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Abstract

Empirical studies often find that the spread between longer and shorter rates does not have
predictive power for future longer rates, violating the Expectations Theory (ET). Although
the predictive power of the spread for future shorter rates is largely in accordance with the
ET, especially when the forecast period is long, researchers often find this holds to varying
degrees across samples (country-wise or time-wise). We show this pattern may be due to
the powers of all tests depending on interest rates’ maturities and their persistency in small
samples. This paper also compares the powers of tests of the ET against the under/over-
reaction and the time varying term premium alternatives across various maturity
combinations, levels of persistency and sample sizes. Tests perform best and are
comparable to each other at the shortest end of the term structure, but deteriorate as the
distance between maturities of longer and shorter rates increase. However, this
deterioration is of varying degrees for different tests and its speed diminishes as we depart
from the shortest end. In general Lagrange multiplier and distance metric tests emerge as

being the most powerful and least sensitive to interest rate maturities and their persistency.
JEL classification: G10; E43.

Keywords: expectations hypothesis; term structure of interest rates; vector autoregression



“...The simple expectations theory, in combination with the hypothesis of rational
expectations, has been rejected many times in careful econometric studies. But the
theory seems to reappear perennially in policy discussions as if nothing had
happened to it...We are reminded of the Tom and Jerry cartoons that precede
feature films at movie theatres. The villain, Tom the cat, may be buried under a ton
of boulders, blasted through a brick wall (leaving a cat shaped hole), or flattened by

a steamroller. Yet seconds later he is up again plotting his evil deeds” .

1. Introduction

Economists and investors believe that a better understanding of the relationship between
interest rates of various maturities leads to better decision making. One of the most
important theories of this relationship is the expectations theory (ET), according to which
investing in a succession of short-term bonds gives the same expected return as investing

in a long-term bond, when adjustment is made for the assumed constant term premium?.

The empirical literature on this theory is huge, yet there is little sign that research
interest in this topic has waned, as the theory is constantly being subjected to scrutiny
using new datasets and new methodologies. One of the most puzzling results, reported as
early as Macaulay (1938), is that two main implications of the theory lead to different

conclusions, which Campbell and Shiller (1991) describe “...the slope of the term
structure almost always gives a forecast in the wrong direction for the short term change
in the longer bond, but gives a forecast in the right direction for long term changes in short
rates”. The former is typically statistically different from the ET forecast. Although
Stambaugh (1988) notes that the regression used to test the first implication is very
sensitive to measurement error in the long term interest rate, Campbell and Shiller (1991)
show that these rejections are quite robust even if this is correctly accounted for using

instrumental variables.

The second implication, relating to predictions of future short rates, is rejected in
Campbell and Shiller (1991) only when the longer rate used to compute the spread is less
than 36 months, so that the rejections in this case cluster at the short end of the term
structure, Indeed this implication is tested much more frequently, leading to rejections at
the short end of the term structure, e.g. in Shiller, et al. (1983), Mankiw and Summers

(1984) and Evans and Lewis (1994). This pattern is also present in more recent studies by

! Shiller, Campbell and Schoenholtz (1983), pp 174-175.

2 Another implication of the EH is that the forward interest rate must equal the expected spot rate. This
implication is the subject of studies by Fama and Bliss (1987), Backus, Foresi, Mozumdar and Wu (2001),
and Fama (2006), among others and will not discussed in the present paper.
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Sarno, Thornton and Valente (2006) and Bataa, Kim and Osborn (2006), but is not
universally accepted. For example, Longstaff (2000) does not reject the ET at the very
short end using high frequency data while Taylor (1992) finds very strong evidence against
it at the long end. Moreover, its performance seems to differ across countries and sample
periods. Hardouvellis (1994) finds that, among the G7 countries, it is strongly rejected only
for the US while Gerlach and Smets (1997) extend this conclusion using Eurocurrency
rates in 17 countries. However, the evidence for Germany seems controversial. Jondeau
and Ricart (1999) reject the implication for Germany and the US but not for France and the
UK and Bekaert and Hodrick (2001) also reject the null in Germany and the US but not in
the UK using the extended data of Gerlach and Smets (1997). In contrast, Cuthbertson,
Hayes and Nitzsche (2000) and Boero and Torricelli (2002) use estimated German term
structure data and provide supportive evidence for the theory. Country-specific studies
such as Dahlquist and Jonnson (1995) for Sweden, Engsted (1996) for Denmark,
Cuthbertson (1996) for the UK and Cuthbertson and Bredin (2001) for Ireland also support
the theory.

Several alternatives have been proposed to explain these anomalies, which include
time varying term premia, the overreaction hypothesis, monetary policy regime change and
the finite sample properties of different tests. Shiller ez al. (1983) conclude: “...Variations
in risk premiums are so large as to destroy any information in the term structure about
future interest rates”. An unobserved time-varying term premium is modelled in various
ways: using levels of interest rates, yield spreads, and unemployment rates (Shiller, 1979;
Mankiw and Summers, 1984), using second moments of explanatory variables (Engle
Lillien and Robins, 1987; Engle and Ng, 1993), employing panal data method (Harris,
2001) and as a difference between the actual and the theoretical spread derived under the
ET (Carriero, Favero and Kaminska, 2006). Tzavalias and Wickens (1997) argue the two
empirical implications are in accordance with the theory once a time-varying term

premium that is correlated with the spread is allowed

However, Campbell and Shiller (1991) and Hardouvellis (1994) assert that markets
overreact to monetary policy announcements, changing their expectations of future spot
rates by more than is warranted, and this explains the contradictory test results on the two
theory implications. Mankiw and Miron (1986) attribute the poor performance of the EH
over certain periods to the monetary policy pursued by the US Fed, with the EH
performing better in periods of monetary targeting than in periods of interest rate targeting
(and even better before the foundation of the Fed). Supporting evidence on this conjecture
is found in Kugler (1988), Hardouvellis (1988) and Simon (1990). Rudebusch (1995),
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Roberds, Runkle and Whiteman (1996), Fuhrer (1996) and Balduzzi, Bertola and Foresi
(1997) attempt to reconcile the ET with data, with partial success, by explicitly modelling
Fed behaviour in the process governing the short term interest rate. More recently, Kozicki
and Tinslay (2005) stress the importance of imperfect policy credibility of the Central

Bank on the performance of the theory.

Finally, there is a strand of literature that suggests the tests themselves may lead to
false rejections in finite samples. Early studies of this possibility consider either a single
equation test, or employ a VAR as the data generating process (DGP) and test implications
imposed by the ET on the VAR parameters using Campbell and Shiller’s (1987) Wald test.
Bekaert, Hodrick and Marshall (1997, 2001) document that the finite sample distributions
of the test statistics under the null, including those from the single equation test, can be
quite different from their asymptotic counterparts in the presence of highly persistent short
rates and “peso problems”. Using survey data, Froot (1989) finds that the rejections in the
single equation test can be due to the rational expectations hypothesis, not necessarily due
to the theory itself. Shea (1992) illustrates that the Wald test can lead to different
conclusions depending on how one specifies the null, while Bekaert and Hodrick (2001)
document its extreme size distortion and suggest an LM test. On the other hand, Bekaert,
Wei and Xing (2006) and Sarno et al. (2006) include more macroeconomic and financial
variables into the VAR as conditioning information and obtain more uniform rejections of

the theory across the maturity spectrum.

