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Abstract

Bounded rationality requires assumptions about ways in which rationality is con-
strained and agents form their expectations. Evolutionary schemes have been used to
model beliefs dynamics, with agents choosing endogenously among a limited number
of beliefs heuristics according to their relative performance. This work shows that
arbitrarily constraining the beliefs space to a �nite (small) set of possibilities can gen-
erate arti�cial equilibria that can be stable under evolutionary dynamics. Only when
"enough" heuristics are available, beliefs in equilibrium are not arti�cially constrained.
I discuss these �ndings in light of an alternative approach to modelling beliefs dynamics,
namely adaptive learning.
Key words: expectations; evolutionary dynamics; learning; equilibrium.
JEL classi�cation: C62, D83, D84, E32.



Discrete beliefs space and equilibrium:
a cautionary note

1 Introduction and related literature

Two men are out in the wild when they spot a bear. One of the two starts

running while the other asks in amazement: "Where on earth are you going to?

You will never be able to outrun the bear!" To which the �rst man replies: "I don�t

need to outrun the bear, I only need to outrun you".

The aim of this work is to shed some light on some results derived in macroeconomics

using models with bounded rationality. In particular, I look at the practice of modelling

expectations using evolutionary schemes to allow agents to choose among a limited set of

alternative rules or heuristics. I will highlight possible perils of such practice and then draw

a comparison with another common way of modelling agents�expectations under bounded

rationality, namely adaptive learning.

Rational expectations (RE) represent a powerful way of closing and solving an economic

model but they impose strong requirements on agents in terms of information acquisition

and computational capabilities. In recent years, a growing number of studies have replaced

RE with more realistic ways of modelling agents�expectations and their dynamics.

One popular method to model bounded rationality is adaptive learning, by which agents

are treated as econometricians who repeatedly adjust the parameter values in their model

economy based on previous forecast errors. Prominent examples are [35, Sargent (1999)],

[20, Evans and Honkapohja (2003)], [21, Evans, Honkapohja and Mitra (2009)] and, for an

extensive treatise on methodology and applications, [19, Evans and Honkapohja (2001)].

A second class of methods used to model the way agents revise their expectations over

time relies on evolutionary dynamics applied to a predetermined set of heuristics. Agents

are allowed to select among the available expectation formation rules on the basis of their

relative performance. While adaptive learning can be interpreted to represent learning at

the individual level, evolutionary dynamics on expectation formation rules better capture the

idea of social learning, where agents tend to imitate strategies that are more successful in

the population. Under adaptive learning, in fact, agents adapt their own forecast strategy1

based on previous performance, as measured against actual outcomes; under evolutionary

1Throughou this work, I will use the term strategy to mean a model/rule/heuristic for forming expecta-
tions. I will also call it "perceived law of motion" (or PLM), in line with the adaptive learning literature.
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models, instead, agents adopt strategies (again, expectations formation rules) that have been

relatively more successful in the population, i.e., whose performance has been assessed and

evaluated positively against other strategies. Under evolutionary dynamics, thus, strategies

don�t need to "outrun the bear", they only need to outrun other available strategies in order

to prevail.

The two approaches, adaptive learning and evolutionary dynamics, have also been stud-

ied together in economic models: for example [8, Berardi (2015)] combines evolutionary

selection among heterogeneous classes of models with adaptive learning on the parameters

of each model and �nds that heterogeneous equilibria are possible but fragile; [11, Branch

and Evans (2006)] propose the concept of misspeci�cation equilibrium, where di¤erent un-

derparameterized predictors are selected even in the limit under least-squares learning and

dynamic predictor selection based on average pro�ts; [26, Guse (2010)] considers a setting

where agents can choose between a minimum state variable and a sunspot forecasting model

and �nds that with an ad hoc cost to using the sunspot predictor, heterogeneity cannot be

sustained under the combined evolutionary-adaptive learning dynamics.

The relation between learning and evolutionary dynamics has also been studied exten-

sively in game theory. [24, Fudenberg and Levine (1998, ch. 3)] derive replicator dynamics

from models of individual learning while [9, Borgers and Sarin (1997)] show that, in a game

theoretical framework, a learning model based on the reinforcement of strategies with higher

payo¤ converges, in a continuous time limit, to the replicator dynamics of evolutionary

game theory. A key element to note is that, in these works, learning entails competition of

strategies against each other, which di¤erentiates crucially such learning mechanisms from

adaptive learning.

More generally, the relation between learning and evolution has been debated in biology

for a long time: [37, Sznajder, Sabelis and Egas (2012)] recently reviewed some of the

literature concerning the so called Baldwin e¤ect [5, Baldwin (1896)], i.e., the hypothesis

that learning, by improving �tness, accelerates evolution. Closer to our �eld of investigation,

[32, Marimon (1993)] considers a game theoretical framework and compares key properties

of adaptive learning (adaptation, experimentation and inertia) with their counterparts in

evolutionary dynamics (reproduction, mutation and conservation).

An important di¤erence between adaptive learning and evolutionary schemes as ways of

modelling the evolution of expectations is that in the �rst case the researcher usually endows

agents with a single forecasting model and then allows them to optimize the parameters in

such a model through learning; in the second case instead the researcher selects a set of
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alternative forecasting models, and then allows agents to choose among this �xed set of rules

based on their relative performance.2 [2, Anufriev and Hommes (2012)], for example,consider

a �xed set of rules, or heuristics, available to agents and investigate how the switching be-

tween these rules can explain results from experimental data. I will argue that the coarse

discretization of the beliefs space under evolutionary schemes can lead to the creation of ar-

ti�cial equilibria and thus to misleading conclusions about possible outcomes in an economy.

Such equilibria can be stable under evolutionary schemes, though they disappear when the

beliefs space is su¢ ciently expanded.

From an empirical point of view, there seems to be quite a lot of dispersion in forecasts

available through survey data (as seen, for example, from the Survey of Professional Fore-

casters). This means that households at any point in time have access, at least in principle,

to a fairly large number of di¤erent predictors, represented by the di¤erent professional fore-

casters. Whether they actually take advantage of them, and whether any sort of convergence

emerges among such predictors over time, are empirical questions that are beyond the scope

of this paper. The aim of this paper is simply to point out the perils of arti�cially restricting,

a priori, the set of available predictors to agents in a theoretical framework.

Another important question that is outside the scope of this paper pertains to the best

way to model expectations under bounded rationality, whether through adaptive learning,

evolutionary dynamics or possibly other methods. The answer, I speculate, would probably

be case dependent, as di¤erent schemes could provide a better approximation of how agents

actually behave under di¤erent circumstances. One, for example, could imagine that in

competitive environments, where the pressure for improvement comes from the need to

outperform competitors, evolutionary dynamics could do a better job at approximating the

way beliefs are formed and updated over time by agents; in problems of individual decision

making, instead, adaptive learning might be a superior modelling strategy, as agents are

not competing against each other but are trying to do the best they can for themselves in

"absolute" terms. Ultimately, this again seems to be an empirical question, that can be

settled only by empirical evidence. What I argue here is that it is important to understand

what is the impact of using one or the other approach on the predictions that a model can

deliver.
2From an evolutionary perspective, only selection is allowed, but not mutation or crossover that could

generate new alternatives.
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1.1 Related literature

The concept of evolutionary dynamics has been extensively applied in economics. In a

seminal work, [14, Brock and Hommes (1997)] de�ne the concept of adaptively rational

equilibrium (ARE), in which agents adapt their beliefs over time by choosing from a �nite set

of di¤erent predictors according to a discrete logit model. They show how, in a simple cobweb

model where agents can choose between rational (at a cost) and naive (free) expectations,

highly irregular equilibrium prices can emerge. Building on this idea, [15, Brock, Hommes

and Wagener (2005)] introduce the concept of large type limit (LTL), describing the dynamic

behavior of heterogeneous markets with many trader types. Applications of the LTL have

been considered by [3, Anufriev et al (2013)] and by [1, Agliari et al (2017)]: in both cases,

from multiple steady states, the system moves to one unique steady state in the large type

limit. This work will shed light on these results. In fact, in di¤erent settings, other studies

- [4, Aoki (2002)], [23, Evstigneev et al. (2001)] and [27, Hens and Schenk-Hoppé (2005)] -

�nd that, as the number of strategies available to agents increases, heterogeneity in trading

strategies tends to disappear. Similar to the LTL approach, [17, Diks and Weide (2002)] and

[18, Diks andWeide (2003)] propose a continuous beliefs system (CBS), where a continuum of

strategies for forming beliefs are available to agents: while they are able to derive the limiting

distributions for a number of performance measures, such distributions in fact degenerate

into a point mass (and prices converge to the fundamental value) if agents are all allowed to

choose the best possible predictor available. Again, the aim of this work is to understand

such results more broadly.

