests with Ordinary Least Squares (OLS) detrending leads

to analogous results to those of Propositions 1 to 4 above, but replacing the Ornstein-
Uhlenbeck and Brownian motion processes by demeaned and detrended Ornstein-Uhlenbeck
and Brownian motion processes, respectively. If only mean e¤ects are relevant and no
trends are allowed for in the unit root tests, then the corresponding demeaned processes
apply.
In addition, pseudo-Generalized Least Squares (GLS) detrending can be applied, in

which case the statistics are computed using the local GLS detrended values eyft ; see
Elliott, Rothenberg and Stock (1996, pp. 824-825) for details. However, in this case the
term �T�1eyf1 needs to be added to the numerator of MZ� in (33). When only an inter-
cept � it is considered the distributions of the analyzed tests coincide with those reported
in Propositions 1 to 4, while with an intercept and trend we have analogous results to
those of Propositions 1 to 4 but with the Ornstein-Uhlenbeck and Brownian motion

2The X-11 �lter does not, however, entirely eliminate seasonal trends. This would requires two
applications of the seasonal summation �lter S(L) = 1+L+ :::+Ls�1. While the symmetric X-11 �lter
is close to containing [S(L)]2, it does not do so (Bell, 2012).
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processes replaced by the corresponding detrended processes; see Elliott, Rothenberg
and Stock (1996, pp. 824-825) and Theorem 1 in Ng and Perron (1999) for details.
In the context of the Dickey and Fuller test two further alternative methods of deal-

ing with the deterministic part have been considered, the Recursive Mean Adjustment
(see Taylor (2002) for details) and the Weighted Symmetric Least Squares (WSLS) (see
Pantula, Gonzalez-Farias and Fuller (1994), Park and Fuller (1995) and Fuller (1996) for
details). Note that both methods deliver better results in terms of power than pseudo-
GLS detrending in the unconditional as shown by Pantula, Gonzalez-Farias and Fuller
(1994) (�gure 2) and Park and Fuller (1995) in the case of WSLS and by Taylor (2002)
table 4.1 in the case of Recursive Mean Adjustment. For Recursive Mean Adjustment,
the distribution of the DF/ADF test will follow the lines of Proposition 2 but replacing
the Ornstein-Uhlenbeck and Brownian motion processes by the appropriated processes,
as in (4.1) of Theorem 4.1 and (4.8) of Theorem 4.2 in Taylor (2002). Finally in the
case of WSLS the results of Proposition 2 will need to be adapted to the expression
presented in Theorems 10.1.7 and 10.1.8 of Fuller (1996); see also (4.8) of Theorem 4.2
and remarks 4.4 and 4.10 in Rodrigues and Taylor (2004).

4 Size and Power Analysis

4.1 Asymptotic power functions

Figures 1 to 9 show the asymptotic power functions of the ADF , PP; Z (t�), V RT ,
MSB, MZ�and MZt tests for un�ltered and �ltered data generated using (9), with a
nominal test size of 0:05. The results are obtained in an equivalent way to those reported
in Figure 1 in Elliot, Rothemberg and Stock (1996), with the asymptotic distributions
approximated by discrete realizations for a sample size of T = 400 and based on 20; 000
replications. Note that although the DGPs are initialized at zero, we generate an extra
100 observations at the beginning so that the starting value e¤ectively satis�es the un-
conditional assumption, with additional values also generated at the end in order to be
able to employ the two-sided symmetric X-11 �lter over the central 400 values for both
the �ltered and the �ltered data. Quarterly X-11 weights are employed and all results
are computed for models that include an intercept.
For the ADF , MSB, MZ�and MZt tests, we consider both OLS and GLS detrend-

ing. However, only OLS detrending is considered for the PP; Z (t�) and V RT tests. For
the PP test only OLS detrending has been proposed, while Breitung and Taylor (2003)
show that GLS detrending does not improve the performance of the V RT test in com-
parison with OLS detrending. In addition, we also consider Recursive Mean Adjustment
and WSLS detrending for the ADF test.
The Propositions of Section 3 suggest that the choice of augmentation lag or band-

width parameter is important for the asymptotic power functions of unit root tests
applied to seasonally adjusted data. For the ADF test of (15) we therefore investigate
four automatic rules to determine the order of augmentation that would be applied for
a sample size of T = 400. These set p: to

�
T 1=2

�
, labeled as k2 and resulting in p = 20,�

T 1=3
�
labeled as k3 (p = 7), `4 = int

�
4
�
T
100

�1=4�
labelled as l4 (p = 5) and �nally

`12 = int
�
12
�
T
100

�1=4�
labelled as l12 (yielding p = 16).

