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Abstract

Certain �spurious long memory�processes mimic the behavior of fractional integration
in that the variance of their sample mean behaves like that of a fractionally integrated
process of some order D. We show, however, experimentally that a fractional integration
test may discriminate between spurious long memory of order D and integration of order
D. Further, we suggest a test for the null hypothesis that the order of integration does
not change from one subperiod to another. It simply builds on the di¤erence of the
estimates from the respective subsamples that are split exogenously. Upon appropriate
normalization a limiting standard normal distribution arises. With these methods we
tackle the question whether international and sectoral bank equity index returns are
fractionally integrated and whether the memory parameters have changed. The daily
data are split into three regimes: one pre-crises subsample, a second including the collapse
of the Lehman Brothers bank, and a third covering the Euro area sovereign debt crisis.
In particular, we provide evidence that both turmoils had di¤ering international e¤ects.
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1 Introduction

Ding, Granger and Engle (1993) documented the existence of long-range dependence in several

transformations of the absolute value of daily returns, noting that these proxies of volatility

exhibit autocorrelation functions characterized by a slow decay to zero. Granger and Ding

(1996) found this form of persistence to be conformable with a fractionally integrated process

(also known as long-memory process) with characteristic coe¢ cient of around bd = 0:47. This
evidence has been extended to realized volatility measures, for which the estimates of the

fractionally integrated parameter tend to lie around this value; see, for instance, Andersen,

Bollerslev, Diebold and Labys (2003) and Hassler, Rodrigues and Rubia (2012). Nevertheless,

the evidence of long-memory in volatility and other time series may arise spuriously from a

number of considerations. Lobato and Savin (1998) addressed this issue analyzing whether

the rejection of the hypothesis of short memory dynamics in squared and absolute returns

may be attributed to �true long memory�or to other causes termed �spurious long memory�

including, for instance, parameter instability. This topic has attracted considerable attention

in the econometric literature; see, among others, Diebold and Inoue (2001), Granger and

Hyung (2004), Smith (2005), Ohanissian, Russell and Tsay (2008), Perron and Qu (2010)

and Qu (2011).1 The recent literature on long-memory has focused on the stability of the

long-memory coe¢ cient, reporting evidence suggesting that the degree of persistence may

vary over time; see Kumar and Okimoto (2007), Bos, Koopman and Ooms (2012), Martins

and Rodrigues (2012) and Hassler and Meller (2014).

In this paper, we discuss several diagnostic tools to address the suitability of a fractionally

integrated model with constant order of integration in the time-series context. We then im-

plement these procedures on returns of representative stock portfolios of the banking industry

in di¤erent regions and economic areas aiming to analyze whether the characteristic degree

of persistence in the volatility of these series has remained stable or whether it has changed

as a consequence of the global �nancial crisis. This issue, which is particularly relevant for

both analysts and forecasters, has not been addressed in the extant literature. After the

collapse of Lehman Brothers in 2008 and the subsequent shocks that featured the Great Re-

cession and the European sovereign debt crisis, �nancial institutions worldwide have faced an

extremely uncertain operating environment. Repeated rating downgrades, sharp regulatory

changes, and widening funding-spreads have led to unprecedented levels of market volatility

in the sector, particularly, in peripheral Europe. While it is perfectly clear that the mean of

the volatility process shifted as a consequence of the �nancial crisis, it is possible that other

characteristics of the data generating process, such as the degree of persistence, may have

changed as well. Under extreme market circumstances, shocks on the variability of returns

may become more persistent because investors become more risk-averse. As a result, the

long-memory parameter that characterizes the long-term dynamics of the volatility process

1There is an older, related literature on the potential confusion of slowly varying trends and long memory,

see e.g. Bhattacharya, Gupta and Waymire (1983), Künsch (1986), or Giraitis, Kokoszka and Leipus (2001).
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of returns may take larger values and exhibit non-stationary features. The severity of the

consequences on the banking industry provides us with the perfect ground to detect potential

changes in the degree of persistence, bringing new evidence to the �eld.

To this end, we proceed as follows. We �rst analyze the resilience of the regression-

based test proposed by Demetrescu, Kuzin and Hassler (2008) [DKH henceforth] to detect

true long memory against a backdrop of spurious long memory. This test can exhibit more

power than alternative procedures, while retaining a considerable degree of tractability and

methodological simplicity. More speci�cally, we analyze the frequency of rejection of this

test when the data generation process is driven by a variety of spurious long memory models

that have been discussed in previous literature as well as a novel speci�cation based on an

unobserved components model proposed in this paper. Monte Carlo analysis shows that

the DKH test has considerable power to reject spurious long memory in realistic settings.

Additionally, we suggest a simple test for the null hypothesis that the memory estimates of two

non-overlapping subsamples are equal, building on an approach discussed by Shimotsu (2006).

The test statistic follows asymptotically a standard normal distribution. Finally, we use this

testing procedure and the DKH test to characterize the persistence of the log transform of

daily absolute returns of di¤erent bank equity indices over di¤erent periods. More speci�cally,

we consider daily returns representative of di¤erent countries, regions and international areas

(e.g., the US, Asia and Southern Europe) and economic zones (e.g., �Emerging Markets�

or G7). Since our main interest lies in characterizing the e¤ects on persistence of di¤erent

episodes related to the recent �nancial crisis, we split the total sample into three disjoint

periods: the �rst one being a period where banks have operated without major global events;

the second one containing the global �nancial crisis following the collapse of the Lehman

Brothers bank in September 2008; and the third one including the Euro area sovereign debt

crisis starting in early 2010.

We provide con�dence intervals for the order of integration based on the DKH procedure

by inverting the range of values not rejected by the integration test. We also report point

estimates using semiparametric procedures and their corresponding con�dence intervals and

analyze the di¤erence over the subperiods. The overall evidence from this analysis suggests

the existence of true long memory dynamics driving the volatility of these series. The suitabil-

ity of a model with constant parameter over the total period is generally rejected, showing

that shocks in volatility tend to be more persistent during the turmoil period. Although

a common picture emerges, there are important di¤erences among the di¤erent countries,

regions and economic areas considered. The e¤ects of the crisis were more pronounced in

areas with direct exposure. This evidence is consistent with the hypothesis that long-range

persistence may be linked to economic fundamentals.

