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Abstract 

Empirical studies often find that the spread between longer and shorter rates does not have 

predictive power for future longer rates, violating the Expectations Theory (ET). Although 

the predictive power of the spread for future shorter rates is largely in accordance with the 

ET, especially when the forecast period is long, researchers often find this holds to varying 

degrees across samples (country-wise or time-wise). We show this pattern may be due to 

the powers of all tests depending on interest rates’ maturities and their persistency in small 

samples. This paper also compares the powers of tests of the ET against the under/over-

reaction and the time varying term premium alternatives across various maturity 

combinations, levels of persistency and sample sizes. Tests perform best and are 

comparable to each other at the shortest end of the term structure, but deteriorate as the 

distance between maturities of longer and shorter rates increase. However, this 

deterioration is of varying degrees for different tests and its speed diminishes as we depart 

from the shortest end. In general Lagrange multiplier and distance metric tests emerge as 

being the most powerful and least sensitive to interest rate maturities and their persistency. 

JEL classification: G10; E43. 

Keywords: expectations hypothesis; term structure of interest rates; vector autoregression 
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“…The simple expectations theory, in combination with the hypothesis of rational 
expectations, has been rejected many times in careful econometric studies. But the 
theory seems to reappear perennially in policy discussions as if nothing had 
happened to it…We are reminded of the Tom and Jerry cartoons that precede 
feature films at movie theatres. The villain, Tom the cat, may be buried under a ton 
of boulders, blasted through a brick wall (leaving a cat shaped hole), or flattened by 
a steamroller. Yet seconds later he is up again plotting his evil deeds” 1.  

 

1. Introduction 

 

Economists and investors believe that a better understanding of the relationship between 

interest rates of various maturities leads to better decision making. One of the most 

important theories of this relationship is the expectations theory (ET), according to which 

investing in a succession of short-term bonds gives the same expected return as investing 

in a long-term bond, when adjustment is made for the assumed constant term premium2.  

The empirical literature on this theory is huge, yet there is little sign that research 

interest in this topic has waned, as the theory is constantly being subjected to scrutiny 

using new datasets and new methodologies. One of the most puzzling results, reported as 

early as Macaulay (1938), is that two main implications of the theory lead to different 

conclusions, which Campbell and Shiller (1991) describe “…the slope of the term 

structure almost always gives a forecast in the wrong direction for the short term change 

in the longer bond, but gives a forecast in the right direction for long term changes in short 

rates”. The former is typically statistically different from the ET forecast. Although 

Stambaugh (1988) notes that the regression used to test the first implication is very 

sensitive to measurement error in the long term interest rate, Campbell and Shiller (1991) 

show that these rejections are quite robust even if this is correctly accounted for using 

instrumental variables.  

The second implication, relating to predictions of future short rates, is rejected in 

Campbell and Shiller (1991) only when the longer rate used to compute the spread is less 

than 36 months, so that the rejections in this case cluster at the short end of the term 

structure, Indeed this implication is tested much more frequently, leading to rejections at 

the short end of the term structure, e.g. in Shiller, et al. (1983), Mankiw and Summers 

(1984) and Evans and Lewis (1994). This pattern is also present in more recent studies by 

                                                 
1 Shiller, Campbell and Schoenholtz (1983), pp 174-175. 
2 Another implication of the EH is that the forward interest rate must equal the expected spot rate. This 
implication is the subject of studies by Fama and Bliss (1987), Backus, Foresi, Mozumdar and Wu (2001), 
and Fama (2006), among others and will not discussed in the present paper. 
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Sarno, Thornton and Valente (2006) and Bataa, Kim and Osborn (2006), but is not 

universally accepted. For example, Longstaff (2000) does not reject the ET at the very 

short end using high frequency data while Taylor (1992) finds very strong evidence against 

it at the long end. Moreover, its performance seems to differ across countries and sample 

periods. Hardouvellis (1994) finds that, among the G7 countries, it is strongly rejected only 

for the US while Gerlach and Smets (1997) extend this conclusion using Eurocurrency 

rates in 17 countries. However, the evidence for Germany seems controversial. Jondeau 

and Ricart (1999) reject the implication for Germany and the US but not for France and the 

UK and Bekaert and Hodrick (2001) also reject the null in Germany and the US but not in 

the UK using the extended data of Gerlach and Smets (1997). In contrast, Cuthbertson, 

Hayes and Nitzsche (2000) and Boero and Torricelli (2002) use estimated German term 

structure data and provide supportive evidence for the theory. Country-specific studies 

such as Dahlquist and Jonnson (1995) for Sweden, Engsted (1996) for Denmark, 

Cuthbertson (1996) for the UK and Cuthbertson and Bredin (2001) for Ireland also support 

the theory. 

Several alternatives have been proposed to explain these anomalies, which include 

time varying term premia, the overreaction hypothesis, monetary policy regime change and 

the finite sample properties of different tests. Shiller et al. (1983) conclude: “…Variations 

in risk premiums are so large as to destroy any information in the term structure about 

future interest rates”. An unobserved time-varying term premium is modelled in various 

ways: using levels of interest rates, yield spreads, and unemployment rates (Shiller, 1979; 

Mankiw and Summers, 1984), using second moments of explanatory variables (Engle 

Lillien and Robins, 1987; Engle and Ng, 1993), employing panal data method (Harris, 

2001) and as a difference between the actual and the theoretical spread derived under the 

ET (Carriero, Favero and Kaminska, 2006). Tzavalias and Wickens (1997) argue the two 

empirical implications are in accordance with the theory once a time-varying term 

premium that is correlated with the spread is allowed 

However, Campbell and Shiller (1991) and Hardouvellis (1994) assert that markets 

overreact to monetary policy announcements, changing their expectations of future spot 

rates by more than is warranted, and this explains the contradictory test results on the two 

theory implications. Mankiw and Miron (1986) attribute the poor performance of the EH 

over certain periods to the monetary policy pursued by the US Fed, with the EH 

performing better in periods of monetary targeting than in periods of interest rate targeting 

(and even better before the foundation of the Fed). Supporting evidence on this conjecture 

is found in Kugler (1988), Hardouvellis (1988) and Simon (1990). Rudebusch (1995), 
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Roberds, Runkle and Whiteman (1996), Fuhrer (1996) and Balduzzi, Bertola and Foresi 

(1997) attempt to reconcile the ET with data, with partial success, by explicitly modelling 

Fed behaviour in the process governing the short term interest rate. More recently, Kozicki 

and Tinslay (2005) stress the importance of imperfect policy credibility of the Central 

Bank on the performance of the theory.  

Finally, there is a strand of literature that suggests the tests themselves may lead to 

false rejections in finite samples. Early studies of this possibility consider either a single 

equation test, or employ a VAR as the data generating process (DGP) and test implications 

imposed by the ET on the VAR parameters using Campbell and Shiller’s (1987) Wald test. 

Bekaert, Hodrick and Marshall (1997, 2001) document that the finite sample distributions 

of the test statistics under the null, including those from the single equation test, can be 

quite different from their asymptotic counterparts in the presence of highly persistent short 

rates and “peso problems”. Using survey data, Froot (1989) finds that the rejections in the 

single equation test can be due to the rational expectations hypothesis, not necessarily due 

to the theory itself. Shea (1992) illustrates that the Wald test can lead to different 

conclusions depending on how one specifies the null, while Bekaert and Hodrick (2001) 

document its extreme size distortion and suggest an LM test. On the other hand, Bekaert, 

Wei and Xing (2006) and Sarno et al. (2006) include more macroeconomic and financial 

variables into the VAR as conditioning information and obtain more uniform rejections of 

the theory across the maturity spectrum.  