For the PP , MSB, MZ�and MZt tests, we use the Bartlett and Quadratic spectral
kernels. Here we follow the approach of Newey and West (1994, equations (3.8) to (3.15)
and Table 1) for selection of the bandwidth parameter employed in conjunction with two
kernels. In an obvious notation, we use B and QS in the �gures to denote the Bartlett
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and Quadratic spectral kernels, respectively. For the Bartlett kernel, the bandwidth is

speci�ed as m = b�T 1=(2q+1) in which b� = c� �ŝ(q)=ŝ(0)�2=(2q+1) ; c� = 1:1447, q = 1 and
ŝ(q) = 2

nX
j=1

jqbj ; ŝ(0) = b0 + 2 nX
j=1

bj ; bj = T�1 TX
t=i+1

ûtût�j

n =
h
12 (T=100)

2=9
i
. The quadratic spectral kernel has m = T � 1 and

w(i;m) =
25

12�2x2i

�
sin (6�xi=5)

6�xi=5
� cos (6�xi=5)

�
(40)

with xi = i=
�b�T 1=(2q+1)� ; where b� is de�ned as above but here q = 2, c� = 1:3221 and

n =
h
4 (T=100)

2=25
i
. The choices made in both cases re�ect the recommendations of

Newey and West (1994). For the purposes of computing the asymptotic power functions
we again employ values corresponding to T = 400.
Figure 1 illustrates a number of features of interest for the ADF test. Although the use

of augmentation generally delivers good asymptotic size, the k3 rule with p = 7 delivers
an over-sized test. In other words, this is not a su¢ cient order of AR augmentation
to asymptotically take account of the MA features of the seasonally adjusted data. On
the other hand, the l4 rule with the lower order p = 5 has relatively good asymptotic
size. Therefore, increasing the order of augmentation does not necessarily improve size,
due to the complicated scale and shift e¤ects in (19), illustrated in Table 1. However,
high levels of augmentation such as 16 (indicated by l12) or 20 (k2) yield relatively good
asymptotic size, albeit at the cost of power substantially lower than that of the DF test
applied to unadjusted data as c moves away from zero. There is nevertheless a nontrivial
loss of power for the well-sized l4 augmentation rule also, especially around c = 24.
As pointed out by Pantula, Gonzalez-Farias and Fuller (1994) and Elliot (1999), the

ADF test with OLS detrending outperforms the ADF with GLS detrending for some
values of c, as can be observed if we compare Figures 1 and 2 for the un�ltered data (that
is, the lines labelled DF). In general, the ADF power functions for seasonally adjusted
data have similar relationships to the DF one in Figure 2 as in Figure 1, although the
undersizing of the ADF test with high augmentation orders is more marked in Figure
2. This is again a consequence of the e¤ects seen in Table 1, where the distribution of
the ADF statistic for �ltered data is shifted to the right for the corresponding values
of p = 16 and 20, and hence we anticipate undersizing and lower power than for the
un�ltered data under local alteratives as also observed to a lesser extent in Figure 1.
The same comment applies for the l4 case, but (as indicated by the values of Table 1)
the scale and shift distortions are smaller. GLS detrending in Figure 2 also increases
the oversizing of the test with p = 7 (denoted l4) compared with OLS detrending in
Figure 1. These patterns in relation to the DF case are maintained in Figures 3 and
4. However, Recursive Mean Adjustment detrending in Figure 3 e¤ectively shifts all the
power functions upwards, so that the DF case is also oversized, while WSLS detrending
in Figure 4 yields similar results to GLS detrending.
In the case of the V RT test we clearly observe that the performance of the test in

terms of size and power is observationally equivalent with un�ltered and �ltered data,
where the latter are indicated using the su¢ x F in Figure 5; this is anticipated from
Proposition 4. As implied by the PP shift and scale terms in Table 1, the power function
of this test with �ltered data is a little below the one obtained with un�ltered data in
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Figure 5. This feature also applies for theMSB test in Figures 6 and 7, which correspond
to OLS and GLS detrending, respectively.
Finally in the case of the MZ�and MZt tests (see Figures 8 and 9), the power

function for �ltered data is below the power function with un�ltered data. Hence we
clearly observe here that$2 does not satisfactorily approach q(1)2 when the above choices
are made for the window parameters.

