y
er

The Universit
of Manchest

MANCHESTER

1824

Discussion Paper Series

Co-movements between US and UK stock prices:
the roles of macroeconomic information and

time-varying conditional correlations

By
Nektarios Aslanidis , Denise R. Osborn” and Marianne Sensier’
" Department of Economics, University Roviraand Virgili, Spain

"Centre for Growth and Business Cycle Research, Economics, School of
Social Sciences, University of Manchester, Manchester, M13 9PL, UK

February 2008
Number 096

http://www.social sciences.manchester.ac.uk/cgbcr/
discussionpapers/index.html



Co-movements between US and UK stock prices:
the roles of macr oeconomic infor mation and time-

varying conditional correlations

Nektarios Aslanidis*
(nektarios.aslanidis@urv.cat)
*Department of Economics, University Rovira andgiir Spain
(+34 977 759848)

Denise R. Osbornt

(denise.osborn@manchester.ac.uk)
and
Marianne Sensier
(marianne.sensier@manchester.ac.uk)
tCentre for Growth and Business Cycles Research
Economics, School of Social Sciences, The UniverdiManchester
(+44 161 275 4791)

4" February 2008

JEL classifications: C32, C51, G15

Keywords: international stock returns, DCC-GARCH dalp smooth transition
conditional correlation GARCH model, model evalaati

Comments on an earlier version of the paper fromirsar participants at the University of Essex,
University of Alicante, University of Manchestercathe Fondazione Eni Enrico Mattei (FEEM) are
greatly appreciated. We would also like to thanlia® Hyde for comments and Annastina
Silvennoinen and Christos Savva for sharing theigpam codes with us.



Abstract

We provide evidence on the sources of co-movenmenionthly US and UK stock

returns by investigating the role of macroeconoamd financial variables in a model
with time-varying correlations. Cross-country commality in response is uncovered,
with changes in US Federal Funds rate, UK bondlgiahd oil prices having negative
effects in both markets. These effects do not, wveweexplain the marked increase in
correlations from around 2000, which we attributéitne variation in the correlations
of shocks to these markets. A regime-switching rhedptures this time variation

well and shows the correlations increase draméatieabund 1999-2000.

|. Introduction

There is a great deal of interest, and a correspghd large literature, on the
relationship between international financial maskdn particular, it is now well
established that the correlations of returns acragsnational stock markets are not
only strong, but also time-varying. Important cdmitions to understanding the
nature of this phenomenon include Ang and Bekd@®0%), Cappiello, Engle and
Sheppard (2006), King, Sentana and Wadhwani (1992)gin and Solnik (2001),
and Ramchand and Susmel (1998).

Nevertheless, the question of what drives tempchahges in cross-country
correlations remains largely unanswered, since sawdies incorporate explanatory
variables in models designed to capture internati@iock market linkages. This
omission is surprising, since investors need teewstdnd the causes of co-movements
in order to evaluate the potential benefits ofnimédional portfolio diversification. For
example, it is often observed that stock marketse H@&come more integrated over
time. Two plausible explanations are, firstly, thlaé macroeconomic policies and
business cycles of countries have become more Igl@asigned or, secondly, that
common shocks have become relatively more impodeat time. In the former case,
international diversification offers protection ags both idiosyncratic shocks and

changing economic prospects in individual countr@@s the other hand, international



diversification offers less advantage if commoncktsoplay an increasingly dominant
role over time. In the light of this, the preseappr aims to shed light on the drivers
of changing correlations between stock market pmowements in the US and UK
since 1980, focusing on the role of macroeconorfieces and, conditional on these,
on the patterns of conditional shock correlations.

A long and continuing stream of research, initiated Fama (1981), has
examined the role of macroeconomic variables (paleily real activity, inflation and
interest rates) for stock returns. However, thiseagch has almost exclusively
considered domestic economic conditions, and hestezls little light on cross-
country linkages. Nevertheless, there are some r@pio exceptions, including
Bonfiglioni and Favero (2005), Campbell and Hami®9@), Canova and De Nicolo
(2000), and Nassah and Strauss (2000), all of wéldow foreign economic variables
to affect domestic stock returns. While these ssidiocument the importance of
international market linkages, especially with t®, and frequently find that foreign
macroeconomic variables play a role for domesbclsteturns, only Bonfiglioni and
Favero (2005) focus primarily on explaining the rfiag nature of such links.

Bonfiglioni and Favero (2005) study monthly Germamd US (log) stock
market indices in relation to bond yields and (legalysts’ forecasts of earnings.
They propose an innovative methodology that disiistges between short-run stock
market interdependence and contagion through tpafisance, in the equation for
German stock returns, of dummy variables represgréktreme changes in the US
market. While an incisive contribution, their ars$yis nevertheless based on the
crucial assumption that, after allowing for a snralimber of periods of extreme
change, the vector of shocks to the markets is albyndistributed with a constant
covariance matrix. However, in the light of theartliterature concerned with time-

varying conditional correlations across internagicimancial markets, this is a strong
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assumption. Baele (2005) takes a different approbhghfocusing on time-varying
correlations between the US and European marketaigh a Markov-switching
approach, and then, in a second stage, considégrengple of economic variables in
explaining the switches between high and low spdto regimes. Although
recognising time-varying correlations, this apptodoes not readily allow analysis of
the extent to which this time-variation is due laeging economic circumstances or
to changing levels of stock market integration.tkeir, the treatment of the regimes as
observed for the second stage is not valid econiraby’.

