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ABSTRACT 

 

 

To date, there has been little investigation of the impact of seasonal adjustment on the 

detection of business cycle expansion and recession regimes. We study this question both 

analytically and through Monte Carlo simulations. Analytically, we view the occurrence of a 

single business cycle regime as a structural break that is later reversed, showing that the effect 

of the linear symmetric X-11 filter differs with the duration of the regime. Through the use of 

Markov switching models for regime identification, the simulation analysis shows that 

seasonal adjustment has desirable properties in clarifying the true regime when this is well 

underway, but it distorts regime inference around turning points, with this being especially 

marked after the end of recessions and when the one-sided X-11 filter is employed. 
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1. Introduction. 

Since the seminal paper of Hamilton (1989), there have been a vast number of applications of 

regime-switching models to capture nonlinear aspects of business cycle fluctuations in key 

indicators such as gross domestic product or industrial production. Almost without exception 

these studies have employed seasonally adjusted data, which amounts to the implicit 

assumption that seasonality is uncorrelated with the business cycle.  

This assumption has, however, been challenged by a growing body of evidence that 

finds an empirical link between seasonality and the business cycle (Barsky and Miron, 1989, 

Canova and Ghysels, 1994, Cecchetti and Kashyap, 1996, Franses and Paap, 1999, Krane and 

Wascher, 1999, Matas Mir and Osborn, 2001). The clear implication of these studies is that 

the use of seasonally adjusted data discards information relevant for the study of business 

cycles. Against this, however, Christiano and Todd (2002) have recently shown that a 

relatively simple model of seasonality, independent of the business cycle, can capture key 

characteristics of the short-run dynamic relationships between observed US macroeconomic 

time series. Consequently, their summary view is that the use of seasonally adjusted data does 

not create serious distortions. Nevertheless, their data analysis is linear, and their conclusions 

do not necessarily extend to a nonlinear analysis of business cycle regimes. 

 Our purpose is to investigate further the potential interactions between seasonality and 

the business cycle. However, while most of the related literature to date has focussed on 

capturing the nature of seasonality over the business cycle, we turn our attention to the effects 

of conventional seasonal adjustment for the analysis of business cycle phases. Clearly, the 

study of seasonality and seasonal adjustment in this context are related. Nevertheless, they are 

also distinct, because seasonal adjustment makes specific (untested) assumptions about the 

nature of the seasonality in observed economic time series. Since most macroeconomic 

policymakers and commentators in the US and other countries rely almost exclusively on 
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official seasonally adjusted data, it is very important that the implications of such adjustment 

be understood. While there is a large literature on many aspects of the effects of seasonal 

adjustment, its impact on the detection of business cycle expansion and recession regimes 

appears to have been largely overlooked. Indeed, the only paper of which we are aware is 

Franses and Paap (1999), who use Monte Carlo simulations to study the differences in the 

estimated transition probabilities between regimes when unadjusted and adjusted data are 

used. However, in a policymaking context, we believe that a more important issue than the 

estimated transition probabilities is the question, for a given time period, whether the 

economy is (or recently has been) in recession or not.  

We study the impact of seasonal adjustment on business cycle regime inferences, 

where seasonal adjustment is based on the X-11 program of the US Bureau of the Census. 

Initially we study this issue in the context of a reversed structural break, corresponding to the 

economy moving from expansion to recession and then back to expansion (or vice versa). A 

remarkable finding is that the length of the intermediate (interpreted as recession) regime 

interacts with the seasonal adjustment so that the clarity of the regime switches is dependent 

on the duration of the intermediate regime.  Subsequently we use nonlinear regime-dependent 

models, simulating data for both deterministic regime switches (based on the US business 

cycle chronology of the National Bureau of Economic Research) and stochastic switches. In 

both cases, a nonlinear Markov switching model is estimated. Overall, we find that seasonal 

adjustment acts to obscure the true underlying regime, with the primary effect being the 

delayed recognition of the end of recessions. In addition to the two-sided seasonal adjustment 

filter usually analysed, we consider the impact of the one-sided X-11 filter relevant for the 

analysis of the most recent data, and here the impact of seasonal adjustment is even more 

marked. 

 4



 The plan of the paper is as follows. Section 2 gives an overview of seasonal 

adjustment, together with an analysis of structural breaks that provides insights into the 

effects of regime changes. Section 3 then explains the design of our simulation experiments 

for deterministic and stochastic regime switches, with results discussed in Section 4. Some 

conclusions complete the paper. 

 

 

2. Seasonal Adjustment Filters and Structural Breaks 

We first make some general points about the X-11 filter, and then (in subsection 2.2) we 

examine the effect of the filter on structural breaks. 

 

2.1 The X-11 Filter 

Many official statistical agencies across the world base seasonal adjustment on procedures 

developed within the US Bureau of the Census, specifically the X-11 program.  Indeed, the 

X-11 seasonal adjustment filters are incorporated into many statistical software programs, 

allowing business and other users wide access to them. Although X-11 has recently been 

developed as X-12-ARIMA for use with the Bureau of the Census, the essence of this latter 

program relies on the same adjustment filters as in X-11 (see the discussion of X-12-ARIMA 

in Findley, et al., 1998). Both are described in Ghysels and Osborn (2001, Chapter 5). Due to 

the widespread use of X-11, we concentrate our analysis on its filters. Aspects of the 

properties of these filters have been studied by many authors, including Bell and Hillmer 

(1984), Burridge and Wallis (1984), Franses and Paap (1999), Ghysels and Perron (1993, 

1996), Sims (1974) and Wallis (1974). However, with the exception of Franses and Paap 

(1999), the effect of these filters on regime identification does not appear to have been studied 

previously. 
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 We denote the original observed time series as yt and the filtered (seasonally adjusted) 

series as yt
F. Using a notation similar to Ghysels and Perron (1996), this filtering can be 

represented as 

   yt
F = ν(L) yt        (1) 

where, when seasonally adjusting historical data, ν(L) can be well approximated1 by a 

symmetric two-sided linear moving average filter 

         (2) ∑
−=

=
m

mi

i
i LL 22 )( νν

The coefficients ν2i sum to unity over i = -m, …, 0, …, m, with specific values for monthly 

and quarterly series given in Ghysels and Perron (1993). The smoothing involved in this filter 

at nonseasonal lags is not trivial. For example, the coefficients for the quarterly case imply 

positive weights of 2.1 and 1.6 percent, respectively, for observations thirteen and fourteen 

quarters away from observation t in both directions.  