The primary goal of this paper is to explore in more depth the finite sample 

properties of the tests, extending previous analyses by considering well specified 

alternative hypotheses against the null of the ET, and reconciling the above mentioned 

contradictory results across the maturity spectrum and/or samples (country-wise or time-

wise). We start from Campbell and Shiller’s (1991) comment on the previous literature: 

“…Different studies use different econometric methods, test different implications of the 

expectations theory, and look at different interest rates” to which Driffil, Psaradakis and 

Sola (1997) add “…different studies also use data drawn from different places and periods 

of time”. Less importantly, studies use samples of different sizes. We take sample sizes 

typically used in the literature and ask: Suppose the ET is either true or false, but uniformly 

so across interest rate maturity pairs and/or periods. Would we get different results from 

the various econometric methods on testing the second implication, which produced most 

contradictory results, ceteris paribus? If the tests are sensitive to interest rate maturities 

and persistency, the (non)rejection pattern across the term structure maturity spectrum 

and/or different samples is not necessarily due to the theory itself.  
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Moreover, given the extensive empirical literature on the topic, there is a surprising 

lack of papers investigating the properties of various tests, proposed for the ET, in a 

unified framework. Not only is it of interest to know how tests perform when interest rates 

of different maturities and persistency are used in order to assess previous findings, but 

also to identify the most robust ones to be recommended for use in future research. Both 

asymptotic and wild-bootstrap finite sample versions of all tests are examined, following 

the recommendations of Horowitz and Savin (2000) and Horowitz (2001). As well as 

considering the conventional single equation test and more novel VAR based tests, we 

propose “new” t statistic forms of the implied regression slope and variance ratio tests, 

building on Campbell and Shiller (1987) and Bekaert and Hodrick (2001). The VAR based 

tests include a Wald (W hereafter) test proposed by Campbell and Shiller (1987), and a 

Lagrange Multiplier (LM) and Distance Metric (DM) tests of Bekaert and Hodrick (2001), 

the latter of which is equivalent to the Likelihood Ration (LR) test of Sargent (1979) under 

normality. Bekaert and Hodrick regression tests (2001) argue that the LM test is superior to 

the DM and W tests and is fast gaining popularity, being used in Bekaert, Wei and Xing 

(2006), Sarno et al. (2006) and Bataa et al. (2006), among others.  

 The paper is organized as follows. Section 2 explains the ET and conventional 

ways to test it, followed in Section 3 by the classic trinity of LM, DM and W tests as used 

for ET testing in a VAR framework. Section 4 then develops the regression and variance 

ratio test statistics. The main results of the paper are contained in Section 5, which details 

our Monte Carlo study. Section 6 concludes. 

 

2. The ET and Conventional Test 
 

Most modern asset pricing theories that admit no arbitrage opportunity deliver the 

following general relationship between long and short rates3: 

∑
−

=
+ +Ξ=

1

0
),,(,, )(1 k

i
tmntmitmtn RE

k
R π ,       (1) 

where Rn,t and Rm,t are long and short rates at time t, respectively, )( , tmitmRE Ξ+  is the 

mathematical expectation of  the short rates at t+mi, i = 0, 1, 2,…, k-1,  formed at time t 

conditional of the information set available to the market, tΞ . Here k=n/m is the maturity 

                                                 
3 See e.g. Shiller (1979), Kozicky and Tinsley (2001) and Bekaert and Hodrick (2001). 
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multiple defined for simplicity to be an integer, m is the maturity of a shorter rate and n is 

the maturity of a longer rate; tmn ),,(π  is a term premium and if it is constant (1) represents 

the ET and if it is zero then we have the simple or pure ET, PET. Following Shiller (1982) 

and Melino (2001) we ignore the constant term premium in the following discussion as this 

drops out of (1) if the data are demeaned. 

The ET in (1) is rarely tested directly, probably due to most empirical results 

concluding the series are integrated, in which case conventional statistical theory is not 

appropriate. Rather, another implication of the ET is usually tested, which is based on the 

ability of the spread between long and short rates to predict future short rate changes, 

tmn

k

i
tmitmm SRE

k
i

),,(

1

1
, )()1( =−∑

−

=
+ ΞΔ ,     (2) 

where tmmtmmtmm RRR ,,, −= ++Δ  and tmtntmn RRS ,,),,( −= , which is obtained by subtracting 

tmR ,  from both sides of (1). Equation (2) implies the current spread predicts a cumulative 

change in the shorter term (m-period) interest rate over n periods. If one assumes rational 

expectations, so that  

mitmitmtmitm vRRE +++ +=Ξ ,, )( ,      

where vt+mi has zero mean and is orthogonal to the information set available at time t, 

probably the most commonly tested equation of the ET is obtained, namely  

  tmntmn

k

i
mitmm wSR

k
i

),,(),,(

1

1
,)1( ++=Δ−∑

−

=
+ βγ     (3) 

where w(n,m),t is a moving average process of order (n-m) and under the null hypothesis of 

the ET, β should be unity. 4  

However, there are several econometric difficulties with the conventional 

regression approach applied to (3). Firstly, it is inefficient as we lose n-m observations at 

the end of the sample period. For example, in studies of Campbell and Shiller (1991), 

Sarno et al. (2006) and Bataa et al. (2006) that use monthly data, n is as large as 120, i.e. 

                                                 
4 Another implication of (1), that is less empirically supported and therefore called a “contrarian” test in 
Thornton (2006), is that the yield spread predicts the m-period change in the longer- term yield, which is 

tested (see e.g. Campbell and Shiller 1991) using ttmntnmtmn vS
mn

mRR +
−

+=−+− ),,(,, αγ ; under the null 

α  is unity.  
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the long rate maturity is 10 years. Secondly, using the realized returns as a proxy for 

expected returns is at best problematic. Elton (1999) strongly argues against such an 

approach, which implies if the test rejects the null it is impossible to distinguish if it is due 

to failure of the way rational expectations are handled or the ET itself. Even if rational 

expectations are correctly dealt with, the error term w(n,m),t, is a MA(n-m), so standard 

errors have to be corrected, for example using the method described in Hansen and 

Hodrick (1980), or Newey and West (1987). But as Richardson and Stock (1991) and 

Hodrick (1992) illustrate, these adjustments do not work well when n-m is not small 

relative to the sample size. Thirdly, as discussed in Mankiw and Shapiro (1986) and 

Campbell, Lo and MacKinlay (1997) the regressor is serially correlated and correlated with 

lags of the dependent variable, and this can cause finite sample problems as well. 

 

3. Testing the ET in a VAR framework 

 

Recent work has focussed on testing the second implication of the ET in a VAR 

framework. In this section we outline this approach, first in terms of the relevant 

asymptotic distributions, before considering inference using empirical finite sample 

distributions. 

3.1 Asymptotic distributions 

Probably the biggest problem in the single equation framework is deriving the market 

expectation, )( , tmitmRE Ξ+ . If we assume expectations are formed linearly and the 

information set available to the market, tΞ , can be proxied by some observable set tI , 

tt I⊃Ξ , then the aforementioned problems may be avoided using a VAR framework. The 

idea is old and can be traced back to at least Sargent (1979). As in Campbell and Shiller 

(1991) we consider a stationary vector stochastic process for [ ]′Δ= tmntmt SR ),,(, ,y .5  

Assuming the process for ty  is represented by a demeaned VAR of order p with error 

covariance matrix )( ttE uuΣ ′= , 

                                                 
5 This specification can be interpreted as an assumption that interest rates are nonstationary, specifically I(1), 
and hence, as demonstrated in Hall, Granger and Anderson (1992), both VAR variables are stationary 
according to the ET. However, even if interest rates are stationary, they are highly persistent and for the finite 
sample sizes typically used for analysis the reduction of this persistence by differencing is advantageous for 
VAR modelling. 
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t

p

i
itit uyΦy += ∑

=
−

1
,        (4) 

it can be written as a first order VAR in companion form such that ttt vΦzz += −1 , where 

the companion matrix Φ  is of dimension 2p×2p: 

    

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−

0I00

00I0
000I
ΦΦΦΦ

Φ

2

2

2

121

L

MMLMM

L

L

L pp

 

while tz  has 2p elements, [ ]′′′′= +−− 11 ,...,, ptttt yyyz , vt is a 2p vector equal to [ ]′′ 0,...,0,0,tu  

which is uncorrelated over time. Thus zt summarizes the whole history of ty .  