The primary goal of this paper is to explore in more depth the finite sample
properties of the tests, extending previous analyses by considering well specified
alternative hypotheses against the null of the ET, and reconciling the above mentioned
contradictory results across the maturity spectrum and/or samples (country-wise or time-
wise). We start from Campbell and Shiller’s (1991) comment on the previous literature:
“...Different studies use different econometric methods, test different implications of the
expectations theory, and look at different interest rates” to which Driffil, Psaradakis and
Sola (1997) add “...different studies also use data drawn from different places and periods
of time”. Less importantly, studies use samples of different sizes. We take sample sizes
typically used in the literature and ask: Suppose the ET is either true or false, but uniformly
SO across interest rate maturity pairs and/or periods. Would we get different results from
the various econometric methods on testing the second implication, which produced most
contradictory results, ceteris paribus? If the tests are sensitive to interest rate maturities
and persistency, the (non)rejection pattern across the term structure maturity spectrum

and/or different samples is not necessarily due to the theory itself.
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Moreover, given the extensive empirical literature on the topic, there is a surprising
lack of papers investigating the properties of various tests, proposed for the ET, in a
unified framework. Not only is it of interest to know how tests perform when interest rates
of different maturities and persistency are used in order to assess previous findings, but
also to identify the most robust ones to be recommended for use in future research. Both
asymptotic and wild-bootstrap finite sample versions of all tests are examined, following
the recommendations of Horowitz and Savin (2000) and Horowitz (2001). As well as
considering the conventional single equation test and more novel VAR based tests, we
propose “new” ¢ statistic forms of the implied regression slope and variance ratio tests,
building on Campbell and Shiller (1987) and Bekaert and Hodrick (2001). The VAR based
tests include a Wald (W hereafter) test proposed by Campbell and Shiller (1987), and a
Lagrange Multiplier (LM) and Distance Metric (DM) tests of Bekaert and Hodrick (2001),
the latter of which is equivalent to the Likelihood Ration (LR) test of Sargent (1979) under
normality. Bekaert and Hodrick regression tests (2001) argue that the LA test is superior to
the DM and W tests and is fast gaining popularity, being used in Bekaert, Wei and Xing
(2006), Sarno et al. (2006) and Bataa et al. (2006), among others.

The paper is organized as follows. Section 2 explains the ET and conventional
ways to test it, followed in Section 3 by the classic trinity of LM, DM and W tests as used
for ET testing in a VAR framework. Section 4 then develops the regression and variance
ratio test statistics. The main results of the paper are contained in Section 5, which details

our Monte Carlo study. Section 6 concludes.

2. The ET and Conventional Test

Most modern asset pricing theories that admit no arbitrage opportunity deliver the

following general relationship between long and short rates®:
1 k-1
Rn,t = Z Z E(Rm,t+mi |Et) + ﬂ-(n,m),t ' (1)
i=0

where R,, and R,,, are long and short rates at time ¢, respectively, E(R |Et) is the

m,t+mi

mathematical expectation of the short rates at t+mi, i =0, 1, 2,..., k-1, formed at time ¢

conditional of the information set available to the market, =,. Here k=n/m is the maturity

® See e.g. Shiller (1979), Kozicky and Tinsley (2001) and Bekaert and Hodrick (2001).
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multiple defined for simplicity to be an integer, m is the maturity of a shorter rate and » is

the maturity of a longer rate; 7 is a term premium and if it is constant (1) represents

(n,m),t
the ET and if it is zero then we have the simple or pure ET, PET. Following Shiller (1982)
and Melino (2001) we ignore the constant term premium in the following discussion as this

drops out of (1) if the data are demeaned.

The ET in (1) is rarely tested directly, probably due to most empirical results
concluding the series are integrated, in which case conventional statistical theory is not
appropriate. Rather, another implication of the ET is usually tested, which is based on the

ability of the spread between long and short rates to predict future short rate changes,

Z (1 - _)E(Am m,t+mi

) = S(n,m),t ) (2)

where A R =R

m> m,t+m

and S(n,m),t :R _R

n,t m,t

which is obtained by subtracting

m,t+m - Rm,t

from both sides of (1). Equation (2) implies the current spread predicts a cumulative

m t
change in the shorter term (m-period) interest rate over » periods. If one assumes rational
expectations, so that

E(R,,...]E.)=R

m,t+mi m,t+mi t+mi !

where v, has zero mean and is orthogonal to the information set available at time ¢,

probably the most commonly tested equation of the ET is obtained, namely

z (1_ )Am m,t+mi =V + ﬂS(n,m),t + W(n,m),t (3)

where w, ), 1S @ moving average process of order (n-m) and under the null hypothesis of
the ET, $ should be unity.*

However, there are several econometric difficulties with the conventional
regression approach applied to (3). Firstly, it is inefficient as we lose n-m observations at
the end of the sample period. For example, in studies of Campbell and Shiller (1991),
Sarno et al. (2006) and Bataa et al. (2006) that use monthly data, » is as large as 120, i.e.

* Another implication of (1), that is less empirically supported and therefore called a “contrarian” test in
Thornton (2006), is that the yield spread predicts the m-period change in the longer- term yield, which is

tested (see e.g. Campbell and Shiller 1991) using R + v, ; under the null

n—m,t+m (n,m),t

m
-R,,=y+a——S§
n—m
o s unity.



the long rate maturity is 10 years. Secondly, using the realized returns as a proxy for
expected returns is at best problematic. Elton (1999) strongly argues against such an
approach, which implies if the test rejects the null it is impossible to distinguish if it is due
to failure of the way rational expectations are handled or the ET itself. Even if rational
expectations are correctly dealt with, the error term wg, ), IS @ MA(n-m), so standard
errors have to be corrected, for example using the method described in Hansen and
Hodrick (1980), or Newey and West (1987). But as Richardson and Stock (1991) and
Hodrick (1992) illustrate, these adjustments do not work well when n-m is not small
relative to the sample size. Thirdly, as discussed in Mankiw and Shapiro (1986) and
Campbell, Lo and MacKinlay (1997) the regressor is serially correlated and correlated with

lags of the dependent variable, and this can cause finite sample problems as well.

3. Testing the ET in a VAR framework

Recent work has focussed on testing the second implication of the ET in a VAR
framework. In this section we outline this approach, first in terms of the relevant
asymptotic distributions, before considering inference using empirical finite sample

distributions.
3.1 Asymptotic distributions

Probably the biggest problem in the single equation framework is deriving the market

expectation, E(R

E,). If we assume expectations are formed linearly and the

m,t+mi

information set available to the market, =,, can be proxied by some observable set 7,,
=, o 1,, then the aforementioned problems may be avoided using a VAR framework. The

idea is old and can be traced back to at least Sargent (1979). As in Campbell and Shiller

- - . 5
(1991) we consider a stationary vector stochastic process for y,:[ARm',,S(n,m)v,I.

Assuming the process for y, is represented by a demeaned VAR of order p with error

covariance matrix X = E(u,u;),

® This specification can be interpreted as an assumption that interest rates are nonstationary, specifically (1),
and hence, as demonstrated in Hall, Granger and Anderson (1992), both VAR variables are stationary
according to the ET. However, even if interest rates are stationary, they are highly persistent and for the finite
sample sizes typically used for analysis the reduction of this persistence by differencing is advantageous for
VAR modelling.
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)4
Yy, :Z(I)iyt—i +u, (4)
i=1

it can be written as a first order VAR in companion form such that z, = ®z, , +v,, where

the companion matrix @ is of dimension 2px2p:

o, O, ®,, @
I, 0 0 0
o=| 0 I, 0 0
(0 0 1, 0|

!

while z, has 2p elements, z, = [y!,y' ;... ¥, ] . v/ is @ 2p vector equal to [u,0,0,..., 0]

which is uncorrelated over time. Thus z, summarizes the whole history of y, .