 Of course, the two-sided filter (2) cannot to used to seasonally adjust the most recent 

observations, since it then requires unknown future observations. There are a number of 

possible solutions to this problem. One is to explicitly use a one-sided filter 

          (3) ∑
=

=
m

i

i
i LL

0
11 )( νν

(with weights again summing to unity) so that only current and past values are used; the value 

of m is not necessarily the same in (2) and (3). This was adopted in earlier versions of X-11, 

and its properties are considered by Burridge and Wallis (1984). An apparently different 

solution is adopted in X-12-ARIMA, as well as in X-11-ARIMA used by Statistics Canada 

(Dagum, 1980). These programs use a fitted ARIMA (autoregressive integrated moving 

                                                 
1 Various options are available in both X-11 and X-12-ARIMA to deal with outliers, additive versus 

multiplicative adjustment, etc, which make the filter nonlinear; see Ghysels, Granger and Siklos (1996). 
Although nonlinearities introduced by seasonal adjustment are potentially important, our focus is on the 
impact of the linear filtering which is the core of seasonal adjustment. 
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average) model to generate forecasts of the required future values, and then use the two-sided 

filter; for example, see Findley et al. (1998). However, since ARIMA model forecasts are 

linear functions of past observations, such a procedure can be represented as a one-sided filter 

as in (3). The important difference in practice is that specific ARIMA models are fitted to 

each series, hence implying that the coefficients ν1i differ for each series, whereas the 

explicitly one-sided filter approach effectively uses the same weights for all series. 

Ghysels and Perron (1993) study the effect of the two-sided X-11 seasonal adjustment 

filter, with their analysis primarily concerned with the implications of seasonal adjustment for 

unit root tests. Nevertheless, they also consider the case of stationary yt, In particular, they 

examine the relationship between the autocovariance at lag k for the filtered data, γF(k), and 

the autocovariances of the unfiltered data γ(j), j = 0, 1, …, which (assuming, without loss of 

generality, zero mean series) is given by  
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This last expression can be evaluated in a straightforward way for given filter coefficients 

(either one-sided, with m1 = 0, or symmetric two-sided, with m1 = m2) and given 

autocovariance properties of the original process for yt. If (two-sided) X-11 seasonal 

adjustment is applied to a quarterly white noise process where γ(0) = σ2 and γ(j) = 0, j ≠ 0, 

then (using the weights given by Laroque, 1977, reproduced in Ghysels and Perron, 1993) the 

autocorrelation function of the adjusted process is shown in Figure 1. Nontrivial negative 

autocorrelation is induced at annual lags of one, two and three years, which can be anticipated 

as the role of seasonal adjustment is to remove the strong positive autocorrelations at seasonal 
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lags consequent upon seasonality. In addition, however, seasonal adjustment induces positive 

and persistent autocorrelation at nonseasonal lags. 

 

2.2 Filtering and Structural Breaks 

Our purpose is to examine the effect of seasonal adjustment on the detection of business cycle 

regimes. A single regime switch can be regarded as a type of structural break, with such 

breaks being analysed by Ghysels and Perron (1996). However, business cycle regime shifts 

imply that the break is later reversed, for example, when the economy moves from expansion 

to recession and then back to expansion. Therefore, in this subsection we extend the analysis 

of Ghysels and Perron to this case.  

 To begin the investigation with the single break case, assume that the observed series 

is zero prior to the break date TB and unity thereafter, so that  

        (5) 

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This assumption for yt involves no loss of generality in the context where the structural break 

is a step change, since (5) can be scaled and added to a process with constant properties to 

create any desired change. When the two-sided filter of (2) is applied in the context of the 

structural break (5), the filtered series is given by 

       (6) 
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where we use the symmetry of the filter and the fact that the weights sum to unity. As 

indicated by a comparison of (5) and (6), all filtered values for TB – m ≤ t < TB + m are 

influenced by the structural break and this effect can be computed. A similar result to (6) can 
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be obtained for the application of the one-sided filter (3), except that only observations 

subsequent to the break, t ≥ TB, are distorted.  

 Figure 2 illustrates the effect graphically for the two-sided quarterly X-11 filter2, 

where the upper panel shows the filtered series, yt
F, and the lower panel shows the distortion 

induced by the filter as the difference between the filtered and original series, which is (6) 

minus (5). A similar graph is shown by Ghysels and Perron (1996). Due to the filter, the 

magnitude of the break at t = TB is reduced by 7.2 percent, while the last observation in the 

previous regime (namely, t = TB – 1) is increased by the same amount, thereby reducing the 

step change between these periods by more than 14 percent. Further, there is substantial 

distortion of the values both a year before and a year after TB, again with distortions in 

consecutive quarters of ±7 percent of the value of the break, thereby introducing spurious 

evidence of a step change of magnitude 14 percent one year before and one year after the true 

break.  

 In order to more accurately reflect the implications of business cycle regime changes, 

we now turn to the case of two off-setting structural breaks. To be more precise, assume that a 

unit structural break occurs at time t = TB, with this break then reversed at the later time 

period t = TC. Therefore, yt = 0 except for TB ≤ t < TC when yt = 1. In a business cycle context, 

this sequence of two breaks can be interpreted as recession followed by expansion and 

another recession, or (more interestingly, when scaled by -1) as expansion followed by 

recession and then expansion.  

 Defining yBt using the single break of (5) and yCt in the same way, with TC replacing 

TB,, then the reversed structural break series we wish to analyse is given by 

   yt = yBt – yCt   TB < TC    (7) 

                                                 
2 Our analysis in this case is restricted to the two-sided filter, because the one-sided filter relates only to seasonal 
adjustment of the final observation of the sample. For historical data, different asymmetric filters apply to 
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Again since the filter υ2(L) is linear, it follows that the distortion from applying this two-sided 

filter to yt is given by 

   yt
F - yt = (yBt

F- yBt) – (yCt
F – yCt)     (8) 

where the superscript F indicates the corresponding filtered series. Using (6), it follows that 

the distortion in the series yt of (7), in terms of the filter weights, is given by 

     (9) 
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when we assume that TC < TB + m, so that the second “reversed break” at Tc occurs  within the 

period where the filtered values are affected by the initial break at TB. Since m = 28 for the 

quarterly X-11 filter, this is a realistic assumption in the context where the intermediate 

regime is recession. For TC ≥ TB + m, there is little or no overlap between the values with 

substantial weights in the seasonal adjustment filters at the two break dates, and hence for 

practical purposes these can be analysed separately.  