Now define vectors ei, i = 1, 2; each of dimension 2p, with unity in the ith position 

and zeros everywhere else such that 

    ttmR ze1, ′=Δ  and ttmnS ze2),,( ′= .     (5) 

Using the ET in (2), the spread between long and short rates, which will be referred to as 

the theoretical spread henceforth, is6 

ttmnS Λze1
*

),,( ′≡ ,       (6) 

where 11 )]())((/[),,( −− −−−−≡≡ ΦIΦIΦIIΦΦΛΛ mnnmmn . If the ET is true, the 

expected spread must be equal to the theoretical spread, and this equality holds when the 

nonlinear restrictions on the VAR parameters 

Λee 12 ′=′         (7)   

are valid.  

Applying a Wald test to the restrictions in (7), Campbell and Shiller (1987) and 

Shea (1992) find overwhelming evidence against the ET in contrast to Sargent (1979) and 

Melino (2001) whose LR test did not reject it. Recently, Bekaert and Hodrick (2001) 

suggest LM and DM tests using the GMM hypothesis testing framework of Newey and 

McFadden (1994) and find the LM test has better small sample properties than Wald and 

                                                 
6 The derivation is provided in Appendix A.   
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DM tests, the latter of which is equivalent to the LR test in terms of size and power when 

joint normality holds. Since the Bekaert and Hodrick (2001) methodology is relatively new 

and general enough to accommodate other tests, it is summarised here with the suggested 

extensions of Bataa et al. (2006).  

The Generalized Method of Moments (GMM) estimator of Hansen (1982) is used 

to estimate the VAR in (4). Defining ],...,[ 1 ′= pΦΦΦ& , the vector of nonlinear 

orthogonality conditions can be written as [ ] 0θ),g(x =tE , where )z,y(x ′′′≡ −1ttt , 

)(Φθ &vecr= .  Estimation uses the corresponding sample moment conditions for a sample 

of size T, namely ∑
=

≡
T

t
tT T 1

1) θ),g(x(θg . 

It proceeds by selecting θ to minimize the GMM criterion function  

  )ˆ)
2
1) 1 (θgΩ(θgθ TTTT (J −′−≡ ,       

where, assuming the VAR of (4) is correctly specified with tu  uncorrelated, the weighting 

matrix, 1ˆ −
TΩ , is a consistent estimate of the inverse of  

  [ ])θ,θ)g(x,g(xΩ ′≡ ttE .                    (8) 

If we denote the Jacobian matrix as )θxgG θ 0,(∇≡ E , where θ∇  denotes derivative with 

respect to θ , then the GMM asymptotic distribution theory guarantees 

  ),(ˆ 1
0

−⎯→⎯− B0)θθ( NT d
T ,               (9) 

where Tθ̂  is the GMM estimator obtained using T observations, 0θ  is the corresponding 

true value, ⎯→⎯d  denotes convergence in distribution and GΩGB 1−′≡ .  

The null hypothesis of (7) can be written as: 

  0Λee)a(θ =′−′≡ 1200 :H ,               (10) 

where a(θ0) is a 2p dimensional vector, with )θaA θ 0(∇≡ . Notice that the null is 

composite, i.e. it does not fully specify the data generating process (DGP). For example, it 

restricts only 2p out of 4p VAR slope parameters and does not say anything about the 
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conditional covariance matrix of the VAR residuals. The Lagrangian for the constrained 

GMM maximization problem is 

  γa(θ(θgΩ(θgγθ, ))ˆ)
2
1)( 1 ′−′−= −

TTTL ;              

where γ is a vector of Lagrange multipliers, and TΩ̂  is a consistent estimate of 

Ω obtained from (8) using the sample mean in place of the expectation. The first order 

conditions for the solution of this problem are 

⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−

∇−′− −

0
0

θa

γθaθgΩG θ

)(

)()(1

T

TTTTTT

T

TT
,             

and, under the null, the constrained GMM estimator satisfies 0θθ ⎯→⎯p
T , so 

A)θaθ ⎯→⎯∇ p
T( , where ⎯→⎯p  denotes convergence in probability. Then Newey and 

McFadden (1994) show that  

  ),(ˆ 1111 −−−− ′′⎯→⎯− AB)A(ABAB0)θθ( NT d
TT .             (11) 

The Wald statistic used to test (10) is based on deviations of the unconstrained estimates 

from values consistent under the null. On the other hand, the LM or score statistic is based 

on deviations of the constrained estimates from values solving the unconstrained problem. 

Finally, the DM statistic is based on the difference between the GMM objective functions 

at the constrained and unconstrained estimators using the same weighting matrix. 

Specifically,  

p)(χTW d
TT 2)ˆ()ˆ( 211 ⎯→⎯′′= −− θa)A(ABθa                     (12) 

p)(χTLM d
TT 221 ⎯→⎯′′= − γAABγ              (13) 

p)(χJJTDM d
TT 2))ˆ()((2 2⎯→⎯−−= θθ ,            (14)  

where p is the VAR lag length. 

Newey and McFadden (1994) show how to obtain values for the above trinity of 

statistics starting from any initial T  consistent estimator Tθ
~  of 0θ . We evaluate B and A 

at Tθ
~ , and the constrained estimator is obtained from the Lagrangian first order conditions, 
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⎥
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T

TTTTT

T

T

θa
θgΩG

0A
AB

0
θ

γ
θ ,             (15) 

using 0γ = as the initial consistent estimator of the Lagrangian multipliers. Newey and 

McFadden (2001) note )~( Tθa  is not necessarily zero in finite samples and Bekaert and 

Hodrick (2001) suggest to further iterate on (15), i.e., Tθ
~  obtained from (15) is put back on 

the right hand side and iterated until 0θa =)~( T .7  

3.2 Bootstrap inference 

Bekaert and Hodrick (2001) also provide finite sample versions of their tests using a 

bootstrap procedure. According to Horowitz (2001), the bootstrap should only be used if 

the asymptotic distribution of a test statistic is pivotal, i.e. does not depend on unknown 

population parameters. Although the asymptotic distributions in (12) to (14) depend on the 

unknown lag length of the assumed VAR data generating process (DGP), Bekaert and 

Hodrick (2001) apparently rely on the consistency of the SIC to select that order. The VAR 

parameters, estimated subject to the constraint in (10), and a bootstrap of the corresponding 

residuals are used as the DGP to estimate the finite sample distributions of the test 

statistics.  

Although Bekaert and Hodrick (2001) use an iid bootstrap or assume a GARCH 

model for the VAR residuals, we use a recursive design wild bootstrap that has been shown 

to deal better with general forms of volatility clustering.8 For the estimated constrained 

VAR parameters pΦΦ ...,,1  and corresponding residual vector tu  for time period t, we 

generate a bootstrap sample as  

*

1

**
t

p

i
itit uyΦy += ∑

=
− , ttt uu ω=* , t = 1,…, T,             (16) 

in which the scalar random variable ωt  follows the Rademacher distribution, taking the 

possible values of negative and positive unity with equal probabilities.9 This choice is 

justified by recent Monte Carlo studies of Davidson and Flachaire (2001), Godfrey and 

Orme (2004) and Godfrey and Tremayne (2005). For each of a large number of data sets 

                                                 
7 In our application the tolerance level for convergence is set at 10-8. 
8  See Goncalves and Killian  (2004) and discussions in Bataa et al. (2006). 
9 Bataa et. al (2006) follow Stine (1987) in randomizing the starting values. They split the observed data into 
T – p + 1 overlapping blocks of length p and one of these is selected randomly as the starting point.  
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generated in this way, we estimate (12) to (14) to derive the empirical finite sample 

distributions of the test statistics.  

 

4. Mixed testing approach 

 

Bekaert and Hodrick (2001) note that the inferential efficiency of the single equation 

method can be improved by considering implications of the VAR parameters for the slope 

coefficient of regression (3). Sarno et al. (2006) and Bekaert et al. (2006) extend this idea 

to the variance ratio of the theoretical and actual long rates. We term these a mixed 

approach. This section first describes how previous studies use this mixed approach make 

inference and then argues such inference is invalid because the null hypothesis does not 

fully specify the assumed DGP. The second subsection then develops the studentized 

versions that avoid this problem. 

4.1 Slope coefficient and variance ratio tests 

The basic idea of the mixed approach is to generate empirical distributions of the implied 

OLS slope coefficient for equation (3) and the variance ratio statistic under the null, using 

a large number of datasets generated from (16) with an iid bootstrap, which then allow 

computation of empirical p-values for the test statistics obtained from real data.  