4.2 Monte Carlo analysis

Tables 2 to 8 collect results for the empirical size and power for c = 0; 1; 2; 5 and 10
using N = 400 observations. Rather than the uncorrelated disturbance assumption of
(9), the DGP for the un�ltered data in this case has a nonseasonal or seasonal MA form
as follows:

yut = exp
� c
T

�
yut�1 + �t (41)

�t = "t � �"t�1 � = �:5
�t = "t ��"t�4 � = :5

"t � NIID (0; 1) :

In tables 2 to 5, where ADF test results are collected, the order of augmentation for
the un�ltered data is determined with the rules k2, k3, l4 and l12 and these are used also
for the �ltered data. Across all these tables, the values for �ltered data in the columns
k2_f , l4_f and l12_f are always smaller than the corresponding ones obtained for
un�ltered data in the columns headed k2; l4 and l12. However, using the rule k3, the
�ltered values (k3_f column) are larger than the un�ltered ones (k3 column). Hence
these empirical results mimic those reported for a random walk in Figures 1 to 4. The
results also emphasize the size distortions that can result from applying the ADF test
to seasonally adjusted data. For example, with OLS detrending in Table 2 and applying
the relatively generous k2 rule, the empirical size is only 0.03 rather than the nominal
0.05. On the other hand, the more parsiminous k3 and l4 rules are badly over-sized in the
presence of a negative seasonal MA coe¢ cient across all four tables. Although the results
for the seasonally unadjusted case are in line with the �ndings of Schwert (1989), it is
clear that the X-11 seasonal adjustment �lter does e¤ectively nothing to help (indeed,
size is worse in each case for k3_f than for k3) unless a very large augmentation order
is employed.
In the case of the VRT test, the results in Table 6 (as expected) have empirical size

and power that are very similar for the un�ltered and �ltered data. For the PP test
in Table 6 and the M-type tests in Tables 7 and 8, we clearly observe that the values
obtained for the �ltered data are often smaller than those for the un�ltered data. In
this sense, the results for Tables 6-8 show corresponding behaviour to that observed in
Figures 5-7. However, the sizes of these tests are often very poor. For example, the PP
test has over 50 percent rejections of the null hypothesis when applied to the seasonal
MA process with � = 0:5. It appears that the nature of these MA processes is not well
accounted for by either the Bartlett or quadratic spectral window when applied with the
values recommended by Newey and West (1994).

5 Conclusions

This paper has demonstrated, both analytically and through Monte Carlo simulations,
the implications of seasonal adjustment for the properties of zero frequency unit root tests
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applied to integrated and near-integrated processes. Although previous contributions
relating to the ADF test suggest that the usual asymptotic results continue to apply,
these examine only the null distribution and rest on an invertibility assumption that is
unlikely to be satis�ed by data after application of the commonly used X-11 seasonal
adjustment �lters.
In one sense, our analysis is reassuring, since we show that the invertibility assumption

is not crucial in that the use of a su¢ ciently high order of augmentation does, indeed,
deliver the usual ADF asymptotic distributions. However, the order of augmentation
required can be very large, due to both non-invertibility and the length of the two-sided
�lter used in adjustment. Further, the high orders required to deliver good size lead to
substantial power losses for adjusted data compared with direct testing on the unadjusted
series.
We also investigate the properties of the PP, variance ratio and M-type tests. Al-

though the variance ratio tests are robust to the use of adjusted data, the other tests
examined may not be. More speci�cally, the PP and M-type tests require consistent esti-
mation of the long-run variance, with consistency requiring the kernel employed to take
account of the long MA component arising from the use of the X-11 seasonal adjustment
�lter.
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6 Appendix

Derivation of (11):
The �ltered near-integrated process of (10) is given by

yft = '
t�1
T yf1 +

t�2X
j=0

'jTut�j = '
t�1
T yf1 +

t�2X
j=0

'jT

kX
i=�k

qi�t�j+i

= 't�1T yf1 + qk�t+k + (qk'T + qk�1)�t+k�1 + (qk'
2
T + qk�1'T + qk�2)�t+k�2 + � � �

+ (qk'
k�1
T + � � �+ q1)�t+1 + (qk'kT + :::+ q1'T + q0)�t
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k+1
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t�2
T + qk�1'

t�3
T + � � �+ qk't�2k�1T )�k+1 + :::+ (q1'

t�2
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+ (qk�2'
t�2
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t�3
T + qk'

t�4
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t�2
T + qk'

t�3
T )�3�k + qk'

t�2
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= 't�1T yf1 +
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j=0

�t�j

kX
i=�k

qi'
j�i
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kX
j=1

�t+j

kX
i=j

qi'
i�j
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j=1
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kX
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�
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j=0

�t�j

kX
i=j+1

qi'
j�i
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k�1X
j=0

�2+j

kX
i=j+1

qi'
t�2+i
T : (42)

Also note that, in the last expression above,

kX
i=�k

qi'
j�i
T = 'jT q('T )

where q ('T ) is the polynomial associated with the symmetric X-11 �lter q (L) with
L = 'T .