The rest of the paper is organized as follows. Section 2 introduces the standard notation

of true fractionally integrated series and becomes precise on the class of models featuring

spurious long memory of a certain degree denoted as D throughout the paper. Some promi-

nent examples are discussed. In Section 3 we report Monte Carlo evidence on how well the
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DKH procedure discriminates between spurious long memory of degree D and fractional in-

tegration of the same order. In Section 4, we brie�y introduce and discuss the test for the

null hypothesis that non-overlapping subsamples are integrated of the same order, while Sec-

tion 5 contains the results of our empirical analysis. The �nal section summarizes our main

�ndings.

2 Notation and de�nitions

We start our analysis by introducing notation, the formal de�nition of (true) long memory

analyzed in this paper, and the statistical implications of the class of fractionally integrated

models. We then discuss alternative speci�cations that give rise to spurious long memory

within a class of shift-in-mean models. All these speci�cations will be used in the Monte

Carlo section to address the resilience of the DKH test.

2.1 True vs. spurious long memory

By true long memory we understand fractional integration of positive order d. Generally,

let fytg; t = 1; :::; T; denote a stationary fractionally integrated process with parameter

�1=2 < d < 1=2, in short I (d). It is de�ned by

yt = �+ (1� L)�d xt ; (1� L)�d =
1X
j=0

�
�d
j

�
(�L)j (1)

where � <1 is the expected value of the process, L is the standard lag operator, Ljxt = xt�j ,

and fxtg is a covariance stationary process whose spectral density is bounded and bounded
away from zero at the origin. The distinctive feature of fractionally integrated models is

that the coe¢ cient d is allowed to take on non-integer values. When fxtg veri�es suitable
conditions, fytg admits the Wold decomposition yt = � +

P1
j=0  j (d) "t�j with impulse

response coe¢ cients f j (d)g dying out hyperbolically at rate jd�1; a necessary and su¢ cient
condition on fxtg for such a behaviour to hold has been given by Hassler and Kokoszka (2010,
Prop. 2.1). For d < 0:5, the sequence f j (d)gj�0 is square summable and, therefore, fytg
is a stationary process. Nevertheless, the sequence is not absolutely summable when d > 0,

which gives rise to an impulse response sequence characterized by long memory. The larger

the order of integration d, the slower  j(d) dies out, such that d measures the degree of

memory (persistence) in the process. The long-term dependence just de�ned is re�ected by

long memory in the autocorrelogram. The autocovariances (h) of fytg vanish at rate h2d�1

for a growing lag h, such that the correlation dies out more slowly the larger the values of

d are, 0 < d < 0:5, and this behaviour translates into a pole at the origin of the spectral

density f in the frequency domain, f(�) � G��2d, �! 0, where G is a �nite, strictly positive

constant; see Palma (2007, Theo. 3.1) or Hassler and Kokoszka (2010, Coro. 2.1). Those

characteristics of fractional integration have also been coined �true long memory�; see Lobato

and Savin (1998). Finally, fractional integration also characterizes how fast the variance of
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the sample mean converges. As shown by Samarov and Taqqu (1988) and Yajima (1989), it

follows as T !1 that

V ar

 
TX
t=1

yt

!
= O(T 2d+1) ; jdj < 0:5; (2)

while the nonstationary case is trivially covered by a corresponding result in di¤erences:

V ar

 
TX
t=2

�yt

!
= O(T 2d�1); 0:5 < d < 1:5: (3)

The econometric literature has discussed a number of alternative models to (1) in which

the variance of the sample mean displays the same characteristic behavior as a fractionally

integrated model, but without necessarily imposing stationarity and, therefore, without hav-

ing well-de�ned autocorrelations or spectral densities. Consequently, these processes are said

to exhibit spurious long memory, and standard estimation procedures may be biased to �nd

signi�cant values of long-memory estimates. Most of these models are based on mean shifts.2

We �rst discuss a general data generating process (DGP) that accommodates the pos-

sibility of shifts in mean. Particular cases nested in this category will be presented in the

following subsection. To this end, consider a time-varying mean function f�tg superimposed
by some white noise process f"tg, such that the observable process fztg is generated as

zt = �t + "t ; "t � iid(0; �2"): (4)

For a suitable choice of the DGP of f�tg, it follows that, paralleling (2) and (3),

V ar

 
TX
t=1

zt

!
= O(T 2D+1) or V ar

 
TX
t=2

�zt

!
= O(T 2D�1) (5)

where the value of D depends on speci�c assumptions that control f�tg. Because fztg mimics
some of the characteristics exhibited by a fractionally integrated process of order D and,

hence, could be spuriously identi�ed as an I (D) process, fztg is said to display spurious long
memory.

Before introducing more speci�c examples, it is interesting to relate (5) to the concept of

summability of order D recently introduced by Berenguer-Rico and Gonzalo (2014), which is
veri�ed by a series fztg if

L(T )
TD+1=2

TX
t=1

(zt �mt) = Op(1) (6)

for some deterministic sequence fmtg, a slowly varying function L(T ), and the minimum
number D, such that the left-hand side is bounded in probability. Note that, if E(zt) = 0

with V ar
�PT

t=1 zt

�
= O(T 2D+1) and D > �0:5, then zt is summable of order D by the

2The �rst paper we are aware of that addressed the potential confusion of long memory and mean shifts is

by Kleme� (1974, p. 675): �It is shown that the Hurst phenomenon is not necessarily an indicator of in�nite

memory of a process. It can also be caused by nonstationarity in the mean.�
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Chebyshev inequality. Moreover, summability of order D is closely related to the so-called

Hurst coe¢ cient H with H = D + 0:5, which is de�ned if the normalized range

1

TH

8<: max
1�t�T

tX
j=1

(zj � z)� min
1�t�T

tX
j=1

(zj � z)

9=; (7)

converges as T !1; see, for instance, Bhattacharya et al. (1983).

2.2 Occasional mean shifts

We now turn to four special cases of (4) allowing for occasional breaks in the mean.

A) Random level shift model

Following Chen and Tiao (1990), Granger and Hyung (2004) consider a model with ran-

dom level shifts characterized by

�t = �t�1 + qt �t = �0 +

tX
i=1

qi �i ; (8)

where fqtg is an iid sequence following a binomial distribution with probability p 2 (0; 1) ,
namely,

Pr(qt = x) = px(1� p)1�x ; x 2 f0; 1g :

For the independent iid sequences fqtg, f�tg and f"tg satisfying zero starting value conditions,
Granger and Hyung (2004) show that for a �xed probability p > 0

V ar(zT ) = V ar

 
TX
t=2

�zt

!
= O(T ) ; (9)

such that D = 1 in terms of (5) and, that therefore, the process is likely to be confused with
an integrated process of order 1.