 From a superficial examination of (9), it appears that the greatest distortion may be 

anticipated as negative effects reducing the magnitude of the change during the period of the 

intermediate regime, namely for TB ≤ t < TC. However, this is not necessarily true, because 

some “weights” ν2i are negative. Therefore, Figure 3 plots the values given by (9) for the two-

sided linear approximation to the quarterly X-11 filter for cases where TC = TB + k for k = 2, 

                                                                                                                                                         
preceding observations until the two-sided symmetric filter can be applied. In order to keep the analysis simple, 
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3, 4, 5, corresponding to durations of this regime between two and five quarters. Panel (a) of 

Figure 3 considers periods within the intermediate regime, TB ≤ t < TC, while panel (b) 

corresponds to t = TC – 1 + j for j = 0, …, 16 and hence shows the distortion for the final 

period of the intermediate regime and the first 16 quarters of the new “normal” regime. 

Notice that, for ease of exposition, the final period of the intermediate regime is included in 

both panels. As implied by (9), the distortions for TB - j (prior to the first break) are 

symmetrical with those shown in panel (b). 

 When it happens that the intermediate regime lasts exactly one year, then seasonal 

adjustment leads to little distortion, so that both regime changes are effectively as easy to 

identify using the filtered or the original series. This is due to the annual cycle in the 

distortions induced with a single structural break (Figure 2). With two breaks, these 

distortions are subtracted at a lag of one year, hence virtually cancelling out. Within the 

intermediate regime, seasonal adjustment does generally reduce the magnitude of the 

structural break, although it is enhanced for the central three quarters of this regime when it 

lasts for five quarters.  

 However, the most notable effects are seen in panel (b) of Figure 3. When the regime 

has duration 2, 3 or 5 quarters, filtering creates very substantial distortion in relation to the 

magnitude of the break, with this being larger than in the case of a single structural break. 

More specifically, during the final period of the intermediate regime when yt = 1, the 

magnitude of this value is reduced by more than 14 percent when the duration is five quarters 

and more than 5 percent of the value “leaks” to the adjacent first quarter of the regime yt = 0. 

Thus, comparison between these values reduces the step change by almost 20 percent. The 

total effect is similar when the intermediate regime has durations of two or three quarters. 

However, in these latter cases of shorter regimes, the reduction of the end quarter of the 

                                                                                                                                                         
we do not consider this case here.  
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regime yt = 1 is reduced by less (5 and 9 percent respectively), while the leaking of the 

intermediate regime value to the adjacent quarter of the other regime is greater. In both of 

these cases, the magnitude of the step change at t = Tc (and at t = TB) is reduced by around 20 

percent.  

 It is also notable that the subsequent distortion follows a marked seasonal pattern. 

Indeed, the distortions shown in Figure 3(b) a year subsequent to the end of the intermediate 

regime (except for the case k = 4) imply a spurious break with a magnitude  around 17 percent 

of the value of the reversed break. This is due to the negative distortion four quarters after the 

end of the regime combined with the positive effect in the next quarter, and could be mistaken 

for evidence of a return to the intermediate regime. 

 These effects are not simply an artefact of our assumption that the series yt has no 

seasonality. Irrespective of the pattern in a series, a structural break will imply (at least for the 

linear approximation of the filter) that the distortion of the time series effect of the break will 

be unchanged from that analysed here. For example, assume that the quarterly time series yt 

undergoes a shift at some time TB. Then the series can be represented as 

  yt = xt + βbt 

where xt  is the time series without the break, while bt is the zero/one break series, as given in 

(5) or (7), and β is a scalar reflecting the value of the break that occurs at t = TB. Then since 

linear filtering yields 

  ν(L)yt = ν(L)xt + βν(L)bt,  

it follows that 

        (10) ).()( t
F
tt

F
tt

F
t bbxxyy −+−=− β

Therefore, (10) implies that the effect of filtering on yt can be additively decomposed into the 

effect on the series xt and the effect on the break series, βbt. Put a different way, (10) implies 

that the seasonality attributed to yt by the linear filter (namely, yt – yt
F) can be decomposed as 
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the seasonal effect obtained using the series without a structural break, xt – xt
F, plus β times 

the apparent “seasonal effect” induced by the break.  

 These effects occur because X-11 implicitly assumes evolving seasonality due to the 

presence of seasonal unit roots, and these are removed through the annual summation filter 1 

+ L + L2 + L3 (assuming quarterly data). When a structural break occurs, the filter is unable to 

distinguish fully between changing seasonality and the nonseasonal break, and hence it 

effectively allocates part of the break effect to a change in the seasonal pattern, which is the 

effect illustrated in Figures 2 and 3.  

 From the point of view of identifying the period of the break, since seasonal 

adjustment dilutes the magnitude of the break and introduces spurious apparent shifts before 

and after the true break, then we might expect detection of such a break to be more difficult 

after seasonal adjustment. Although this has many potential implications for analysing breaks 

using seasonally adjusted series, our particular interest is in the ability of the Markov 

switching model to detect recurring shifts between regimes. It is to this issue that we now 

turn.  

 

 

3. Monte Carlo Design  

At first sight, we might anticipate that the smoothing of the original series analysed in the 

previous section will have a negative impact on the detection of business cycle regimes 

through the Markov switching model. However, this is not entirely clear-cut. It is true that the 

smoothing may partially disguise regime switches when they actually happen. However, at 

the same time the smoothing involved in seasonal adjustment will facilitate correct 

classification in periods when no regime switch takes place. For example, if the regimes 

capture (classical) business cycle recessions versus expansions, low growth within an 
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expansion or zero growth within an overall contraction regime do not signal regime switches, 

and the smoothing effect of X-11 may reduce the chances that these relatively extreme 

observations within a given regime result in an incorrect regime classification. Thus, we 

entertain the prior expectation that the application of  X-11 to a regime-switching process 

may reduce the number of regime “false alarms” as well as increasing the number of regime 

“missed calls”.  However, it is not clear what the overall effects of  the combination of these 

two opposing forces will be. We address these issues through Monte Carlo simulations. As 

already noted, related issues are addressed by Franses and Paap (1999), but they concentrate 

primarily on the transition probabilities in the Markov switching model rather than the regime 

inferences of interest to us.  

 Our analysis uses the linear filters corresponding to the quarterly version of X-11, as 

most applications of the Markov switching model to the business cycle have been conducted 

at this frequency. We consider both the two-sided linear approximation to the X-11 

procedure, and also the one-sided filter that is more appropriate to the real-time identification 

of the current state of the business cycle.  