Proof of Proposition 1
Following the lines of the A.1 preliminaries in the appendix of Canjels and Wat-

son (1997), let vt =
t�2P
j=0

�t�j
Pk

i=�k qi'
j�i
T with 'T = 1 + c=T . Then T�1=2v[rt] )

�q (1) Jc (r) where Jc (r) denotes a di¤usion process generated by Jc (r) = W (r) +

c

Z r

0

e(r�g)cW (g) dg where W (r) is a standard Brownian motion process T�1=2
[rT ]P
t=1

�t )

�W (r) (see Phillips (1987) for details). Similarly T�1=2yf1 =
P[�T ]

i=0 '
i
Tu1�i ) �q (1) �Jc (�)

where �Jc (�) denotes the di¤usion process �Jc (�) = �W (�) + c
R �
0
e(��g)c �W (g) dg with

�W (�) been a standard Brownian motion process T�1=2
1P

t=�[�T ]+k
�t ) � �W (�). Finally

note that:

wt = vt + '
t�1
T yf1 T�1=2w[rT ] ) q (1)

�
Jc (r) + e

rc �Jc (�)
�
:= �q (1) Jc (�; r) (43)
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Using (42), it can be seen that
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Note that based on (43) and the CMT it is possible to write
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since the weights of the symmetric X-11 �lter sum to unity, and where Jc (�; r) is an
Ornstein-Uhlenbeck process de�ned in (43) and W (r) is an standard Brownian motion.
Further, due to the iid behavior of �t, it is straightforward to see that

T�1
TX
t=1

0@ kX
j=1

�t+j�1

kX
i=j

qi'
j�i
T

1A �t = T�1 TX
t=1

0@�2t kX
i=j

qi'
j�i
T +

kX
j=2

�t+j�1�t

kX
i=j

qi'
j�i
T

1A
) �2

kX
i=1

qi

note that 'T ' 1 + c=T hence as T !1 we have that 'T ! 1: Also

T�1
TX
t=1

0@k�1X
j=0

�t�j�1

kX
i=j+1

qi'
i�j
T

1A �t ! 0 T�1
TX
t=1

0@ kX
j=1

�2�j�1

kX
i=j

qi'
t�2+k�i
T

1A �t ! 0

T�1
TX
t=1

0@k�1X
j=0

�t�j�1

kX
i=j+1

qi'
j�i
T

1A �t ! 0 T�1
TX
t=1

0@k�1X
j=0

�2+j�1

kX
i=j+1

qi'
t�2+i
T

1A �t ! 0

Hence the asymptotic distribution corresponding to (44) is
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To obtain the asymptotic distribution of the normalized bias T (b'T � 'T ) for the
�ltered for the near integrated process, note that
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Further,
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where we use the symmetry of q(L) and also the relationship
kP
i=1

qi =
1
2 [1� q0] which

follows from symmetry together with q(1) = 1. Therefore, using q(1) = 1; (45) to (49)
satis�es
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The denominator of (12) follows from (43) and the CMT, as
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Using (49) and (51), together with 'T = 1� c
T , then yields (13).

The t-ratio for the �ltered data is
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and using (49) and (51), (14) is easily obtained.

Proof of (17)
With augmentation of the test regression applied to seasonally adjusted data, adding
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where �p(L) is an asymmetric two-sided
moving average, with k+ p nonzero lags and k nonzero leads; this establishes (17) of the
text.