Despite their different methodologies and differsatnple periods, a common
finding of both Baele (2005) and Bonfiglioni andvEeo (2005) is that cross-market
spillovers between major markets have generallyeesed over time, with this being
indicated in the latter case by the preponderaricelamtified contagion instances
occurring at the end of the 1990s and early inrtbe century. The present paper
investigates these issues further by directly mModgkthanges in stock market price
indices in an international context in terms ofitleconomic determinants, using a
richer set of explanatory variables than Bonfiglimand Favero (2005), while
explicitly considering the existence and nature tohe-varying conditional
correlations using the recent approaches of dynaomclitional correlations (Engle,
2002 and smooth transition conditional correlations rtB® and Jansen, 2005,
Silvennoinen and Terasvirta, 2005). The latterrefgared to the Markov-switching
approach of Ang and Bekaert (2002) and Pelleti®§2, among others, since it
allows the regime to be modelled as a continuouastion of one or more so-called

transition variables, and hence avoids the two-steproach of Baele (2005). It

! As Pagan (1984) proves that the standard erraed mejustment in regressions with constructed
regressors.

2 A similar methodology is proposed by Tse and T80D2).



should also be noted that, in modelling conditicc@irelations, we do not make any
assumption of causal ordering between the US andrdikets. This contrasts with
the strong assumption explicitty made by Bonfigiiend Favero (2005), and
implicitly by (for example) Canova and De Nicol6 0@, that there is no
contemporaneous feedback from stock market gromvtitier major countries to that
in the US.

To preview our results, we find substantial comnlityman responses of US
and UK stock markets to changes in short-term ésterates, bond yields and oil price
inflation. In addition, the UK market reacts to baage rate movements and dividend
yields from both markets, effects we associate withrole of international investors
in this market. Nevertheless, these economic détamts fail to explain the increase
in correlations across these markets in the pefrioch 2000. We also find strong
statistical evidence for time-varying conditionarm@lations, which are adequately
captured by a smooth transition conditional cotr@tamodel that implies a strong
increase in correlations around 2000.

The organisation of this paper is as follows. S&dill and 1ll, respectively,
describe the econometric methodology and data we $isbstantive results are then
reported and discussed in Section IV. ConclusiorSection V complete the paper,

with some additional results presented in an Append

% This assumption is implicit in the variable orahgriused in a triangular variance decomposition used
to compute impulse responses.
* Such as assumption is more plausible in the confiesmall open economies, as examined by Bredin

and Hyde (2008).



I1. Econometric M ethodology

After outlining our approach for the mean and \vbtatequations (Section II.A),
Section 11.B describes the time-varying conditionafrelation models. Specification

testing and estimation are then discussed in SectiaC and I1.D.

A. Mean and Volatility Equations
We model monthly changes in the logarithm of the &8 UK stock market price
indices, which are the corresponding variableshtus¢ of Bonfiglioni and Favero
(2005). Richards (1995) argues that the conceptand testing for, cointegration
across international stock markets is problematith) the econometric issues further
complicated by the possible presence of a non-aahsbnditional covariance matrix.
Therefore, we examine short-run stock price moveg)emith the consequences of
economic integration on stock markets capturedutinahe inclusion of appropriate
variables in the mean equations.

The mean equation for the two-dimensional vecygrdf stock price growth
for the US and UK can be written as
(1) Vi = BX + W, t=1,2,....T
where the explanatory variablasinclude the relevant macroeconomic information
set. Following Bonfiglioni and Favero (2005), Camapland Hamao (1992), Canova
and De Nicol6 (2000), and Nassah and Strauss (26@@jign as well as domestic
variables are allowed to enter both equationshabroa priori zero restrictions are
imposed on the matriB. However, based on the findings of Bonfiglioni aravero
(2005), the macroeconomc indicatorsiilare assumed weakly exogenousyfor

In line with recent literature on internationalost market returns, the

conditional covariances of the shocks in equatigrafe time-varying, such that



(2) U, ~ O H)

where [J,_; is all available information dt1. From equation (2), each univariate error
process can be written

3) U, =g &, 1=1,2

whereh,, = E(u’ /0,,) ande¢;, is a sequence of independent random variables with
mean zero and variance one. As common in empidoalyses, each conditional
variance is assumed to follow the univariate GARTGH) process

(4) hii,t: aiO + ailuiz,t—l + :Bilhii,t—l

with non-negativity and stationarity restrictiomsgosed.

Rather than modelling the off-diagonal elementsladirectly, the definition

(5) Po = hyp(hyyhy )™

allows the focus to be placed on the conditionalretations p;. The constant
conditional correlation (CCC) model assumes thas constant over time, while the
dynamic conditional correlation (DCC) and smoo#mgition conditional correlation

(STCC) models allow distinct patterns of time-vada in p.

B. Time-Varying Conditional Correlations

Engle (2002) specifies the DCC model through thdRGAI(1,1)-type process

(6) Qy, =Py d-a-P)+og &4 +B0y4, 1,j=12

where p,, is the (assumed constant) unconditional correfdietweens,, and ¢,
a is the news coefficient an@ is the decay coefficient. The quantify,; from
equation (6) is normalized using

Ozt
(7) b= a3
t (Qpy Q22,t)1/2



in order to ensure a conditional correlation betwek and +1. The model is mean-
reverting provideda + S <1, while the conditional correlation process in doua(6)
is integrated when the sum equals 1. However,atierlcase violates the assumption
of a constant unconditional correlati@gn,, which is embedded in equation (6).
Rather than assuming a constant unconditional ledior, the STCC model
developed by Berben and Jansen (2005) and Silveenaand Terasvirta (2005)
assumes the presence of two extreme states (omespiwith state-specific
correlations. These correlations are, howeverwatbto change smoothly between
the two regimes as a function of an observablesitian variable s. More

specifically, the conditional correlatignfollows
® P =plL-G (siv.c))+ oG (sinic)
in which the transition functio® < G, (s;¥.c)<1 is a continuous function af, while

y andc are parameters.
Since equation(8) impliesp: = p1 whenG; = 0 andp: = p» whenG; = 1,
extreme values of the transition function identtig distinct correlations that apply in

these regimes. A weighted mixture of these coinelatapplies wherD<G;< .1A

plausible and widely used specification for thensition function is the logistic

function

. _ 1
(9) Gt(st.y.c)—“exp[_y(s_c)], y>0

where the parameter locates the midpoint between the two regimes. Jlope

parametep determines the smoothness of the chang@; ias a function o&. When

> The model ofBerben and Jansen (2005) is bivariate with a tieect as the transition variable, while
the framework of Silvennoinen and Teréasvirta (2085pultivariate and their transition variable dan

deterministic or stochastic.



y - o, Gt(s(;y,c) becomes a step functionG((st;y, c)=0 if s<c and

G, (s;y.c)=1if 5 >c), and the transition between the two extreme tatios states

becomes abrupt. In that case, the model approactieeshold model in correlations.
An important special case of the STCC model useg tas the transition,

s =t/T, which gives rise to the time-varying conditiomalrelation (TVCC) model

employed by Berben and Jansen (260%his allows one (smooth) change between

correlation regimes, and 3s— o captures a structural break in the correlatiomss T

transition variable may be particularly relevantarder to capture the effects of

increasing integration of financial markets ovex kst twenty years.

