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Abstract

We examine the size properties of causality-in-variance tests in the presence of struc-
tural breaks in volatility. Extensive Monte Carlo simulations demonstrate that these
tests suffer from severe size distortions when such breaks are not taken into account.
Pre-testing the series for structural changes in volatility is shown to largely remedy
the problem.
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1 Introduction

The modelling of volatility spillovers in the finance literature has been important since
Morgenstern (1959) and more recently with Lin, Engle and Ito (1994), and Billio and
Pelizzon (2003). These papers estimate parametric models to examine specific formu-
lations for the spillover effects, while Cheung and Ng (1996) and Hong (2001) develop
general causality-in-variance tests within this framework.

There has recently been increasing awareness that many time series experience oc-
casional structural breaks in (unconditional) volatility; see Andreou and Ghysels (2002),
McConnell and Perez-Quiros (2000) and Sensier and van Dijk (2004), among others. Given
the evidence for such structural breaks, it is important to investigate whether they affect
the appearance of volatility spillover effects. The present paper examines this question
by analyzing the impact of volatility breaks on the causality-in-variance tests. Based
on an extensive set of Monte Carlo simulations, we demonstrate that these tests suffer
from severe size distortions when such breaks are neglected. However, we also show that

pre-testing for volatility breaks provides an effective solution to this size problem.

2 Tests for causality in variance

Let y: = (Y11, y2:) be a bivariate series of interest. In Cheung and Ng (1996), yo; is said

to cause yq; in variance if

E[(ylt - ,ult)Q‘Qtfl] # E[(ylt - ,Ult)QIQMfl] (1)

where €, is the information set defined by Q; = {yu—j;7 > 0}, i = 1,2, Q = Q3 U Qo
and p;; is the mean of y;; conditional on €. Let e = yi — i, ¢ = 1,2, and assume
that e = &iv/hir, where hy, is a positive, time-varying function measurable with respect
to i1, and & is an innovation process with E[¢;;|Q;_1] = 0 and E[€2|92;;_1] = 1. Hence

hit is the (univariate) conditional variance of €; by construction, that is hy = V[e;|Qi—1].



The null hypothesis that yo; does not cause y;; in variance can now be formulated as

Ho : V[§1t|Qt—1] = V[§1t|91t—1]- (2)

Define the squared standardized residuals
Uy = (yu - ,alt)2/iblt and v, = (y% - ﬂQt)Q/iLQt (3)

where hats indicate suitable estimates of the corresponding quantities, and the sample

cross-correlation at lag k,

7’uv<k) = Cuv(k)/ Cuu(o)cvv(0)7 (4)
where ¢, (k) is the sample cross-covariance

() = | T Zmia (e~ D v 7). ik 20
% t=1 (ut N ﬂ)@}t*k - 6)5 it k<0,

with T denoting sample size, u and ¥ the sample means of u; and v;, respectively, and
oa(0) = 1/T S (2, — T)? for z = u, v.

Cheung and Ng (1996) suggest testing H, using the statistic

S=T) rik), ()

which has an asymptotic chi-square distribution with K degrees of freedom. The reverse
hypothesis that y;; does not cause y5; in variance can be tested analogously, summing the
squared cross-correlations r2 (k) from k = —K to —1.

Hong (2001) modifies the Cheung-Ng test in two ways. First, u;, ¢ = 1,2, is defined
to be the mean of y;; conditional on the complete “bivariate” information set €2;_;. This
ensures that any causality-in-mean is filtered out when testing for causality-in-variance.
Pantelidis and Pittis (2004) show that this is important, as neglected causality-in-mean
leads to severe size distortions for the Cheung-Ng test. Second, Hong (2001) suggests

weighting the cross-correlations to obtain more powerful tests as follows:

TS wA ks K)r (k) = C(w) ay

Q 2D () ~ N(0,1), (6)
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where w(k; K) is a weight function, for which we use the Bartlett kernel

w(k;K)—{é_‘k/(K"’l)’ iftk/(K+1)<1

otherwise,
and
Cw) = 31— k/Ther(k: ),
Dw) = 31— k/T)(1 — (k + 1)/T)u (k: K),

are approximately the mean and variance, respectively, of T Zf;ll w?(k/K)r? (k).

3 Monte Carlo design and size results

We examine the size of causality-in-variance tests for a data generating process with

01t02tpP Oat
changes in volatility are examined through the following five experiments:*

2
v = (y1t,y2e) ~ NID(0,%;), where 3; = ( Tit 0”02%’0). The effects of neglected

A. Shift in volatility of yy only: 0%, = 1 for all ¢, while 03, = o for t < T/2 and

o3, = o2 fort>T/2;.