An application of the ARE concept to a New Keynesian macroeconomic model of in�ation

and output has been proposed by [1, Agliari et al. (2017)], showing how this way of modelling

expectations can alter the conclusions in terms of stability and uniqueness of equilibrium

compared to rational expectations. [13, Branch andMCGough (2016)] �nd cycles and chaotic

dynamics in a monetary model a la [28, Lagos and Wright (2005)] with traders switching

between (costly) rational and (costless) adaptive predictors according to a discrete logit

model. [16, De Grauwe (2011)] generates endogenous waves of optimism and pessimism

(�animal spirits�) in a macroeconomic model with beliefs switching behavior implemented

through a discrete logit mechanism, where agents can choose among a limited set of simple

but biased rules (heuristics) to forecast future output and in�ation. The author, discussing

the results, recognizes that "[...] the menu of heuristics which is extremely small in this

paper, will have to be broadened so that the selection of the ��ttest�rules can occur using
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a wider pool of possible rules." This is the aspect upon which this paper focuses.

In order to keep the analysis as general as possible, the evolutionary concept I will mainly

rely upon is the evolutionary stable strategy (ESS), proposed by [30, Maynard Smith (1974)]

and [31, Maynard Smith and Price (1973)]. I will also make use, at times, of two additional

evolutionary schemes: the �rst is the concept of replicator dynamics, proposed by [38, Taylor

and Yonker (1978)] and used in economics for example by [36, Sethi and Franke (1995)] and

more recently by [12, Branch and McGough (2008)]; the second is a discrete logit model of

beliefs selection, used for example in [14, Brock and Hommes (1997)].3

The choice of focusing on the notion of ESS has its bene�ts, but it is not without costs.

While in fact this concept allows for a sharper characterization of some results, it does

not allow to properly discuss beliefs dynamics in a way that schemes such as replicator

dynamics or the discrete logit model would. In particular, the notion of ESS relates to local

stability properties of the model, and it has nothing to say about the global properties of the

system under consideration. These various concepts are, nevertheless, closely related, and

[39, Weibull (1995)] shows that every ESS is (locally) asymptotically stable under replicator

dynamics, though the reverse does not generally hold. In other words, focusing on the

notion of ESS will lead to results that are conservative: the equilibria found using ESS are

also (locally) stable equilibria under replicator dynamics, though there might be other stable

outcomes that emerge under replicator dynamics that do not correspond to ESS.

2 A stylized model

In order to investigate how the restriction of the beliefs space a¤ects the set of possible

equilibria, I consider a simple linear stochastic model with feedback from expectations to

actual outcomes. The model, though very simple, admits multiple equilibria under rational

expectation (RE).

The linear, stochastic model is represented by

yt = By
e
t+1 + vt; (1)

where yet+1 denotes expectations at time t of yt+1 and vt is an i.i.d. random variable with

zero mean and variance �2v. Under RE, the model has a unique, fundamental (or minimal

3The discrete logit model can be derived from a random utility model (see, e.g., [29, Manski and McFad-
den (1981)]) in which agents observe the performance of each rule with some noise; it can also be derived
from a rational inattention problem, as shown by [33, Matejka and McKay (2015)].
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state variable - MSV) noisy steady state, with yet+1 = 0 and yt = vt, for B 6= 1.4

There is also a set of AR(1) RE equilibria, of the form

yt =
1

B
yt�1 �

1

B
vt�1; (2)

indexed by the initial condition y0. Such equilibria are stationary if jBj > 1.
The previous model, though most simple, captures nevertheless important features of

economic models and can represent stylized economic systems.

The New Keynesian model presented in ([1, Agliari et al (2017)]), for example, �ts in

this form, with y a vector of variables and B a suitable matrix. The Cobweb model used in

([14, Brock and Hommes (1997)]) has a di¤erent timing in terms of expectations, but admits

the same fundamental (noisy) RE steady state (though no AR(1) REE) and considerations

about the consequences of the discretization of beliefs derived in (1) can be carried over to

that model.

3 Modelling beliefs

Stepping back from RE, beliefs dynamics under evolutionary forces can be modelled in

di¤erent ways. Common choices in this respect are replicator dynamics and a discrete logit

model, which I will discuss below. In game theory, a common way to analyze evolutionary

stability is through the notion of an ESS. I will use this last concept in conducting my analysis

and discuss the relationship between ESS and stability under both replicator dynamics and

discrete logit model. As all these concepts require a measure of the relative performance of

di¤erent predictors, I �rst introduce the measure I will be using throughout the paper, the

mean squared error.

3.1 A measure of relative performance

Agents are characterized by the strategy they use to form their expectations. I de�ne a

strategy for an agent as a forecasting model, also called a perceived law of motion (PLM),

used to form their beliefs about actual outcomes. The performance of a strategy (PLM) is

4For B = 1, any arbitrary yet+1 = k gives rise to a noisy steady state of the form yt = k + vt.
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then measured by its mean squared error (MSE),5 de�ned as

MSE = E(yt � yet )2; (3)

where yet are the expectations of yt (formed at time t� 1) based on the PLM used.

Using the mean squared error as a driver for evolutionary dynamics might seem to impose

strong informational requirements on agents. An alternative would be to assume that agents

use an adaptive process to estimate the MSE over time, such as

MSEt = (1� gt)MSEt�1 + gt (yt � yet )
2

with gt a small �xed or decreasing gain. For simplicity and analytical tractability, I will

assume in this work instead that agents have full knowledge of the relevant MSEs at each

point in time.

Given two competing strategies in use among agents, say PLM1 and PLM2, their perfor-

mance will depend in general on the fraction of agents using each strategy (as this determines

the actual outcome yt), determined by �.6 Appropriate use of notation would thus require

one to denote the performance of each strategy as MSE (�)1 and MSE (�)2, respectively,

to show their dependence on �: One could then de�ne a measure of relative performance as

�(�) =MSE (�)2 �MSE (�)1 : (4)

For simplicity, in the rest of the paper I will drop the notation that shows dependence on

� and simply write �, MSE1, MSE2. Note that in all the settings considered in this paper

(and generally in all well behaved economic models) �(�) is continuous, di¤erentiable and

monotonic in �.

3.2 ESS and evolutionary schemes

While I will mainly adopt the concept of ESS in my analysis, the literature often models

the evolution of beliefs according to evolutionary schemes such as replicator dynamics and

discrete logit. There is a deep connection between these concepts. In particular, if such

schemes are driven by the di¤erence in forecasting performance, as described above, results

5The choice of MSE as measure of performance for the evolutionary schemes is consistent with the use
of recursive least squares under adaptive learning, whose objective is indeed to choose parameter estimates
that minimize the MSE of the forecasting rule.

6More precisely, � is the fraction of agents using PLM1, with 1� � the fraction of agents using PLM2:
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of this paper derived using the ESS notion can be applied to settings using either of the two

evolutionary schemes, under certain conditions. I elaborate on this point below, describing

in briefs such schemes and showing their connection with the ESS concept.