C. Specification Tests

Before applying either the DCC or STCC model, tests applied to investigate the
constancy of the conditional correlations in equaif5). Two residual-based tests of
Bollerslev (1990) are particularly suitable forttieg against a DCC specification. The
first is the Ljung-Box statistic for testing autocelation up tom lags in the cross

product of the standardised residualg @ndr,,) from the GARCH(1, 1) model of
equation (4), which under the null hypothesis igvgstotically distributed agy® with
m degrees of freedom (we use= 18). The second is dntest of the significance
from a regression of the sample values pf ,h;;, =1 on hy,, ri_ h,,, r;h,, and
lags N (in which we includek = 1, ..., 12). In addition, we apply the

Lagrange Multiplier ILM) test of Tse (2000), which considers the null higpsiso =
0 in the ARCH-type structure

(10) p12g =p12+ 0 M1 lap1

® The scaling implied by defining = t/T aids interpretation; see Berben and Jansen (2005).



Under the null hypothesis, the statistic is distrétel asy? with 1 degree of freedom

We perform the Tse (2000) test in an estimationhef complete system (including
mean equations).

Silvennoinen and Teréasvirta (2005) derive a Lageaktyltiplier testLMccc
for the constancy of the correlations against atiqdar transition variable by
applying a first-order Taylor series expansionh® $TCC transition function (9) and
then testing the significance of the additionaherthat arise compared to a CCC
specification. After allowing for the effects of nraeconomic variables through the
mean equation (1), this test is applied using @ ttransition in the correlations to
investigate changing conditional correlations aisged with globalisatioh

After estimation, the adequacy of the DCC and STi@&@lels are checked

using diagnostic tests applied to the standardissidiuals from the bivariate system.
Following Engle (2002), the required standardiseiduals v, =H,"*r, are
computed through the triangular decompositiorlgso that

— 1/2
V1,t - rl,t/ 1t

" Tse (2000) notes that it may be more natural tosiandardised values Bf.; in equation (10), but
prefers the unstandardised form for analytical tiitity. Nevertheless, this choice may affect the
power of the test. Power may also be affected Iplyamy this two-sided test, in a context wheres
positive under the alternative.

8 Based on previous studies that find co-movementbet stronger in volatile times than in more
tranquil periods (Ang and Bekaert, 2002; Baele,2000ngin and Solnik, 2001; Ramchand and
Susmel, 1998, among others), we also tested canystdrconditional correlations against a model with
the conditional variance of the US stock returnghestransition variable. However, constancy was
rejected more strongly using time and, when thatidl transition model was estimated, it resulted

relatively modest improvements in the log likelidomompared with the CCC model.
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1 Py

(11) V,, = T2t 7 w2 T 2 W12
Y (h22,t (1_ p12,t )) (hm (1_ plz,t ))

in which unknown parameters are replaced by thampme analogues. Sinog;
depends on the (estimated) dynamic correlatiosss tan this are more revealing than
those onvy; (Engle, 2002, p.344). We apply the Ljung-Box tést both the

standardised residuals and the squares of thesdastiised residuals.

D. Estimation
We estimate the CCC, DCC and STCC models by quagimum likelihood (QML),
with robust standard errors (Bollerslev and Woalge, 1992) used for the parameter
estimates. All equations (that is, for the congiibmeans, volatility and conditional
correlation) are estimated jointly. Although En@gk®02) and Cappiellet al. (2006)
use a two step approach for estimation of DCC nmddlis does not allow for
computation of QML standard errors that are rotbashe violation of the assumption
of normality in equation (1). Furthermore, throyghnt estimation taking account of
(changing) cross-market conditional correlations, aum for efficiency gains in the
estimation of the impact of economic informationstock return’

Nevertheless, nonlinear estimation of the resultimagels is not always easy
to achieve and specification of starting valueyla crucial role. The procedure we

use to obtain starting values is discussed in Agpeh

° In practice we estimate the CCC and DCC modelaguie GARCH wizard in RATS 6.3. The
reported STCC estimates are obtained using GAUSrevour programs are adapted from code

supplied to us by Christos Savva.
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[11. Data

We simultaneously model movements in the monthteinof US and UK stock
prices using data over the sample 1980m1-2006m&e Ndeecisely, the US stock
price is the Standard and Poor's composite in@) and the UK stock price is the
Financial Times All Share IndeX¥T), with end-of-month values employed for each.
The starting date of 1980 is selected as it isegsnt to the financial liberalisations
that occurred during the latter part of the 1970s

As discussed in the Introduction, we investigatéerslependence of the
markets arising from available international infatron by allowing the
macroeconomic variables for each country to emiedinear mean equations for both
countries. The US and UK analyses of Pesaran antm&mann (1995, 2000)
provide the benchmark set of explanatory varialesuse. More specifically, we
consider the dividend yield for the correspondingrket SPDY, FTDY), industrial
production USP, UKIP), retail sales volumedUSRS UKRS), a short interest rate
(the US Federal Funds Rat¢SFF, and the UK 3-month Treasury Bill RatékTB) a
long bond rate YSLR and UKLR), nominal money stockUSM1 and UKMO0), the
Consumer Price indexXJSCP and UKRP) and the oil price measured in US dollars
(OIL). In addition, the exchange rate of US dollarsptmunds sterling ER) is
considered as an explanatory variable for the UKefitect the open nature of its
economy, while one month lagged returns for bothtketa are also considered as
possible variables entering the two mean equatidhe.set of variables is therefore

sufficiently broad to capture monetary policy anginess cycle influences, as well as

10 Also, the early/mid-1970s were crisis years in tH&, with accelerating inflation, rising
unemployment, massive industrial unrest and the¢ @il price shock (Dow, 1998). In their Markov
switching model for UK returns, Guidolin and Timmeann (2003) associate one regime, with

negative mean returns and a large variance, piynaith this period.
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spillovers between markets and other dynamics. &Vhie aim to use the
corresponding series for the US and UK, a precia&chmng is not always possible
due to data availability. Appendix 2 provides detaf the series and data sources.