The data generating process (DGP) used in our experiments is the two-state regime-

dependent model :  

ttdt sy εµµ ++= 0         (11) 

where tε ∼ NID(0, σ2) and st represents a binary state process capturing business cycle phases, 

with µd > 0. For all simulations, estimation of (11) is undertaken treating the state as being 

unobserved, and making a Markov switching assumption for st. Thus, the researcher assumes 

that regime derives from a first–order Markov process with constant transition probabilities 

  
( ) ( )
( ) ( ) qssPqssP

pssPpssP

tttt

tttt

−======
−======

−−

−−

10100
11011

11

11     (12) 
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 Obviously, since the DGP in (11) has no dynamics, no autoregressive lag 

augmentation is required when the Markov switching model is estimated using these data. 

However, this argument only applies when estimation is based on the unfiltered series yt, 

since seasonal adjustment induces serial correlation, as discussed in Section 2. In order to 

control for any autocorrelation, we assume that a researcher working with quarterly data 

(seasonally adjusted or unadjusted) uses a four-lag autoregressive augmentation. Thus, our 

Monte Carlo experiments are based on estimating the model:  

( ) ttdt esyL ++= δδφ 0        (13) 

with ( )Lφ  being a fourth-order polynomial in the lag operator and et is a disturbance term 

which the researcher assumes to be an iid normal variate. This specification implies that the 

switching process changes the intercept, rather than the mean, of yt, and has been considered 

by, among many others, Hamilton (1990). The use of the intercept-switching model instead of 

the mean-switching model is more practical in the context of a large Monte Carlo study, 

because in the mean-switching model the conditional distribution of  to be evaluated in the 

estimation algorithm would depend on four lags of the state process.  

ty

One set of regime probabilities of interest are then given by ( )θ̂;Tt jsP Y=

θ̂

, which are 

the full-sample smoother probabilities that deliver the optimal probabilistic inference that 

state j applied at time t, based on complete sample information on yt to time T (Hamilton, 

1989). These probabilities are a by-product of parameter estimation, with  being the vector 

of maximum likelihood parameter estimates for the Markov switching model.  

 However, arguably more important than the ex-post dating of business cycle regimes 

via the full-sample smoother is the use of a regime-switching model in real time to assess the 

current state of the business cycle as new data become available, and to the forecast future 

regimes. This requires inference on the current regime employing only current and past 
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information and can be accomplished also by Hamilton’s non-linear filtering algorithm, using 

the filter probabilities ( )θ̂;Ytt jsP = , where the information set Yt = {y1, …, yt} includes only 

current and past information.  

 As already noted, we undertake simulations both where the regime in the DGP of (11) 

is deterministic and where it is stochastic.  

For the case of deterministic regimes, we assume that quarterly output data are 

available for the period 1951:I to 1996:IV, yielding 183 values for the growth rate yt. In this 

set of simulations, the state variable st is derived from the National Bureau of Economic 

Research (NBER) business cycle chronology for the US, with st = 1 in expansions and st = 0 

in recessions over the period 1951-19963. There are five distinct NBER recession regimes in 

this period, with durations between two and five quarters. Therefore, based on the analysis of 

Section 2, we anticipate seasonal adjustment will have some undesirable consequences for 

regime identification. 

In terms of the parameters of (11), we set µ0 = -0.5 and µd = 1.2, implying that growth 

is expected to decline at an annual rate of approximately 2 percent in recessions, with growth 

at an annual rate of approximately 2.8 percent in expansions. The disturbance standard 

deviation is set at σ = 1.  

Based on each set of observations (t = 1, …, 183) generated from the DGP defined in 

(11) with NBER regime dates, the two-sided seasonally adjusted series is obtained as:  

t
F
t yLvy )(2= ,  t = 30, …, 152    (14) 

where v2(L) is the linear filter approximation of the quarterly X-11 program, analysed in 

Section 2. The initial and final observations are not used due to the observations lost at each 

                                                 
3 Following the usual convention in the use of NBER dates, the new regime is assumed to start at the beginning 
of the quarter after the month of the turning point.  
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end when applying the two-sided filter. The unfiltered series uses observations over the same 

time period, so that:  

t
UF
t yy = ,   t = 30, …, 152    (15) 

In both cases, an additional four observations are used to create the autoregressive lags for the 

estimated model of (13), so that the smoothed probabilities relate to observations t = 34, …, 

152. We then compare the two sets of probabilities ( )F
F

Tt jsP θ̂;Y=  and ( )UF
UF
Tt jsP θ̂;Y= , 

with (of course) separately estimated parameter vectors in the two cases. 

When considering the real time issue of regime identification using the filter 

probabilities, we must ensure that no future observations are employed in seasonal 

adjustment. Thus, we cannot use a two-sided seasonal adjustment filter throughout the sample 

period, as some observations in Yt
F would then partly depend on information available only 

after period t . As already noted, the most recent seasonally adjusted observation is obtained 

from a one-sided filter, with preceding observations using asymmetric filters until t – m, with 

the full two-sided filter applied to earlier observations. However, for simplicity within our 

Monte Carlo simulation, all data points relevant for the computation of the filter probability 

are adjusted using the one-sided X-11 filter. Although this does not fully represent seasonal 

adjustment procedures used in practice, it does provide us with a guide as to how seasonal 

adjustment affects the recognition of a regime change in the period when the change occurs. 

 The filter probabilities ( )θ̂;Ytt jsP =  require that parameter estimates be available. 

For this purpose, we assume the use of a historical dataset with parameter estimates obtained 

using observations t = 30, …, 152 and with adjusted data for this estimation period derived 

from application of the two-sided linear filter ν2(L), as above. To capture the real-time aspect, 

we extend the sample period for which the DGP of (11) is applied to t = 1, …, 310, with the 

true state for the additional observations given by the NBER chronology repeated after 
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1996:IV, so that st+183 = st (t = 1, …, 127). Real-time regime inference is simulated by 

computing, without any further parameter estimation, the filter probabilities ( )θ̂;Ytt jsP =  

for 100 observations4 of the additional period, with filtered data for this period obtained using 

the one-sided filter ν1(L). Allowing for autoregressive lags, the filter probabilities are 

computed for both adjusted and unadjusted data corresponding to t = 215, …, 310, with this 

period selected so that (with repetition of the NBER chronology) the five distinct historical 

recession regimes are included. 

 In order to broaden our analysis, and to verify that the results obtained using 

deterministic regimes are not specific to that case, we also use the Markov switching model, 

(11) with (12), as the true DGP. When the underlying regime is stochastic, we assume that it 

is characterised by the transition probabilities p = 0.9 and q = 0.65, which are fairly 

representative values for quarterly data. However, it is plausible that the effects of seasonal 

adjustment on regime identification may vary depending on how distinct are the two 

underlying regimes. In the context of the model of (11), the essential distinction between 

business cycle recessions and expansions is the difference between their mean growth rates, 

µd, and we consider a range of values for this parameter from 1.2 to 2.5 (with σ = 1 for both 

regimes). Thus, the value µd = 1.2 used in the deterministic regime simulations is the smallest 

value considered in the stochastic regimes case. In general, since larger values of µd 

correspond to cases where the two regimes are more distinct, we anticipate that regime 

identification will improve as µd increases. However, the key issue in our context is whether 

the relative performances of seasonally adjusted and unadjusted data change with µd. 