Now define vectors e;, i = 1, 2; each of dimension 2p, with unity in the i position

and zeros everywhere else such that

AR, =ez, and S =eyZ,. (5)

(n,m),t t

Using the ET in (2), the spread between long and short rates, which will be referred to as
the theoretical spread henceforth, is®

*

ST =elAz,, (6)

(n,m),t

where A=A(®,n,m)=®[I-m/n(I-®")I-®")"|(I-®)". If the ET is true, the
expected spread must be equal to the theoretical spread, and this equality holds when the

nonlinear restrictions on the VAR parameters
e, =¢eA @)
are valid.

Applying a Wald test to the restrictions in (7), Campbell and Shiller (1987) and
Shea (1992) find overwhelming evidence against the ET in contrast to Sargent (1979) and
Melino (2001) whose LR test did not reject it. Recently, Bekaert and Hodrick (2001)
suggest LM and DM tests using the GMM hypothesis testing framework of Newey and
McFadden (1994) and find the LM test has better small sample properties than Wald and

® The derivation is provided in Appendix A.



DM tests, the latter of which is equivalent to the LR test in terms of size and power when
joint normality holds. Since the Bekaert and Hodrick (2001) methodology is relatively new
and general enough to accommodate other tests, it is summarised here with the suggested

extensions of Bataa et al. (2006).

The Generalized Method of Moments (GMM) estimator of Hansen (1982) is used
to estimate the VAR in (4). Defining ® =[®,,..,®,]", the vector of nonlinear

orthogonality conditions can be written as E[g(x,,0)]=0, where x, =(y/,z.,),

0 = vecr(®) . Estimation uses the corresponding sample moment conditions for a sample

T
of size 7, namely g,(8) = %Zg(x[,ﬂ) .
t=1
It proceeds by selecting 6 to minimize the GMM criterion function
1 -1
J(0) = _Egr(e) Qg 0),

where, assuming the VAR of (4) is correctly specified with u, uncorrelated, the weighting

matrix, ﬁ;l, is a consistent estimate of the inverse of
Q = Efg(x,,0)g(x,,0)]. (®)

If we denote the Jacobian matrix as G = EV,g(x,0,), where V, denotes derivative with

respect to 0, then the GMM asymptotic distribution theory guarantees
JT(®0, -0,)—L>N(0,B™?), 9)
where 67 is the GMM estimator obtained using 7' observations, 0, is the corresponding
true value, —<— denotes convergence in distribution and B=G'Q"'G.
The null hypothesis of (7) can be written as:
H,:a0,)=e,—eA=0, (10)

where a(B) is a 2p dimensional vector, with A=V a(08,). Notice that the null is

composite, i.e. it does not fully specify the data generating process (DGP). For example, it

restricts only 2p out of 4p VAR slope parameters and does not say anything about the
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conditional covariance matrix of the VAR residuals. The Lagrangian for the constrained

GMM maximization problem is
1 -1 [N
L(0,y) = —Egr(ﬂ) Qg (0)—a(0)y;

where y is a vector of Lagrange multipliers, and fz, is a consistent estimate of
Q obtained from (8) using the sample mean in place of the expectation. The first order

conditions for the solution of this problem are

~VTGQ7'g, (8;) - V,a(®,)VTT, zm
_ﬁa(ﬁr) 0 1

and, under the null, the constrained GMM estimator satisfies 0, —2—8,, so

V,a(0,)—2—> A, where —2— denotes convergence in probability. Then Newey and

McFadden (1994) show that
JT®,-0,)—_>N(0,BA(AB*A) *AB™Y). (11)

The Wald statistic used to test (10) is based on deviations of the unconstrained estimates
from values consistent under the null. On the other hand, the LM or score statistic is based
on deviations of the constrained estimates from values solving the unconstrained problem.
Finally, the DM statistic is based on the difference between the GMM objective functions

at the constrained and unconstrained estimators using the same weighting matrix.

Specifically,
W =Ta(0,) (ABA) *a@,)—> x*(2p) (12)
LM =Ty, AB*AY, — y*(2p) (13)
DM =-21(J(8,)-J(0,) —> 2’(2p), (14)

where p is the VAR lag length.

Newey and McFadden (1994) show how to obtain values for the above trinity of

statistics starting from any initial ~/T consistent estimator 6T of 8,. We evaluate B and A

at 5T , and the constrained estimator is obtained from the Lagrangian first order conditions,
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= ~ -1 ;A ~

0T — 0T _ B A GTQTl%T (BT) (15)

o 0 A0 -a(0,)
using y =0as the initial consistent estimator of the Lagrangian multipliers. Newey and
McFadden (2001) note a(ET) is not necessarily zero in finite samples and Bekaert and

Hodrick (2001) suggest to further iterate on (15), i.e., ET obtained from (15) is put back on

the right hand side and iterated until 3(§r) =0

3.2 Bootstrap inference

Bekaert and Hodrick (2001) also provide finite sample versions of their tests using a
bootstrap procedure. According to Horowitz (2001), the bootstrap should only be used if
the asymptotic distribution of a test statistic is pivotal, i.e. does not depend on unknown
population parameters. Although the asymptotic distributions in (12) to (14) depend on the
unknown lag length of the assumed VAR data generating process (DGP), Bekaert and
Hodrick (2001) apparently rely on the consistency of the SIC to select that order. The VAR
parameters, estimated subject to the constraint in (10), and a bootstrap of the corresponding
residuals are used as the DGP to estimate the finite sample distributions of the test

statistics.

Although Bekaert and Hodrick (2001) use an iid bootstrap or assume a GARCH
model for the VAR residuals, we use a recursive design wild bootstrap that has been shown
to deal better with general forms of volatility clustering.® For the estimated constrained

VAR parameters 61""’617 and corresponding residual vector u, for time period ¢, we

generate a bootstrap sample as
y, = Zayj_,. +tu,,u =ou,t=1,..,T (16)

in which the scalar random variable @, follows the Rademacher distribution, taking the
possible values of negative and positive unity with equal probabilities.” This choice is
justified by recent Monte Carlo studies of Davidson and Flachaire (2001), Godfrey and
Orme (2004) and Godfrey and Tremayne (2005). For each of a large number of data sets

" In our application the tolerance level for convergence is set at 10°.

8 See Goncalves and Killian (2004) and discussions in Bataa et al. (2006).

° Bataa et. al (2006) follow Stine (1987) in randomizing the starting values. They split the observed data into
T—p + 1 overlapping blocks of length p and one of these is selected randomly as the starting point.
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generated in this way, we estimate (12) to (14) to derive the empirical finite sample

distributions of the test statistics.

4. Mixed testing approach

Bekaert and Hodrick (2001) note that the inferential efficiency of the single equation
method can be improved by considering implications of the VAR parameters for the slope
coefficient of regression (3). Sarno ef al. (2006) and Bekaert et al. (2006) extend this idea
to the variance ratio of the theoretical and actual long rates. We term these a mixed
approach. This section first describes how previous studies use this mixed approach make
inference and then argues such inference is invalid because the null hypothesis does not
fully specify the assumed DGP. The second subsection then develops the studentized

versions that avoid this problem.
4.1 Slope coefficient and variance ratio tests

The basic idea of the mixed approach is to generate empirical distributions of the implied
OLS slope coefficient for equation (3) and the variance ratio statistic under the null, using
a large number of datasets generated from (16) with an iid bootstrap, which then allow

computation of empirical p-values for the test statistics obtained from real data.