B) Markov switching mean function

Diebold and Inoue (2001) propose a Markov-switching model to generate infrequent mean

shifts. They assumed two latent states st 2 f0; 1g independent of f"tg with constant transition
matrix characterized by the probabilities pij := Pr(st = j j st�1 = i) which determine the

mean process, i:e:;

�t = �0 (1� st) + �1 st ; (10)

with constant mean values �0 and �1: Given a parameter 0 < � < 1; Diebold and Inoue

(2001) assume local-to-zero transition probabilities characterized by

p11;T (�) = 1� c1 T�� ; p00;T (�) = 1� c0 T�� (11)
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with 0 < c0 ; c1 < 1: Then, it holds as T !1 (see Diebold and Inoue, 2001, Prop. 3) that

V ar

 
TX
t=1

zt

!
= O(T �+1) ; (12)

and, therefore, the process fztg behaves like an I(�=2) process in terms of the variance of the
cumulation. Note that the larger �, the closer the probabilities pii;T (�) ; i = 0; 1; are to one

and, hence, shifts occur more rarely resulting in a more persistent appearance of fztg.

C) Stopbreak process

Diebold and Inoue (2001) also introduced a modi�cation of the so-called stochastic per-

manent break or Stopbreak model, proposed by Engle and Smith (1999). The original model,

characterized by

�t = �t�1 + qt�1 () �t�1 = �0 +
tX
i=1

qt�i () �t�i ; (13)

with

qt�1 () =
�2t�1

 + �2t�1
(14)

is non-decreasing in j�t�1j for positive values of the parameter . Diebold and Inoue (2001)
modi�ed this setting replacing  by T (�) ; where

T (�) = O(T �) ; � > 0 ; (15)

such that T (�)!1 as T diverges. Under some restrictions (Diebold and Inoue, 2001, Prop.

2) show that

V ar

 
TX
t=2

�zt

!
= O(T 1�2�) (16)

such that the process f�ztg from (4) with (13) behaves like an I(��) process. Therefore, fztg
may be confused with an I(1��) process. The standard Stopbreak model (� = 0 ; T (�) = )

corresponds to zt � I(1). Generally, the larger �, the smaller qt�1, the more stable �t and

the less persistent fztg is.

D) Unobserved components model

Finally, we consider a classical unobserved components [UC henceforth] model. The

simplest speci�cation in this class consists of a random walk component, �t =
Pt
j=1 �j ;

superimposed by additive noise, also known as local level models; see Harvey (1989). However,

as T increases, the nonstationary random walk dominates the noise component and, hence,

the UC model behaves asymptotically as an I(1) process; see also Hassler and Kuzin (2009)

and Stock and Watson (2007). We therefore introduce a suitable variant where the random

walk component is dampened as its variance increases. In particular, we introduce a time-

varying mean as a function of the parameters � > 0 and 0 � � � 1 such that

�t =
�

t1��

tX
j=1

�j ; (17)
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where f�tg is iid(0; 1) independent of f"tg. Note that � controls the weight that is attached
to the random walk component in this speci�cation. For � = 1, the standard random walk

plus noise model (UC with constant variance) is embedded in (17). It is straightforward to

establish that

V ar

 
TX
t=2

�zt

!
= O(T 2��1) : (18)

According to the terminology in Berenguer-Rico and Gonzalo (2014), f�ztg is hence sum-
mable of order � � 1, and the process fztg from (4) with (17) mimics I(�) behaviour: The

larger �, the bigger is the random walk component and the more persistent fztg is.

3 Monte Carlo analysis

Much of the existing literature dealing with the e¤ects of spurious long memory has focused

on the probability of rejecting the null hypothesis of either d = 0 or d = 1 when the data is

driven by spurious long memory according to (4). These papers typically studied the behavior

of the so-called log-periodogram regression; see Diebold and Inoue (2001) for comprehensive

Monte Carlo evidence, and Granger and Hyung (2004), Smith (2005) and Perron and Qu

(2010) for asymptotic results. In this paper, we adopt a di¤erent perspective and address

the probability of rejecting a model of fractional integration when the data are generated

according to a spurious long memory model. In particular, we test the null hypothesis that

the observable series is integrated of order D when the DGP is summable of order D satisfying
(5), given the di¤erent models introduced in the previous section. In that sense, the analysis

is con�ned to the least favorable case for a test aiming at the detection of true long memory.

Second, we do not build on the log-periodogram regression to perform the tests, but rather

apply a more powerful test rooted in the Lagrange Multiplier principle, namely, the regression-

based fractional integration test advocated by Breitung and Hassler (2002) and Demetrescu,

Kuzin and Hassler (2008). This analysis builds explicitly on the de�nition of long memory:

When fractionally di¤erencing the data one obtains a series that is integrated of order zero.

This null hypothesis is tested in a regression framework of the data di¤erenced under the

null.

The main characteristics of the DKH test are brie�y described in the sequel. The pro-

cedure assumes that the data are generated from (1) given some (unknown) value d0 and a

fairly general class of innovations fxtg : The null hypothesis to be tested is that the order of
integration of fytg equals d0, i.e., H0 : d = d0: For simplicity, we assume � = 0: In this case,

one computes the di¤erences under H0:

xt;d0 = (1� L)
d0 yt ; (19)

and de�nes the process

x�t�1;d0 =
t�1X
j=1

j�1xt�j;d0 ; t = 2; :::; T ; (20)

8



to run the auxiliary lag-augmented regression

xt;d0 = �x�t�1;d0 +
kX
j=1

ajxt�j;d0 + vt; t = k + 1; : : : ; T ; (21)

where the lag length k can be selected deterministically3 as k =
�
4 (T=100)0:25

�
. Under the

null hypothesis and weak regularity conditions, the squared t-statistics on � = 0 from this

regression, namely t2�, follows a �
2 distribution with one degree of freedom, and H0 is re-

jected for large values of this statistic. Alternatively, Demetrescu, Kuzin and Hassler (2008)

recommended the use of White standard errors in order to robustify against conditional het-

eroskedasticity. Indeed, Kew and Harris (2009) showed that White standard errors guarantee

valid asymptotic inference even under unconditional heteroskedasticity of very general form.

We shall denote the resulting test statistic as et2� and compute both t2� and et2� in the Monte
Carlo analysis.