When examining the performance of the full-sample smoother probabilities, samples 

of size 160 observations are generated from the Markov switching DGP. To allow for 

                                                 
4 Due to practical issues in interfacing the software programs used for the simulations, this analysis is restricted 
to 100 observations. 
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symmetric two-sided filtering in seasonal adjustment, only the observations t = 31, …, 130 

are employed for both adjusted and unadjusted data (implying estimation based on 96 

observations, after allowing for the autoregressive lags). When examining filter probabilities, 

the same issues arise as discussed above in the context of the NBER dates. Our solution is the 

same as in that case, namely to estimate the parameters of the model based on one set of data 

(after application of the symmetric two-sided X-11 filter in the seasonally adjusted case) and 

to use these estimates to compute filter probabilities for the subsequent dataset, after 

application of the one-sided X-11 filter in the seasonally adjusted case. The sample 

observations used here are the same as outlined in the case of the NBER dates.  

Since the regimes here are stochastic, the performances of filtered and unfiltered data 

cannot be compared for specific regimes. Therefore, we adopt the widely-used summary 

measure of the quadratic probability score (QPS) relating to the regimes. When the smoother 

probabilities are used with filtered data, QPS is given by: 

  ( )[∑
=

−=
+−

=
U

L

T

Tt
tFTt

LU

ssP
TT

2ˆ;Y1
)1(

2QPS θ ]      (16) 

with TL and TU being (respectively) the lower and upper sample observations for which 

regime inferences are obtained. Corresponding definitions apply when filter probabilities are 

used, and when unfiltered data are employed.  

All experiments employ 10,000 replications. Issues relating to estimation (including 

computer simulation) are discussed in the Appendix. 

 

 

4. Simulation Results 

We discuss first regime identification results related to the use of the two-sided symmetric X-

11 filter, followed by those for the one-sided filter. 
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4.1 Symmetric Seasonal Adjustment Filter 

Beginning with results based on the NBER business cycle chronology, Figure 4 summarises 

the empirical distributions for the full-sample smoother probabilities for the filtered and 

unfiltered data sets corresponding to the recession (lower) regimes, namely 

( )F
F

Tt
F sPP θ̂;0 Y==  and ( UF

UF
Tt

UF sPP θ̂;0 Y== ), with vertical lines denoting the true 

lower regime observations corresponding to NBER recessions. The distributions of estimates 

are summarized by graphing the third quartile, median and first quartile values corresponding 

to each quarter.  

The third quartile, shown in panel (a), indicates that probabilities obtained using 

filtered data tend to point to the onset of recession too early and delay the recognition of 

recovery, with these features being more marked that with the use of unfiltered data. In other 

words, the filtered data obscures the dates of the regime changes, as predicted by the analysis 

of Section 2. However, while our analysis above indicates a symmetry for the distortion prior 

to the beginning of the regime and subsequent to its completion, the comparison of the 

estimated regimes for the Markov switching models using filtered and unfiltered data are 

asymmetric in Figure 4(a), with filtered data capturing the start of the regime more adequately 

than its end. This asymmetry presumably results from an interaction of the effect of the 

seasonal adjustment filter and the regime inference within the Markov switching model.  

At the same time, however, it is also clear that once the upper (expansion) regime is 

well under way, the third quartile lower regime PF probabilities are generally (and correctly) 

closer to zero than their unfiltered counterparts. Therefore, filtering reduces the chances that 

low-valued observations from the upper regime are mistakenly attributed to the lower regime. 

Within the lower regime, the filtered estimates are, on average, a little closer to the true 

regime value of one.  
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 Turning to the plots of the median and first quartile of the smoother probabilities, 

panels (b) and (c) respectively of Figure 4, we concentrate first on the errors occurring during 

the lower regime. Here, filtering has the desirable effect of signalling periods in the lower 

regime more strongly than the unfiltered data probabilities. This effect is most noticeable 

when the lower regime lasts a year or longer (the lower regimes commencing after t = 74, t = 

90 and t = 122 in the graph). As illustrated in Figure 3, our analysis of Section 2 predicts that 

seasonal adjustment will have a negative effect on the detection of a short-lived regime of 

duration less than a year. However, when combined with the effects of the full-sample 

smoother probabilities, the median and first quartile probabilities during the short recession of 

two quarters (commencing in t =114) are very similar whether filtered or unfiltered data are 

used. Further, the Markov switching model may completely miss genuine recessions. More 

specifically, when the recession duration is a year or less, the first quartile values in Figure 

4(c) never rise above 0.5 during the recession whether adjusted or unadjusted data are 

employed, and they do not reach 0.5 using unadjusted data even when the recession duration 

is five quarters. Indeed, within the short recession of two quarters, the median probability 

barely reaches 0.5 for either type of data. 

To sum up, filtering tends to make the full-sample smoother probabilities more inert 

and hence smoother. This is entirely consistent with the conclusion of Franses and Paap 

(1999) that the symmetric seasonal adjustment filter results in estimated transition 

probabilities,  and , significantly larger than the true values and larger than their 

unfiltered counterparts. Within a regime (especially those of longer duration), this property of 

filtering facilitates correct regime identification, but it nevertheless acts against correct 

identification of regime switches. Thus, away from turning points, there is less scope for  

“false alarms” of a regime switch in the smoother probabilities with filtered data, so that the 

errors in PF are smaller relative to PUF once the upper regime is under way. However, the cost 

p̂ q̂
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is particularly felt in the belated recognition of the beginning of a recovery from recession. 

Indeed, in the case of the two NBER recessions in the early 1980s (occurring between t = 114 

and t = 130 in the figure), the third quartile probability for the filtered data never recognises 

the intermediate recovery and implies continuous recession for approximately four years, 

from the end of 1979 until late 1983.  

In order to characterise these findings in a broader context, and also to examine the 

implications for measures of regime tracking, we turn to the Markov switching DGP and 

compute the QPS of (17) for each replication to quantify the comparison of the full-sample 

smoother probabilities using filtered and unfiltered data. In addition to the overall QPS, we 

compute separate values for observations in the upper regime and lower regimes, classified 

according to the actual st. 