3.2.1 Nash equilibrium and evolutionary stable strategy

Generally speaking, a Nash equilibrium is characterized by the fact that no agent has an

incentive to change strategy. A strategy pro�le is de�ned by the strategies used by agents

and the relative fraction of the population using each strategy. The following de�nition

adapts this concept to the present setting, with two competing predictor strategies available

to agents:

De�nition 1 Consider a setting with two competing belief strategies available to agents,
de�ned by PLM1 and PLM2, used respectively by a proportion � and (1 � �) of agents. A
Nash equilibrium is de�ned by the triple (PLM1; PLM2; �) and one of the following three
conditions: i) a non-negative fraction of agents uses each PLM available (i.e., � 2 [0; 1])
and � = 0; ii) all agents use PLM1 (� = 1) and � > 0; iii) all agents use PLM2 (� = 0)
and � < 0.

I also de�ne an evolutionary stable strategy (ESS) in this context, both for homogeneous

and heterogeneous equilibria. In a homogeneous equilibrium, all agents use the same strategy

(i.e., form their beliefs using the same PLM), and the condition for such strategy to be an

ESS is the following:

De�nition 2 The triple (PLM1; PLM2; � = 1) is an ESS if 9�� 2 (0; 1), s.t. �j�>�� > 0:
Analogously, the triple (PLM1; PLM2; � = 0) is an ESS if 9�� 2 (0; 1), s.t. �j�<�� < 0:

In a heterogeneous (Nash) equilibrium, instead, a positive fraction of agents use each of

the two strategies available. A strategy pro�le is then a ESS if the following condition holds:

De�nition 3 The triple (PLM1; PLM2; ~� 2 (0; 1)) is an ESS if 9", s.t. for � = ~�+ ";
� < 0 and for � = ~�� "; � > 0, with � = 0 for � = ~�.

These de�nitions follow from the de�nition of ESS in the seminal works Maynard Smith

and Price (1973) and Maynard Smith (1974). It is well known that every ESS is a Nash

equilibrium, but the converse is not necessarily true. Note also that [38, Taylor and Yonker

(1978)] de�ne an ESS as an evolutionary stable state (rather than strategy), which seems

more appropriate for this setting. A state might be determined by an homogeneous group of

agents using the same predictor (strategy), or by di¤erent groups using di¤erent predictors
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(strategies): the combination of strategies and the relative fraction of agents using each

strategy de�nes a strategy pro�le.

Note that it is not possible in this setting to have an homogeneous Nash equilibrium that

is not an ESS, since there is continuity of payo¤s (�) in �, and equilibrium requires � to

be negative (positive) for � = 1 (� = 0).7 There could, though, be an heterogeneous Nash

equilibrium that is not an ESS: an heterogeneous equilibrium in fact requires � = 0, but

nothing guarantees that the conditions set out in De�nition (3) are satis�ed.8

Finally, a note on terminology: in this paper I will often refer to an equilibrium as being

an ESS (or not). This represents a slight misusage of terminology and must be understood

as meaning that the strategy pro�le associated with such equilibrium is an ESS (or not).

3.2.2 Replicator dynamics

While replicator dynamics have been de�ned both in continuous and discrete time in the

literature, the continuous time version is more widely used than its discrete time counterpart.

In addition, and crucially for this work, it allows for a direct representation of the dynamics

in terms of �.

Under continuous time replicator dynamics, the fraction � of agents using PLM1 (with

the remaining fraction (1 � �) using PLM2) evolves according to the ordinary di¤erential

equation (ODE)

_� = � (1� �)� (�) (5)

where �(�) is de�ned by (4).

Clearly equilibrium points of these replicator dynamics are points where � = 0; � = 1 or

� = 0. Note that points where all agents use the same predictor (� = 0 and � = 1) are �xed

points of ODE (5) but need not be Nash equilibria, according to the de�nition given above

(i.e., they don�t require � = 0).

Local stability of equilibrium points under replicator dynamics is governed by � _�
��
, with

� _�

��
= (1� 2�)� (�) + � (1� �) ��(�)

��
:

7I abstract here from corner solutions where homogeneous Nash equilibria (� 2 f0; 1g) have � = 0: in
those cases, an equilibrium could be Nash but not an ESS. For example, if � = 0) � = 0 but � > 0) � > 0.
This reminds of a self-con�rming equilibrium: if nobody uses PLM1, no agent has any incentive to adopt it,
but once someone starts using it, everyone will follow.

8This is the case, for example, in an economy where there is negative feedback from expectations to
outcomes: as more agents adopt a strategy, its performance decreases.
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In particular, at � = f1; 0g local asymptotic stability is governed only by the sign of �(�):
� = 0 is stable for �(0) < 0 while � = 1 is stable for �(1) > 0.

Remark 4 An homogeneous ESS is always locally asymptotically stable under replicator
dynamics. The converse is not necessarily true.

This remark is a well known result in the literature. See, e.g., Weibull (1995), Proposition

3.10, p. 100. It implies that the set of ESSes that will be found in my analysis is a subset of

the possible equilibria under replicator dynamics. Since the local asymptotic stability condi-

tions for homogeneous equilibria (� = f1; 0g) under replicator dynamics are the same as the
conditions for Nash equilibrium in de�nition (1), the set of Nash equilibria in the model cor-

responds to the set of locally asymptotically stable homogeneous equilibria under replicator

dynamics. Coupling this result with the fact that the set of ESSes is a (possibly improper)

subset of the Nash equilibria, it leads to the above remark that every homogeneous ESS is

locally asymptotically stable under replicator dynamics, but the converse is not necessarily

true.

3.2.3 Discrete choice model

[14, Brock and Hommes (1997)] use a discrete logit model for modelling prediction choice

dynamics.9 De�ning as �t the fraction of agents using PLM1 in period t, the predictor choice

in the population evolves over time according to

�t+1 =
expf��MSE2;tg

expf��MSE1;tg+ expf��MSE2;tg
(6)

or equivalently

�t+1 =
1

2

�
tanh

�
�

2
� (�t)

�
+ 1

�
; (7)

where � is the "intensity of choice" parameter, a measure of how fast agents switch predictors,

and MSE1;t, MSE2;t and �t are the unconditional mean square errors and their di¤erence

computed with �t.

Note that for � =1, the model reduces to a deterministic choice model where all agents
choose the predictor with the smaller MSE: only the sign of � matters. This implies

that for �
�
�t�1

�
> 0, �t = 1 and for �

�
�t�1

�
< 0, �t = 0. Stability of homogeneous

equilibria then requires �(0) < 0 for �t = 0 and �(1) > 0 for �t = 1. These conditions

9This is equivalent to a so called softmax action selection based on a Gibbs or Boltzman distribution.
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once again correspond to the Nash equilibrium conditions in de�nition (1). This means that

every homogeneous ESS is a stable equilibrium under the discrete logit model with � =1,
but the converse does not necessarily hold. I summarize these observations in the following

remark:

Remark 5 Every homogeneous ESS is asymptotically stable under the discrete logit model.
More generally, every homogeneous Nash equilibrium de�ned in De�nition (1) - sub-points
ii) and iii) - is asymptotically stable under the discrete logit model with � =1.

For �nite �, instead, homogeneous equilibria do not emerge for �nite values of �(�t), as

in this case �t = 1 requires �
�
�t�1

�
=1 and �t = 0 requires �

�
�t�1

�
= �1 .

The relationship between the full set of Nash equilibria and stationary states under the

two di¤erent evolutionary schemes can lead to interesting results. In particular, I will show

below that if a setting does not allow for a homogeneous Nash equilibrium but it includes

an heterogeneous Nash equilibrium that is also an ESS, it is possible to generate simple

cycles between the two homogeneous (non-Nash) states using a discrete logit model for

predictor selection. The same though would not be possible under replicator dynamics, as

homogeneous states (� = 1 or � = 1) are always �x points in this case (though not necessarily

stable, as discussed previously).

4 Steady state equilibria

In this Section I analyze (noisy) steady state equilibria of model (1) when belief dynamics

can evolve according to evolutionary schemes. It is instructive to note that steady state

equilibria of (1) correspond to steady state equilibria of the alternative model

yt = By
e
t + vt (8)

where yet denotes expectations at time t�1 of yt. This follows from the fact that, in a steady
state, yet = y

e
t+1. The framework is then also equivalent to a Cobweb model.