We simulate data fztg; t = 1; :::; T; T 2 f250; 500; 1000g ; according to the di¤erent
speci�cations in A) to D) embedded in the DGP (4). Recall that none of these speci�cations

is in general a fractionally integrated model, but they are summable of order D, with this
coe¢ cient taking values depending on the speci�c model considered. The precise parameter

con�guration that de�nes D in any case will be detailed below. We test the null hypothesis

H0 : d = D, computing xt;D = (1� L)D zt and x�t�1;D; and running the auxiliary regression
(21) to determine the test statistics t2� and et2�. We report the rejection frequency of the tests
at a 5% nominal level based on 2,000 Monte Carlo replications.

A) Random level shift model.

We begin with the simple random level shift model in (8). The main parameter of interest

is the probability, p; that controls the occurrence of a shift. For conciseness, we report the

frequency of rejections for the set of probabilities p ranging from 0.01 up to 0.20. The results

are reported in Table 1. For �xed T the power is decreasing with growing p, which is not

surprising, since p! 1 covers the random walk case. For �xed p the power is not monotonous

in T (unless p � 0:02 for our fairly small sample sizes), which is clear asymptotically: For

�xed p the result in (9) holds, such that the process behaves like I(1) with growing T . To

get a limiting behavior di¤erent from I(1), p has to vanish with the sample size such that

p T ! � for some 0 < � <1. In this case, limiting theory for autocorrelations is covered by
Granger and Hyung (2004, Prop. 1) and Perron and Qu (2010, Prop. 1).

3See also Demetrescu, Hassler, Kuzin (2011) for a more detailed exposition on the issue of lag length

selection.
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Table 1: Random level shifts from (8)

T=250 T=500 T=1000

p t2� et2� t2� et2� t2� et2�
0.20 11.60 12.85 16.60 17.55 8.70 8.65

0.10 34.05 35.70 55.85 56.60 32.60 33.25

0.09 38.70 40.85 61.50 62.65 38.90 39.35

0.08 44.75 46.60 69.40 70.10 46.80 47.40

0.07 52.60 54.10 76.20 76.35 56.05 56.55

0.06 60.25 61.30 82.00 82.10 67.45 67.60

0.05 69.90 70.40 88.90 89.20 78.60 78.80

0.04 77.65 77.75 93.90 93.85 89.10 89.00

0.03 85.95 85.75 97.60 97.55 95.70 95.60

0.02 93.45 93.50 99.30 99.20 99.60 99.50

0.01 98.40 98.30 99.95 99.95 100 100

Note: Percentage of rejections at the 5% level when testing for D = 1 according to (5).

As the shift probability increases, f�tg tends to behave like a random walk shifting every

period. In this context, the rejection frequencies tend to be relatively moderate. For p = 0:1,

these vary from around 32% to nearly 57%. On the other hand, with more infrequent shifts,

the rejection frequencies largely increase. For p = 0:01, they are all above 98%: These �gures

can be compared with those provided by Diebold and Inoue (2001, Table 2) for the log-

periodogram regression. In particular, given the sample lengths analyzed, their rejection

rates vary between 26% and 38% for p = 0:01, and between 21:1% and 25:8% for p = 0:1;

showing more conservative values. The di¤erences in the results may stem ultimately from

the di¤erences in the rates of convergence of the estimators involved, which allows the DKH

test to yield more e¢ cient results in this context.

B) Markov switching mean function

Next, we consider the Markov switching mean function in (10). The main parameter of

interest in this speci�cation is �; which controls the rate at which the transition probabilities

from one state to another shrink to zero. We conduct the Monte Carlo experiment focusing

on an increasing sequence of values for � in the interval [0; 1] ; namely, � = 0; 0:2; :::; 1; and

set �0 = 0 and c0 = c1 = 0:9, considering �1 2 f0:1; 1g. Table 2 reports the sample frequency
of rejections of the DKH tests given the di¤erent combinations of values.
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Table 2: Markov switching mean from (10)

T=250 T=500 T=1000

�1 � t2� et2� t2� et2� t2� et2�
0.1 0 5.10 5.60 6.85 7.45 12.95 12.95

0.2 6.95 8.25 11.75 12.30 10.20 10.55

0.4 19.80 21.15 37.70 38.00 50.15 50.75

0.6 43.25 45.35 78.05 78.85 91.10 91.50

0.8 71.00 72.45 97.65 97.65 99.85 99.90

1.0 92.10 92.75 99.95 99.95 100 100

1 0 100 100 100 100 100 100

0.2 89.55 90.55 99.85 99.90 100 100

0.4 25.00 26.90 52.35 52.90 77.80 78.40

0.6 17.55 18.50 41.00 42.05 76.85 76.90

0.8 16.00 16.80 17.35 17.75 35.40 39.45

1.0 42.40 42.45 51.85 52.15 52.40 52.20

Note: Percentage of rejections at the 5% level when testing for D= �=2 according to (5).

In the case of small level shifts (�1 = 0:1) the rejection rates grow with �, which is

intuitive: For � = 0 the probability to switch is 0:9, i.e. the mean changes almost every

period but only by very little such that the changes are hardly recognizable. Consequently,

fztg from (4) essentially behaves like the white noise process f"tg and the rejection rate for
� = 0 is close to the nominal level. On the contrary, for larger jumps in level (�1 = 1),

processes with small values of � lead particularly often to rejections.

C) Stopbreak model

Table 3 reports the results for the Stopbreak process from (13) with T (�) = T � and �

taking the same values as in B) above. Note that for � = 0, the resulting process is again

essentially a random walk plus noise and, consequently, the rejection frequencies are close to

the nominal ones. On the other hand, for values � > 0, we observe considerable rejection

rates that tend to grow with T .

Table 3: Stopbreak from (13)

T=250 T=500 T=1000

� t2� et2� t2� et2� t2� et2�
0 4.55 5.15 4.20 4.45 4.80 4.85

0.2 20.90 22.85 41.95 42.20 60.25 60.70

0.4 53.05 53.80 73.40 73.80 91.40 91.25

0.6 56.45 57.35 62.95 63.50 74.25 74.45

0.8 45.45 46.00 45.75 45.90 49.65 50.10

1.0 35.05 35.95 36.85 36.95 37.55 38.00

Note: Percentage of rejections at the 5% level when testing for D = 1 - � according to (5).
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D) Unobserved components model

Finally, Table 4 reports the frequencies of rejection for the local level from (17). We

consider values � 2 f1; 10g and the same sequence of values of � used in B) and C) above.
For � = 1, the process is a random walk plus noise, such that H0 is rejected in roughly 5% of

all cases. With a larger signal (� = 10) the rejection frequencies are sizeable for � < 1 and

growing with T , while with � = 1 the rates are more moderate.