Most variables (including stock market prices) aied as growth rates,
computed as 100 times the first difference of thgaftithms. Exceptions are the
interest rate series and the dividend yield, forciwlwe take first differences, and the
consumer price indices which are transformed taiahmflation rates. The decision
to difference the explanatory variables was basethe results of prior unit root tests.

To match the timing of our monthly stock price date also use end-of-
month values for the explanatory variables. Newdess, care must be taken in
relation to the lag at which macroeconomic varialidlecome available. While retail
sales, consumer prices, money, and US industraymtion data for a specific month
are released during the immediately subsequenthmamis is not the case for UK
industrial production. On the other hand, while teomporaneous oil prices are
known, in practice we found a lag of one month ®veh higher significance.
Therefore, lags of one month are employed for mestactivity variables, wittUKIP
lagged by two periods. Financial data on the exgbamate, short and long interest
rates are available continuously, and contemporsead-of-month values are used
for these variables. Dividend yields are laggedbg month to avoid the simultaneity
that would result if the current value was emplayed

By using latest data available to the stock maakehe end of the month, we
assume that the macroeconomic indicators are weakdgenous for stock market
returns. This assumption is in line Bonfiglioni aRdvero (2005) and the timing of
explanatory variables for regime changes in Ba20®%), as well as with the causal
ordering made in variance decompositions by NassahStrauss (2000) and many

others.
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Our sample period includes the stock market cras®dtober 1987, which
affects both UK and US stock prices and the comedmg dividend yield series. The
effect of the Long Term Capital Management crigsislD98 is marked for the US
stock price index. To ensure these events do ndulyninfluence the estimated
models, we replace these outliers by the averalyee @& the series over the sample
period, computed excluding the outlier observati®hie also remove outliers
associated with extreme events in the industriapection, retails sales and money
series (see Appendix 2 for details).

The column labelled sample cross correlations ibldal provides some
descriptive evidence on the changing correlatidrte@monthly stock market growth
series that we model. Over our entire sample petioese markets exhibit a strong
positive correlation, but over (approximately) fiyear sub-samples, this correlation
varies between 0.45 and 0.87. Indeed, the conbetsieen the correlations for the
second half of the 1990s and the high correlatiofirst part of the new century is

particularly marketf-.

V. Results

Section IV.A discusses initial results for the meguations, including the variables
that survive our selection process, while SectidhBl provides a summary
comparison of results for different conditional redation specifications. The final

Section IV.C then discusses the results obtainegdjuke preferred STCC model.

! Goetzmann, Li and Rouwenhorst (2005) examine treetation structure of world equity markets
for a period of 150 years and find that correladitietween stock markets were relatively high during

the late nineteenth century, the Great Depressidritze late twentieth century.
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A. Mean Equations

As already discussed, one aspect of interest s1dhidy is co-movement across the
US and UK markets that arises from similar respsnge available information.
However, a disadvantage of allowing variables fritr@ other country to influence
domestic stock market prices is the consequentlgessver-parameterisation of the
mean equations. To avoid this, the set of explapatariables in each equation is
reduced by adopting a general to specific approactl eliminating the least
significant variables one by one in order to ackigve minimum Akaike information
criteria (AIC). Although undertaken in a single atjan setting for each market, the
possible presence of heteroscedasticity is recedry using robust standard errors
to judge the least significant variable.

For comparison with later results, the OLS estimait the resulting linear
models are presented in Tabl¥, Itogether with heteroscedasticity robust standard
errors. The UK model explains almost a quartehefwtariation in the growth of stock
market prices. The strongest significance is frdme &xchange rate, where an
appreciation of the pound against the dollar (@nease irER) has a negative impact.
The implication that a depreciation of the poundssociated with a growth rate of
UK stock market prices is compatible with internatil investors requiring higher

price growth to compensate for the adverse effefta depreciation on returns

2 We also considered using the unanticipated chaitgéise variables as regressors in our models,
where the unanticipated component for each serias @xtracted using an AR(12) model, and
including the residuals in the linear model. Thes fallowed a general to specific approach based on
the AIC to select the specific model. The seleceecific model was very similar that obtained using

the original series, and hence we proceeded wéthrtbdel based on observed values.
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measured in dollatd Another indicator of the role of internationaléstors for the

UK market is the significance of the US dividenelgti with the opposing signs of
ASPDY:1 and AFTDY.; implying that potential investors compare theseemvh
considering where to invest.

Nevertheless, domestic economic conditions alsp gkubstantial role for the
UK market, with changes in the long and short rated industrial production all
being individually significant at the 5 percent éévand of the anticipated signs.
However, the presence of lagged UK and US stoaemtowth is not in line with the
weak form of the efficient market hypothesis, whirenight be noted in particular
that the former AFT..;) has a strong positive and significant coefficiehhe US
model, on the other hand, contains fewer variabies explains a substantially lower
proportion of total variation (around 14 percent)th no role for either past price
growth or dividend vyields. Indeed, unlike the UKdustrial production does not
survive the variable selection process. Althougtairesales does appear, it is not
significant at even 10 percent, and this varialdeconsequently dropped from
subsequent models. Overall, real variables appeaplay only a minor role in
explaining movements in US stock prices.