Figure 5 shows selected quantiles of the empirical distribution of QPS across the 

different values selected for µd in the DGP.  It is clear from the overall QPS in panel (a) that 

the tracking of regimes is unambiguously worse with filtered data. Notice how the 

underperformance of filtered data is roughly constant (in absolute terms) across the different 

values for µd when considering the median QPS (denoted Q50), but this is not so for the upper 

quantiles of the distribution. Therefore, the potential for large errors in detecting the true 

underlying regime grows for filtered data in comparison with unfiltered data as the means in 

the two regimes become closer. 

 In the QPS computed for observations in the upper regime only, shown in panel (b), 

the filtered data fares even worse than in the overall QPS. Thus, the longer persistence of high 

values of PF after the recession regime has come to an end, as noted above, plays a more 

important role in the final outcome than the better fit of PF once the expansion regime is well 

under way.  The deterioration of the fit of PF relative to PUF again substantially increases as 

the means in the two regimes become closer, indicating that the identification of the upper 
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regime becomes more problematic with filtered data (compared with unfiltered data) as the 

regimes become more similar. 

 In contrast, during the lower (recession) regime the fit obtained using filtered data is 

less markedly worse relative to unfiltered counterparts for large values of µd, with both 

probabilities producing roughly the same QPS values (in median terms) when µd = 1.8. For a 

smaller difference between the means in the two regimes, the fit during the lower regime 

using filtered data is better than with unfiltered data, which is compatible with the pattern in 

Figure 4 for simulations using the NBER reference dates. Also, although the relative 

advantage of the PF probabilities tends to grow with smaller values of µd, at the higher 95 and 

90 percent quartiles, this advantage levels off, unlike the advantage for unfiltered data for the 

overall QPS and the QPS in expansions. It should also be noted that the QPS quantile values 

during recessions are always substantially greater than those during expansions (note the 

different scales used for the vertical axes in the three panels of Figure 5), again pointing to the 

possibility that the Markov switching model may miss genuine recessions.  

The top panel of Table 1 presents a numerical comparison of the median values for the 

QPS from the full-sample smoother using adjusted and unadjusted data. It is again clear that 

the effects of filtering are not negligible. The median overall QPS is up to 21 percent larger 

with adjusted data, while the upper regime median QPS can be more than 50 percent higher 

(when µd = 1.2). The relative effect is less marked in the lower regime, varying from a 17 

percent deterioration to a similar improvement for adjusted compared with unadjusted data, 

depending on µd. 
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4.2 One-Sided Seasonal Adjustment Filter 

Using data based on the NBER business cycle regimes, the results for various quantiles of the 

empirical distribution of the recession filter probabilities ( F
F

ttsP θ̂;0 Y= ), after the 

application of the one-sided linear X-11 filter, and the corresponding probabilities using 

unadjusted data, ( UF
UF
ttsP θ̂;0 Y= ), are presented in Figure 6. 

It is clear that the filter probabilities and the use of the one-sided preliminary estimates 

of the seasonally adjusted data amplify the delay in recognising the onset of the upper 

(expansion) regime, compared with the effect noted in our full-sample smoother analysis. 

Again, this is particularly noticeable if one concentrates attention on the third quartile of the 

distribution; implying that there is a 25 percent chance of obtaining distortions like those seen 

in panel (a) of Figure 6. Indeed, this third quartile of the filter probabilities based on adjusted 

data does not yield a stable low chance of being in the lower regime (and hence a high 

probability of being in the upper regime) until ten to fifteen quarters into the upper regime. 

Also, it is very clear how the seasonal adjustment filter produces seasonal spikes in the 

filtered probabilities after the lower regime comes to an end; for instance, see its behaviour 

around t = 231. Notice, however, that the adjusted data probabilities do not signal the 

beginning of the lower regime earlier than the unfiltered data, as occurred at this quartile in 

the full sample smoother case. It appears, therefore, that effect was due to the two-sided 

nature of the adjustment undergone by the data fed into the smoother, rather than any direct 

effect of using adjusted data on the estimation of the parameters of the Markov switching 

model.  

In our full-sample smoother analysis, the PF probabilities during the lower regime 

were shown to be signalling the occurrence of that regime more clearly than those computed 

with unfiltered data. With the filter probabilities, however, this effect is much less noticeable 

in panels (b) and (c) of Figure 6. With or without seasonal adjustment, the first quartile values 
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in panel (c) of this figure point to the strong chance that the occurrence of a recession will be 

missed by the Markov switching model in real time (using filter probabilities). 

 The filter probabilities are also the basis of regime forecasting in the MS model. More 

precisely, the one-step-ahead prediction for the unobserved regime process can be computed 

as:  

( ) ( ) ( )( )FF
F

ttFF
F

ttF
F

tt psPqsPsP ˆ1ˆ;Y1ˆˆ;Y0ˆ;Y01 −=+===+ θθθ   (17) 

for adjusted data, with an analogous expression for unadjusted data using  and . The 

empirical distribution of these one-step-ahead probabilities is summarised in Figure 7 for the 

NBER business cycle dates. Because the outcome of (17) is driven mainly by the filter 

probabilities and there is an upward bias in  relative to  (Franses and Paap, 1999), the 

main conclusions are similar to those obtained for the filter probabilities. Once again, an 

important effect is that the use of adjusted data yields a higher probability for the continuation 

of the lower regime. On the one hand, this regime forecast yields greater errors when the 

switch to the upper regime occurs, but the errors will be smaller when the lower regime 

continues. From the analysis of Dacco and Satchell (1999), we might anticipate that the 

former effect will outweigh the latter when forecasting using the Markov switching model, 

since they show that incorrect regime forecasts are an underlying cause of the poor 

forecasting performance of regime-switching models.  

UF
tY UFθ̂

Fq̂ UFq̂

To examine these effects in a more general context, we again use QPS to quantify the 

impact of one-sided seasonal adjustment on regime detection in terms of the QPS measure for 

the case where the DGP is a Markov switching model with µd ranging from 1.2 to 2.5. Here 

the QPS is computed for both the filter and the one-step-ahead regime probabilities. To assess 

the effects on regime forecasting, we compute QPS using (16), but where the regime refers to 

t+1 with the prediction based on the information set to t. The QPS measures for each regime 

separately, according to the outcome st+1 in each replication, are also computed. Quantiles of 
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QPS for the estimated filter probabilities and one-step ahead prediction probabilities are 

shown in Figures 8 and 9 respectively. 