Proof of Proposition 2
When the ADF regression for the seasonally adjusted near integrated process is aug-

mented to order p, OLS estimation yields
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The di¤erent rates of convergence that apply to the coe¢ cients corresponding to the
regressors leads us to consider"
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where the (p � 1) vector h has ith element T� 3
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Using (45), together with (47) and (48), we have
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This expression, together with (51), yields the asymptotic distribution given in (18).
The corresponding t-ratio is given by
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Proof of Proposition 3
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hence substituting (24), (25), (50) and (51) into (22) and (23) the required result it is
easily obtained.
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Table 1. Scaling and shift terms for the ADF and PP asymptotic distributions in a
seasonally adjusted random walk

ADF Statistic PP Statistics
p A �p (1)

p
B �p (1) =

p
B A=

p
B m Shift Scale

0 0.174 1.000 0.909 1.100 0.191 0 0.174 0.826
1 0.043 0.929 0.907 1.024 0.048 1 0.115 0.885
2 -0.063 0.874 0.905 0.966 -0.070 2 0.096 0.967
3 -0.188 0.814 0.903 0.901 -0.209 3 0.033 0.904
4 0.223 0.998 0.879 1.135 0.254 4 -0.034 1.034
5 0.203 0.888 0.874 1.016 0.232 5 0.058 0.942
6 -0.076 0.835 0.873 0.957 -0.087 6 0.036 0.964
7 -0.176 0.788 0.871 0.904 -0.202 7 0.016 0.984
8 0.227 0.969 0.848 1.143 0.268 8 -0.005 1.005
9 0.012 0.847 0.841 1.007 0.015 9 0.027 0.973
10 0.033 0.858 0.842 1.019 0.039 10 0.020 0.980
11 -0.055 0.816 0.903 0.903 -0.061 11 0.012 0.988
12 0.220 0.936 0.818 1.143 0.269 12 0.006 0.994
16 0.178 0.892 0.798 1.118 0.223 16 0.011 0.989
20 0.161 0.867 0.782 1.108 0.206 20 0.009 0.991
40 0.100 0.789 0.738 1.070 0.135 40 0.004 0.996
100 -0.002 0.704 0.695 1.012 -0.002 100 0.002 0.998
200 0.002 0.681 0.680 1.002 0.003 200 0.001 0.999
Notes: The relevant terms for the ADF statistic are de�ned in (17), (20) and (21), for
an augmentation lag of p, while the shift and scale terms for the PP statistic are given
in (28) and (29), respectively, for bandwidth m. In both cases, the �lter weights used

for q(L) are those of the quarterly symmetric linear X-11 �lter.
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Table 2. Empirical size and power of ADF test with MA innovations and OLS
detrending

c k2 k2_f k3 k3_f l4 l4_f l12 l12_f
� = 0:5 0 0.0465 0.0364 0.0511 0.0997 0.0554 0.0430 0.0474 0.0371

1 0.0553 0.0412 0.0588 0.1216 0.0639 0.0460 0.0551 0.0406
2 0.0546 0.0387 0.0638 0.1450 0.0756 0.0513 0.0588 0.0425
5 0.0942 0.0663 0.1153 0.2549 0.1341 0.0901 0.1009 0.0708
10 0.1965 0.1387 0.2899 0.5309 0.3311 0.2338 0.2187 0.1578

� = �0:5 0 0.0442 0.0325 0.0524 0.0539 0.0529 0.0729 0.0460 0.0309
1 0.0516 0.0337 0.0582 0.0612 0.0609 0.0901 0.0534 0.0319
2 0.0620 0.0364 0.0675 0.0713 0.0681 0.1017 0.0611 0.0343
5 0.0969 0.0523 0.1201 0.1287 0.1277 0.1909 0.1024 0.0498
10 0.1866 0.1049 0.2685 0.2822 0.2962 0.4066 0.2095 0.1069

� = 0:5 0 0.0491 0.0305 0.2132 0.2621 0.2051 0.1973 0.0553 0.0330
1 0.0559 0.0301 0.2711 0.3276 0.2620 0.2492 0.0642 0.0337
2 0.0616 0.0318 0.3204 0.3877 0.3070 0.2924 0.0711 0.0358
5 0.1066 0.0514 0.5105 0.5956 0.4956 0.4741 0.1272 0.0584
10 0.2342 0.1152 0.8277 0.8866 0.8198 0.8016 0.2837 0.1421

Table 3. Empirical size and power of ADF test with MA innovations and GLS
detrending

c k2 k2_f k3 k3_f l4 l4_f l12 l12_f
� = 0:5 0 0.0502 0.0366 0.0545 0.1034 0.0619 0.0442 0.0503 0.0371

1 0.0708 0.0517 0.0783 0.1503 0.0876 0.0628 0.0712 0.0532
2 0.0958 0.0695 0.1119 0.2023 0.1215 0.0913 0.1002 0.0740
5 0.1734 0.1311 0.2125 0.3531 0.2307 0.1788 0.1819 0.1410
10 0.3068 0.2500 0.4191 0.5852 0.4572 0.3849 0.3349 0.2744