However, our main focus of interest is not indivablmarkets but rather their
co-movements. In this context, two aspects of #salts in Table 1 are of interest.
The first is the negative influence of oil priceshere the almost identical (and
significant) coefficients imply that co-movementliwbe stronger when oil price

changes are large.

13 Note, however, that the coefficient &R, is also significantly different from -1, and herités

inappropriate in this model to measure UK stockkatprice growth net of exchange rate effects.
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The second aspect is the strong role played byestteate changes for both
markets. Not only do both domestic long and shates appear (with negative signs)
in the respective equations, but UK bond rateshagely significant for the US while
US short-rates have marginal significance of aro@ngdercent for the UK. Once
again, the similarity of the coefficients f&tUKLR, and AUSFF; across the two
equations implies that the common responses ofnthekets to changes in these
variables will give rise to co-movement. Indeedppadis (2002) documents stronger
international correlations for bond prices durihg t1990s than the 1980s, and such
increased correlation for US and UK long rates duirther enhance the implied
communality of stock price movements in Tabté 1

The diagnostic tests for the linear model in Tablprovides strong evidence
of time varying conditional volatility (ARCH) in thresiduals of the US model. There
is also evidence of non-normality, especially foe tUK, although this is not
unexpected when modelling stock returns.

Before moving to the time-varying volatility modeig eliminateASP..; from
the FT equation as this is insignificant. Detaitegdults for the parsimonious linear

model can be obtained from the authors on request.

B. Model Comparisons

The CCC, DCC and STCC models outlined in Sectidntdke account of time-
varying volatility, but make differing assumptioabout the temporal nature of the
cross-market conditional correlations. The impédcthese differing assumptions are

summarised in Tables 2, 3 and 4.

' To be specific, the aggregate of the coefficiemJS and UK long-term rates in the US equation is
-3.76, compared with -3.50 in the UK equation (vitike latter arising from UK long-term rates alone).

When the two long-term rates move together, onlydlgregate is relevant.
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Table 2 shows that taking account of volatilitythe mean specifications of
Table 1 through a GARCH(1,1) specification for eawhrket, in conjunction with
constant cross-market conditional correlations)ds satisfactory. More specifically,
the Ljung-Box and (particularly) the Bollerslev iskgal diagnostic tests reject the
assumption of constant conditional correlationghd@ligh the Tse (2000) test is less
decisive, it also rejects this assumption at a margignificance level of 6 percent.
However, the CCC model is particularly stronglyemed against the STCC model
with a time transitiofr.

In line with these results, the statistics in Tahleand especially AIC and BIC,
point to the use of the STCC model in preferenca t6CC or DCC specification.
Further, and not surprisingly, the models with exgitory variables in the mean
equations are preferred to constant mean speddisat which underlines the
importance of (domestic and international) macroecaic conditions in explaining
movements in the US and UK markets. However, tiheselts shed little light on the
extent to which these variables explain the appglréme-varying correlation of the
movements in these markets.

To gain further insight into this question, Table shows, firstly, the
correlations between the fitted values from the meguations of (1) and, secondly,

the corresponding conditional correlations for eaéhthe CCC, DCC and STCC

!> This test was computed using the Ox programs &gply Annastiina Silvennoinen. The test is
performed on the residuals from a linear regressioluding the explanatory variables as the program
do not allow all equations of our model to be eatigd simultaneously. All the explanatory variables
were tested as possible STCC transitions for tmstemt mean model and the results are presented in
Table A.3.1. However, testing the explanatory \alda from the mean model of equation (1) as
possible STCC transitions in this way is not asytipally valid, as there may exist conditional mean

estimation effects that are not accounted for leytéist, see Halunga and Orme (2007).
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models, over both the whole sample period andyfear sub-samples. Although these
do not provide a simple decomposition, neverthelleeyg provide information about
the relative contributions of the mean equationsl dhe residual conditional
correlations to modelling the observed sample ecosselations.

Interestingly, over the whole period and irrespectiof the particular
conditional correlation model employed, the meamatign fitted values yield
correlations around 0.65-0.70, which is similar toe observed correlation.
Nevertheless, common shocks are also importani, thése having a correlation of
0.61, so that the overall sample correlation ob0c@&nnot be clearly attributed to
either economic conditions or to conditional cateins unexplained by these. Until
around 1999, the sub-sample correlations impliethbymean equations remain fairly
constant, but then fall to around 0.5 in the pd¥period. In other words, the fitted
means do quite poorly in capturing the large ineeeia correlations at the end of the
sample. The high correlation unexplained by ecorooainditions is consequently
manifested by a large increase in the conditionaletations. Despite the CCC model
being estimated under the assumption of constartitonal correlations, the residual
series from this model nevertheless show a sirpgdiern of temporal change in the
conditional correlations as the time-varying DC@ &1 CC specifications.

The conditional correlations shown in Figure 1 foe DCC and STCC
specifications provides further information on #demporal patterns. In particular,
the implied correlations grow fairly dramaticallsoin around 0.4 at the beginning of
the sample to around 0.9 in 2002, which may reflacteasing globalisation and
integration of stock markets not captured by thplaatory variables in the mean
equations. Although Cappiellet al. (2006) associate an increase in correlations of
stock markets in the recent past with the introduciof the euro currency, the

increase in the bivariate correlation between tlgeddd UK cannot be attributed to
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this source and appears to be a consequence afdoripéernational financial market
integration; see also Savegal. (2005).

Although the DCC model is not designed to capturgystematic temporal
pattern in conditional correlations, Table 4 anduré 1 indicate that, in practice, it
does so quite well in our case. Nevertheless, It pattern in the DCC conditional
correlations indicates that the STCC model may bwee appropriate specification, a
conclusion compatible with the AIC and SIC valueJable 2.