If the ET is true, the population slope coefficient from a regression of the actual
spread on the theoretical spread must be unity. Therefore, from (5) and (6), the implied
slope coefficient is

po) =AY an
e, Ve,
namely the covariance between the dependent and independent variables in (3) divided by
the variance of the dependent variable, where vec(¥) = (I-® ® ®) ‘vec(X). Similarly,
the variance ratio of the theoretical and actual spreads can also expressed in terms of the

VAR parameters as™

10 campbell and Shiller (1991) use the concept to evaluate the economic significance of the ET, as this ratio
should be close to one if the ET is true, but Sarno et al. (2006) and Bekaert et al. (2006) provide the compact
expression for the variance ratio of the theoretical and actual long rate rates, as their DGP includes interest
rates in levels.
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e;AWA'e;

v(0) =
(©) e, Ve,

(18)
However, it is important to note that the estimated DGP in (16) is only one of
possibly many DGPs under the null. This implies applying a simple bootstrap procedure to
either (17) or (18) to conduct inference is problematic, because the ET constitutes a
composite null hypothesis in terms of the assumed DGP. For the ET, only 2p restrictions
are implied on the 4p elements of the VAR coefficient matrices, so that there are
potentially many DGPs that could generate the data under the null. Therefore, as discussed
by Horowitz and Savin (2000), valid inference requires the use of size-corrected critical
values. These set the supremum of the test’s rejection probability over all admissable
DGPs under Hy to a pre-specified level o, rather than taking the critical value estimated as
the o level quantile from a specific and arbitrary finite sample distribution. Estimating the
appropriate size-corrected critical value will obviously be very expensive, if not
impossible, due to the need to consider all DGPs admissible under the composite null
hypothesis. Perhaps more importantly, this critical value may be infinite, leading to a test
with no power if the number of possible DGPs under H, is large (Dufour, 1997), or the

power of the test may be the same as the size (Bahadur and Savage, 1956).
4.2 Studentized slope and variance ratio tests

As just argued, finite sample bootstrap critical values obtained using (17) and (18)
are not valid for inference on the ET at the specified level of significance a. Indeed this
may be the reason why Bekaert et al. (2006) and Sarno et al. (2006) find somewhat
contradictory results from the LM test and the implied test statistics of (17) and (18).
However, if the ET is true, the population values of these statistics must equal unity. That

is, the ET in (10) implies the null hypotheses
Ho: 5(6,) =v(8,) =1 (19)

This, in turn, suggests bootstrapping simple ¢ statistics, which are asymptotically pivotal,
associated with the null that (17) and (18) are equal to unity, rather than bootstrapping the
implied slope coefficient and variance ratio directly.** This leads to the new tests we

propose.

First note that S(8,)=v(0,)=1, then from (11) and a Taylor’s series

approximation, the asymptotic distributions are

1 See Hall (1994) and Horowitz (2001) for the importance of bootstrapping asymptotically pivotal statistics.
14



JT(B(0,)-1)—<>N(0,H'B2(I-M)BV?H), (20)
JT(v(0,) -1)—“> N(0,L'B2(I-M)B L), (21)

where H=V,4(0,) and L=V,»(0,) are gradients that can be calculated using

numerical derivatives.’? These expressions indicate the problem with the straightforward
use of finite sample inference applied to the slope coefficient and the variance ratio,
because the variances depend on parameters that are not fully specified under the null
hypothesis. However, the asymptotic distributions of the 7 statistics, which will be referred
to as 2 and ¢3 respectively, obtained from (20) and (21) are standard normal and do not
depend on the parameters of the specific DGP from the set satisfying the ET that generated
the data under the null hypothesis.

In particular, the studentized test statistics we propose are obtained as
12 =~IT(B®,)-1)/(H'B™Y?(1 - M)B2H)"? (22)
3=~T(0,)-1)/(L'B2(1-M)BY?L)"2. (23)

Because of the asymptotic standard normal property of these statistics, the bootstrap
provides valid higher order approximations to their finite sample distributions under the
null (Horowitz 2001).

Section 5. Monte Carlo study

This section first sets out the methodology used in our Monte Carlo analysis and then
compares the control parameters with those estimated from real data to ensure the

empirical relevance of the exercise and finally discusses the results.
5.1 Methodology

To our knowledge only two studies to date have compared the finite sample properties of
ET tests. Bekaert and Hodrick (2001) compare the LM, DM and W tests of (12)-(14), while

Sarno et al. (2006) compare the LM test with its extended versions. The extensions are to

12 gee for example, Campbell ez al. (1997, p540). We also used the distribution in (11) under the null, as in
related literature of Hodrick (1992) and Bekaert and Hodrick (1992), but our specification was found to
perform slightly better in our Monte Carlo Experiments.
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include inflation in the VAR, while they also consider testing the ET using more than two
interest rates. The former study finds the LM performs better than the other two statistics

and the latter concludes the extensions increase the power of the LA test.

Our study differs from these in at least three important aspects. Firstly, both
previous studies take the unrestricted VAR, estimated on the observed data, as the DGP
under the alternative hypothesis. However, this assumes that the ET does not hold in the
observed data. More importantly, even if this assumption is true, the procedure means that
the alternative, against which the null is being tested, is unknown. As Melino (2001)
argues, a good statistical methodology considers the alternative hypotheses that are the
most plausible and constructs tests which are as sensitive as possible in detecting
differences between the maintained hypothesis and these particular alternatives. Therefore,
we explicitly consider the widely cited overreaction and time varying term premium

hypotheses as alternatives to the null of the ET.

The second important difference is that we compare the finite sample properties of
not only the classic trinity of tests in (12)-(14), but also the conventional single equation
tests obtained from (3) that will be referred to as ¢/, and studentized implied regression and
variance ratio tests, 2 and ¢3, obtained in (22) and (23) respectively. The performance of
the conventional test can be predicted, given its econometric problems discussed in Section
2 and results in Bekaert er al. (1997), but the latter two have not been considered in the
previous literature. Finally, we explicitly analyse the effects of interest rate maturities and

persistency on the powers of the tests.

In order to ensure that the DGP resembles the real world and various levels of
interest rate persistency induced by different monetary policy regimes (Mankiw and Miron,
1986), we use observed term structure data from the US and the UK, the countries where
most and least evidence against the ET has been reported, as the basis of our Monte Carlo
study. To be explicit, we estimate a first order VAR for the mean with a multivariate

GARCH (1,1) process of Engle and Kroner (1995) applied to the resulting residuals:

yt :6+AYt—l+et’
e, =X/,

Y, =D'D+F'e_e F+A'Z, A,
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where 'y, :[ARM,S(W)J and &, is the vector standard normal variable. The VAR and

GARCH parameters are estimated using 1 and 3-month UK government Treasury Bill rates
from January 1979 to May 2004 obtained from DataStream® and 1 and 2-month US zero
coupon yield data from Jan 1952 to Dec 2003 from Sarno et al. (2006). This specific
choice of data has no other intention except to generate DGPs that are empirically relevant.

These are:

0.069 1.035 —0.0009
US: A = L) 6 = 9
—-0.09 0.363 0.0002

_{0.095 0.012} F_{O.218 o.om} G{O.%l —0.034]

10,000 0.000’ 0.021 0.397 0.014 0.920

—-0.020 0.631 -0.024
UK: A= [} 0= ’
0.060 0.368 0.001

{0.041 —0.019} _{ 0.229 0.062}

0.958 —0.037]
0.000 0.000 ~0.171 0.203'

0.166 0.966 |’

We consider four DGPs,

DGP1: UK VAR+UK GARCH
DGP2: US VAR+US GARCH
DGP3: UK VAR+US GARCH, and
DGP4: US VAR+UK GARCH.