B. Simultaneous and identical changes in volatility: % = 02, = o for t < T/2 and

0% =03, =02 fort>T/2;

C. Simultaneous but opposite changes in volatility: %, = 02, 03, = o for t < T/2, and

0% = o}, 05, = o’ fort > T)/2;
D. Simultaneous decline in volatility: o3, and ¢}, change from 1 to 0.5 at t = 7T’

E. Declines at different times: o2, changes at t = T/2 while 02, changes at t = 7T,

both from 1 to 0.5.

! Analogously to experiments D and E, we also examined increases in volatility in 07, and o3, from 1 to
2. Results for these are the mirror images of the corresponding cases shown. These results are available
on request.



N

Experiments A to C use o} = 1 and o7 such that % = 0.1,0.2,...0.9,1.0, 55, ..., 55~ Ex-

0.9

o |

periments D and E use 7 = 0.10,0.15,...,0.90 with 7 = 0.45,0.46, ..., 0.55 also examined
for E).

We consider sample sizes of 7' = 160 and 480, corresponding to 40 years of quarterly
and monthly data, respectively; 10000 replications are used throughout. The test statistics
S in (5) and @ in (6) for testing causality-in-variance from ys; to yi; and wvice versa are
computed for K = 1,2,...,10, replacing fi; and h; in (3) by the sample mean and
variance, respectively. For space considerations, we only report selected results. Full
details are available in an appendix at http://www.ses.man.ac.uk/cgbcr/. Rejection
frequencies for the Cheung-Ng test statistic at the nominal 5% significance level are shown
graphically in panel (a) of Figures 1-3.

(Unreported) Results for experiment A show that neglecting structural breaks in
volatility has only minor effects when just one of the series experiences a volatility change.
In contrast, simultaneous changes in volatility lead to substantially larger size distortions,
irrespective of whether the volatility change is identical (Figure 1) or opposite (see the
appendix). In addition, the size distortion is seen to be symmetric in the ratio % Figure
2 makes clear that the timing of the volatility change matters: the size distortions are
largest when the simultaneous volatility decline occurs at one-third of the sample period.
Finally, from Figure 3 it appears that simultaneous volatility changes lead to the largest

size distortions, with the distortion declining as the time interval between breaks increases.

4 Solving the problem: pre-testing for volatility breaks

In this section we explore whether pre-testing for structural changes in volatility can rem-
edy the size distortions of the causality-in-variance tests in the presence of such volatility
breaks.

As in McConnell and Perez-Quiros (2000), we test for volatility breaks using the ab-

solute values of the demeaned series. We treat the break date 7; as unknown and use the



sup-Wald statistic developed by Andrews (1993), given by

SupW = sup  Wr(n). (7)

Tmin <7 <Tmax

where Wr(7;) denotes the Wald test of the null hypothesis Hy : d;1 = ;2 in the regression

\/§|yzt_/lz| :511(1_I(t>Tz))+512l<t>7_z)+5zta tzl,,T (8)

where fi; is the sample mean of y; and I(A) is an indicator function for the event A.
Both pre- and post-break periods are required to contain at least 10% of the available
observations, that is we set T, = [17] and Toax = [(1 — 7)T] + 1 with 7 = 0.10, where
[-] denotes integer part. We use the method of Hansen (1997) to obtain an approximate
asymptotic p-value of the SupW statistic.

This volatility break test is applied prior to the causality-in-variance test. If, using
(7), the null hypothesis of no volatility change in y;; is rejected at a 5% significance level,
we take the estimated volatility break at 7; (the time period that minimizes the sum of
squared residuals in (8)) into account when standardizing the series. This is achieved by
replacing A, in (3) by the sample variance before (after) 7; for all t < (>) 7.

Results are shown in panel (b) of Figures 1-3. In all cases this pre-testing procedure
yields empirical rejection frequencies close to the nominal significance level of 5%. For
K = +1, the procedure tends to yield some under-sizing, with some evidence of over-sizing

for larger K. Nevertheless, these distortions are relatively modest.

5 Conclusions

Since volatility changes have been shown to occur across a wide range of observed economic
and financial time series, the severity of the size distortions revealed in our Monte Carlo
results appears to indicate that the tests of Cheung and Ng (1996) and Hong (2001) may, in
practical applications, provide unreliable inference about the (non-)existence of causality
in variance. Size problems arise particularly when both series exhibit volatility changes in

close temporal proximity, in which case the tests frequently and incorrectly attribute this



occurrence to an underlying causality. Pre-testing for structural changes in volatility is
shown to remedy this problem. Therefore, we recommend that these causality-in-variance

tests should be applied only after such pre-testing for breaks in volatility.
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Figure 1: Rejection frequencies of the Cheung-Ng test (5) at 5% nominal significance level
for Experiment B.
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Figure 2: Rejection frequencies of the Cheung-Ng test (5) at 5% nominal significance level
for Experiment D.
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Figure 3: Rejection frequencies of the Cheung-Ng test (5) at 5% nominal significance level
for Experiment E.
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