Detailed estimation results are not presentedhi@@CC or DCC modéls In
the former case, this is because the CCC assumigticgjected by the data. In the
DCC case, the estimate fer+ g in (6) is on the border of nonstationarity, ata®9,
which appears to violate the assumption of an uyidercorrelation of shocks that is
constant over time. Indeed, it is only through tefective nonstationarity that the
DCC model is able to capture the temporal pattedicated in Figure 1. It may also
be noted that the estimated mean equation coeftecend their significance are very

similar across the CCC, DCC and STCC specifications

4.3 STCC Results
The discussion of the previous subsection pointheoSTCC specification as being
the most appropriate model for capturing the tiragsng conditional correlations
between the growth rates in US and UK stock magrkiees.

The importance of time for capturing the correlasidoetween these markets is
reinforced by Appendix Table A.3.1, which shows tiesults of tests for constant
correlations against time-varying correlations icoastant-mean model. Therefore, in

this specification, all co-movement is capturedhmsy correlations of the disturbances,

18 These may be obtained from the authors on request.
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even when such co-movements could be due to relagsgonses common
macroeconomic information. Although Table A.3.1 igades that interest rate
variables and US consumer price inflation (which a§ course, correlated with
interest rates) as possible transition variablesgertheless the-values point to the
dominant role of time if a single transition vatials to be selected.

Therefore, in conjunction with effects of interestes and other observed
variables captured through the mean equations eTalpresents the estimates of the
STCC model, described by equations (1), (4), (8) @). As shown by the diagnostic
statistics, this model satisfactorily accountstfte temporal patterns in these returns
and their correlations.

By comparing corresponding estimates in TablesdL5nt can be seen that
modelling change over time in the conditional clatiens has some impact on the
estimated effects and significance of the econosmi@bles in the mean equations. In
particular, although the lagged valueFdf remains significant in the UK equation in
Table 5, the magnitude of this coefficient is sahgtlly lower than for the OLS
estimates of Table 1. Further, the US long-terrargdt rate is now highly significant
for the US equation in Table 5. Overall, howevbkg substantive implications of this
model for the mean remain as for Table 1.

In terms of the temporal pattern of the conditiooatrelationsc in Table 5
defines the middle of the transition period, witistvalue expressed as a fraction of
the sample size, and the corresponding estimatdepoint date of May 2000 is also
indicated’. The results show that the conditional correlatietween the two markets

increases from 0.52 at the beginning of the sanaptbe substantially higher value of

71t is worth mentioning that Berben and Jansen $2®6r their US-UK model estimate a mid-point of
March 1983. However, their estimation period is @-2800, and hence they apparently do not pick up

the large increase in correlation we find aroun@d@®O0
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0.90 in the latter part. Indeed, similar conditibicarrelations are obtained in a
constant-mean STCC specification (see AppendixelAliB.2), indicating once again
that macroeconomic variables account for relatiViethe of this temporal pattern.

This temporal pattern for STCC estimated conditi@oarelations has already
been noted in relation to Figure 1. It might alsonwted that the slope parameter of
the transition function of 13.4 in Table 5 resultghe relatively smooth change over

time in the cross-market conditional correlationslent in Figure 1.

V. Concluding remarks

This paper provides two contributions to undersiagdhe nature and causes of co-
movements in monthly US and UK stock prices. Rirstte examine the role of
macroeconomic and financial variables for explajngiock price growth and find
substantial communality in the responses to thasahles. In particular, not only are
domestic variables important, but some interest @tanges affect both markets
irrespective of the country in which these changgegly. It is plausible that the US
Federal Funds rate is important for the UK marlseea aignal of movements in world
interest rates. Although the role of UK bond rdtasthe US market is less evidemt
priori, nevertheless it indicates that the US markependo international influences.
In general, however, the UK market is affected mmyrénternational influences, with
other significant variables including the dividenteld for the US market, US
inflation and changes in the dollar/pound excharage. Perhaps not surprisingly,
both markets react significantly to oil price irita.

In addition to these cross-country effects, domgestiort and long interest
rates also play a role in explaining stock marlattinns, while there is a negative

effect in both markets from oil prices increaseee Tommunality of these effects
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results in positive correlations between movementshe stock markets in both
countries. Nevertheless, our results also implyt tiee increase in correlations
between these markets in the post-2000 period tdreexplained in terms of their
responses to economic information. Indeed, our tsodedicate that economic
variables alone would point to the cross-marketatations being lower in this period
than previously, whereas the observed correlasabstantially increase.

The second contribution of this paper is to explttre usefulness of time-
varying conditional correlation models in this cexit Although other recent studies
(including Cappiello et al. 2006, Savva et al., 208mploy time-varying conditional
correlation models, to our knowledge the presamdysis the first that does so while
also allowing for mean effects due to known macooeenic information. In our
context, the dynamic conditional correlation model Engle (2002) points to
increasing correlations in the latter part of thenple, but the parameter estimates are
not compatible with the stationarity assumptiort tivaderlies this specification. This
situation is handled well by the smooth transittemditional correlation specification
of Silvennoinen and Terasvirta (2005) using timetlas transition variable. The
resulting STCC specification indicates that the@ations of shocks (unexplained by
the macroeconomic and financial variables) incregiamatically from around 1999.