If the ET is true, the population slope coefficient from a regression of the actual 

spread on the theoretical spread must be unity. Therefore, from (5) and (6), the implied 

slope coefficient is 

  
22

21)(
Ψee
ΛΨeeθ
′
′

=β ,               (17) 

namely the covariance between the dependent and independent variables in (3) divided by 

the variance of the dependent variable, where )()()( 1 ΣΦΦIΨ vecvec −⊗−= . Similarly, 

the variance ratio of the theoretical and actual spreads can also expressed in terms of the 

VAR parameters as10 

                                                 
10 Campbell and Shiller (1991) use the concept to evaluate the economic significance of the ET, as this ratio 
should be close to one if the ET is true, but Sarno et al. (2006) and Bekaert et al. (2006) provide the compact 
expression for the variance ratio of the theoretical and actual long rate rates, as their DGP includes interest 
rates in levels. 
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11)(
Ψee

eΛΛΨeθ
′

′′
=v .                           (18) 

However, it is important to note that the estimated DGP in (16) is only one of 

possibly many DGPs under the null. This implies applying a simple bootstrap procedure to 

either (17) or (18) to conduct inference is problematic, because the ET constitutes a 

composite null hypothesis in terms of the assumed DGP. For the ET, only 2p restrictions 

are implied on the 4p elements of the VAR coefficient matrices, so that there are 

potentially many DGPs that could generate the data under the null. Therefore, as discussed 

by Horowitz and Savin (2000), valid inference requires the use of size-corrected critical 

values. These set the supremum of the test’s rejection probability over all admissable 

DGPs under H0 to a pre-specified level α, rather than taking the critical value estimated as 

the α level quantile from a specific and arbitrary finite sample distribution. Estimating the 

appropriate size-corrected critical value will obviously be very expensive, if not 

impossible, due to the need to consider all DGPs admissible under the composite null 

hypothesis. Perhaps more importantly, this critical value may be infinite, leading to a test 

with no power if the number of possible DGPs under Ho is large (Dufour, 1997), or the 

power of the test may be the same as the size (Bahadur and Savage, 1956).  

4.2 Studentized slope and variance ratio tests 

As just argued, finite sample bootstrap critical values obtained using (17) and (18) 

are not valid for inference on the ET at the specified level of significance α. Indeed this 

may be the reason why Bekaert et al. (2006) and Sarno et al. (2006) find somewhat 

contradictory results from the LM test and the implied test statistics of (17) and (18). 

However, if the ET is true, the population values of these statistics must equal unity. That 

is, the ET in (10) implies the null hypotheses  

H0: 1)()( 00 == θθ vβ                        (19) 

This, in turn, suggests bootstrapping simple t statistics, which are asymptotically pivotal, 

associated with the null that (17) and (18) are equal to unity, rather than bootstrapping the 

implied slope coefficient and variance ratio directly.11 This leads to the new tests we 

propose.  

 First note that 1)()( == TT v θθβ , then from (11) and a Taylor’s series 

approximation, the asymptotic distributions are 
                                                 
11 See Hall (1994) and Horowitz (2001) for the importance of bootstrapping asymptotically pivotal statistics.  
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))(,0(1)ˆ( 2/12/1 HBMIBH)θ( −− −′⎯→⎯− NT d
Tβ ,             (20) 

))(,0(1)ˆ( 2/12/1 LBMIBL)θ( −− −′⎯→⎯− NvT d
T ,             (21) 

where )θH θ T(β∇≡  and )θL θ Tv(∇≡  are gradients that can be calculated using 

numerical derivatives.12 These expressions indicate the problem with the straightforward 

use of finite sample inference applied to the slope coefficient and the variance ratio, 

because the variances depend on parameters that are not fully specified under the null 

hypothesis. However, the asymptotic distributions of the t statistics, which will be referred 

to as t2 and t3 respectively, obtained from (20) and (21) are standard normal and do not 

depend on the parameters of the specific DGP from the set satisfying the ET that generated 

the data under the null hypothesis.  

 In particular, the studentized test statistics we propose are obtained as   

  212/12/1 ))(/(1)ˆ(2 HBMIBH)θ( −− −′−= TTt β              (22) 

212/12/1 ))(/(1)ˆ(3 LBMIBL)θ( −− −′−= TvTt .            (23) 

Because of the asymptotic standard normal property of these statistics, the bootstrap 

provides valid higher order approximations to their finite sample distributions under the 

null (Horowitz 2001).  

 

Section 5. Monte Carlo study 

 

This section first sets out the methodology used in our Monte Carlo analysis and then 

compares the control parameters with those estimated from real data to ensure the 

empirical relevance of the exercise and finally discusses the results. 

5.1 Methodology 

To our knowledge only two studies to date have compared the finite sample properties of 

ET tests. Bekaert and Hodrick (2001) compare the LM, DM and W tests of (12)-(14), while 

Sarno et al. (2006) compare the LM test with its extended versions. The extensions are to 

                                                 
12 See for example, Campbell et al. (1997, p540). We also used the distribution in (11) under the null, as in 
related literature of Hodrick (1992) and Bekaert and Hodrick (1992), but our specification was found to 
perform slightly better in our Monte Carlo Experiments. 
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include inflation in the VAR, while they also consider testing the ET using more than two 

interest rates. The former study finds the LM performs better than the other two statistics 

and the latter concludes the extensions increase the power of the LM test.  

Our study differs from these in at least three important aspects. Firstly, both 

previous studies take the unrestricted VAR, estimated on the observed data, as the DGP 

under the alternative hypothesis. However, this assumes that the ET does not hold in the 

observed data. More importantly, even if this assumption is true, the procedure means that 

the alternative, against which the null is being tested, is unknown. As Melino (2001) 

argues, a good statistical methodology considers the alternative hypotheses that are the 

most plausible and constructs tests which are as sensitive as possible in detecting 

differences between the maintained hypothesis and these particular alternatives. Therefore, 

we explicitly consider the widely cited overreaction and time varying term premium 

hypotheses as alternatives to the null of the ET.  

The second important difference is that we compare the finite sample properties of 

not only the classic trinity of tests in (12)-(14), but also the conventional single equation 

tests obtained from (3) that will be referred to as t1, and studentized implied regression and 

variance ratio tests, t2 and t3, obtained in (22) and (23) respectively. The performance of 

the conventional test can be predicted, given its econometric problems discussed in Section 

2 and results in Bekaert et al. (1997), but the latter two have not been considered in the 

previous literature. Finally, we explicitly analyse the effects of interest rate maturities and 

persistency on the powers of the tests.  

In order to ensure that the DGP resembles the real world and various levels of 

interest rate persistency induced by different monetary policy regimes (Mankiw and Miron, 

1986), we use observed term structure data from the US and the UK, the countries where 

most and least evidence against the ET has been reported, as the basis of our Monte Carlo 

study. To be explicit, we estimate a first order VAR for the mean with a multivariate 

GARCH (1,1) process of Engle and Kroner (1995) applied to the resulting residuals:  

ttt eAyδy ++= −1 , 

,21
ttt ξΣe =  

ΛΣΛFeeFDDΣ 111 −−− ′+′′+′= tttt ,  
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where [ ]′Δ= tmntmt SR ),,(, ,y  and tξ  is the vector standard normal variable. The VAR and 

GARCH parameters are estimated using 1 and 3-month UK government Treasury Bill rates 

from January 1979 to May 2004 obtained from DataStream® and 1 and 2-month US zero 

coupon yield data from Jan 1952 to Dec 2003 from Sarno et al. (2006). This specific 

choice of data has no other intention except to generate DGPs that are empirically relevant. 