Table 4: Local level from (17)

T=250 T=500 T=1000

� � t2� et2� t2� et2� t2� et2�
1 0 11.85 12.65 13.10 13.80 15.05 15.45

0.2 10.65 11.95 13.45 14.50 18.85 19.30

0.4 13.25 14.70 19.50 20.10 25.40 25.65

0.6 14.70 15.85 19.95 20.35 30.05 30.20

0.8 10.80 12.05 21.40 22.10 37.55 37.35

1.0 4.10 4.55 4.55 5.00 4.55 5.00

10 0 52.55 51.65 85.85 83.60 91.65 89.85

0.2 45.40 43.55 82.60 78.80 90.90 88.45

0.4 34.20 32.15 71.15 65.65 83.05 78.25

0.6 21.15 21.50 51.80 47.30 66.70 61.95

0.8 9.50 10.45 23.60 23.45 34.80 33.70

1.0 3.75 4.10 4.85 5.30 4.60 4.95

Note: Percentage of rejections at the 5% level when testing for D = � according to (5).

4 Testing against breaks in d

Several papers have addressed the detection of breaks in the order of fractional integration.

Gil-Alana (2008), Sibbertsen and Kruse (2009), Hassler and Scheithauer (2011), Yamaguchi

(2011) and Martins and Rodrigues (2012) allowed for just one unknown breakpoint, while

Hassler and Meller (2014) treated the number of breaks as well as their timing as unknown.

In this paper, we consider the situation where the sample is split exogenously into b non-

overlapping subsamples or blocks,

t 2 [Ti�1 + 1; Ti] ; Ti = b� iT c ; i = 1; : : : ; b ; (22)

where �0 = 0 and � b = 1, such that each block contains Ti�Ti�1 observations. Let di denote
the order of fractional integration over [Ti�1 + 1; Ti]. Beran and Terrin (1996) treated the

special case of b = 2 and test for equality of two parametric estimators, where they allowed the

breakpoint to be unknown. Similarly to us, Kumar and Okimoto (2007) �xed the breakpoint

exogenously, assuming b = 2, and compared the subsample estimates of a semi-parametric

estimator. However, they had no asymptotic theory to rely on.

12



Shimotsu (2006) studied the speci�c situation where all blocks are of equal sample size

T=b and constructed a Wald-type statistic when testing for the joint overall null hypothesis

d1 = � � � = db. In our context, we would like to have a higher degree of �exibility. First,

if the true breaks are not equi-spaced, then a correct timing is desirable to increase power.

Second, we wish to compare the blocks separately and test, for example, whether the order

of integration in the �rst and last one are equal. Consequently, the null hypotheses of our

interest are:

H(i;j)0 : di = dj ; i 6= j : (23)

For given break fractions � i one may compute local Whittle estimators or Exact LW [ELW]

estimators; see Robinson (1995) and Shimotsu and Phillips (2005), respectively, for de�nitions

and asymptotic properties. Since ELW is valid also in the region of nonstationarity, we will

employ this more re�ned estimator in our application. The estimators from each subsample

are called bdi, i = 1; : : : ; b. They are semi-parametric and require the choice of a so-called

bandwidth mi for each block where

1

mi
+

mi

Ti � Ti�1
! 0 (24)

as the sample size (in each block) increases. To test H(i;j)0 we suggest to simply compute the

appropriately normalized di¤erence of two subsample estimators. The limiting distribution

under the null hypothesis is given next.

Proposition. Let bdi and bdj ; i 6= j, stand for the (Exact) Local Whittle estimators of the

order of fractional integration d0 computed from two non-overlapping subsamples where the

bandwidths mi and mj satisfy (24) ; i; j = 1; : : : ; b: De�ne the test statistic

Sij = 2
p
mimjp
mi +mj

�bdi � bdj� :
Under H (i;j)

0 and (24) and under the assumptions in Shimotsu (2006, Lemma 1 and 3) it

follows that

Sij
D! N (0; 1); (25)

where D! denotes convergence in distribution.

Proof: It follows from the proofs of Lemma 1 and 3 in Shimotsu (2006) that
p
mi(bdi � d0)

and
p
mj(bdj � d0) are asymptotically independent and obey asymptotically pmi(bdi � d0) D!

N (0; 1=4). Hence, the proof is straightforward to complete.

The limiting distribution of Sij allows to test H(i;j)0 against two- or one-sided alternatives.
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5 Empirical results

The Great Recession of 2008 and the Euro area sovereign debt crisis, which started in early

2010, have originated great pressure on the banking sector. Over this period, banks faced an

extremely uncertain operating environment, which has lead to repeated downgrades in rat-

ings, the widening of funding spreads and the decline of equity prices, particularly in Europe

and speci�cally in the European Monetary Union (EMU) and Southern Europe (Figure 2);

see Chan-Lau, Liu and Schmittmann (2012).

[Insert Figures 1 and 2 about here]

[Insert Figures 3 and 4 about here]

In this section we characterize the persistence properties of the log of absolute bank equity

index returns. The variable used in the analysis is constructed from the observable series of

bank equity index returns rt; i:e:; zt = log(jbr�t j), t = 1; : : : ; T; where br�t = rt � b�0 � b�1rt�1 �
::: � b�prt�p; with p selected based on the Schwarz information criteria (BIC)4. Our sample
consists of daily data of market cap weighted indices and covers the period from January 01,

2003 to July 18, 2013. All data was obtained from Datastream.

We provide results for the complete sample (2752 observations), but we also split the

sample into three parts: Subsample 1 corresponds to the period from January 01, 2003 to

December 31, 2005 (783 observations); subsample 2 corresponds to the period from January

01, 2006 to December 31, 2008 (783 observations); and subsample 3 corresponds to the

period from January 01, 2009 to July 18, 2013 (1186 observations). The choice of these

three subsamples is motivated by the contrast that these allow us to establish. Subsample 1

corresponds to a period in which banks have operated without major global events a¤ecting

their activity; subsample 2 comprises the beginning of the current economic and �nancial

crises and the collapse of the Lehman Brothers investment bank; and �nally, subsample 3

includes the Euro area sovereign debt crisis, which started in early 2010 and has led to

increased pressure in �nancial markets.