Such steady states will be characterized by yt = y + vt, for some y, and by beliefs

dynamics being in equilibrium, in the sense that no agent wishes to change the predictor

they are using. In addition to being a Nash equilibrium in this sense, I will also verify

whether such equilibrium is evolutionary stable, using the concept of ESS.

In a steady state, a PLM for an agent is simply represented by a number, the predicted

value for yt in steady state.
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4.1 Optimistic/pessimistic versus fundamental agents

Consider �rst a setting where two competing PLMs are available to agents in order to form

expectations, de�ned as follow:

PLM1 : yt = 0 (9)

PLM2 : yt = a; a 2 R� f0g : (10)

While PLM1 is consistent with the fundamental equilibrium, one could interpret PLM2 as

representing agents being optimistic (for a > 0) or pessimistic (for a < 0) about the state of

the economy. If � agents use PLM1 and 1�� use PLM2, then for any arbitrary a, aggregate

expectations are given by (1� �) a and the actual law of motion (ALM) for the economy is
represented by

yt = B (1� �) a+ vt:

Mean squared errors for the two groups are

MSE1 = E (B (1� �) a+ vt � 0)2

MSE2 = E (B (1� �) a+ vt � a)2

and therefore

� = a2 (1� 2B (1� �)) :

The choice of predictors by agents depends on the sign of �, as seen above, and clearly

� > 0, B (1� �) < 1

2
: (11)

It follows that, for any B, it is possible to �nd a �� 2 (0; 1) such that �j�>�� > 0 (since for
� = 1 the condition is satis�ed, and � is continuous in �): the strategy pro�le (PLM1,

PLM2, � = 1) is thus an ESS. One can also see that, if � = 0, � < 0 requires B < 1=2, in

which case it is always possible to �nd a �� 2 (0; 1) : �j�<�� < 0 and thus the strategy pro�le
(PLM1, PLM2, � = 0) is also an ESS if B > 1

2
.

Proposition 6 From condition (11), it follows that the strategy pro�le (PLM1, PLM2,
� = 1), with PLMs de�ned by (9)-(10), is an ESS 8a 6= 0. Moreover the strategy pro�le
(PLM1, PLM2, � = 0) is also an ESS 8a 6= 0 if B > 1

2
.

The previous proposition shows that in a setting where agents can choose between beliefs

consistent with the fundamental equilibrium (PLM1) and biased beliefs (PLM2), a situation

12



Discrete beliefs space and equilibrium:
a cautionary note

in which all agents use such biased beliefs can represent a Nash equilibrium (and an ESS).

For B > 1=2 there are thus two (noisy) steady states, one where yt = 0 + vt (fundamental)

and one where yt = a+ vt.

As noted before, because in these equilibria the MSE of the PLM used is smaller than

the MSE of the PLM not used (that is � < 0 for � = 0 and � > 0 for � = 1), these ESSes

are stable both under replicator dynamics and under the discrete logit model with � = 1.
Analyzing this system with either of the two mechanisms for selecting beliefs, one would

thus conclude that additional steady states exist (and are evolutionary stable) besides the

fundamental equilibrium.

4.2 Optimistic, pessimistic and fundamental agents

While the analysis in the previous Section, and throughout this paper, is restricted to only

two PLMs available to agents, it can be extended to allow for more possibilities. Consider

for example the case where three PLMs are available to agents, de�ned as follows:

PLM1 : yt = 0 (12)

PLM2 : yt = a; a 2 R� f0g (13)

PLM3 : yt = �a; � 2 R� f0g : (14)

A strategy pro�le is now de�ned by the 5-tuple (PLM1, PLM2, PLM3, �1, �2), where �1
and �2 represent the relative fraction of agents using, respectively, PLM1 and PLM2 (with

�3 = 1��1��2 representing the remaining fraction of agents using PLM3). We can interpret

PLM1 as being a "fundamental" PLM , while PLM2 and PLM3 de�ne di¤erent degrees of

optimism/pessimism competing with each other.

Clearly, the strategy pro�le where all agents use the fundamental PLM1 is always an

ESS. It can also be shown that the strategy pro�le where all agents use the arbitrary PLM2

is an ESS if

� < 0 & B >
1

2
(15)

0 < � < 1 & B >
1

2
+
�

2
(16)

� > 1 &
1

2
< B <

1

2
+
�

2
: (17)

The conditions for the strategy pro�le where all agents use the arbitrary PLM3 to be an
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ESS are then symmetric, with

� < 0 & B >
1

2
(18)

0 < � < 1 &
1

2
< B <

1

2
+
1

2�
(19)

� > 1 & B >
1

2
+
1

2�
: (20)

A brief comment on these inequalities. Condition B > 1
2
is required in order for

the optimistic/pessimistic PLM to outperform the fundamental PLM1. The remaining

part of the conditions ensures that PLM2 outperforms PLM3 when all agents use it (this

is: (B � 1)2 < (B � �)2), or PLM3 outperforms PLM2 when all agents use it (this is:

(B � 1)2 < (B � ��1)2): such conditions depend on whether � 7 1.
For example, selecting � = �1 one obtains a setting with two non fundamental PLMs,

one leading to optimistic and one to pessimistic forecasts, with optimism/pessimism sym-

metric around the fundamental steady state: in this case the condition for the strategy

pro�les where all agents use one of the two non fundamental PLMs to be ESSes reduces to

B > 1
2
. Selecting instead an � 2 � (0;1), the symmetry of optimism and pessimism would

not necessarily hold anymore, but the condition for strategy pro�les where either PLM2 or

PLM3 are used by all agents to be ESSes would still be B > 1
2
.

Proposition 7 Consider the three PLMs de�ned in (12)-(14). Each of the three 5-tuples
(PLM1, PLM2, PLM3, �1 = 1, �2 = 0), (PLM1, PLM2, PLM3, �1 = 0, �2 = 1) and
(PLM1, PLM2, PLM3, �1 = 0, �2 = 0) can be an ESS. In particular, the �rst one is always
an ESS; the second one is an ESS if one of the three conditions (15)-(17) is satis�ed; the
third one is an ESS if one of the three conditions (18)-(20) is satis�ed.

The intuition for these results is straightforward: a PLM prevails on the others if its

prediction is closer to the actual realization than each of the alternative�s predictions, when

all agents use it. Again, these ESSes correspond to equilibria that are stable both under

replicator dynamics and under the discrete logit model with � =1.

4.3 Heterogeneous equilibria

The above results have shown that additional homogeneous equilibria can emerge from ar-

ti�cially limiting the set of belief strategies available to agents. Heterogeneous equilibria,

where di¤erent groups of agents maintain di¤erent beliefs (i.e., use di¤erent PLMs), can

also emerge from the same practice of limiting the set of available alternatives to agents. I
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will show how this is possible by considering the case with only two available strategies (but

the case is easily generalizable to setting with more alternatives available).

Consider the setting where a fraction � of agents use PLM1 de�ned as

PLM1 : yt = a; a 2 R� f0g (21)

and the remaining fraction 1� � use PLM2

PLM2 : yt = �a; � 2 R: (22)

This framework captures the situation where agents can choose among two steady state

predictors, one of which could be consistent with the fundamental steady state.

The respective MSEs are

MSE1 = E (Ba (�+ (1� �)�) + vt � a)2

MSE2 = E (Ba (�+ (1� �)�) + vt � �a)2

and therefore

� = a2 (�� 1) (1 + �� 2B (�+ (1� �)�)) : (23)

It is clear that � < 0 if: � > 1 and B (�+ (1� �)�) > 1+�
2
; or if � < 1 and

B (�+ (1� �)�) < 1+�
2
. That is, if �a is closer than a to the actual outcome induced

by the heterogeneous expectations.