These are: 

US: ⎥
⎦

⎤
⎢
⎣

⎡
−

=
363.009.0
035.1069.0

A , ⎥
⎦

⎤
⎢
⎣

⎡−
=

0002.0
0009.0

δ ,  

⎥
⎦

⎤
⎢
⎣

⎡
=

000.0000.0
012.0095.0

D , ⎥
⎦

⎤
⎢
⎣

⎡
=

397.0021.0
074.0218.0

F ,  ⎥
⎦

⎤
⎢
⎣

⎡ −
=

920.0014.0
034.0951.0

G ; 

UK: ⎥
⎦

⎤
⎢
⎣

⎡−
=

368.0060.0
631.0020.0

A , ⎥
⎦

⎤
⎢
⎣

⎡−
=

001.0
024.0

δ ,  

⎥
⎦

⎤
⎢
⎣

⎡ −
=

000.0000.0
019.0041.0

D , ⎥
⎦

⎤
⎢
⎣

⎡
−

=
203.0171.0
062.0229.0

F ,  ⎥
⎦

⎤
⎢
⎣

⎡ −
=

966.0166.0
037.0958.0

G ; 

We consider four DGPs,  

DGP1: UK VAR+UK GARCH 

DGP2: US VAR+US GARCH  

DGP3: UK VAR+US GARCH, and  

DGP4: US VAR+UK GARCH.  

Using these processes we generate samples of four different sizes, with 150, 300, 600 and 

1500 observations, plus 1000 observations that are discarded. Since most studies of the ET 

use monthly data, the three smaller sample sizes we employ reflect the lengths of actual 

data typically available to a researcher.  

Asymptotic and bootstrapped versions of all tests are considered. Although 

asymptotic tests are easy to use, there is now considerable evidence that they can suffer 

from large size distortions in finite samples. In contrast, bootstrapped tests are 

computationally expensive but are designed to have the correct size. In our size-power 

study the critical values come from the χ(2) and N(0,1) distributions for the asymptotic 

tests and from the null empirical distributions for the bootstrapped tests.  
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To implement the bootstrap, we apply the recursive procedure described in Section 

3 to estimate the VAR parameters that are restricted to satisfy the ET null hypothesis of 

(10) and obtain the corresponding residuals. These parameters and residuals are then used 

in (16) as the wild bootstrap DGP. This DGP is used to generate 1000 datasets, for each of 

the four sample sizes, that are used to estimate the six empirical distributions for the LM, 

DM, W, t1, t2 and t3 statistics. For the first trinity, the critical values are simply the 95% 

quantiles of these distributions. For the various t statistics, they are the 2.5 and 97.5% 

quantiles from the empirical distributions, allowing for two tailed alternatives.  

Following the recommendations of Shiller (1987) and Melino (2001), we 

concentrate on analysing the test powers against interesting alternative hypotheses. Two of 

the most prominent alternatives to the ET are the under/over-reaction hypothesis and the 

time varying term premium. We capture these alternatives by generating term structure 

data using 

ttmntmn SS τδ −= *
),,(),,( ,                         (24) 

where the theoretical spread *
),,( tmnS  is defined in (6) and tt c zi′=τ  where i  is a unit vector. 

For simplicity, the term premium tτ  here depends on the sum of current tmR ,Δ  and 

tmnS ),,(
13. When c is zero, (24) corresponds to the ET if δ = 1, to the over-reaction 

hypothesis if δ > 1 and to the under-reaction hypothesis if δ < 1. If δ = 1 and c is nonzero, 

we have the time varying term premium hypothesis.  

The alternative given by (24) translates into the VAR parameter restrictions  

iΛee ′−′=′ c12 δ .                (25) 

We consider different values of the parameters δ  and c, specifically δ ∈[0.6, 1.4] and 

c∈[-0.25, 0.25]. For each pair (δ , c), and for a given sample size T, the VAR coefficients 

are estimated satisfying the restrictions of (25), not those of (10). These VAR coefficients 

restricted under the alternative hypothesis and the corresponding residuals are then used in 

(16) as DGP to generate 1000 datasets where the ET does not hold. For each of the datasets 

we obtain the six test statistics corresponding to the null in (10) and the proportions of the 

test statistics that are greater (and, for the two tailed tests, lower) than the relevant critical 

values provide the estimates of power. When δ = 1 and c = 0, this exercise yields an 

                                                 
13 Of course one can estimate a VAR of order greater than 1 and let the current term premium depend only on 
past information, possibly also allowing the contributions of past 

tmR ,Δ  and 
tmnS ),,(
to differ. 
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estimate of the actual size of a test and if this actual size is greater (smaller) than nominal 

5% the test is over(under)sized. 

 To summarise, we first generate 1500 observations, after discarding initial 1000 

observations, from each DGP starting from the same random number generator and use 

first 150, 300, 600 and 1500 observations as raw data in the size-power calculation for 

various n and m. This allows us to examine the effects of n and m that are embedded in the 

null ),,(12 mnΦΛee ′=′ defined in (7) on the sizes and powers of various tests while keeping 

Φ  fixed. By using two VAR slope parameters estimated from the UK and US data we are 

able to examine the effect of Φ  while keeping n and m fixed. Finally we keep all of the 

above, specifically n,Φ and m , fixed and examine the effects of dynamics that are not 

restricted by the ET by employing two different conditional volatility processes. 

5.2 Corroboration 

Before presenting our main results we briefly assess how relevant our choice of values for 

δ  and c are in terms of observed series by estimating these parameters using US term 

structure data. The theoretical spread is calculated as in Bataa et al. (2006) and the actual 

spread is regressed on the theoretical spread to obtain an estimate of δ . A time varying 

term premium proxy is obtained as a difference between the actual and theoretical spreads, 

as in Carriero et al. (2006), and we regress this on the sum of current spread and the first 

difference of the shorter rate. Table 1 provides the resulting point estimates of  δ  and c, 

along with their standard errors, for all conventional maturity pairs between 1 month and 

10 years for three different sample periods: whole sample (Jan 1952- Dec 2003), pre-1979-

1982 monetary policy change (Jan 1952- Dec 1978) and post monetary policy change (Jan 

1982-Dec 2003). 

 Most slope estimates are statistically significant, and ignoring two negative 

estimates of δ , range between 0.21 and 3.39, while estimates of c range between  -0.22 

and 0.75. In particular, for the three different sample periods 6.3%, 56.3% and 20.8% of 

the point estimates of δ  are in the range δ ∈[0.6, 1.4] and 35.4%, 83.3% and 20.8% of the 

point estimates of c are in the range c∈[-0.25, 0.25]. Although the range of values we 

consider for δ  and c is not fully representative of the data and therefore could be extended 

we had to restrict ourselves because of the computational burden. Consistent with 

Campbell and Shiller (1991) and Fuhrer (1996), most of the estimates of δ  are greater 

than unity (85.42%, 87.50% and 91.67%) implying the actual spread is more volatile than  



Table 1. Empirical Estimates of δ and c 

 I II III I II III I II III I II III I II III I II III I II III I II III I II III 
  1   2   3   4   6   9   12   24   60  

0.42 0.42 0.25                         
0.07 0.11 0.09                         
-0.02 0.01 -0.10                         2 
0.01 0.02 0.03                         

0.21 0.68 0.60                         
0.05 0.14 0.09                         
-0.04 0.07 -0.01                         

3 
0.02 0.02 0.04                         

0.30 0.25 1.21 0.44 1.58 1.09                      
0.05 0.08 0.13 0.06 0.13 0.09                      
-0.01 0.04 0.17 0.01 0.04 0.10                      

4 
0.02 0.03 0.04 0.01 0.02 0.02                      

0.63 0.31 1.38 1.75 1.61 1.26 2.03 1.39 0.96                   
0.07 0.08 0.12 0.08 0.11 0.14 0.14 0.12 0.27                   
0.11 0.12 0.28 0.13 0.11 0.29 0.10 0.06 0.21                   

6 
0.02 0.04 0.04 0.02 0.02 0.04 0.01 0.02 0.03                   
1.25 0.31 1.56    2.05 1.45 2.09                   
0.07 0.09 0.10    0.10 0.10 0.21                   
0.20 0.25 0.36    0.19 0.15 0.37                   9 
0.02 0.04 0.04    0.02 0.02 0.03                   

1.33 0.45 1.69 1.55 1.50 1.01 1.89 1.43 2.68 1.89 1.57 2.71 1.64 1.74 2.27             
0.07 0.09 0.09 0.05 0.09 0.05 0.07 0.09 0.18 0.08 0.11 0.19 0.08 0.10 0.20             
0.22 0.28 0.40 0.21 0.21 0.21 0.23 0.18 0.45 0.19 0.19 0.37 0.09 0.12 0.20             