The robustness of our results is verified usingstam-mean models that do
not admit explanatory variables in the mean equoatid@hese yield similar results,
confirming the high degree of co-movement betwdenUS and UK equity markets
in recent years. Since the increase in co-movemsnains largely unexplained after
exploring the implications of common responses liseoved economic information
through the mean equations, the increased cowefatdf shocks appears to be a

manifestation of increased globalisation.
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Table1l: OLSEstimates of Mean Modelsfor US and UK Stock Prices

Variable ASDt AFT{
Constant 0.7213[0.2299] -0.0244 [0.4599]
AUSRS , 0.3275[0.2121]

AUSLR -1.1260 [0.5731]

AUSFF, -0.4121 [0.2140] -0.3547 [0.1910]
AUSCPy., 0.1555 [0.0968]
AOILyq -0.0621 [0.0252] -0.0697 [0.0275]
AUKLR -2.6305 [0.7597] -3.5021 [0.8712]
AUKTB; -1.0649 [0.4688]
AFTiq 0.4523[0.1790]
ASPy1 -0.1404 [0.1167]
AFTDY;4 11.9207 [3.7722]
ASPDY;1 -6.7356 [2.7762]
AUKIP, 0.5662 [0.2294]
AER -0.3148 [0.0695]
S 3.7569 3.7772

AIC 5.5038 5.5328

SIC 5.5747 5.6748

R?2 0.1392 0.2413
Diagnostics

Autocorrelation 0.5495 0.8237
ARCH 0.0000 0.1634
Normality 0.0655 0.0016

Notes: Values in square brackets heteroscedasticity-robust standard errors;
results for the diagnostic tests are presenteg-wues. Diagnostic tests for
autocorrelation and ARCH are (single equation) hage multiplier tests using
lags 1 to 12 inclusive.
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Table 2: Testsof Constant Conditional Correlations

Tests against DCC model

Ljung Box test 32.29 (0.020)
Bollerslev test 2.923 (0.0003)
Tse LM statistic 3.476 (0.062)

Test against STCC model

t/T transition 19.47 (0.0000)

Notes: The Ljung-Box statistic tests autocorrelatipp to 18 lags in the
cross products of the GARCH standardised residuigributed as/’
with 18 degrees of freedom. Bollerslev’'s (199Gjideaal based diagnostic

i i -1 -1 2 1
is the F test from a regression ofi,t"j,th,j,t‘l on h’jvt, ri’t_lh’j‘t,

2 -1 -1 -1 .
rj,t—lh,j,t and ri’t_lrj’t_lhvjyt,...,ri't_lzrM_12 t- The Tse (2000) test is

the Lagrange Multiplier statistic for constant edations, distributed g&
with 1 degree of freedom. Figures in the parenth@sep-values. Tests
against a single transition STCC model are thos&ibfennionen and
Terésvirta (2005), distributed gswith 1 degree of freedom.

Table 3: Log Likelihood and Information Criteria Values

| Log-Likelihood AlC SIC

Models with explanatory variables

cccC -1645.14 10.492 10.764
DCC -1631.31 10.411 10.695
STCC -1626.40 10.393 10.434
Constant mean models

CCC -1706.69 10.791 10.897
DCC -1695.12 10.724 10.842
STCC -1688.76 10.697 10.716

27




Table 4: Mean Equation and Conditional Correlations over Sub-Samples

Fitted Mean Correlations Conditional Correlaon
No. Sample CCC DCC STCC CCcC DCC STCC
of obs Cross
Correlations
1980m1-2006m6 318 0.656 0.662 0.651 0.693 0.619 0.60p 0.606
1980m1-1984m12 60 0.509 0.680 0.662 0.710 0.457 0.49p 0.518
1985m1-1989m12 60 0.668 0.721 0.691 0.741 0.606 0.52p 0.518
1990m1-1994m12 60 0.664 0.737 0.728 0.754 0.582 0.634 0.518
1995m1-1999m12 60 0.449 0.716 0.713 0.742 0.45¢9 0.49y 0.596
2000m1-2006m6 78 0.867 0.501 0.495 0.528 0.855 0.804 0.864

Notes: All models are estimated using data oversttraple 1980m1-2006m6, using the same variabléseimean equations (see Section IV.A),
but making different assumptions about conditiammatelations. Mean equation correlations are coswhusing the fitted values from (1), over the
indicated sub-sample periods. Conditional correfetifor the CCC model are computed as the simpielations of the residuals from the mean
equations, standardized using the estimated conditivolatility. The DCC model conditional corretats are the sub-sample average of the
estimated conditional correlatiopsof (7). The STCC conditional correlations are ai#d using the estimated values from (8) and (¥ tne as
the transition variable.
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Table5: Mode Estimateswith Smooth Transition
Conditional Correlationsin Time

\ ASP

AFT;

a. Mean equations

Constant
AFTiq
AFTDY.1
ASPDY1
AUKTB;
AUKLR
AUSLR
AUSFF;
AOIL1
AER;
AUKI Py
AUSCP 4

0.8443 [0.1904]

-2.4112 [0.7343]
-1.7081 [0.5716]
-0.4584 [0.2255]
-0.0507 [0.0243]

0.3128 [0.3186]
0.2526 [0.1093]
8.0769 [2.6158]
-3.5870 [1.4812]
-1.0225 [0.4228]

-3.6162 [0.8274]

-0.3781 [0.1767]
-0.0613 [0.0257]
-0.2778 [0.0511]
0.4078 [0.1627]
0.1355 [0.0711]

b. Volatility equations

Constant

2
it

i

0.4760 [0.2402]
0.0639 [0.0222]

0.8959 [0.0236]

1.4469 [0.8443]
0.0658 [0.0320]

0.8281 [0.0613]

c. Correlation equation

(time transition)

Py

0.5175 [0.0527]

0, 0.8997 [0.0340]

y 13.431 [6.5918]

C 0.7701 [0.0220] (Date: 2000:m5)
AlIC 10.393

SIC 10.434

Diagnostics

LB(v;,18) 16.38 (0.566) 18.69 (0.411)
LB(vft 18 17.23 (0.507) 14.51 (0.695)

Notes: Values in square brackets are robust stdndemors (Bollerslev-Wooldridge,
1992). The sample period is January 1980 to Jufé 2818 observations).B(., 18) is
the Ljung-Box statistic for testing autocorrelatiop to 18 lags calculated for both the
standardized residuailg, see equation (11), and the squared standardézédiuals, both
distributed as/® with 18 degrees of freedom under the null hypashéwhere 18 is

approximately the square root of 318). Figuresareptheses afevalues.
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Figure 1: Monthly time-varying conditional corretais from DCC specification
(DCCx) and fitted time transition for STCC modell(&x), both with explanatory

variables in mean equation.