An heterogeneous equilibrium instead exists when � = 0 for � 2 (0; 1): this requires

� = ~� � �+ 1� 2B�
2B (1� �) : (24)

For example, if � = �1, then � = 1
2
implies � = 0: an heterogenous equilibrium exists where

half the population is optimistic and half is pessimistic, equally distant from the fundamental

value. Note that in general restrictions on � and B must be placed to ensure that ~� 2 (0; 1).
Would this heterogeneous equilibrium (i.e., the triple PLM1, PLM2, ~�) be an ESS? The

condition for this to happen is that agents don�t have any incentive to deviate from the

strategy played in equilibrium, i.e.,

� < 0 if � > ~�

� > 0 if � < ~�:
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This means that � has to be decreasing in � at ~�, i.e., d�
d�
j�=~�< 0: It is easy to compute

d�

d�
= 2a2 (�� 1)2B

and thus
d�

d�
< 0, B < 0:

The heterogeneous equilibrium corresponds to an ESS for B < 0. I summarize results of this

Section in the following Proposition.

Proposition 8 In a setting where agents can select among the two PLMs de�ned by (21)
and (22), an heterogeneous expectations equilibrium exists with � = ~� determined by (24).
The corresponding strategy pro�le (PLM1, PLM2, � = ~�) is an ESS if B < 0.

With an arbitrary restriction of the strategy space, not only one can have arti�cial ho-

mogenous equilibria, but it is also possible to construct heterogeneous equilibria, and such

equilibria can also be ESSes.

4.4 Rational cycles: an example

In the analysis considered in Section (4.3), for B < 0, a stable heterogeneous equilibrium is

coupled with two homogeneous states that are not Nash equilibria (in the sense that � 6= 0,
though they are by de�nition �xed points for the replicator dynamics), and thus not ESSes.10

In particular, for � = 0;� > 0 and for � = 1;� < 0: this means that under a discrete logit

model, "rational" agents (i.e., with � =1) would keep switching between the two strategies
and the system would cycle between two states. 11

4.5 Re�ning the beliefs space

Having seen that arbitrary restrictions of the beliefs space can lead to arti�cial equilibria

under evolutionary dynamics, this Section will show that, as the set of possible strategies is

enlarged, the only ESS that survives is the one where all agents use a PLM consistent with

the fundamental equilibrium. In other words, any arbitrary equilibrium (i.e., not fundamen-

tal) that is an ESS when a �nite number of belief strategies is available, ceases to be an ESS

once available strategies are not arti�cially constrained.
10Cycles could not emerge between di¤erent ESSes (unless di¤erent costs are assumed), as ESSes are

absorbing states for evolutionary dynamics.
11This sort of cycles would not emerge under continuous time replicator dynamics, as � 2 f0; 1g are �xed

points of the relevant ODE.
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To model an unrestricted beliefs space, it is convenient to use the setting discussed in

Section (4.3), modifying it to allow an in�nite number of strategies to be available. To

this end, consider the same model presented before, with two PLMs available to agents,

PLM1 : yt = a, for some a 2 R�f0g, and PLM2 : yt = �a, but where now the second PLM

is parameterized by � (instead of being characterized by a given and �xed �). This last PLM

thus represents in e¤ect a class of PLMs: restrictions on � amount to restrictions to the

beliefs space of agents, while an unrestricted space of belief strategies can be characterized

by an unconstrained � 2 R� f0g.
For PLM1 to be an ESS against PLM2, 8� 2 R� f0g, it must be that it is possible to

�nd a �� 2 (0; 1) such that �j�>�� > 0 . But the di¤erence in performance, given by (23), for
� = 1 reduces to

�(�) = a2 (�� 1) (1 + �� 2B) ; (25)

where the dependence of � on � is made explicit. Clearly for any B 6= 1,12 it is always

possible to �nd a � 2 R � f0g s.t. �(�) < 0: In particular, since sign(�) depends on

(�� 1) (1 + �� 2B), for a given B, this requires

1 < � < 2B � 1 if B > 1 (26)

2B � 1 < � < 1 if B < 1: (27)

This means that, when agents are free to chose any strategy (that is, any �), not only an

arbitrary PLM1 cannot be an ESS, but it does not even correspond to a Nash equilibrium.

To understand these restrictions, it is useful to look at equation (25), which shows that

�(�) takes a U shape, with � < 0 i¤ � lies within the two roots of the quadratic equation,

equal to (2B � 1) and 1, and a minimum at � = B. For example, with a = 2 and B = 1
2
, it

can easily be seen that � = 0 at the two roots � = 1 and � = 2B � 1 = 0, with � reaching

a minimum at a = B = 1=2: see Figure 1.

Note that the middle point between the two roots is B, the actual e¤ect of expectations

on yt. Intuitively, agents using PLM1 were expecting yt = a, while the actual outcome turns

out to be aB. That is, aB is the individual best response to strategy a. It follows that, for

generic B 6= 1, any arbitrary strategy a 6= 0 can not be a Nash equilibrium of this system,

and thus can not be an ESS if the state space of beliefs is not restricted. Moreover, since

a = 0 is the only Nash equilibrium, it is by necessity an ESS - see Weibull (1995).

Proposition 9 When the space of beliefs is unconstrained, the only Nash steady state equi-
12The non-generic case B = 1 is trivial, as it implies that any a is an equilibrium and an ESS.
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Figure 1: Shape of �(�) :

librium (also corresponding to an ESS) in model (1) is the fundamental one where all agents
use PLM1.

Equilibria derived under evolutionary dynamics arise from comparing the performance of

di¤erent available strategies against each other. Since the actual outcome is endogenous to

the forecasting strategy used by agents, restrictions in this space mean that equilibria can

emerge where it is not worth for agents to switch to an alternative strategy, even though

the one they are using is far from being optimal, i.e., it is not a �xed point in the map from

beliefs to outcomes. For example, the second part of Proposition 6, which states that PLM2

can be an ESS, depends crucially on comparing the two strategies PLM1 and PLM2 against

each other. But any arbitrary strategy is not a best response against itself, and so it does

not represent a Nash equilibrium when the set of possible strategies is expanded.

4.6 Stepping stones

The previous section showed that when the space of beliefs is unconstrained, the fundamental

equilibrium is the only Nash (and ESS) equilibrium. Though a continuum of strategies is a

su¢ cient condition for this result, it is by no means necessary. What is necessary, instead,

is to have just enough "stepping stones" to ensure that any arbitrary strategy can not

survive. Any arbitrary belief (commonly held) will generate an actual outcome: as long

as an alternative belief exists, which is closer to the actual outcome than the belief which
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generated it, such arbitrary belief can not be an equilibrium.

One possible way to generate these "stepping stones" is through an individual best re-

sponse function, as shown below. This method, though, does not generate the minimum

number of strategies needed to ensure that the situation where all agents use the fundamen-

tal PLM is the only Nash equilibrium: one could exploit the fact that, for any given strategy,

there is an interval of alternative strategies that outperform it, as seen above, and select the

one that is closer to the fundamental as a stepping stone. That is, at each iteration, instead

of the best response (i.e., � = B) one could select a "minimum strategy" that does at least

as well as the current one (i.e., � = 2B � 1) and use that as a stepping stone towards the
fundamental equilibrium.

4.7 Best response and long run equilibria

A fruitful way to analyze the set of equilibria of the system when there are no a priori

constraints on the set of possible belief strategies available to agents is to look at the long

run equilibria of an adaptive game where agents can replace strategies over time, moving

from one to the next through an individual best response mechanism. In this perspective, a

strategy pro�le represents a Nash equilibrium if it is a best response to itself.13

We thus de�ne a best response function f : a! Ba, which generates successive strategies

for agents and determines the beliefs dynamics of the system.

Consider for example the framework from the previous Section: when all agents use a

strategy de�ned by PLM1 : yt = a1, the actual outcome is given by yt = Ba1. An individual

agent, observing such outcome, could then use the new strategy PLM2 = a2 = Ba1 as

predictor for the steady state. This new strategy is derived as the best response to PLM1

and represents the case where the new belief is halfway in the range of possible values that

would lead to a lower MSE. In the next round, then, the new best response strategy would

be Ba2 = B2a1. And so on.

This way of introducing new strategies through the best response function f reminds of

the naive expectations assumption common before the RE revolution, by which agents use

the current observed value as a predictor for the future. It is clearly not optimal in general,

though it can be in special cases. More importantly here, it provides a way to generate new

strategies for evolutionary selection.