Using these processes we generate samples of four different sizes, with 150, 300, 600 and
1500 observations, plus 1000 observations that are discarded. Since most studies of the ET
use monthly data, the three smaller sample sizes we employ reflect the lengths of actual

data typically available to a researcher.

Asymptotic and bootstrapped versions of all tests are considered. Although
asymptotic tests are easy to use, there is now considerable evidence that they can suffer
from large size distortions in finite samples. In contrast, bootstrapped tests are
computationally expensive but are designed to have the correct size. In our size-power
study the critical values come from the y(2) and N(0,1) distributions for the asymptotic

tests and from the null empirical distributions for the bootstrapped tests.
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To implement the bootstrap, we apply the recursive procedure described in Section
3 to estimate the VAR parameters that are restricted to satisfy the ET null hypothesis of
(10) and obtain the corresponding residuals. These parameters and residuals are then used
in (16) as the wild bootstrap DGP. This DGP is used to generate 1000 datasets, for each of
the four sample sizes, that are used to estimate the six empirical distributions for the LM,
DM, W, ¢1, ¢2 and ¢3 statistics. For the first trinity, the critical values are simply the 95%
quantiles of these distributions. For the various ¢ statistics, they are the 2.5 and 97.5%

quantiles from the empirical distributions, allowing for two tailed alternatives.

Following the recommendations of Shiller (1987) and Melino (2001), we
concentrate on analysing the test powers against interesting alternative hypotheses. Two of
the most prominent alternatives to the ET are the under/over-reaction hypothesis and the
time varying term premium. We capture these alternatives by generating term structure

data using

*

S, =45 z, (24)

(n,m),t (nm)t — ‘i

*

where the theoretical spread S is defined in (6) and z, = ci'z, where i is a unit vector.

(n,m),t

For simplicity, the term premium z, here depends on the sum of current AR, ,6 and

S, . 1. When ¢ is zero, (24) corresponds to the ET if § = 1, to the over-reaction

(n,m),
hypothesis if > 1 and to the under-reaction hypothesis if 6 < 1. If 5= 1 and c is nonzero,

we have the time varying term premium hypothesis.
The alternative given by (24) translates into the VAR parameter restrictions
e, =% A—ci'. (25)

We consider different values of the parameters & and ¢, specifically 6 €[0.6, 1.4] and
ce[-0.25, 0.25]. For each pair (J, ¢), and for a given sample size 7, the VAR coefficients
are estimated satisfying the restrictions of (25), not those of (10). These VAR coefficients
restricted under the alternative hypothesis and the corresponding residuals are then used in
(16) as DGP to generate 1000 datasets where the ET does not hold. For each of the datasets
we obtain the six test statistics corresponding to the null in (10) and the proportions of the
test statistics that are greater (and, for the two tailed tests, lower) than the relevant critical

values provide the estimates of power. When 6 = 1 and ¢ = 0, this exercise yields an

13 Of course one can estimate a VAR of order greater than 1 and let the current term premium depend only on
past information, possibly also allowing the contributions of past AR, and Sy 1O differ.
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estimate of the actual size of a test and if this actual size is greater (smaller) than nominal

5% the test is over(under)sized.

To summarise, we first generate 1500 observations, after discarding initial 1000
observations, from each DGP starting from the same random number generator and use
first 150, 300, 600 and 1500 observations as raw data in the size-power calculation for
various n and m. This allows us to examine the effects of » and m that are embedded in the
null e, = e;A(®,n,m) defined in (7) on the sizes and powers of various tests while keeping
® fixed. By using two VAR slope parameters estimated from the UK and US data we are
able to examine the effect of @ while keeping » and m fixed. Finally we keep all of the

above, specifically ®,nand m, fixed and examine the effects of dynamics that are not

restricted by the ET by employing two different conditional volatility processes.
5.2 Corroboration

Before presenting our main results we briefly assess how relevant our choice of values for
o6 and c are in terms of observed series by estimating these parameters using US term
structure data. The theoretical spread is calculated as in Bataa et al. (2006) and the actual
spread is regressed on the theoretical spread to obtain an estimate of &. A time varying
term premium proxy is obtained as a difference between the actual and theoretical spreads,
as in Carriero et al. (2006), and we regress this on the sum of current spread and the first
difference of the shorter rate. Table 1 provides the resulting point estimates of ¢ and ¢,
along with their standard errors, for all conventional maturity pairs between 1 month and
10 years for three different sample periods: whole sample (Jan 1952- Dec 2003), pre-1979-
1982 monetary policy change (Jan 1952- Dec 1978) and post monetary policy change (Jan
1982-Dec 2003).

Most slope estimates are statistically significant, and ignoring two negative
estimates of ¢, range between 0.21 and 3.39, while estimates of ¢ range between -0.22
and 0.75. In particular, for the three different sample periods 6.3%, 56.3% and 20.8% of
the point estimates of & are in the range ¢ €[0.6, 1.4] and 35.4%, 83.3% and 20.8% of the
point estimates of ¢ are in the range ce[-0.25, 0.25]. Although the range of values we
consider for ¢ and c is not fully representative of the data and therefore could be extended
we had to restrict ourselves because of the computational burden. Consistent with
Campbell and Shiller (1991) and Fuhrer (1996), most of the estimates of ¢ are greater
than unity (85.42%, 87.50% and 91.67%) implying the actual spread is more volatile than
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Table 1. Empirical Estimates of  and ¢