12 
0.02 0.04 0.03 0.02 0.03 0.03 0.02 0.03 0.03 0.02 0.03 0.03 0.01 0.02 0.03             

1.76 1.54 1.92 2.41 1.53 2.23 2.36 1.53 2.19 1.88 1.27 2.16 1.77 1.43 2.21    3.17 1.29 1.20       
0.08 0.08 0.08 0.14 0.06 0.09 0.18 0.07 0.10 0.05 0.05 0.11 0.04 0.05 0.08    0.22 0.04 0.19       
0.40 0.30 0.44 0.53 0.27 0.51 0.55 0.26 0.50 0.32 0.17 0.48 0.25 0.18 0.39    0.25 0.05 0.31       

24 
0.02 0.03 0.03 0.02 0.03 0.03 0.02 0.03 0.03 0.02 0.03 0.03 0.02 0.02 0.02    0.02 0.02 0.03       

1.92 1.46 1.54 2.85 1.39 2.02 1.90 1.36 2.37 1.98 1.36 2.59 1.85 1.35 2.74 1.91 1.22 3.17 2.01 1.14 3.39       
0.07 0.06 0.06 0.10 0.05 0.07 0.04 0.05 0.09 0.04 0.05 0.09 0.04 0.04 0.10 0.04 0.04 0.14 0.04 0.04 0.21       
0.43 0.29 0.35 0.56 0.24 0.49 0.38 0.23 0.54 0.39 0.22 0.55 0.33 0.19 0.52 0.30 0.10 0.53 0.27 0.04 0.51       

36 
0.02 0.03 0.03 0.02 0.03 0.02 0.02 0.03 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.02 0.03       

1.97 1.45 1.59 2.81 1.37 1.97 1.91 1.34 2.29 1.99 1.32 2.48 1.79 1.29 2.64    1.93 1.10 3.01 -0.66 1.03 3.13    
0.06 0.05 0.05 0.08 0.05 0.06 0.04 0.05 0.07 0.04 0.04 0.08 0.03 0.04 0.08    0.03 0.03 0.10 0.24 0.03 0.38    
0.45 0.28 0.37 0.58 0.24 0.48 0.41 0.22 0.54 0.42 0.21 0.55 0.35 0.17 0.54    0.33 0.03 0.53 0.39 -0.07 0.44    

48 
0.02 0.03 0.03 0.02 0.03 0.02 0.02 0.03 0.02 0.02 0.03 0.02 0.02 0.02 0.02    0.02 0.02 0.02 0.02 0.02 0.03    

1.97 1.45 1.56 2.70 1.37 1.96 1.94 1.33 2.33 2.00 1.32 2.28 1.92 1.24 2.44    -0.24 1.08 2.88       
0.05 0.05 0.05 0.07 0.04 0.06 0.04 0.04 0.07 0.04 0.04 0.06 0.03 0.03 0.06    0.19 0.03 0.08       
0.45 0.28 0.36 0.57 0.24 0.48 0.43 0.22 0.55 0.44 0.21 0.53 0.40 0.15 0.53    0.75 0.03 0.56       

60 
0.02 0.03 0.03 0.02 0.03 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02    0.02 0.02 0.02       

1.80 1.41 1.42 1.68 1.34 1.61 1.85 1.32 1.75 1.93 1.29 1.62 1.80 1.23 1.53    1.65 1.14 1.33 1.58 1.15 1.21 1.98 1.78 0.72 
0.04 0.04 0.04 0.03 0.03 0.04 0.03 0.03 0.04 0.03 0.03 0.03 0.03 0.03 0.03    0.02 0.03 0.02 0.02 0.03 0.02 0.03 0.06 0.01 
0.42 0.27 0.30 0.38 0.23 0.39 0.43 0.22 0.43 0.45 0.20 0.38 0.41 0.16 0.34    0.34 0.09 0.24 0.28 0.06 0.15 0.21 0.15 -0.22 

120 
0.02 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02    0.01 0.02 0.01 0.01 0.02 0.01 0.02 0.03 0.02 

Note: Empirical estimates of δ (first row) and c (second row)  and their standard errors (in italics) are reported for various maturity pairs using data from Sarno et al. (2006). I, 
II, and III denotes sample periods, which are 1952:01-2003:12, 1952:01-1978:12 and 1982:01-2003:12 respectively. 



the theoretical spread; 93.75%, 97.92% and 93.75% of the point estimates for c are 

positive, again consistent with Tzavalis and Wickens (1997). Given that the set of 

parameter values we consider is indeed empirically relevant we discuss our results next. 

5.3 Results 

Table 2 reports the empirical sizes for all tests from DGP1 and DGP2 for various maturity 

pairs at a nominal significance level of 5%.14 For each DGP, the first panel reports size 

results for m=1 in common with a range of values for the longer maturity n and the lower 

part reports for n=180 in common with a range of values for the maturity m. In the final 

panel we keep k(=n/m) constant and increase both n and m. It appears that size does not 

depend on the DGP. It is, however, evident that the W, LM and DM trinity is oversized and 

this size distortion does not disappear even with a sample of 1500 observations. The size 

distortion is generally smaller for LM than for W and DM tests in small samples, 

confirming the conclusions of Bekaert and Hodrick (2001). However, the size differences 

among these three become largely indistinguishable as the sample size increases. In 

contrast, the implied regression and variance ratio tests, t2 and t3, seem to have the least 

size distortion.  

Unlike the other tests, the size of conventional test, t1, depends on the maturities of 

interest rates. For example, for a maturity pair 1&3 months, size is 6% with 300 

observations, however this inflates into a staggering 53% when the maturity of the longer 

rate is 120, which implies a cross maturity spectrum comparison of ET performance 

becomes senseless unless one is willing to compensate for the number of observations 

“lost” in the estimation process. This “loss” of observations has two sources: one is 

physical loss of observations in trying to calculate the left hand side of equation (3) and the 

other is the loss of independent observations resulting from a high degree of MA 

correction. 

The second important question is to analyse how powerful the tests are against 

empirically relevant local alternatives. Using the asymptotic distribution, Figure 2 

illustrates size-power curves for the sample size of 300 observations from DGP2 where the 

tests have their highest powers compared to other DGP’s.15 The powers of the tests against 

the under/overreaction hypothesis are plotted in Panel A while those against the time 

varying term premium are shown in Panel B. While Table 2 showed no obvious pattern for 

                                                 
14 Results from DGP3 and DGP4 were quantitatively very close and qualitatively the same. They are not 
reported to conserve space but available on request. 
15 Full results are available from the authors upon request. 
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Table 2. Empirical Size Results 

T  150 300 600 1500  150 300 600 1500  150 300 600 1500  150 300 600 1500

 
 

Panel A: DGP1   

 

   

  

    

 

    
           n          
   3     9     24     120   

LM  0.15 0.12 0.15 0.17  0.14 0.12 0.15 0.15  0.15 0.13 0.16 0.16  0.15 0.13 0.16 0.16
DM  0.18 0.13 0.16 0.17  0.17 0.17 0.17 0.16  0.18 0.17 0.19 0.17  0.18 0.17 0.19 0.18
W m=1 0.18 0.13 0.16 0.17  0.18 0.17 0.18 0.16  0.19 0.17 0.18 0.18  0.19 0.17 0.18 0.18
t1  0.08 0.06 0.06 0.07  0.11 0.10 0.09 0.07  0.23 0.20 0.13 0.10  N.A. 0.53 0.31 0.16
t2  0.06 0.04 0.05 0.05  0.06 0.07 0.07 0.07  0.06 0.08 0.07 0.07  0.06 0.08 0.07 0.07
t3  0.06 0.04 0.05 0.06  0.07 0.08 0.07 0.06  0.08 0.08 0.07 0.07  0.09 0.09 0.08 0.07
           m          
   1     6     36     60   