In the present case, such "adaptive" behavior would indeed be optimal for an atomistic

13For an analysis of best response dynamics and Nash equilibria, see [25, Gilboa and Matsui (1991)].
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agent: when all agents predict the outcome a1, the strategy a2 = Ba1 is indeed the best

individual predictor, since it has minimum MSE. In other words, a2 = Ba1 is a best

response strategy, in game theoretic terms, for an atomistic agent when everybody else is

using a1. If all agents switch from one period to the other, only two long run outcomes are

then possible: either yt ! 0 (for jBj < 1) or yt ! �1 (for jBj > 1), either monotonically
or oscillating depending on the sign of B. The following proposition summarizes this result.

Proposition 10 The only long run stationary (Nash) equilibrium in an adaptive game where
new strategies are generated (synchronously) through an "individual best response" mecha-
nism is the fundamental equilibrium with ye = 0.

5 Equilibria in autoregressive form

So far I have considered only steady state equilibria of (1), which have the special feature that

a PLM (or forecasting strategy) is simply a constant. It is well known, though, that, under

RE, in addition to the fundamental, steady state equilibrium, model (1) admits also equilibria

in AR(1) form.14 It is thus interesting to analyze beliefs dynamics under evolutionary schemes

that rely on AR(1) forecasting models.

Given the simple form of model (1), which does not include any lagged variable, in order

for an AR(1) equilibrium to emerge it is necessary that (at least some) agents use an AR(1)

model to form expectations.

5.1 Discrete beliefs space

I will start by showing how also arti�cial AR(1) equilibria can arise under evolutionary

schemes when the beliefs space is constrained. In order to discipline the analysis, I will

focus on two cases separately: i) the case where a steady state PLM and an AR(1) PLM

are available to agents to form their expectations; ii) the case where two competing AR(1)

PLMs are available.

5.1.1 AR(1) versus steady state models

Consider �rst the case where two PLMs are available to agents, one consistent with the

economy being in a steady state and the other consistent with the economy being in an

14Such equilibria require restrictions on B in order to be stationary.
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AR(1) equilibrium. In particular, the �rst model, denoted PLM1, is represented by

yt = a; a 2 R (28)

while the second, PLM2, is consistent with the AR(1) equilibrium and represented by

yt = byt�1; b 2 R: (29)

Parameters a and b will be speci�ed later on for di¤erent scenarios.

With a fraction � of agents using the �rst model and the remaining fraction (1��) using
the second model, the ensuing aggregate expectations are

Etyt+1 = �a+ (1� �) b2yt�1

and the ALM for the system is given by

yt = B�a+B (1� �) b2yt�1 + vt: (30)

MSEs are given, respectively, by

MSE1 = E (yt � a)2

MSE2 = E (yt � byt�1)2 ;

and inserting the ALM into these equations leads to:

MSE1 = E
�
(B�� 1) a+B (1� �) b2yt�1 + vt

�2
(31)

MSE2 = E
�
B�a+

�
B (1� �) b2 � b

�
yt�1 + vt

�2
: (32)

It follows that

� =
b2 (1� 2bB (1� �)) (B2�2a2 + �2v)

1� (B (1� �) b2)2
� a2 (1� 2B�) + 2a

2bB2� (b (1� �)� �)
1�B (1� �) b2 : (33)

For the general case a; b 6= 0 the analysis is complicated by the interactions between the

unconditional mean of the model (which would be di¤erent from zero for a 6= 0) and the

AR(1) component. Some special cases are of particular interest.

First, for a 6= 0 and b = 0, � > 0, B� > 1
2
: this condition ensures that the expectations

derived with PLM1 (equal to a) are closer (in expected value) to the actual realization (B�a)

than those derived under PLM2 (equal to 0). Thus B > 1=2 ensures that the strategy pro�le
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(PLM1, PLM2, � = 1) is an ESS15. For � = 0, instead � < 0 and thus the strategy pro�le

(PLM1, PLM2, � = 0) is always an ESS (again, as already seen above).

More interesting is the case where a = 0 and b 6= 0, for which it is possible to derive

precise results that shed light on the interactions between these components. In particular,

I will consider two sub-cases: i) a MSV PLM against an AR(1) REE PLM ; ii) a MSV

PLM against a "naive expectations" PLM . The intuition behind the results is always the

same: the strategy that performs better is the one that delivers expectations that are closer,

in MSE, to the actual realization, which is determined by the expectations of each group,

weighted by their relative size, and mapped into actuals through the structural parameter

B.

MSV versus AR(1) REE models Suppose �rst that the two groups of agents believe

to be in a RE equilibrium, but not in the same one: agents in the �rst group, of size � and

using PLM1, believe to be in the fundamental noisy steady state (thus a = 0) while agents

in the other group, of size 1�� and using PLM2, believe to be in the AR(1) RE equilibrium

(thus b = 1
B
). The ensuing aggregate expectations are thus given by

Etyt+1 =
1� �
B2

yt�1

and the ALM for the economy is

yt =
1� �
B

yt�1 + vt: (34)

It is then straightforward to derive the MSEs for the two groups

MSE1 = E

�
1� �
B

yt�1 + vt

�2
MSE2 = E

�
� �
B
yt�1 + vt

�2
:

15This case, in fact, corresponds to one already seen above, since, from PLM2 with b = 0, the expected
value for yt is always zero.
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Using the fact that, from (34) and assuming stationarity of yt,16

Eyt = 0

Ey2t =
B2

B2 � (1� �)2
�2v

it follows that

MSE1 =
B2�2v

B2 � (1� �)2

MSE2 =
(B2 + 2�� 1)�2v
B2 � (1� �)2

:

The stationarity condition implies that the denominator of these MSEs is positive. Clearly

then MSE2 > MSE1 , � > 1
2
: the model used by the majority of agents delivers better

forecasts and in the long run prevails under evolutionary dynamics. This means that the two

strategy pro�les (PLM1, PLM2, � = 1) and (PLM1, PLM2, � = 0) represent ESSes: the

�rst gives rise to the MSV REE, the second to the AR(1) REE. This result also implies that

under replicator dynamics both � = 1 and � = 0 are locally asymptotically stable equilibria,

with basins of attraction separated by � = 1
2
, which represents an unstable heterogeneous

equilibrium.

Proposition 11 Both strategy pro�les (PLM1, PLM2, � = 1) and (PLM1, PLM2, � = 0),
with PLM1 de�ned by (28) with a = 0 and PLM2 de�ned by (29) with b = 1=B represent
ESSes. The �rst gives rise to the MSV REE, the second to the AR(1) REE.

MSV versus naive expectations Another interesting case arises when a = 0 and b = 1:

one group of agents thus uses a PLM consistent with the MSV fundamental equilibrium

while the other uses a simple "naive expectations" model. It is straightforward to show,

from condition (33) that: a) the strategy pro�le (PLM1, PLM2, � = 1) is always an ESS;

b) the strategy pro�le (PLM1, PLM2, � = 0), where all agents use naive expectations, is

an ESS if B < �1 or 1
2
< B < 1 (but in the second case the ensuing equilibrium is not

stationary). Naive expectations can thus represent an ESS strategy against fundamental

expectations in this setting for B < �1.
Proposition 12 Consider the strategy pro�les (PLM1, PLM2, � = 1) and (PLM1, PLM2,
� = 0), with PLM1 de�ned by (28) with a = 0 and PLM2 de�ned by (29) with b = 1. The

16Note, from ALM (34), that stationarity requires j1� �j < jBj : As � ! 1, this condition is satis�ed
8B. As �! 0, instead, the requirement is the usual one for the existence of stationary AR(1) solutions seen
above, i.e., jBj > 1.
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�rst represents an ESS for any value of B, while the second is an ESS if B < �1 or
1
2
< B < 1.

5.1.2 Competing AR(1) models

The second case I consider is one where di¤erent group of agents use di¤erent AR(1) models

as PLMs. Consider the two competing AR(1) PLMs, used respectively by a fraction � and

of 1� � of agents.