1 2 3 4 6 9 12 24 60
0.42 0.42 0.25
2 0.07 0.11 0.09
-0.02 0.01 -0.10
0.01 0.02 0.03
0.21 0.68 0.60
3 0.05 0.14 0.09
-0.04 0.07 -0.01
0.02 0.02 0.04
0.30 0.25 1.21 0.44 1.58 1.09
4 0.05 0.08 0.13 0.06 0.13 0.09
-0.01 0.04 0.17 0.01 0.04 0.10
0.02 0.03 0.04 0.01 0.02 0.02
0.63 0.31 1.38 1.75 161 1.26 2.03 1.39 0.96
6 0.07 0.08 0.12 0.08 0.11 0.14 0.14 0.12 0.27
0.11 0.12 0.28 0.13 0.11 0.29 0.10 0.06 0.21
0.02 0.04 0.04 0.02 0.02 0.04 0.01 0.02 0.03
1.25 0.31 1.56 2.05 1.45 2.09
9 0.07 0.09 0.10 0.10 0.10 0.21
0.20 0.25 0.36 0.19 0.15 0.37
0.02 0.04 0.04 0.02 0.02 0.03
1.33 0.45 1.69 1.55 1.50 101 1.89 1.43 2.68 1.89 157 271 164 1.74 227
12 0.07 0.09 0.09 0.05 0.09 0.05 0.07 0.09 0.18 0.08 0.11 0.19 0.08 0.10 0.20
0.22 0.28 0.40 0.21 0.21 0.21 0.23 0.18 0.45 0.19 0.19 0.37 0.09 0.12 0.20
0.02 0.04 0.03 0.02 0.03 0.03 0.02 0.03 0.03 0.02 0.03 0.03 0.01 0.02 0.03
1.76 1.54 1.92 241 1.53 223 2.36 1.53 2.19 1.88 1.27 2.16 1.77 1.43 221 3.17 1.29 1.20
24 0.08 0.08 0.08 0.14 0.06 0.09 0.18 0.07 0.10 0.05 0.05 0.11 0.04 0.05 0.08 0.22 0.04 0.19
0.40 0.30 0.44 0.53 0.27 0.51 0.55 0.26 0.50 0.32 0.17 0.48 0.25 0.18 0.39 0.25 0.05 0.31
0.02 0.03 0.03 0.02 0.03 0.03 0.02 0.03 0.03 0.02 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.03
1.92 1.46 1.54 2.85 1.39 2.02 1.90 1.36 2.37 198 1.36 2.59 1.85 1.35 2.74 191 1.22 3.17 2,01 1.14 3.39
36 0.07 0.06 0.06 0.10 0.05 0.07 0.04 0.05 0.09 0.04 0.05 0.09 0.04 0.04 0.10 0.04 0.04 0.14 0.04 0.04 0.21
0.43 0.29 0.35 0.56 0.24 0.49 0.38 0.23 0.54 0.39 0.22 0.55 0.33 0.19 0.52 0.30 0.10 0.53 0.27 0.04 0.51
0.02 0.03 0.03 0.02 0.03 0.02 0.02 0.03 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.02 0.03
1.97 1.45 1.59 2.81 1.37 1.97 191 1.34 2.29 1.99 1.32 2.48 1.79 1.29 2.64 1.93 1.10 3.01 -0.66 1.03 3.13
48 0.06 0.05 0.05 0.08 0.05 0.06 0.04 0.05 0.07 0.04 0.04 0.08 0.03 0.04 0.08 0.03 0.03 0.10 0.24 0.03 0.38
0.45 0.28 0.37 0.58 0.24 0.48 0.41 0.22 0.54 0.42 0.21 0.55 0.35 0.17 0.54 0.33 0.03 0.53 0.39 -0.07 0.44
0.02 0.03 0.03 0.02 0.03 0.02 0.02 0.03 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03
197 1.45 1.56 270 1.37 1.96 194 1.33 2.33 2.00 1.32 2.28 1.92 1.24 2.44 -0.24 1.08 2.88
60 0.05 0.05 0.05 0.07 0.04 0.06 0.04 0.04 0.07 0.04 0.04 0.06 0.03 0.03 0.06 0.19 0.03 0.08
0.45 0.28 0.36 0.57 0.24 0.48 0.43 0.22 0.55 0.44 0.21 0.53 0.40 0.15 0.53 0.75 0.03 0.56
0.02 0.03 0.03 0.02 0.03 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
1.80 141 142 1.68 1.34 1.61 1.85 1.32 1.75 193 1.29 1.62 1.80 1.23 1.53 1.65 1.14 1.33 158 1.15 121 1.98 1.78 0.72
120 0.04 0.04 0.04 0.03 0.03 0.04 0.03 0.03 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.03 0.02 0.02 0.03 0.02 0.03 0.06 0.01
0.42 0.27 0.30 0.38 0.23 0.39 0.43 0.22 0.43 0.45 0.20 0.38 0.41 0.16 0.34 0.34 0.09 0.24 0.28 0.06 0.15 0.21 0.15 -0.22
0.02 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.01 0.01 0.02 0.01 0.02 0.03 0.02

Note: Empirical estimates of & (first row) and ¢ (second row) and their standard errors (in italics) are reported for various maturity pairs using data from Sarno et al. (2006). 1,
I1, and I11 denotes sample periods, which are 1952:01-2003:12, 1952:01-1978:12 and 1982:01-2003:12 respectively.



the theoretical spread; 93.75%, 97.92% and 93.75% of the point estimates for ¢ are
positive, again consistent with Tzavalis and Wickens (1997). Given that the set of

parameter values we consider is indeed empirically relevant we discuss our results next.
5.3 Results

Table 2 reports the empirical sizes for all tests from DGP1 and DGP2 for various maturity
pairs at a nominal significance level of 5%.* For each DGP, the first panel reports size
results for m=1 in common with a range of values for the longer maturity » and the lower
part reports for n=180 in common with a range of values for the maturity m. In the final
panel we keep k(=n/m) constant and increase both » and m. It appears that size does not
depend on the DGP. It is, however, evident that the 7, LM and DM trinity is oversized and
this size distortion does not disappear even with a sample of 1500 observations. The size
distortion is generally smaller for LM than for W and DM tests in small samples,
confirming the conclusions of Bekaert and Hodrick (2001). However, the size differences
among these three become largely indistinguishable as the sample size increases. In
contrast, the implied regression and variance ratio tests, £2 and ¢3, seem to have the least

size distortion.

Unlike the other tests, the size of conventional test, ¢/, depends on the maturities of
interest rates. For example, for a maturity pair 1&3 months, size is 6% with 300
observations, however this inflates into a staggering 53% when the maturity of the longer
rate is 120, which implies a cross maturity spectrum comparison of ET performance
becomes senseless unless one is willing to compensate for the number of observations
“lost” in the estimation process. This “loss” of observations has two sources: one is
physical loss of observations in trying to calculate the left hand side of equation (3) and the
other is the loss of independent observations resulting from a high degree of MA

correction.

The second important question is to analyse how powerful the tests are against
empirically relevant local alternatives. Using the asymptotic distribution, Figure 2
illustrates size-power curves for the sample size of 300 observations from DGP2 where the
tests have their highest powers compared to other DGP’s.'® The powers of the tests against
the under/overreaction hypothesis are plotted in Panel A while those against the time

varying term premium are shown in Panel B. While Table 2 showed no obvious pattern for

14 Results from DGP3 and DGP4 were quantitatively very close and qualitatively the same. They are not
reported to conserve space but available on request.
5 Full results are available from the authors upon request.



Table 2. Empirical Size Results

T 150 300 600 1500 150 300 600 1500 150 300 600 1500 150 300 600 1500
Panel A: DGP1
n
3 9 24 120
LM 0.15 0.12 015 0.17 0.14 0.12 015 0.15 0.15 0.13 0.16 0.16 0.15 0.13 0.16 0.16
DM 0.18 0.13 0.16 0.7 0.17 0.17 0.17 0.16 0.18 017 0.19 0.17 0.18 0.17 0.19 0.18
Wi m=11 018 013 016 0.17 0.18 0.17 0.18 0.16 0.19 017 0.8 0.8 0.19 0.17 0.18 0.18
t1 0.08 0.06 0.06 0.07 0.11 0.10 0.09 0.07 023 020 0.13 0.10 N.A. 053 0.31 0.16
t2 0.06 0.04 0.05 0.05 0.06 0.07 0.07 0.07 0.06 0.08 0.07 0.07 0.06 0.08 0.07 0.07
t3 0.06 0.04 0.05 0.06 0.07 0.08 0.07 0.06 0.08 0.08 0.07 0.07 0.09 0.09 0.08 0.07
m
1 6 36 60
LM 0.15 0.13 0.16 0.16 0.15 0.13 0.16 0.16 0.14 013 0.15 0.15 0.14 0.13 0.5 0.17
DM 0.18 0.17 0.19 0.18 0.18 0.17 0.19 0.7 0.18 0.17 0.17 0.16 0.17 0.5 0.16 0.18
W |n=180| 0.19 0.17 0.18 0.18 0.19 0.17 018 0.18 0.18 017 0.16 0.17 0.19 0.17 0.16 0.7
t1 N.A. NA 044 021 N.A. NA. 044 021 N.A. 069 0.38 0.20 N.A. 057 0.34 0.20
t2 0.06 0.08 0.07 0.07 0.06 0.08 0.07 0.07 0.07 006 0.06 0.07 0.06 0.06 0.05 0.06
t3 0.09 0.09 0.08 0.07 0.08 0.09 0.08 0.07 0.06 0.07 0.07 0.07 0.06 0.06 0.07 0.06
Panel B: DGP2
n
3 9 24 120
LM 0.16 0.15 0.14 0.16 0.15 0.15 0.14 0.16 0.14 016 0.4 0.17 0.15 0.15 0.14 0.16
DM 0.18 0.16 0.14 0.7 0.17 0.17 015 0.17 0.17 017 0.15 0.17 0.17 0.17 0.15 0.7
W | m=1 1018 016 0.14 017 0.18 0.17 0.15 0.16 0.18 0.16 0.15 0.16 0.18 0.16 0.16 0.16
t1 0.09 0.06 0.05 0.08 0.14 0.09 0.10 0.08 022 013 0.11 0.08 N.A. 040 0.24 0.3
t2 0.06 0.05 0.04 0.07 0.05 0.06 0.04 0.06 0.05 0.06 0.04 0.06 0.05 0.06 0.04 0.06
t3 0.05 0.04 0.04 0.06 0.06 0.07 0.05 0.06 0.08 0.07 0.06 0.06 0.08 0.08 0.06 0.06
m
1 6 36 60
LM 0.15 0.15 0.14 0.16 0.15 0.15 0.14 0.17 015 015 0.15 0.17 0.15 0.14 0.15 0.16
DM 0.17 0.17 015 0.17 0.17 0.17 015 0.17 0.17 016 0.15 0.17 0.17 0.16 0.16 0.17
W |n=180| 0.18 0.16 0.16 0.16 0.18 0.17 0.16 0.16 0.17 017 0.15 0.16 0.18 0.16 0.17 0.17
t1 N.A. N.A. 035 0.17 N.A. N.A. 033 0.16 N.A. 054 031 0.16 N.A. 047 028 0.15
t2 0.05 0.06 0.04 0.06 0.05 0.06 0.04 0.06 0.05 0.06 0.05 0.06 0.05 0.05 0.04 0.07
t3 0.08 0.08 0.06 0.06 0.08 0.08 0.06 0.06 0.08 0.07 0.05 0.06 0.07 0.07 0.05 0.06