LM  0.15 0.13 0.16 0.16  0.15 0.13 0.16 0.16  0.14 0.13 0.15 0.15  0.14 0.13 0.15 0.17
DM  0.18 0.17 0.19 0.18  0.18 0.17 0.19 0.17  0.18 0.17 0.17 0.16  0.17 0.15 0.16 0.18
W n=180 0.19 0.17 0.18 0.18  0.19 0.17 0.18 0.18  0.18 0.17 0.16 0.17  0.19 0.17 0.16 0.17
t1  N.A. N.A. 0.44 0.21  N.A. N.A. 0.44 0.21  N.A. 0.69 0.38 0.20  N.A. 0.57 0.34 0.20
t2  0.06 0.08 0.07 0.07  0.06 0.08 0.07 0.07  0.07 0.06 0.06 0.07  0.06 0.06 0.05 0.06
t3  0.09 0.09 0.08 0.07  0.08 0.09 0.08 0.07  0.06 0.07 0.07 0.07  0.06 0.06 0.07 0.06

 
 

Panel B: DGP2   

 

    

 

    

 

    
           n          
   3     9     24     120   

LM  0.16 0.15 0.14 0.16  0.15 0.15 0.14 0.16  0.14 0.16 0.14 0.17  0.15 0.15 0.14 0.16
DM  0.18 0.16 0.14 0.17  0.17 0.17 0.15 0.17  0.17 0.17 0.15 0.17  0.17 0.17 0.15 0.17
W m=1 0.18 0.16 0.14 0.17  0.18 0.17 0.15 0.16  0.18 0.16 0.15 0.16  0.18 0.16 0.16 0.16
t1  0.09 0.06 0.05 0.08  0.14 0.09 0.10 0.08  0.22 0.13 0.11 0.08  N.A. 0.40 0.24 0.13
t2  0.06 0.05 0.04 0.07  0.05 0.06 0.04 0.06  0.05 0.06 0.04 0.06  0.05 0.06 0.04 0.06
t3  0.05 0.04 0.04 0.06  0.06 0.07 0.05 0.06  0.08 0.07 0.06 0.06  0.08 0.08 0.06 0.06
           m          
   1     6     36     60   

LM  0.15 0.15 0.14 0.16  0.15 0.15 0.14 0.17  0.15 0.15 0.15 0.17  0.15 0.14 0.15 0.16
DM  0.17 0.17 0.15 0.17  0.17 0.17 0.15 0.17  0.17 0.16 0.15 0.17  0.17 0.16 0.16 0.17
W n=180 0.18 0.16 0.16 0.16  0.18 0.17 0.16 0.16  0.17 0.17 0.15 0.16  0.18 0.16 0.17 0.17
t1  N.A. N.A. 0.35 0.17  N.A. N.A. 0.33 0.16  N.A. 0.54 0.31 0.16  N.A. 0.47 0.28 0.15
t2  0.05 0.06 0.04 0.06  0.05 0.06 0.04 0.06  0.05 0.06 0.05 0.06  0.05 0.05 0.04 0.07
t3  0.08 0.08 0.06 0.06  0.08 0.08 0.06 0.06  0.08 0.07 0.05 0.06  0.07 0.07 0.05 0.06

Note: Table reports empirical sizes of the tests at the nominal significance level of 0.05.  N.A. for the t1 test 
indicates there are an insufficient number of observations available for the MA correction after losing n-m 
observations in the calculation of the test statistic. 

the size distortion across various DGPs and in relation to location of the maturity pair in 

the term structure spectrum, except for t1, there are clear patterns for test powers. The three 

rows of the graphs in each panel are designed to show three different aspects of the effect 

of maturities, the first row showing the effects of increasing n for a given m, the second 

row of increasing m for a given n, and the third row increasing both n and m while keeping 

k (=n/m) constant. All the tests are considerably powerful at the shortest end of the 

maturity spectrum. However as one deviates from there the powers decrease, but with 

varying degrees for various tests. It can be seen that for large n and small m the plotted 

size-power curve of t1 either becomes a horizontal line at zero as there is an insufficient 

number of observations for the MA correction after loosing n-m observations in the 

calculation process or straight lines running from the bottom left to the top right against the 

under/over-reaction hypothesis and from the bottom right to the top left of the graph 
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against the time varying term premium alternative. It is evident that the other size-power 

curves also depend on n and m, especially those of t2 and t3. Although t2 and t3 tests have 

the closest empirical sizes to the nominal one, their powers can be smaller than size, when 

the null of the ET is tested against the over-reaction hypothesis or the time varying term 

premium that is negatively correlated with the sum of the spread and the change in shorter 

rate. In contrast, even though LM, DM and W tests are oversized, they have good powers 

against the over-reaction hypothesis and the time varying term premium. 

In Figures 2-5 we explicitly compare the tests’ powers across 4 DGPs and 4 sample 

sizes, using bootstrapped versions to avoid the problem that tests with higher size 

distortion may incorrectly appear more powerful. The reported are the same three row 

graphs designed to illustrate the effects on interest rate maturities on test powers. Panels 

A1-A4 (A1-A3 for DGP3 and DGP4) consider test powers against the alternative of 

over/under-reaction hypothesis and Panels B1-B4 (B1-B3 for DGP3 and DGP4) report 

those against time varying term premium. 

In Panel As the powers are in general lowest for DGP1 (that is, based on UK data 

characteristics) and strongest in DGP2 (based on the US).16 Indeed, Panel A1 of Figure 2 

(UK mean and volatility) shows power to be low with a sample size of 150 observations, 

except at the very short end of the maturity spectrum. Except for the large sample size 

(T=1500), Figure 2 shows power to be greater against the under-reaction than the over-

reaction hypothesis, whereas, with the exception of the small sample size of 150 

observations, this is less marked in Figure 3. Conditional volatility of the UK DGP seems 

to have the strongest negative effect on power, as when we combine US conditional 

volatility with the UK mean (that is DGP3, Figure 4) test powers dramatically increase 

while doing the converse (that is DGP4, Figure 5) entails a dramatic decrease in test 

performances. From these Panels one can also see that the t1 and W tests are most sensitive 

to increasing n for a given m and decreasing m for a given n, but the sensitivity of the latter 

diminishes much faster than that of the former as the sample size increases. The W test is 

also most powerful against the over-reaction hypothesis. In small samples the implied 

regression, t2, and variance ratio, t3, tests are most powerful against the overreaction 

hypothesis at the shortest end of the term structure but they lose power to the LM and DM 

tests as the sample size increases and/or interest rate maturities change in a pattern 

described above.  

                                                 
16 We do not provide A4 panels that correspond to 1500 observations for DGP3 and DGP4 because of the 
computational cost. 
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In Panels B1-B4 (B1-B3 for DGP3 and DGP4) we report power of the tests of the 

ET against the time varying term premium alternative. All tests perform best at the shortest 

end, as before. Interestingly, the dependence of the test performances on the specific DGP 

is less pronounced than in Panel As. There is no clear evidence for LM, DM and W tests for  

such a dependence but comparing B1 in Figures 2 & 3 and similarly B2 in these Figures, 

the t-tests perform better in Figure 3, especially when c < 0. In this case there is no close 

competitor to LM and DM tests which perform much better than the t2 and t3 tests, the 

latter of which can even have power below size for negative c. The worst test is again t1, 

while W performs very comparably with the forerunners as the sample size increases.  

Overall, the performances of all tests are at their best when both m and n are small 

and decrease as the distance between m and n increase. However, this decrease is of 

varying degrees for each of the tests and its speed diminishes as we depart from the 

shortest end of the maturity spectrum. For example, in DGP1-Panel B when m is kept 

constant at 1 and n is increased from 3 to 9 all the powers reduce dramatically, but the 

reductions for LM, DM and W are relatively small than those based on t-tests. However, as 

we further increase n to 120 the power reduction that follows is much smaller and arguably 

less important for t-tests. When maturity pairs are already further away from the shortest 

end the specific values for n and m appears not to matter as long as k(=n/m) is constant. 

The size-power curves for maturity pairs 24&48 and 60&120 are visually extremely 

similar from both panels and across DGPs for all sample sizes, except for t1. Another 

interesting observation is that in DGP3-Panel B the test powers are higher for the latter 

maturity pair than for the former for all sample sizes. Moreover, increasing both m and n 

can improve the test powers as long as this also reduces k, as if large n and m cancel out 

each other. For example all tests, except t1 and W, are more powerful at the maturity pair 

60&120 than at 1&24 in all sample sizes and all DGP’s excluding and also DGP3. 