� = �0:5 0 0.0486 0.0303 0.0513 0.0538 0.0544 0.0762 0.0488 0.0280
1 0.0728 0.0457 0.0809 0.0844 0.0844 0.1162 0.0736 0.0424
2 0.0985 0.0610 0.1118 0.1163 0.1162 0.1583 0.1009 0.0585
5 0.1749 0.1133 0.2076 0.2139 0.2187 0.2838 0.1812 0.1112
10 0.3060 0.2173 0.4147 0.4243 0.4431 0.5221 0.3365 0.2252

� = 0:5 0 0.0570 0.0310 0.2083 0.2439 0.2057 0.1994 0.0629 0.0345
1 0.0798 0.0449 0.2899 0.3351 0.2867 0.2766 0.0896 0.0501
2 0.1001 0.0566 0.3597 0.4114 0.3560 0.3433 0.1117 0.0632
5 0.1801 0.1062 0.5450 0.6066 0.5444 0.5308 0.2043 0.1221
10 0.3274 0.2182 0.7473 0.7915 0.7507 0.7397 0.3750 0.2553
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Table 4. Empirical size and power of ADF test with MA innovations and Mean
Recursive detrending

c k2 k2_f k3 k3_f l4 l4_f l12 l12_f
� = 0:5 0 0.0778 0.0543 0.0795 0.1606 0.0865 0.0600 0.0785 0.0558

1 0.0992 0.0711 0.1080 0.2154 0.1176 0.0835 0.1010 0.0736
2 0.1300 0.0939 0.1398 0.2741 0.1523 0.1082 0.1328 0.0976
5 0.2140 0.1575 0.2483 0.4309 0.2715 0.2020 0.2199 0.1638
10 0.3965 0.3135 0.5092 0.7323 0.5576 0.4487 0.4248 0.3376

� = �0:5 0 0.0773 0.0441 0.0812 0.0846 0.0834 0.1183 0.0746 0.0408
1 0.1071 0.0629 0.1080 0.1144 0.1131 0.1629 0.1097 0.0588
2 0.1290 0.0747 0.1387 0.1456 0.1404 0.1997 0.1284 0.0680
5 0.2165 0.1358 0.2370 0.2485 0.2464 0.3331 0.2218 0.1269
10 0.3890 0.2626 0.4840 0.4971 0.5089 0.6203 0.4118 0.2598

� = 0:5 0 0.0861 0.0425 0.3243 0.3796 0.3151 0.3043 0.0962 0.0483
1 0.1145 0.0608 0.4138 0.4781 0.4038 0.3894 0.1307 0.0667
2 0.1414 0.0746 0.4817 0.5507 0.4711 0.4557 0.1576 0.0834
5 0.2373 0.1327 0.6907 0.7560 0.6828 0.6651 0.2674 0.1491
10 0.4522 0.2824 0.9291 0.9560 0.9257 0.9170 0.5112 0.3265

Table 5. Empirical size and power of ADF test with MA innovations and WSLS
detrending

c k2 k2_f k3 k3_f l4 l4_f l12 l12_f
� = 0:5 0 0.0341 0.0208 0.0463 0.1049 0.0550 0.0353 0.0350 0.0232

1 0.0466 0.0304 0.0626 0.1476 0.0758 0.0497 0.0503 0.0321
2 0.0642 0.0428 0.0872 0.1928 0.1010 0.0675 0.0687 0.0465
5 0.1182 0.0796 0.1762 0.3495 0.2044 0.1414 0.1327 0.0915
10 0.2681 0.1942 0.4271 0.6757 0.4841 0.3716 0.3042 0.2231

� = �0:5 0 0.0317 0.0147 0.0429 0.0453 0.0472 0.0711 0.0331 0.0151
1 0.0487 0.0237 0.0622 0.0666 0.0690 0.1042 0.0530 0.0249
2 0.0623 0.0315 0.0818 0.0867 0.0886 0.1354 0.0648 0.0307
5 0.1150 0.0622 0.1622 0.1712 0.1760 0.2524 0.1286 0.0608
10 0.2562 0.1525 0.3968 0.4111 0.4339 0.5492 0.2910 0.1584