Note: Table reports empirical sizes of the tests at the nominal significance level of 0.05. N.A. for the ¢/ test
indicates there are an insufficient number of observations available for the MA correction after losing n-m
observations in the calculation of the test statistic.

the size distortion across various DGPs and in relation to location of the maturity pair in
the term structure spectrum, except for ¢/, there are clear patterns for test powers. The three
rows of the graphs in each panel are designed to show three different aspects of the effect
of maturities, the first row showing the effects of increasing » for a given m, the second
row of increasing m for a given n, and the third row increasing both » and m while keeping
k (=n/m) constant. All the tests are considerably powerful at the shortest end of the
maturity spectrum. However as one deviates from there the powers decrease, but with
varying degrees for various tests. It can be seen that for large » and small m the plotted
size-power curve of ¢/ either becomes a horizontal line at zero as there is an insufficient
number of observations for the MA correction after loosing n-m observations in the
calculation process or straight lines running from the bottom left to the top right against the

under/over-reaction hypothesis and from the bottom right to the top left of the graph
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against the time varying term premium alternative. It is evident that the other size-power
curves also depend on » and m, especially those of 2 and ¢3. Although ¢2 and ¢3 tests have
the closest empirical sizes to the nominal one, their powers can be smaller than size, when
the null of the ET is tested against the over-reaction hypothesis or the time varying term
premium that is negatively correlated with the sum of the spread and the change in shorter
rate. In contrast, even though LM, DM and W tests are oversized, they have good powers

against the over-reaction hypothesis and the time varying term premium.

In Figures 2-5 we explicitly compare the tests’ powers across 4 DGPs and 4 sample
sizes, using bootstrapped versions to avoid the problem that tests with higher size
distortion may incorrectly appear more powerful. The reported are the same three row
graphs designed to illustrate the effects on interest rate maturities on test powers. Panels
Al-A4 (A1-A3 for DGP3 and DGP4) consider test powers against the alternative of
over/under-reaction hypothesis and Panels B1-B4 (B1-B3 for DGP3 and DGP4) report

those against time varying term premium.

In Panel As the powers are in general lowest for DGP1 (that is, based on UK data
characteristics) and strongest in DGP2 (based on the US).!® Indeed, Panel Al of Figure 2
(UK mean and volatility) shows power to be low with a sample size of 150 observations,
except at the very short end of the maturity spectrum. Except for the large sample size
(7=1500), Figure 2 shows power to be greater against the under-reaction than the over-
reaction hypothesis, whereas, with the exception of the small sample size of 150
observations, this is less marked in Figure 3. Conditional volatility of the UK DGP seems
to have the strongest negative effect on power, as when we combine US conditional
volatility with the UK mean (that is DGP3, Figure 4) test powers dramatically increase
while doing the converse (that is DGP4, Figure 5) entails a dramatic decrease in test
performances. From these Panels one can also see that the z/ and W tests are most sensitive
to increasing » for a given m and decreasing m for a given n, but the sensitivity of the latter
diminishes much faster than that of the former as the sample size increases. The I test is
also most powerful against the over-reaction hypothesis. In small samples the implied
regression, ¢2, and variance ratio, 3, tests are most powerful against the overreaction
hypothesis at the shortest end of the term structure but they lose power to the LM and DM
tests as the sample size increases and/or interest rate maturities change in a pattern

described above.

18 We do not provide A4 panels that correspond to 1500 observations for DGP3 and DGP4 because of the
computational cost.
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In Panels B1-B4 (B1-B3 for DGP3 and DGP4) we report power of the tests of the
ET against the time varying term premium alternative. All tests perform best at the shortest
end, as before. Interestingly, the dependence of the test performances on the specific DGP
is less pronounced than in Panel As. There is no clear evidence for LM, DM and W tests for
such a dependence but comparing B1 in Figures 2 & 3 and similarly B2 in these Figures,
the z-tests perform better in Figure 3, especially when ¢ < 0. In this case there is no close
competitor to LM and DM tests which perform much better than the 72 and ¢3 tests, the
latter of which can even have power below size for negative c¢. The worst test is again ¢/,

while W performs very comparably with the forerunners as the sample size increases.

Overall, the performances of all tests are at their best when both m and » are small
and decrease as the distance between m and n increase. However, this decrease is of
varying degrees for each of the tests and its speed diminishes as we depart from the
shortest end of the maturity spectrum. For example, in DGP1-Panel B when m is kept
constant at 1 and » is increased from 3 to 9 all the powers reduce dramatically, but the
reductions for LM, DM and W are relatively small than those based on -tests. However, as
we further increase » to 120 the power reduction that follows is much smaller and arguably
less important for z-tests. When maturity pairs are already further away from the shortest
end the specific values for » and m appears not to matter as long as k(=n/m) is constant.
The size-power curves for maturity pairs 24&48 and 60&120 are visually extremely
similar from both panels and across DGPs for all sample sizes, except for z/. Another
interesting observation is that in DGP3-Panel B the test powers are higher for the latter
maturity pair than for the former for all sample sizes. Moreover, increasing both m and »
can improve the test powers as long as this also reduces %, as if large » and m cancel out
each other. For example all tests, except ¢/ and W, are more powerful at the maturity pair
60&120 than at 1&24 in all sample sizes and all DGP’s excluding and also DGP3.
However these sensitivities to interest rate maturities and 4 are much less pronounced,

except ¢/, for the large sample size of 1500 observations.
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6. Conclusions

This paper provides extensive Monte Carlo evidence that addresses the empirical puzzle
that the spread between longer and shorter rates predicts future movements in the shorter
rate in accordance with the ET if the forecast horizon is long, but not otherwise. We also
study if the persistency of interest rates can explain a general finding in this empirical
literature that indicates the ET appears to hold in some samples (country-wise and time-

wise) as opposed to others.