Considering subsamples 2 and 3 (as also suggested by Chan-Lau, Liu and Schmittmann,

2012), is of importance since while the 2008 Great Recession (subsample 2) a¤ected the

banking system worldwide, partly owing to the run on repurchase operations (Gorton and

Metrick, 2012), in subsample 3 (the European sovereign debt crisis) a decoupling of the US

economy (and other countries) from the Euro area has been observed, resulting in a globally

heterogeneous recovery of the banking system.

From Figure 1 it is hard to make a case that there was a banking crisis unfolding before

the start of the �nancial crises in the second half of 2007. We observe that although the

4We have also analysed the persistence of the log absolute return based on br�t computed from an AR(1)

model (as is frequently considered in the literature) and the results obtained are similar to the ones reported

below.
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crises had worldwide impact, the magnitude of its e¤ects seems to have been more severe

in North America (US in speci�c) and in Europe (particularly in the EMU and Southern

Europe). Interestingly, Figure 1 (and corresponding to our subsample 3, i.e., 2009 - 2013)

also illustrates that Asia managed to return to equity price levels similar to those before the

crisis and that in Latin America these grew even higher than before the crisis. Europe, on

the other hand, seems to have stabilized at a lower level than before the crisis, but North

America, which was severely a¤ected in subsample 2, displays in this last period a growing

trend. The contrast between the dynamics of the bank equity price index in Europe and the

US, is a consequence of the weakening of the economic conditions in the Euro area and the

contrasting positive signs of recovery in the US (as well as in major emerging countries); see

for instance La Porta et al. (2002) and Cole, Moshirian and Wu (2008) for evidence on the

relationship between bank stock returns and economic growth.

The extremely poor performance of the banking sector between 2006 and 2009 (subsample

2), is a consequence of the real-estate bubble in the US, the failure of the Lehman Brothers,

and the deterioration of expectations about future economic activity that accompanied the

collapse. As pointed out by Kho and Stulz (2000), banks�pro�ts increase with the level of

economic activity, so that banks�stocks su¤er when economic growth lowers. The greater

vulnerability of European banks may result from the fact that the banking system in this area

is quite large. According to Shambaugh (2012), the total assets of the banking system in the

European Union were equivalent to over 300 percent of euro-area GDP in 2007, whereas in

the US these corresponded to less than 100 percent. Furthermore, the holding by many banks

of marketable securities with increased exposure during the crisis, aggravated the situation,

as the value of these marketable securities fell with the stock market. This was particularly

dramatic in banks holding European government bonds, which had been regarded as risk-

free assets before the crisis, but which during the crisis experienced large declines in value

as a consequence of increased sovereign default risk (see Shambaugh, 2012, pp. 187-189).

Note that in terms of European countries, Belgium, Greece, Ireland, Italy, Portugal and

Spain observed the most severe increase in their CDS spreads over this period. However,

even banks without substantial exposures to peripheral European government securities were

a¤ected, particularly those that were major counterparties in derivatives markets referencing

these securities, and those who participated in large interest rate swaps with sovereigns,

and/or had claims on banks highly exposed to peripheral sovereigns. These developments

lead to pronounced equity price declines for European banks, which are far more exposed to

European government securities, and more exposed to the risk of a potential default. Indeed,

banks domiciled in peripheral European countries have performed the worst since 2007 (Chan-

Lau, Liu and Schmittmann, 2012; Shambaugh, 2012 ). From Figure 3, we observe that from

2007 onwards particularly in Europe, EMU and Southern Europe there has been a marked

increase in volatility.

Furthermore, as the crisis unfolded the situation aggravated particularly for European

banks, which were confronted with US dollar funding shortages, and were forced to retreat
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from global operations such as trade �nance in Asia and municipal �nance in the US (Chan-

Lau, Liu and Schmittmann, 2012). This led to a dramatic liquidity shortage, which originated

an intervention by the European Central Bank (ECB), providing European banks with long-

term (up to three years) �nancing in two allotments, one conducted in December 2011 and the

other in February 2012 (Cour-Thimann and Winkler, 2013; and Shambaugh, 2012, pp.189-

190). It is also important to note that banks� equity return performance was also being

conditioned by stringent bank regulations and by the requirement of improved capital ratios,

particularly by European Banks, to withstand potential sovereign debt losses. These regu-

lations and capital requirements may have contributed to speed up the deleveraging process

that started in 2008 and to further depress earnings in the banking sector (IMF, 2012).

To have a better understanding of the behaviour of bank equity index returns worldwide,

in Table 5 we provide some descriptive statistics for several reference regions. We observe from

this table that for the complete period under analysis the highest annual mean returns (r) are

obtained for Latin America (r = 18:10%) and the Emerging Markets (r = 14:55%), whereas

the lowest were registered in Southern Europe (r = �5:00%) and the EMU (r = �4:19%).
It can further be observed from the subsample analysis that all regions moved from a period

of (high) positive returns (subsample 1), to a period in which all regions recorded negative

returns (subsample 2). In the third period (subsample 3) a worldwide recovery is observed,

with all regions, except for the EMU (r = �8:61%) and Southern Europe (r = �16:66%),
registering positive annual average returns. Latin America (r = 13:79%) and Emerging

Markets (r = 12:90%) are still the leading regions in terms of annual average return, with

North America (r = 8:72%) and Asia (r = 8:16%) closely behind.

In terms of volatility we also observe from this table that when the complete sample is

considered the EMU (b� = 34:06), North America (b� = 33:74); Southern Europe (b� = 33:41)
and Europe (b� = 30:54) display the highest volatility, and that Asia observes the lowest

(b� = 21:48). Contrasting the results for the three subsamples considered, we observe a global
increase in volatility in the 2006 - 2009 period, with North America presenting a sizeable

higher value than any other region (b� = 41:34): However, between 2009 and 2013 there is

a worldwide decrease in volatility except in Europe where a marked increase is observed

(particularly in the EMU (b� = 42:68) and Southern Europe (b� = 42:92)).
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5.1 Order of fractional integration

Tables 6 - 8 present the estimates of d computed using the Exact Local Whittle (ELW)

estimator (bdELW ) as well as their 95% con�dence intervals (which we denote by CI95%ELW )

for the 11 reference regions and sectors, and 36 countries, respectively, under analysis. The

bandwidth used in the ELW estimator is m = T 0:65 for the full sample and similarly mi =

(Ti�Ti�1)0:65 for the subsamples. We also compute LM tests based con�dence intervals, which

we denote by CI95%LM : These con�dence intervals are computed via a grid search, based on

which we determine the range of values d0 not rejected by the fractional integration test at the

5% signi�cance level. Following Hassler, Rodrigues, and Rubia (2009, Remark 2.7) we thus

obtain numerically 95% con�dence intervals5. In situations of Section 3 where the rejection

probabilities are close to one, such con�dence intervals would be empty for processes with

spurious long memory. For all series considered, however, the con�dence intervals constructed

from non-rejection are non-empty, so that we have some con�dence that the data is generated

by true fractional integration.