However these sensitivities to interest rate maturities and k are much less pronounced, 

except t1, for the large sample size of 1500 observations.  
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6. Conclusions 

 

This paper provides extensive Monte Carlo evidence that addresses the empirical puzzle 

that the spread between longer and shorter rates predicts future movements in the shorter 

rate in accordance with the ET if the forecast horizon is long, but not otherwise. We also 

study if the persistency of interest rates can explain a general finding in this empirical 

literature that indicates the ET appears to hold in some samples (country-wise and time-

wise) as opposed to others. 

 We do indeed find that in small samples, the powers of the tests previously 

employed in the literature, and new ones we propose, depend on the interest rates’ 

maturities and their persistency of conditional volatility when the null hypothesis of the ET 

is tested against empirically relevant alternative hypotheses such as the under/over-reaction 

and the time varying term premium hypotheses. This suggests that the cross sample 

(country-wise or time-wise) and/or maturity spectrum comparison of the performance of 

the theory is, strictly speaking, impossible in samples typically used in the literature, as the 

powers of the tests are not the same. Since such dependence diminishes as the sample size 

increases, this suggests powerful tests might be obtained and their results can be compared 

across maturity spectrum and/or samples if one uses high frequency data such as daily data 

provided by the Bank of England and the US Federal Reserve. 

 Our secondary goal was to compare finite sample performances of the conventional 

regression test (t1), VAR based LM, DM, W tests considered in Bekaert and Hodrick 

(2001), and the implied regression (t2) and variance ratio (t3) tests, which are constructed 

using the asymptotic distribution of the restricted parameter estimator. Although forms of 

the latter two tests have been suggested in previous literature, we argue that the use of 

these leads to invalid inference, whereas we avoid this problem by proposing a t ratio 

specification for these tests. An extensive Monte Carlo analysis is used to achieve this 

goal, with tests conducted using both the asymptotic distributions of the statistics and the 

empirical finite sample distributions obtained using a wild bootstrap procedure.  

The conventional test’s actual size depends on the maturities of interest rates and it 

can go up to 56% in our simulations when the nominal significance level is 5%. LM, DM 

and W tests are oversized, the former being least size distorted, which is consistent with 

Bekaert and Hodrick (2001), while the implied regression and variance ratio tests have the 

closest actual sizes to the nominal level. However, the powers of the latter two can be less 
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than their size, when the null of the ET is tested against the under-reaction hypothesis or 

against a time varying term premium that is negatively correlated with sum of the spread 

and change in short rate.  

 In order to compare powers of the tests while keeping their sizes at the nominal 

level we use a wild bootstrap. The performances of all tests are at their best and 

comparable with each other against both alternative hypotheses when both m and n are 

small, but decrease as the distance between m and n increase. However, this decrease is of 

varying degrees for each of the tests and its speed diminishes as we depart from the 

shortest end. The worst performance comes from the conventional test (t1) while LM and 

DM tests are most consistent and powerful. However it is worth mentioning that all the 

conclusions rely on the assumption of known DGP and it is indeed possible that the 

implied regression and variance tests may outperform in situations of unknown lag order 

for the assumed VAR-DGP as their asymptotic distributions are pivotal compared to those 

of LM, DM and W. 
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Appendix A: Derivation of the ET restrictions on VAR parameters 

Restrictions imposed by the ET on the companion-form VAR parameters are derived in 

this Appendix.  

The spread predicted by the ET can be obtained from (2) as, 
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The actual spread, on the other hand, is ttmnS ze2),,( ′= . Taking expectations in these 

expressions, it can be seen that the expected spread and the theoretical spread are  equal 

when Λee 12 ′=′ . 

 Alternatively, the theoretical slope coefficient when  tmnS ),,(  is regressed on *
),,( tmnS  

is equal to unity. 
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Figure 1. Size and power: Asymptotic critical value (DGP2: US VAR(1) mean, US GARCH(1,1) residual) 
T=300 

Panel A: HO: ET (δ=1) , HA: Over (δ>1)/Under (δ<1) Reaction Hypothesis 
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Panel B: HO: ET (c=0) , HA: Time Varying Term Premium (c≠0) Hypothesis 
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Figure 2. Size and Power: Bootstrap critical value (DGP1: UK VAR(1) mean, UK GARCH(1,1) residual) 
T=150 

Panel A1: HO: ET (δ=1) , HA: Over (δ>1)/Under (δ<1) Reaction Hypothesis 
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Panel B1: HO: ET (c=0) , HA: Time Varying Term Premium (c≠0) Hypothesis 
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T=300 
Panel A2: HO: ET (δ=1) , HA: Over (δ>1)/Under (δ<1) Reaction Hypothesis  
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Panel B2: HO: ET (c=0) , HA: Time Varying Term Premium (c≠0) Hypothesis 
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T=600 
Panel A3: HO: ET (δ=1) , HA: Over (δ>1)/Under (δ<1) Reaction Hypothesis 
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Panel B3: HO: ET (c=0) , HA: Time Varying Term Premium (c≠0) Hypothesis 
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T=1500 
Panel A4: HO: ET (δ=1) , HA: Over (δ>1)/Under (δ<1) Reaction Hypothesis 

 

 

 
 



 41

Panel B4: HO: ET (c=0) , HA: Time Varying Term Premium (c≠0) Hypothesis 
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Figure 3. Size and Power: Bootstrap critical value (DGP2: US VAR(1) mean, US GARCH(1,1) residual) 
T=150 

Panel A1: HO: ET (δ=1) , HA: Over (δ>1)/Under (δ<1) Reaction Hypothesis 

 

 

 



 43

Panel B1: HO: ET (c=0) , HA: Time Varying Term Premium (c≠0) Hypothesis 
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T=300 
Panel A2: HO: ET (δ=1) , HA: Over (δ>1)/Under (δ<1) Reaction Hypothesis 
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Panel B2: HO: ET (c=0) , HA: Time Varying Term Premium (c≠0) Hypothesis 
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T=600 
Panel A3: HO: ET (δ=1) , HA: Over (δ>1)/Under (δ<1) Reaction Hypothesis 
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Panel B3: HO: ET (c=0) , HA: Time Varying Term Premium (c≠0) Hypothesis 
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T=1500 

Panel A4: HO: ET (δ=1) , HA: Over (δ>1)/Under (δ<1) Reaction Hypothesis 
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Panel B4: HO: ET (c=0) , HA: Time Varying Term Premium (c≠0) Hypothesis 
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Figure 4. Size and Power: Bootstrap critical value (DGP3: UK VAR(1) mean, US GARCH(1,1) residual) 
T=150 

Panel A1: HO: ET (δ=1) , HA: Over (δ>1)/Under (δ<1) Reaction Hypothesis 
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Panel B1: HO: ET (c=0) , HA: Time Varying Term Premium (c≠0) Hypothesis 

 

 

 



 52

 
T=300 

Panel A2: HO: ET (δ=1) , HA: Over (δ>1)/Under (δ<1) Reaction Hypothesis  
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Panel B2: HO: ET (c=0) , HA: Time Varying Term Premium (c≠0) Hypothesis 
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T=600 

Panel A3: HO: ET (δ=1) , HA: Over (δ>1)/Under (δ<1) Reaction Hypothesis  
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Panel B3: HO: ET (c=0) , HA: Time Varying Term Premium (c≠0) Hypothesis 
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Figure 5. Size and Power: Bootstrap critical value (DGP4: US VAR(1) mean, UK GARCH(1,1) residual) 
T=150 

Panel A1: HO: ET (δ=1) , HA: Over (δ>1)/Under (δ<1) Reaction Hypothesis 
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Panel B1: HO: ET (c=0) , HA: Time Varying Term Premium (c≠0) Hypothesis 
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T=300 
Panel A2: HO: ET (δ=1) , HA: Over (δ>1)/Under (δ<1) Reaction Hypothesis  
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Panel B2: HO: ET (c=0) , HA: Time Varying Term Premium (c≠0) Hypothesis 

 

 

 
 



 60

T=600 
Panel A3: HO: ET (δ=1) , HA: Over (δ>1)/Under (δ<1) Reaction Hypothesis 
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Panel B3: HO: ET (c=0) , HA: Time Varying Term Premium (c≠0) Hypothesis 

 

 

 