PLM1 : yt = byt�1; b 2 R (35)

PLM2 : yt = dyt�1; d 6= b 2 R: (36)

Deriving the ensuing ALM for the system and computing the MSEs for each PLM , it is

straightforward to �nd the following condition on � �MSE2 �MSE1 :

� > 0, (d� b)
�
d+ b� 2B

�
�b2 + (1� �) d2

��
> 0 (37)

or

d > b) � > 0, d+ b

2
> B

�
�b2 + (1� �) d2

�
(38)

d < b) � > 0, d+ b

2
< B

�
�b2 + (1� �) d2

�
: (39)

Note that the r.h.s of these conditions represents the impact of yt�1 on yt. These conditions

therefore have a straightforward interpretation: the PLM that performs better is the one

that predicts an impact of past yt�1 on current yt closer to its actual value.

If we now set d = 1=B, PLM2 corresponds to the AR(1) REE strategy. We can thus

check whether such strategy can dominate arbitrary AR(1) strategies (and vice-versa).

Setting d = 1=B and � = 0 in condition (37), leads to

� > 0, � (1�Bb)2 > 0

and such condition is clearly never satis�ed. Since � < 0 for any possible value of b, the

strategy d = 1=B always outperforms any possible alternative strategy b when all agents

use it (as it represents the best response to itself). Moreover, by continuity, is as also an

ESS. Conversely, setting d = 1=B and � = 1 in condition (37) leads to

� > 0, (1�Bb)
�
1 +Bb� 2 (Bb)2

�
> 0: (40)
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It follows that, 8B, 9b such that condition (40) is satis�ed and � > 0:17 the strategy de�ned
by such b thus outperforms the strategy de�ned by d = 1=B when all agents use it and it is

an ESS.

More generally, it is possible to verify whether two arbitrary AR(1) models, de�ned by

PLM1 with arbitrary b and PLM2 with arbitrary d, can represent ESSes. Clearly condition

(37), computed with � = 1 and � = 0, respectively, shows that they can. Assuming, without

loss of generality, that d > b, � > 0 with � = 1 requires d + b � 2Bb2 > 0 and � < 0 with

� = 0 requires d+ b� 2Bd2 < 0. Putting together the two conditions, it is thus possible to
�nd, 8B, a pair (b; d) that satis�es d+b

2b2
> B & d+b

2d2
< B:

Proposition 13 Consider the strategy pro�les (PLM1, PLM2, � = 1) and (PLM1, PLM2,
� = 0), with PLM1 de�ned by (35) with arbitrary b and PLM2 de�ned by (36) with arbitrary
d, with d > b. Both strategy pro�les can represent ESSes. The �rst requires d+b

2b2
> B and the

second d+b
2d2

< B: Selecting b and d appropriately, one can de�ne a system where both strategy
pro�les are ESSes.

With a limited number of strategies (two in this case), it is always possible to choose

strategy pro�les where arbitrary beliefs dominate the alternatives available thus construct

arti�cial equilibria (in the sense that they would be equilibria under beliefs dynamics driven

by replicator dynamics or discrete logit model). But these equilibria are arti�cial, due to the

arbitrary restriction of the beliefs space, as I show in the next Section.

5.2 Re�ning the beliefs space

In order to model an unrestricted beliefs space, I consider as before a setting where one

PLM is �xed while the other is parameterized to represent a continuum of PLMs, this time

in AR(1) form. In particular, the two PLMs are given by

PLM1 : yt = byt�1; b 2 R (41)

PLM2 : yt = �byt�1; (42)

where the second PLM is now parameterized by � 2 R.
If � agents use PLM1 and 1 � � use PLM2 to form expectations, the ensuing ALM is

then

yt = Bb
2
�
�+ (1� �)�2

�
yt�1 + vt; (43)

17This requires � 1
2 < Bb < 1. For example, one could simply choose b =

1
2B .
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and the two MSEs are

MSE1 = E
��
Bb2

�
�+ (1� �)�2

�
� b
�
yt�1 + vt

�2
MSE1 = E

��
Bb2

�
�+ (1� �)�2

�
� �b

�
yt�1 + vt

�2
:

Note that Eyt = 0 and Ey2t =
�2v

1�(b2B(�+(1��)�2))2 , under the condition that (43) is stationary

(which requires jBb2 (�+ (1� �)�2)j < 1). It is then possible to compute

�(�) = �2v
b2 (�2 � 1) + 2b (1� �) (b2B (�+ (1� �)�2))

1� (b2B (�+ (1� �)�2))2
; (44)

where again it is made clear that � is now a function of the free parameter �. The next step

now is to check whether an arbitrary PLM1 can be a Nash equilibrium against any other

PLM2, which is a necessary condition for it to be an ESS. To do so, I compute (44) with

� = 1 and obtain

�(�)�=1 = �
2
vb
2 (�

2 � 1) + 2Bb (1� �)
1� (b2B)2

: (45)

Note that stationarity of (43) with � = 1 requires jBb2j < 1 and thus the denominator

is always positive. In order for the strategy pro�le (PLM1; PLM2; � = 1) to be a Nash

equilibrium, it must be that �(�) > 0 everywhere. But one can see that it is always

possible to �nd a value for � such that �(�) < 0. In particular, given B and b, this requires

to choose � as follows:

� > 1 if Bb > 1

� < 1 if Bb < 1:

This shows that, unless b = 1=B, which has been shown before to represent a Nash

equilibrium,18 it is always possible to �nd a value for � such that PLM2 outperforms PLM1

for � = 1: any PLM de�ned by an arbitrary AR(1) parameter b cannot therefore represent

a Nash equilibrium (and thus cannot be an ESS).

Proposition 14 When agents can choose among a set of unrestricted AR(1) models to form
their forecasts, the belief strategy de�ned by b = 1=B is the only Nash equilibrium and ESS
that gives rise to a stationary homogeneous AR(1) equilibrium for jBj > 1:

18With b = 1=B, from (45) � = (��1)2
1�B�2 and for jBj > 1 (required for stationarity), � > 0 (in fact,

MSE1 = �
2
v);8� 6= 1: the strategy b = 1=B is thus a Nash equilibrium. Moreover, because of continuity of

� in �, it is also an ESS.
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This result shows that any other AR(1) strategy di¤erent from b = 1=B can be out-

performed and does not therefore represent an equilibrium in this setting. Such arbitrary

strategies can only be found to be equilibria when the set of available predictors is arbitrarily

restricted.

5.3 Stepping stones and individual best response

Again, it is insightful to look at the problem in terms of an adaptive game, where agents

replace their strategies with better ones over time through an "individual best response"

function.

Starting from the case where every agent uses the arbitrary PLM1 : yt = byt�1, the

individual best response to such strategy would be to use the new PLM2 : yt = Bb2yt�1.

Repeating this process over time gives rise to the map

b! Bb2

which de�nes a di¤erence equation in b

bt+1 = Bb
2
t :

This non-linear di¤erence equation admits two �xed points: b = 0 and b = 1=B. Such points

correspond to the two homogeneous RE equilibria and their stability requires the derivative

@bt+1
@bt

= 2Bbt

to be within the unit circle. It is then immediate to see that b = 0 is locally stable while

b = 1=B is not under this "individual best response" dynamics. Thus, when agents are

unconstrained in terms of their forecasting strategy, the only equilibrium that can emerge

from the above adaptive process is the fundamental MSV equilibrium. Again, as before, it

is not necessary to have a continuum of strategies available, in the form of the support for

b: only "enough" strategies to ensure that any arbitrary value of b that is not Nash can be

selected away by a better strategy. Individual best reply is a natural way to deploy such

stepping stones strategies, though it is not the most parsimonious one.
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6 Some discussion and a comparison

The central message of this paper is that an arbitrary limitation of beliefs under evolutionary

schemes can give rise to arti�cial equilibria. Through the notion of "stepping stones" I�ve

shown that, if enough strategies are available, only strategies that are Nash in an unrestricted

beliefs space can emerge as equilibrium outcomes.