From Table 6 we observe that, for the 11 regional and sectorial log of absolute bank equity

index returns considered, the minimum and maximum estimates of di; i = 1; :::; 11; obtained

were: i) for the complete sample, 0:30 � bdFullELW � 0:42; ii) for subsample 1, 0:15 � bdSub1ELW �
0:27; iii) for subsample 2, 0:32 � bdSub2ELW � 0:44; and iv) for subsample 3, 0:14 � bdSub3ELW �
0:39: These results seem to suggest that although overall all log of absolute bank equity

index returns are stationary there is heterogeneity across indices and across subsamples,

which is corroborated by the computed con�dence intervals (Table 6). From the analysis

of the con�dence intervals we observe that CI95%LM are shifted to the right, comparatively to

CI95%ELW ; but both provide qualitatively the same conclusions with regards the dynamics of

the persistence over the three subsamples considered. In general, we observe a shift of both

intervals from subsample 1 to subsample 2, suggesting an increase in persistence, and a shift

again from subsample 2 to subsample 3; suggesting a reduction in persistence.

Regarding the 36 country speci�c log of absolute bank equity index returns, we observe

from Tables 7 and 8 that the degree of heterogeneity seems to be larger then in the regional

case, in particular i) for the complete sample, 0:12 � bdFullELW � 0:45; ii) for subsample 1,

0:00 � bdSub1ELW � 0:39; iii) for subsample 2, 0:17 � bdSub2ELW � 0:48; and iv) for subsample 3,

0:08 � bdSub3ELW � 0:44:
Interestingly, when the full sample is considered the only country speci�c log of absolute

bank equity index returns with a bdFullELW � 0:2 (i.e. with the lowest order of integration)

correspond to Argentina. However, if subsample 1 is considered we observe that 19 out of

the 36 indices have an estimated bdSub1ELW � 0:2 and only Spain, Germany, Belgium and the

Netherlands present a bdSub1ELW � 0:3. In subsample 2 (period of the Lehman Brothers collapse)
5For Emergin Markets (Subsample 1), Argentina (Subsamples 2 and 3), Hungary (Subsample 1), Korea

(Subsample 1), Norway (Subsample 1) and Spain (Subsample 3), in order to obtain left bounded intervals,

extreme observations had to be accounted for. In particular, observations such that zt � �4 were �ltered out.
Note that these corresponded to a small number of observations.
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the number of log of absolute bank equity index returns series with bdSub2ELW � 0:2 reduces

from 19 to 3. The smallest orders of integration are observed for Hungary, Thailand and

Indonesia. However, in contrast the number of countries with log of absolute bank equity

index returns with a bdSub2ELW � 0:3 increases considerably. In particular, in comparison to

subsample 1, the number of countries with a bdSub2ELW � 0:3 increases from 4 to 22, but in

general an overall increase in the values of the estimated order of integration is observed

in this subsample for all countries, highlighting the global impact that the �nancial crises

and the Lehman Brothers collapse had on Banks worldwide. Interestingly, the countries

with the largest order of integration in this period are the US, Belgium and Slovenia, all

with a bdSub2ELW � 0:45. Finally, in subsample 3 (period of the European Sovereign debt) the

number of log of absolute bank equity index returns series with a bdSub3ELW � 0:2 increases (in
comparison to subsample 2) to 14, of which the countries with lowest orders of integration

are the Netherlands (bdSub3ELW = 0:13), Argentina (bdSub3ELW = 0:11), and Japan (bdSub3ELW = 0:08).

However, in this group (with bdSub3ELW � 0:2) are also European countries, such as Denmark,

Greece, the Netherlands, Portugal, Spain and Italy. Furthermore, the number of log of

absolute bank equity index returns series with bdSub3ELW � 0:3 in this period reduces to 8 (recall
that in Subsample 2, bdSub3ELW � 0:3 was observed for 22 countries).
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5.2 Testing for breaks in persistence

In this section we investigate whether persistence has changed between the three periods

under analysis. Hence, based on the three subsamples considered we expect that the order

of integration increases from subsample 1 to subsample 2 (i.e., d1 < d2) and that it decreases

from subsample 2 to subample 3 (i.e. d3 < d2) and we therefore exploit this information

using one-sided tests for breaks. However, we do not have any a priori expectations as to

the direction of change from subsample 1 to subsample 3, and therefore apply two-sided tests

in this case. Tables 9 and 10 report the test results at the Region/Area level, and at the

country level, respectively.

Table 9: Tests for breaks in d between periods - Regions and Areas
S13 S21 S32

ASIA -1.934� 2.112�� -0.312

EMERG. MARKETS -2.262�� 2.855��� -0.775

EMU 0.942 0.810 -1.803��

EU -0.492 1.537� -1.143

EUROPE -0.284 1.224 -1.019

SOUTH. EUROPE -0.435 2.228�� -1.935��

FAR EAST -2.058�� 2.136�� -0.214

G7 -1.575 2.637��� -1.230

LATIN AMERICA -1.185 1.578� -0.494

N.AMERICA -1.732� 2.312�� -0.727

WORLD -0.702 1.361� -0.746

Note: *, **, *** refer to 10%, 5% and 1% signi�cance levels.

From our conjecture made at the beginning of this section, we expect S21 � 0 if in fact an
increase in d from subsample 1 to subsample 2 is observed and S32 � 0 if a decrease in d occurs
from subsample 2 to subsample 3. The results in Tables 9 and 10 are generally supportive of

this conjecture. Furthermore, from Table 9 we observe that only for Europe and EMU did

the persistence not change from the �rst subsample (2003 - 2006) to the second subsample

(2006 - 2009), for all other regions (areas) considered a statistically signi�cant increase was

observed. For the country-speci�c indices qualitatively similar conclusions can be drawn, i.e.,

in general the results validate our conjecture (S21 � 0) and out of the 36 countries considered
around 61% register a statistical signi�cant increase in d from subsample 1 to subsample

2. The European countries that do not observe a change are Finland, Germany, Italy, the

Netherlands and Spain.