In overall QPS terms, using adjusted data corrupts the regime tracking ability of the 

filter probabilities substantially more than was the case in the full-sample smoother analysis, 

especially in terms of increasing the chances of relatively large errors, with this being more 

noticeable as the regime means become closer.  This is due, as in the full-sample smoother 

case, to a substantially worse fit during the expansion regime, which stems mainly from a 

delay in the recognition of the regime’s onset. As seen above, this delay is much more 

accentuated in the case of the filter probabilities as compared to the outcome of the full-

sample smoother. On the other hand, during the lower regime the fit using adjusted data is 

almost always better than using unadjusted data. Still, this does not offset the bad fit during 

the upper regime, hence the overall worse results obtained using adjusted data. 

The conclusions from the one-step-ahead regime probabilities (Figure 8) are generally 

similar. The main difference is that within the lower regime, the fit using filtered data is 

superior to that using unadjusted data for all quantiles and µd values shown. This is 

presumably due to the extra role of the lower regime transition probability estimate in (17), 

where the positive bias in  further accentuates the effects of using adjusted data for the 

better fit obtained during the lower regime. However, the overall QPS is still always worse for 

filtered data for the cases considered.  

Fq̂

The second and third panels of Table 1 present the median QPS values underlying 

Figures 8 and 9, for the filter and one-step ahead regime probabilities respectively. The filter 

probabilities using adjusted data show a deterioration of up to 33 percent, with the 

corresponding values being substantially larger when the upper regime QPS is considered. 

Perhaps surprisingly, the relative deterioration is smaller for the one-step-ahead probabilities, 
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ranging between 5 and 7 percent for the overall QPS, but (as also seen in Figure 9) this is due 

to offsetting effects across the two regimes.  

 

 

5. Concluding Remarks  

This paper has considered the effects of seasonal adjustment on the detection of business 

cycle regimes, both analytically and when these regimes are identified through the use of a 

Markov switching model. The overall conclusion is that seasonal adjustment can distort the 

information about the extent and timing of the breaks (or turning points) that underlie regime 

identification. 

Nevertheless, the picture is not entirely straightforward, because in some instances 

seasonal adjustment can have the effect of clarifying the regime. Indeed, through the 

smoothing inherent in seasonal adjustment, the filtered data tend to produce less false turning 

point signals, albeit they will detect the occurrence of actual turning points with more 

difficulty. As measured by summary statistics of regime tracking like the Quadratic 

Probability Score, however, the filtering procedure deteriorates the fit of regimes in the 

Markov switching model overall, with this result being mainly dominated by a belated signal 

of the occurrence of a business cycle trough. Our analytical results shed light on why this 

occurs, with the effect of the X-11 seasonal adjustment filter being to reduce the magnitude of 

the breaks that mark regime changes. This reduction is larger when the break is later reversed 

within a relatively short period of time, as occurs when a recession lasts between (say) six and 

fifteen months, and it is realistic to anticipate that seasonal adjustment could reduce the 

magnitude of the regime breaks by the order of 20 percent.  

Our Monte Carlo investigation shows that the effects on regime tracking are 

exacerbated when using the one-sided filters in X-11, such as those employed by statistical 
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agencies to produce preliminary releases of seasonally adjusted series. Again, the most 

prominent effect is a delay in signalling the beginning of the upper (expansion) regime. This 

has important implications for real-time regime identification purposes, as well as for regime 

forecasting. Because the use of seasonally adjusted data corrupts regime tracking specifically 

around turning points, this further suggests that researchers should be aware of the effects we 

have unearthed when using seasonally adjusted data for the detection of regime changes. 

Although illustrated here primarily in the context of Markov switching models, the analytical 

results imply that effects of this type for seasonal adjustment should be anticipated whatever 

method is used to identify business cycle turning points. 

 
 
 

APPENDIX 
 

Software and Procedures 
 
 
In the simulations for the Markov switching model as the DGP, the initial state (s0) is 

stochastic, but selected according to the unconditional state probability implied by the DGP, 

as 
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with x being randomly drawn for each replication from the (0, 1) uniform distribution. In 

estimation, the initial state probability is treated as known and equal to (1 – q0)/(2 – p0 – q0), 

where p0 and q0 are the transition probability values used to initialise the estimation of these 

parameters.  In all cases, estimation is initialised with p0 = 0.9 and q0 = 0.65; for the Markov 

switching DGPs, these are the true parameter values. 

All estimations of the Markov switching model are conducted using the GAUSS 

procedures available from the Bank of Canada (van Norden and Vigfusson, 1996). These 

have the advantage of allowing the use of analytical gradients in the Maximum Likelihood 

estimation of the Markov switching model. Estimation was undertaken by direct optimisation 

of the likelihood function; the EM procedure included in the Bank of Canada programs was 
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not employed due to some problems in convergence. Optimisation is undertaken with the 

Broyden, Fletcher, Goldfarb and Shanno algorithm in the Gauss procedure MAXLIK (1995 

version), with line search set to STEPBT. The convergence criterion is set to be a tolerance of 

 for the gradient of the estimated coefficients. All random draws were generated by the 

routines RNDU and RNDN contained in GAUSS 3.2.  

510−

An important practical difficulty in the estimation of Markov switching models is the 

presence of local optima in the likelihood function. Therefore, depending on the particular set 

up, the global maximum may be undetected in a substantial proportion of the Monte Carlo 

replications unless a large number of starting values are used to initiate the nonlinear 

maximisation routine in each replication. However, the use of a large grid of starting values 

severely limits the possibility of designing a large Monte Carlo study, due to the long 

computation times involved. 

 Hamilton (1991, 1996) suggests using the DGP parameter values as starting values for 

the maximisation iterations to avoid this problem. This approach works fairly well for the 

parameterisations of (11) that involve large differences between the means in the two 

regimes, but not so well for those parameterisations that imply a less dramatic (and perhaps 

more realistic) difference. Indeed, as the means in the two regimes became closer, the density 

of dµ̂  became bimodal, with a global maximum at around µd and a local maximum at zero.  

This corresponds to a local maximum known to occur in the likelihood function for the 

Markov switching model (see, for instance, Hamilton, 1996). Therefore, starting our iterations 

at the true parameter values may produce seriously misleading results, as a large proportion of 

the replications get stuck in the local maxima around 0ˆ =dµ , at least for those 

parameterisations that involve a small difference in means5. 