We do indeed find that in small samples, the powers of the tests previously
employed in the literature, and new ones we propose, depend on the interest rates’
maturities and their persistency of conditional volatility when the null hypothesis of the ET
is tested against empirically relevant alternative hypotheses such as the under/over-reaction
and the time varying term premium hypotheses. This suggests that the cross sample
(country-wise or time-wise) and/or maturity spectrum comparison of the performance of
the theory is, strictly speaking, impossible in samples typically used in the literature, as the
powers of the tests are not the same. Since such dependence diminishes as the sample size
increases, this suggests powerful tests might be obtained and their results can be compared
across maturity spectrum and/or samples if one uses high frequency data such as daily data

provided by the Bank of England and the US Federal Reserve.

Our secondary goal was to compare finite sample performances of the conventional
regression test (¢/), VAR based LM, DM, W tests considered in Bekaert and Hodrick
(2001), and the implied regression (z2) and variance ratio (¢3) tests, which are constructed
using the asymptotic distribution of the restricted parameter estimator. Although forms of
the latter two tests have been suggested in previous literature, we argue that the use of
these leads to invalid inference, whereas we avoid this problem by proposing a ¢ ratio
specification for these tests. An extensive Monte Carlo analysis is used to achieve this
goal, with tests conducted using both the asymptotic distributions of the statistics and the

empirical finite sample distributions obtained using a wild bootstrap procedure.

The conventional test’s actual size depends on the maturities of interest rates and it
can go up to 56% in our simulations when the nominal significance level is 5%. LM, DM
and W tests are oversized, the former being least size distorted, which is consistent with
Bekaert and Hodrick (2001), while the implied regression and variance ratio tests have the

closest actual sizes to the nominal level. However, the powers of the latter two can be less
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than their size, when the null of the ET is tested against the under-reaction hypothesis or
against a time varying term premium that is negatively correlated with sum of the spread

and change in short rate.

In order to compare powers of the tests while keeping their sizes at the nominal
level we use a wild bootstrap. The performances of all tests are at their best and
comparable with each other against both alternative hypotheses when both m and » are
small, but decrease as the distance between m and » increase. However, this decrease is of
varying degrees for each of the tests and its speed diminishes as we depart from the
shortest end. The worst performance comes from the conventional test (¢/) while LM and
DM tests are most consistent and powerful. However it is worth mentioning that all the
conclusions rely on the assumption of known DGP and it is indeed possible that the
implied regression and variance tests may outperform in situations of unknown lag order
for the assumed VAR-DGP as their asymptotic distributions are pivotal compared to those
of LM, DM and W.
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Appendix A: Derivation of the ET restrictions on VAR parameters

Restrictions imposed by the ET on the companion-form VAR parameters are derived in

this Appendix.

The spread predicted by the ET can be obtained from (2) as,

k-1 ;
S t=Z(1—é)E(A”’Rmvm.m|Et). This spread is not observable, but can be proxyed
i=1

(n,m),

using the VAR. Assuming the process for vy, =[ m,t,S(nvm)V,] is represented by a
demeaned VAR of order p, its companion form can be written as, z, = ®z,_, +u,, and

hence E(z,,,|I,)=®’z, ,assuming E(u,,|/,)=0, i > 0. Thus, using the notation of the

t+j t+i

text, E(AR,, . ;|1,) =€ E(z,. |l,) = ei®'z, as AR, , =ejz

.
In what follows we use the following two simple results from matrix algebra:
[+ +D° +. .+ ' =(I-®) "' —-®""I-®) ' =(I-D"")I-D)*
which follows since I+ ® + ®° +...= (I-®) " and
[+®" + 0" 4. +0"" =I1-®") ' -®"(I-®") ' =I-®")I-D")*

since [+®@" +®>" + .. = (1-®").

*

(n,m),t?

Now define a theoretical spread S which is related to the spread under the

null hypothesis of the ET as , S = S(*n,m),z +w,, where w, has mean zero and

(n,m),t

k-1

: k-1 + \m-1
S(*n,m),t = Z(l - é)E(AmRm,Him |It) = Zl (1 - éjzo E(ARm,Him—j |It)
i= J=

i=1

k= .
= (1—éj(e1[(l)"”’ +O" T+ L+ @z}

i=1

LN

={e;[(k-D)(®@" +®"" +...+ ®) + (k- 2)(®*" + D" +..®"") +...

bl

(@ + DT+ L+ D)z}

= %{ei[(b(l —®) - I-D) "+ DI -D) " - D" (I -D) " + ...
+O(I-®)" -d"(1-d)"]z,}

= %{eid)[(k “DI-(I-®") ' +®"(1-®") " +I](1-®) 'z,}

= el @I —m/n(l - ®")(I - ®") “|(I- ®) 'z, =eAz,.
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The actual spread, on the other hand, is S, 6 =e5z,. Taking expectations in these

expressions, it can be seen that the expected spread and the theoretical spread are equal

! !
when e, =elA.

*

Alternatively, the theoretical slope coefficient when S, . is regressed on S, .,

is equal to unity.
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Figure 1. Size and power: Asymptotic critical value (DGP2: US VAR(1) mean, US GARCH(1,1) residual)
T=300
Panel A: Hp: ET (6=1) , Ha: Over (6>1)/Under (8<1) Reaction Hypothesis
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Panel B: Hp: ET (¢=0) , Hx: Time Varying Term Premium (c#0) Hypothesis
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Figure 2. Size and Power: Bootstrap critical value (DGP1: UK VAR(1) mean, UK GARCH(1,1) residual)
T=150
Panel Al: Ho: ET (6=1) , Hx: Over (6>1)/Under (6<1) Reaction Hypothesis
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T=1500
Panel A4: Ho: ET (6=1) , Ha: Over (6>1)/Under (3<1) Reaction Hypothesis
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Figure 3. Size and Power: Bootstrap critical value (DGP2: US VAR(1) mean, US GARCH(1,1) residual)
T=150
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Panel A2: Ho: ET (6=1) , Ha: Over (6>1)/Under (3<1) Reaction Hypothesis
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Panel B2: Hp: ET (¢=0) , Hx: Time Varying Term Premium (c#0) Hypothesis
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Panel B3: Hp: ET (c=0) , Hx: Time Varying Term Premium (c£0) Hypothesis
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Panel B4: Hp: ET (c=0) , Hy: Time Varying Term Premium (c£0) Hypothesis
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Figure 4. Size and Power: Bootstrap critical value (DGP3: UK VAR(1) mean, US GARCH(1,1) residual)
T=150
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Panel A2: Ho: ET (6=1) , Hj:

Over (6>1)/Under (6<1) Reaction Hypothesis
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Panel B2: Hp: ET (c=0) , Hy: Time Varying Term Premium (c£0) Hypothesis
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Panel A3: Ho: ET (6=1) , Ha: Over (6>1)/Under (3<1) Reaction Hypothesis
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Panel B3: Hp: ET (c=0) , Hx: Time Varying Term Premium (c£0) Hypothesis
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Figure 5. Size and Power: Bootstrap critical value (DGP4: US VAR(1) mean, UK GARCH(1,1) residual)
T=150
Panel Al: Ho: ET (6=1) , Hx: Over (6>1)/Under (6<1) Reaction Hypothesis
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Panel B1: Hp: ET (c=0) , Hy: Time Varying Term Premium (c£0) Hypothesis
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Panel A2: Ho: ET (6=1) , Ha: Over (6>1)/Under (3<1) Reaction Hypothesis
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Panel A3: Ho: ET (6=1) , Ha: Over (6>1)/Under (3<1) Reaction Hypothesis
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