� = 0:5 0 0.0409 0.0172 0.2572 0.3080 0.2525 0.2407 0.0497 0.0212
1 0.0588 0.0264 0.3414 0.4084 0.3358 0.3210 0.0713 0.0334
2 0.0731 0.0336 0.4124 0.4851 0.4059 0.3889 0.0894 0.0402
5 0.1429 0.0678 0.6434 0.7197 0.6404 0.6216 0.1762 0.0856
10 0.3298 0.1793 0.9229 0.9540 0.9247 0.9158 0.4057 0.2263
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Table 6. Empirical size and power of V RT and PP with MA innovations and OLS
detrending

c V RT V RT_f PPB PPB_f PPQS PPQS_f
� = 0:5 0 0.0671 0.0650 0.0983 0.0781 0.1415 0.1129

1 0.0885 0.0845 0.1131 0.0879 0.1724 0.1345
2 0.1064 0.1028 0.1305 0.1025 0.2051 0.1591
5 0.1851 0.1768 0.2142 0.1754 0.3609 0.2838
10 0.3391 0.3270 0.4256 0.3942 0.7010 0.6000

� = �0:5 0 0.0524 0.0522 0.0395 0.0373 0.0438 0.0439
1 0.0673 0.0670 0.0396 0.0378 0.0463 0.0467
2 0.0852 0.0849 0.0426 0.0397 0.0514 0.0514
5 0.1510 0.1505 0.0794 0.0734 0.0955 0.0962
10 0.2766 0.2748 0.2086 0.1942 0.2489 0.2511

� = 0:5 0 0.0979 0.0976 0.5687 0.5586 0.5802 0.5680
1 0.1273 0.1266 0.6841 0.6718 0.6959 0.6827
2 0.1555 0.1544 0.7638 0.7537 0.7742 0.7627
5 0.2590 0.2579 0.9311 0.9245 0.9371 0.9303
10 0.4662 0.4641 0.9980 0.9975 0.9984 0.9979

Table 7. Empirical size and power of MSB, MZ� and MZt with MA innovations and
OLS detrending

Panel A: MSB statistic
c B B_f QS QS_f

� = 0:5 0 0.4740 0.3528 0.3176 0.2392
1 0.5964 0.4600 0.4177 0.3226
2 0.6893 0.5418 0.4980 0.3944
5 0.8945 0.7838 0.7462 0.6349
10 0.9951 0.9775 0.9694 0.9254

� = �0:5 0 0.0326 0.0303 0.0368 0.0375
1 0.0474 0.0442 0.0558 0.0560
2 0.0615 0.0575 0.0692 0.0702
5 0.1379 0.1289 0.1543 0.1554
10 0.3590 0.3397 0.3970 0.3987

� = 0:5 0 0.6534 0.6430 0.6535 0.6417
1 0.7823 0.7712 0.7819 0.7691
2 0.8570 0.8479 0.8553 0.8462
5 0.9729 0.9696 0.9728 0.9688
10 0.9997 0.9996 0.9997 0.9996
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Panel B: MZ� statistic
c B B_f QS QS_f

� = 0:5 0 0.3959 0.2116 0.1748 0.0830
1 0.5103 0.2890 0.2401 0.1096
2 0.5912 0.3507 0.2928 0.1402
5 0.8206 0.5754 0.5075 0.2754
10 0.9816 0.8757 0.8408 0.6044

� = �0:5 0 0.2400 0.2269 0.2614 0.2637
1 0.3131 0.2973 0.3420 0.3444
2 0.3710 0.3503 0.4051 0.4079
5 0.5709 0.5477 0.6142 0.6166
10 0.8592 0.8377 0.8934 0.8945

� = 0:5 0 0.7344 0.7151 0.7337 0.7126
1 0.8453 0.8272 0.8428 0.8227
2 0.9060 0.8919 0.9040 0.8881
5 0.9846 0.9799 0.9838 0.9789
10 0.9997 0.9996 0.9998 0.9996

Panel C: MZt statistic
c B B_f QS QS_f

� = 0:5 0 0.3252 0.1246 0.0899 0.0196
1 0.4235 0.1667 0.1203 0.0298
2 0.4979 0.2048 0.1547 0.0367
5 0.7247 0.3768 0.2979 0.0850
10 0.9494 0.6866 0.6233 0.2518

� = �0:5 0 0.5477 0.5308 0.5747 0.5775
1 0.6087 0.5891 0.6397 0.6425
2 0.6522 0.6326 0.6870 0.6883
5 0.8130 0.7920 0.8456 0.8469
10 0.9544 0.9415 0.9699 0.9701