 A possible solution would be to run a grid of different starting values for those 

replications that deliver an estimate of dµ̂  close to zero, but this would leave open the 

question of how close to zero dµ̂  should be to switch to this extensive grid search. Further 

experimentation, based on Garcia (1998), showed that most of our suspected local optima 

produced near zero likelihood ratios test values in comparison with a linear autoregressive 

model, with less than 0.01 being a convenient value. For these replications, a grid of 10 

different starting values succeeded in moving dµ̂  and the likelihood ratio away from zero in 

                                                 
5 Hansen (1992) finds a similar phenomenon in studying the finite sample behaviour of the likelihood ratio test 
for Markov switching nonlinearity.  He warns against a very high chance that the estimation will end up at a 
local optimum if iterations are started at the true DGP parameter values under the null of a linear DGP.  
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all cases6. On the other hand, our experiments showed that for replications with likelihood 

ratios above 0.01, no extensive grid search could find a larger value for the likelihood 

function that the one obtained from iterations started at the true parameter values. Thus all the 

reported results are conducted based on this starting value criterion7. 

Seasonal adjustment is undertaken using the SAS/ETS for Windows 6.1 version of the 

additive X-11 algorithm with standard options, with the exception of outlier corrections, 

which is disabled. In the case of the one-sided filter, each element yt
F, t = 211, …, 310, is 

obtained by recursive application of the X-11 program, that is, by running the SAS routine on 

a dataset containing observations only through to time t and fetching the last seasonally 

adjusted value. This procedure is repeated for 10,000 replications. 
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Table 1. Median Quadratic Probability Score for Simulations of Markov Switching DGP

Full sample smoother
(a) Filtered data (X-11 symmetric filter) (b) Unfiltered data (c) Ratio (a)/(b)

Overall Upper reg. Lower reg. Overall Upper reg. Lower reg. Overall Upper reg. Lower reg. 
2.5 0.128 0.065 0.268 0.106 0.051 0.228 1.211 1.271 1.176

2 0.195 0.096 0.389 0.169 0.078 0.361 1.150 1.228 1.077
1.8 0.228 0.114 0.442 0.204 0.090 0.440 1.116 1.275 1.003
1.6 0.264 0.138 0.500 0.242 0.102 0.526 1.093 1.357 0.950
1.4 0.307 0.170 0.556 0.285 0.118 0.622 1.078 1.444 0.893
1.2 0.354 0.218 0.599 0.326 0.140 0.722 1.085 1.563 0.830

Filter probabilities
(a) Filtered data (X-11 one-sided filter) (b) Unfiltered data (c) Ratio (a)/(b)

Overall Upper reg. Lower reg. Overall Upper reg. Lower reg. Overall Upper reg. Lower reg. 
2.5 0.153 0.095 0.295 0.115 0.059 0.247 1.330 1.593 1.194

2 0.218 0.134 0.404 0.182 0.093 0.385 1.200 1.433 1.050
1.8 0.248 0.150 0.450 0.213 0.107 0.450 1.164 1.408 1.000
1.6 0.288 0.178 0.515 0.255 0.123 0.540 1.130 1.443 0.955
1.4 0.326 0.203 0.568 0.294 0.138 0.624 1.110 1.469 0.910
1.2 0.368 0.231 0.643 0.329 0.135 0.772 1.118 1.717 0.833

One quarter ahead probabilities
(a) Filtered data (X-11 one-sided filter) (b) Unfiltered data (c) Ratio (a)/(b)

Overall Upper reg. Lower reg. Overall Upper reg. Lower reg. Overall Upper reg. Lower reg. 
2.5 0.288 0.126 0.824 0.273 0.109 0.835 1.054 1.154 0.986

2 0.315 0.144 0.852 0.300 0.121 0.874 1.048 1.188 0.974
1.8 0.330 0.150 0.852 0.314 0.125 0.892 1.051 1.199 0.956
1.6 0.349 0.162 0.875 0.331 0.127 0.936 1.055 1.279 0.934
1.4 0.368 0.177 0.873 0.347 0.134 0.954 1.060 1.322 0.915
1.2 0.385 0.191 0.896 0.359 0.122 1.041 1.070 1.563 0.860

Note: Median values are computed over 10,000 Monte Carlo replications
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Figure 1. Autocorrelation function for white noise after seasonal adjustment by 
the two-sided linear X-11 filter 

 



 
(a) Structural break series 
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(b) Distortion induced in break series by seasonal adjustment 
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Figure 2. Distortion caused by applying the two-sided linear X-11 filter to a 
single structural break 
 



  
 
(a) Distortion within intermediate regime 
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(b) Distortion from end of intermediate regime 

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0 4 8 12

Period from end of intermediate regime

16

2 quarter regime
3 quarter regime
4 quarter regime
5 quarter regime

 
 
 

Figure 3. Distortion caused by applying the two-sided linear X-11 filter to a 
reversed structural break  
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Amedeo Spadaro
Figure 4. Markov-Switching full-sample smoother probabilities.

Amedeo Spadaro 
 

Amedeo Spadaro
10000 replications. (a) Third Quartile; (b) Median; (c) First Quartile.

Amedeo Spadaro
Solid line; raw data; dashed line : X-11 filtered data (symmetric filter) ; vertical lines : DGP's lower regime.
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Amedeo Spadaro
Figure 5. Markov-Switching full-sample smoother probabilities, QPS, selected quantiles.

Amedeo Spadaro
10000 replications. (a) Overall QPS; (b) Upper regime QPS; (c) Lower regime QPS.

Amedeo Spadaro
Solid lines : unfiltered data; dashed lines: X-11 filtered data (symmetric filter). 
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Amedeo Spadaro
Figure 6. Markov-Switching filter probabilities.

Amedeo Spadaro
10000 replications. (a) Third Quartile; (b) Median; (c) First Quartile.

Amedeo Spadaro
Solid line; raw data; dashed line : X-11 filtered data (one-sided filter); vertical lines : DGP's lower regime.

Amedeo Spadaro 
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Amedeo Spadaro
Figure 7. Markov-Switching  one-step-ahead regime probabilities.

Amedeo Spadaro
10000 replications. (a) Third Quartile; (b) Median; (c) First Quartile.

Amedeo Spadaro
Solid line; raw data; dashed line : X-11 filtered data (one-sided filter); vertical lines : DGP's lower regime.

Amedeo Spadaro 
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Amedeo Spadaro
Figure 8. Markov-Switching  filter probabilities, QPS, selected quantiles.

Amedeo Spadaro
10000 replications. (a) Overall QPS; (b) Upper regime QPS; (c) Lower regime QPS.

Amedeo Spadaro
Solid lines : unfiltered data; dashed lines: X-11 filtered data (one-sided filter).

Amedeo Spadaro 
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Amedeo Spadaro
10000 replications. (a) Overall QPS; (b) Upper regime QPS; (c) Lower regime QPS.

Amedeo Spadaro
Solid lines : unfiltered data; dashed lines: X-11 filtered data (one-sided filter).

Amedeo Spadaro
Figure 9. Markov-Switching one-step-ahead probabilities , QPS, selected quantiles.
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