Researchers wishing to use evolutionary dynamics on a pre-de�ned set of heuristics, thus,

should make sure that "enough" heuristics are made available to agents. It might well be

that di¤erent strategies entail di¤erent costs (monetary, informational, or of other sort), but

the choice should not be restricted a-priori.

This paper helps explaining some results in the existing literature. For example, [14,

Brock and Hommes (1997)] show that for if the intensity of choice parameter � ! 1, the
equilibrium in their cobweb model with adaptively rational agents would be one where all

agents use the naive predictor, as in equilibrium such predictor is equivalent to the rational

one, and it is cost free. Without costs on the rational predictor, all agents would instead

use the RE predictor. In either case, the price (and the expected price) is equal to the

fundamental value, which is the only Nash equilibrium and ESS. Note that in that setting,

while it would seem that only two predictors are available, the naive and the rational one,

e¤ectively the rational predictor is not de�ned as a �xed heuristic but instead as a belief

equal to the actual realized price, which changes (among other things) with the fraction of

agents using the naive predictor: it thus corresponds to an in�nite set of heuristics in the

terminology of this paper.

Similarly, [18, Diks and Weide (2003)] �nd that in a model similar to (1) with AR(1)

strategies, a CBS leads to an equilibrium distribution that, as � ! 1, degenerates into a
mass point on the fundamental price. This is indeed the only stationary Nash and ESS for

B < 1.

With a discrete logit model, when � ! 1, heterogeneity by de�nition disappears. The
question is, what strategy will prevail? This work has provided some insight into the answer

to this question. It is important to note that results obtained are not due to speci�c features

of the framework I�ve adopted, but instead come from the way evolutionary schemes select

strategies, based on relative, rather than absolute, performance. A strategy can thus prevail

even if it entails a large forecast error, as long as such error is smaller than the ones entailed

by the available competing strategies. With a small number of competing strategies, such

error can in fact be quite large. Note that if all possible strategies were available, the only
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equilibrium points would be ones where the error is at its minimum, i.e., the error entailed

by rational expectations. I am going to expand on this point in Section 6.1.

One important assumption held throughout this paper is that all agents switch beliefs

at the same time (synchronous updating): it would be interesting to consider these issues in

the case where agents are allowed to switch at di¤erent times. We leave this issue for future

work.

6.1 A comparison with adaptive learning

In order to gain some more insights into the above results, it is useful to draw a comparison

between evolutionary dynamics and adaptive learning as means to model the evolution of

beliefs.

Under adaptive learning, model (1) has a unique E-stable (that is, stable under adaptive

learning)19 equilibrium, the MSV, for jBj < 1 (E-stability requires B < 1; the other part of
the constraint ensures a unique RE equilibrium). The AR(1) equilibrium instead is never

E-stable, which means that it can not be learned by agents acting as econometricians and

recurrently estimating an AR(1) PLM.20 This means that if agents are given a steady state

PLM, they can converge to the fundamental REE, while if they are given an AR(1) PLM,

they cannot learn the AR(1) REE. In contrast, we have seen that under evolutionary schemes

with a limited number of beliefs heuristics available, non-fundamental equilibria can arise.

With unrestricted beliefs, instead, the only ESS are the MSV equilibrium and the AR(1)

REE (this last one requiring jBj > 1), though only the MSV equilibrium is obtainable

through "best reply" dynamics.

Under adaptive learning, as long as beliefs are not consistent with actual outcomes (i.e.,

a 6= Ba for the steady state case, or b 6= Bb2 for the AR(1) case), beliefs are revised (i.e.,
new strategies, in the form of revised values for a or b are generated through a form of

directed search). Under evolutionary dynamics, instead, agents change beliefs (heuristics)

only if better ones are available, i.e., they can only select a0s and b0s that are made available

to them by the modeller.

Evolutionary dynamics and adaptive learning thus tend deliver di¤erent results in terms of

beliefs dynamics and equilibrium outcomes: while adaptive learning can only select (Nash)

19For a discussion of E-stability, and more in general for an exhaustive treatment of adaptive learning in
macroeconomics, see [19, Evans and Honkapohja (2001)].

20These are well known results in the adaptive learning literature. See, e.g., Evans and Honkapohja
(2001).

29



Discrete beliefs space and equilibrium:
a cautionary note

REE,21 evolutionary dynamics allow for a richer set of outcomes to emerge when the set

of available strategies is restricted. An important element in all these results is the self-

referentiality of models such as (1), where actual outcomes depend on agents�beliefs. This

means that the measure of �tness for beliefs, their forecasting accuracy, is endogenous to the

choice of agents, and thus multiple equilibria can emerge.22 While such self-referentiality is

a feature of the model itself, irrespective of how expectations are modelled, its consequences

are more dramatic under evolutionary dynamics because such dynamics are based on the

relative performance of competing forecasting models (PLMs), rather than on the absolute

performance of a given forecasting model against actual outcomes as it is the case under

adaptive learning. In a sense, beliefs under evolutionary dynamics are less constrained by

outcomes, as they only need to prevail in relative terms, and this enhances the possibility

of non-fundamental outcomes. This is particularly the case when a small number of beliefs

heuristics compete, as the "distance" in performance between di¤erent predictors can be

quite large and allows for each set of beliefs to be an equilibrium (in the restricted sense of

being Nash and an ESS against each other).

Evolutionary algorithms require two elements in order to be able to drive beliefs dynamics

towards an optimum: a selection criteria (such as the forecasting performance in terms

of MSE), and a mechanism to generate new strategies.23 The two elements combine to

produce dynamics that move from one strategy to the next, improving performance along

the way. But if the mechanism that generates new strategies is muted, no evolution towards

an optimum can take place. Under adaptive learning, instead, the two elements are joint:

the dynamics from one strategy (represented by the current estimates for parameters in

the PLM) to the next (updated estimates) are determined by the forecast error through

some form of parameter estimation (e.g., recursive least square). That is, "mutation" in

the strategy spaces takes place in the direction of the forecast error, and the magnitude is

determined by the gain coe¢ cient and the second moments of the regressors. This ensures

that only �xed points from beliefs to outcomes (entailing a zero expected forecast error), i.e.,

Nash equilibria, can be equilibria of these learning schemes.

21This is true under the assumption that agents are given the correct PLM; otherwise, convergence could
be to a di¤erent equilibrium, such as a restricted perceptions equilibrium. See [19, Evans and Honkapohja
(2001)].

22For example, with B = 0 it is easy to see from Proposition (7) that the arbitrary PLM2 can not be an
ESS. The MSV model would always dominate under evolutionary dynamics.

23In genetic algorithms, this second step is usually achieved through the operations of crossover and
mutation.
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7 Conclusions

In this work I have shown how modelling beliefs using evolutionary schemes based on a

limited number of predictors can lead to misleading conclusions about possible equilibrium

outcomes in a model where current endogenous variables are a¤ected by expectations.

After analyzing this issue in a simple, univariate forward-looking model, I have put results

in context by drawing a comparison with adaptive learning and discussed the di¤erences

between the two approached. The key di¤erence lies in the fact that adaptive learning

algorithms are driven by the di¤erence between predictions and outcomes, while evolutionary

schemes are driven by the di¤erence in performance between di¤erent available predictors.

Constraining the set of available strategies/predictors can thus allow for otherwise inferior

beliefs to survive. The outcome is analogous to using genetic algorithms for optimization

without allowing new population elements to be generated at each iteration: inferior solutions

can prevail.

It must be noted, to conclude, that the aim of this work is not to argue against the

use of evolutionary schemes to model expectations dynamics, but simply to warn on the

possible consequences of such practice. Whether agents modify their forecasting models in

the direction of actual outcomes, as implied by adaptive learning methods, or they select

among a limited set of �xed heuristics, as assumed under evolutionary schemes, is ultimately

an empirical question that remains to be settled and that is bound to be context speci�c.

The aim of this paper is simply to clarify how di¤erent assumptions in this regard lead to

di¤erent conclusions about equilibrium outcomes in self-referential economic models.
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