Appendix 1: Initialisation of the Nonlinear Estimation

An important practical issue in nonlinear modelliaghe selection of starting values
for the estimation. Starting values for the DCC elechre based on linear estimates
for the mean equations with all parameters in thRRGH part of the equation
initialised as 0.05. For the correlation parametdrs news parameter is initialised

at 0.05. While we experimented with different vaer the decay parameter, the

likelihood maximum was achieved wiii initialised at 0.05.

As far as the (single transition) STCC models anecerned, we use starting
values from OLS estimation of the mean equatiohsfdl initial univariate estimates

of the volatility equation (4) to obtain estimatdsthe respective parameters and also
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the associated series;, r2;, hi1y andhyz. Using these, we perform a grid sedfch
where we select initial values for the remainingapaeters as those that minimise the
square of the distance between the cross prodtthe standardised residuals and the

implied correlations, namely

2

(A1) min {L} -G\ (5:1,0)) ~0,G.(S:1:C)

V,C.01.P5 (ﬁll,t ﬁ22,t)l/2

We alsoestimate the STCC-GARCH models conditional on O¢§uits for the mean
equations and then apply the iterative procedureSibfennoinen and Terasvirta
(2005) that separates the parameters of the GAREelation volatility and
transition function(sy. For the STCC model without explanatory variahilesthe
mean equationghe results reported are obtained using thesalinialues, as this

resulted in the higher log likelihood values thalneo initialisation&’.

18 See Sensier, Osborn and Ocal (2002) for an exaaffeid search techniques applied to nonlinear
estimation.

9 This procedure was applied using Ox programs segpby Annastiina Silvennoinen. These
programs are written such as that the returnsteredsiduals from a filtered time series, they db n
allow for the computation of QML standard errors.

2 For instance, the grid search gave a first béliestimate for the time threshold of 0.15. Heer

the highest log likelihood value was obtained uiti{h, which was the estimate obtained from the Ox

program.
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Appendix 2: Data

TableA.1: Variable Descriptions and Sour ces

Name Variable Description Sour ce Code

P Standard and Poors’ composite index (EPPatastream ~ USS&PCOM
NSA

DY Standard and Poors’ 500 composite: | Datastream| S&PCOM(DY

dividend yield (EP), NSA

USFF Federal Funds Rate Market Rate, (EP), @ GFD _FFYD
NSA

USLR 10-year Bond Constant Maturity Yield, GFD IGUSA10D

(EP), NSA
uspP Industrial production index, SA FRED INDPRO
USRS Total retail trade (Volume), SA OECD SLRTTOO01
IXOBSA
UuSvil M1 Money Stock, SA FRED M1SL
USCP Consumer Price Index for All Urban FRED CPIAUCNS
Consumers: All ltems, NSA

FT Financial Times all share index (EP), NSA  Datastrea UKFTALL.

UKDY | F.T. all share index: dividend yield-(EP), Datastream| FTALLSH(DY
NSA

ER US $ TO £1 (WMR), exchange rate (EP), Datastream USDOLLR.
NSA

OIL West Texas. Intermediate Oil Price (EP), GFD __WTC_D

US$/Barrel, NSA

UKTB | Treasury bills: average discount rate, NSA ONS AJNB

UKLR | Gross interest yield on 2.5% Consols, (EPPatastream ~ UKCONSOL
NSA

MO wide monetary base (EP): level £M, $A ONS AVAE

UKMO

UKRS Retail sales volume index, SA Datastream UKRETTOTG

UKIP Industrial production volume index, SA ONS CKYW

UKRP Retail price index, NSA Datastream UKCONPRCF

Notes: EP — end of period; SA — seasonally adjy$i&h — not seasonally adjusted; ONS — Office for
National Statistics; FRED — Federal Reserve Econdpaita (http://research.stlouisfed.org/fred/); GFD
— Global Financial Database (http).

Table A.2: Outliers Removed

UK us
Stock Market Prices| 1981m9, 1987m10 1987m10, 1998m8
Dividend Yields 1981m9, 1987m10, 1987m10
1998m1
Industrial Production 2002m6 N/A
MO/1 1999m12, 2000m1] 2001m9
Retail Sales 1979m6 1987m1, 2001m[LO

Appendix 3: Additional Results
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Table A.3.1: Tests of Constant Conditional Correlations

in Constant M ean M odel

Test Statistic p-value
Tests against DCC model
Ljung Box test 29.56 0.042
Bollerslev test 2.007 0.017
Tse test 8.866 0.003
Tests against STCC model
AFT1 transition 1.424 0.232
APy, transition 0.007 0.932
AFTDY,. transition 0.260 0.610
ASPDY., transition 0.003 0.952
AUKTB: transition 9.393 0.002
AUKLR; transition 9.200 0.002
AUSLR transition 0.449 0.502
AUSFF; transition 4.490 0.034
AOIL, transition 0.002 0.962
AER; transition 0.846 0.357
AUKIP, transition 3.475 0.062
AUSCP;, transition 10.01 0.001
AUSRS ; transition 0.289 0.590
t/T transition 15.53 8.0904e-005

Notes: See Table 2.
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Table A.3.2: Constant Mean STCC-GARCH Modd

ASP

AFT;

a. Mean equations

Constant

0.9423 [0.2168]

1.0714 [0.2205]

b. Volatility equations E(r%/0,_,) =h,,

Constant

2
I"i -1

Nia

0.6487 [0.3512]
0.0679 [0.0230]

0.8887 [0.0235]

1.6799 [0.8645]
0.0813 [0.0367]

0.8236 [0.0554]

c. Corrélation equation p,=p,1-G,(t/T,y,c)) +p,G,(t/T;y,c)

yox 0.5633[0.0468]

o 0.8813[0.0210]

y 31.739 [22.759]

C 0.7600 [0.0152] (Date: 2000:m?2)
AlIC 10.697

SIC 10.716

Diagnostics

LB(v,, 18 16.44 (0.562) 8.989 (0.960)
|_|3(Vi2t 18) 17.92 (0.461) 16.72 (0.542)

Notes: See Table 5.
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