� = 0:5 0 0.7575 0.7306 0.7545 0.7248
1 0.8509 0.8263 0.8460 0.8185
2 0.9042 0.8846 0.9027 0.8799
5 0.9806 0.9732 0.9795 0.9703
10 0.9994 0.9989 0.9992 0.9985
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Table 8. Empirical size and power of MSB; MZ� and MZt with MA innovations and
GLS detrending

Panel A: MSB statistic
c B B_f QS QS_f

� = 0:5 0 0.3091 0.2307 0.2069 0.1614
1 0.4169 0.3192 0.2854 0.2258
2 0.5159 0.4033 0.3686 0.2955
5 0.7295 0.6133 0.5751 0.4866
10 0.8844 0.8181 0.7939 0.7302

� = �0:5 0 0.0365 0.0346 0.0408 0.0408
1 0.0559 0.0536 0.0616 0.0617
2 0.0741 0.0706 0.0809 0.0819
5 0.1535 0.1478 0.1690 0.1699
10 0.3588 0.3468 0.3868 0.3898

� = 0:5 0 0.4881 0.4783 0.4881 0.4791
1 0.6345 0.6243 0.6338 0.6234
2 0.7191 0.7089 0.7192 0.7086
5 0.8706 0.8644 0.8704 0.8634
10 0.9565 0.9533 0.9564 0.9533
Panel B: MZ� statistic
c B B_f QS QS_f

� = 0:5 0 0.2517 0.1437 0.1183 0.0608
1 0.3490 0.2019 0.1661 0.0885
2 0.4407 0.2659 0.2207 0.1232
5 0.6500 0.4495 0.3896 0.2367
10 0.8392 0.6908 0.6419 0.4756

� = �0:5 0 0.1658 0.1579 0.1794 0.1818
1 0.2437 0.2341 0.2621 0.2644
2 0.3216 0.3088 0.3458 0.3478
5 0.5139 0.4961 0.5482 0.5527
10 0.7471 0.7307 0.7805 0.7825

� = 0:5 0 0.5687 0.5525 0.5678 0.5504
1 0.7265 0.7108 0.7253 0.7077
2 0.8104 0.7955 0.8096 0.7928
5 0.9291 0.9206 0.9280 0.9188
10 0.9813 0.9777 0.9809 0.9769
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Panel C: MZt statistic
c B B_f QS QS_f

� = 0:5 0 0.2155 0.0959 0.0723 0.0238
1 0.3011 0.1381 0.1037 0.0354
2 0.3833 0.1831 0.1409 0.0497
5 0.5855 0.3311 0.2659 0.1062
10 0.7979 0.5714 0.5082 0.2689

� = �0:5 0 0.3024 0.2924 0.3234 0.3243
1 0.4348 0.4217 0.4611 0.4621
2 0.5435 0.5259 0.5737 0.5771
5 0.7333 0.7166 0.7659 0.7682
10 0.8841 0.8718 0.9083 0.9095

� = 0:5 0 0.6097 0.5912 0.6101 0.5886
1 0.7734 0.7521 0.7745 0.7496
2 0.8511 0.8332 0.8516 0.8312
5 0.9499 0.9412 0.9506 0.9396
10 0.9884 0.9844 0.9880 0.9842
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Figure 1: Seasonal adjustment and the asymptotic power function of the ADF test: OLS
detrending

Notes: The DGP is (9) for T = 400. The DF test applied to the unadjusted data is denoted DF;
otherwise results are for the ADF tests applied to quarterly data adjusted using the symmetric
X-11 �lter with k2, k3, l4 and l12 denoting automatic lag selection procedures described in
Section 4. The nominal test size is 0.05.
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Figure 2: Seasonal adjustment and the asymptotic power function of the ADF test: GLS
detrending

Notes: As for Figure 1.
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Figure 3: Seasonal adjustment and the asymptotic power function of the ADF test:
Mean Recursive detrending
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Figure 4: Seasonal adjustment and the asymptotic power function of the ADF test:
WSLS detrending
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Figure 5: Seasonal adjustment and the asymptotic power function of the PP and VRT
tests: OLS detrending
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Figure 6: Seasonal adjustment and the asymptotic power function of the MSB test: OLS
detrending
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Figure 7: Seasonal adjustment and the asymptotic power function of the MSB test: GLS
detrending
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Figure 8: Seasonal adjustment and the asymptotic power function of the MZa and MZt
tests: OLS detrending
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Figure 9: Seasonal adjustment and the asymptotic power function of the MZa and MZt
tests: GLS detrending
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