In subperiod 3, as previously indicated, European banks were confronted with funding

shortages, more stringent bank regulations, and the need to improve capital ratios. Further-

more, over this period the ECB had a major intervention, providing European banks with
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long-term �nancing. Hence, we expect in this period, particularly for European Banks, that

a further change in persistence is observed. In particular, the intervention of the ECB must

have had an impact on the duration of shocks, contributing to a reduction of persistence in

the EMU countries, i.e., we expect that S32 � 0. This is clearly con�rmed in Table 9, as a
statistically signi�cant reduction is observed for the EMU and Southern Europe.

At the country level (Table 10), the hypothesis that d2 � d3 is also validated. Notice that

of the countries that constitute the EMU, Austria, Finland, and Luxemburg did not reject

the null hypothesis of the same order of integration in subsamples 2 and 3.

Table 10: Tests for breaks in d between periods - Countries
Country S13 S21 S32 Country S13 S21 S32
ARGENTINA 1.189 1.444� -2.725��� ITALY 0.559 0.871 -1.485�

AUSTRALIA -2.523�� 2.569��� -0.209 JAPAN 1.971�� 1.180 -3.226���

AUSTRIA -2.467�� 2.293�� 0.027 KOREA -0.629 1.653�� -1.129

BELGIUM 1.487 1.451� -3.031��� LUXEMBURG -0.981 2.016�� -1.163

CANADA -3.676��� 3.011��� 0.474 MEXICO 0.582 0.083 -0.671

CHILE -0.415 0.675 -0.303 NETHERLANDS 2.657��� 0.251 -2.924���

COLOMBIA 1.432 -0.178 -1.243 NORWAY -3.520��� 4.191��� -0.938

DENMARK -0.447 2.841��� -2.575��� POLAND -3.189��� 2.127�� 0.927

FINLAND -0.652 0.592 0.022 PORTUGAL -0.824 3.681��� -3.092���

FRANCE -0.591 1.977�� -1.513� SINGAPORE -0.562 0.702 -0.184

GERMANY 2.141�� -0.032 -2.106�� SLOVENIA -2.676��� 4.177��� -1.767��

GREECE -0.438 1.644� -1.311� SPAIN 2.055�� -0.434 -1.594�

HONG KONG -2.200�� 2.464��� -0.421 SWEDEN -1.633 1.785�� -0.265

HUNGARY -1.250 2.035�� -0.915 SWITZ -0.017 1.331� -1.399�

INDIA -1.496 1.715�� -0.329 TAIWAN -0.219 0.132 0.078

INDONESIA 0.368 -0.765 0.446 THAILAND -0.550 0.785 -0.285

IRELAND -1.477 3.708��� -2.467��� UK 0.357 1.645�� -2.107��

ISRAEL 0.639 0.416 -1.082 US -1.420 3.277��� -2.066��

Note: *, **, *** refer signi�cance at the 10%, 5% and 1% signi�cance levels.

6 Concluding remarks

Diebold and Inoue (2001) and Granger and Hyung (2004), among others, showed that certain

processes displaying �spurious long memory� are mistaken as fractionally integrated when

testing by means of the log-periodogram regression for d = 0 or d = 1. Those processes

are summable of a certain order D in the sense of Berenguer-Rico and Gonzalo (2014), and

the variance of their sample means behaves like that of a fractionally integrated process of

order D. In a Monte Carlo exercise we show, however, that the fractional integration test by
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Demetrescu et al. (2008) may discriminate between summability of order D and integration of
order D, where the power depends on the speci�c parameter constellation. For applied work
we suggest the numerical determination of the interval of values of D where the test does not
reject at a signi�cance level �. If the interval turns out to be empty, then one may conclude

that the process is not fractionally integrated but rather displays spurious long memory.

Otherwise, this range of non-rejected values may serve as a 100 (1� �)% con�dence interval

for the order of fractional integration; see Hassler, Rodrigues and Rubia (2009, Remark 2.7).

If one has con�dence in the fractionally integrated (or �true long memory�) model then

the question naturally arises whether the memory is constant over time or subject to change.

To test this null hypothesis we suggest splitting the sample of interest into non-overlapping

subsamples where the break dates are given exogenously according to major political or

economic upheavals. For each subperiod the order of integration is estimated using the exact

local Whittle estimator. For any two subperiods of interest one then may test against the

alternative that the respective memory parameters di¤er. The test statistic is the normalized

di¤erence of the estimators and follows a limiting standard normal distribution under the

null hypothesis of no change.

The two procedures just summarized are applied to the log of absolute bank equity index

returns of several regions of the world and several countries. Overall, the results obtained

allow us to conclude that the series analysed in this paper display true long-memory features.

A further interesting result obtained, using the breaks test introduced in Section 4, is that the

order of fractional integration of the series analysed displays heterogeneous behaviour across

the regions and countries considered, and over the periods analysed. This is particularly

noticeable when considering subsamples 2 and 3, from which it can be seen that the Lehman

Brothers collapse had a global impact originating increases in persistence worldwide, whereas

in subsample 3 the sovereign debt in Europe and the di¤erent economic growth dynamics

observed, among others, originated a signi�cant decrease in persistence in some regions and

countries.
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Figure 1: Log of the bank equity price index for several reference regions and areas

Asia EMU
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Figure 2: Bank equity returns for several reference regions and areas

Asia EMU
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Figure 3: Absolute bank equity returns for several reference regions and areas

Asia EMU

01/01/03 02/01/06 01/01/09 18/07/130

0.02

0.04

0.06

0.08

0.1

0.12

01/01/03 02/01/06 01/01/09 18/07/130

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

EU Europe

01/01/03 02/01/06 01/01/09 18/07/130

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

01/01/03 02/01/06 01/01/09 18/07/130

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

South Europe Far East

01/01/03 02/01/06 01/01/09 18/07/130

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

01/01/03 02/01/06 01/01/09 18/07/130

0.02

0.04

0.06

0.08

0.1

0.12

Emerging Markets G7

01/01/03 02/01/06 01/01/09 18/07/130

0.02

0.04

0.06

0.08

0.1

0.12

01/01/03 02/01/06 01/01/09 18/07/130

0.02

0.04

0.06

0.08

0.1

0.12

Latin America North America

01/01/03 02/01/06 01/01/09 18/07/130

0.05

0.1

01/01/03 02/01/06 01/01/09 18/07/130
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0.2

World

01/01/03 02/01/06 01/01/09 18/07/130

0.02

0.04

0.06

0.08

0.1

0.12

32



Figure 4: Log of absolute bank equity returns for several reference regions and areas

Asia EMU
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