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Abstract

This paper analyses a dynamic framework where an unobservable fundamental can
be learned over time through two signals: one exogenous and private and the other,
prices, endogenous and public. As information cumulates over time through Bayesian
learning, prices become fully revealing and agents disregard their private information,
suggesting a possible route through which fundamental values and prices can become
misaligned. The analysis is then extended to a setting where agents need to infer
the statistical properties of the signals they receive, merging Bayesian with adaptive
learning. By introducing uncertainty about the moments of the relevant distributions
used for Bayesian learning, adaptive learning can improve the ability of prices to track
changes in fundamentals and thus their e¢ ciency.
Key words: uncertainty, information, Bayesian learning, adaptive learning, asset

prices.
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1 Introduction

The fundamental value of an asset summarizes the present value of the future stream of

cash �ows that the asset entitles to. By de�nition, such value is never observable, as it is

always determined by events in the future. The price of an asset represents what market

participants are willing to pay for it. Such value is readily observable. This paper analyses

the link between these two values in a context of imperfect information. To this end, I merge

two lines of literature: one on signal extraction and Bayesian learning, the other on adaptive

learning. From the �rst, I take the basic building blocks to model prices as an endogenous

signal for agents, a signal that summarizes the opinion of the market about the value of an

asset. From the second, I take the key insight that agents can only learn from observables: in

particular, moments of the relevant distributions need to be estimated from observed data.

The main results are that: i) under Bayesian learning, public information can harm agents�

incentives to acquire private information and lead to a disconnection between prices and

fundamentals; and ii) adaptive learning, by introducing uncertainty about the moments of

the relevant distributions used for Bayesian learning, can improve the outcomes and price

e¢ ciency.

Most work on learning and asset prices has focused on uncertainty about future prices.

Uncertainty about fundamental values, on the other hand, has been largely neglected, though

it is a crucial element for investment strategies of fundamentalist traders, who want to

buy assets that are underpriced and sell assets that are overpriced with respect to their

fundamental value. To better isolate the link between fundamentals and prices, I assume

traders are only concerned about the fundamental value of their portfolio, relative to its price,

and they do not try to pro�t from exploiting short term capital gains. As the fundamental

value is not known and never observable, it can only be inferred using observables such as

news on a �rm�s pro�tability and prices as indirect information.

In particular, I assume that agents receive a noisy exogenous private signal about the

fundamental value of an asset: this could be thought of as the subjective interpretation of

news about the value and pro�tability of a �rm. Besides this exogenous signal, agents also

use prices in their inference, as prices summarize the view of other market participants and

thus convey important information about the fundamental value.

Bayesian theory provides the optimal weight on the two signals: in the �rst part of the
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paper I derive such weight in a static setting and discuss its implications for asset prices.

I then extend the model to a dynamic framework where agents repeatedly observe signals

and can cumulate information over time. I show that in this case it is optimal for agents

to put increasing weight on prices as time goes on, and in the limit the private exogenous

signal is completely ignored as prices become fully revealing. This can open up the door for

deviations of prices from fundamental values, should such fundamentals change.

In order to investigate this possibility, I extend the framework to allow for the possibility

of changes in the fundamental: as agents are aware of this possibility, they discount past

observations accordingly. Numerical results show that a key parameter in this setting is the

probability that the fundamental value changes at each period: for values of such probability

not too high, the weight on private information still decreases to zero over time. Only for

relatively high values of such probability, private information is used asymptotically. Such

a probability e¤ectively governs a trade-o¤ between the ability to track movements in the

fundamental and the volatility of prices.

Bayesian learning relies on the assumption that agents know the precision of the signals

they receive, in order to combine them optimally in their inference. This is a strong as-

sumption, especially in contexts where such precision evolves over time endogenously, as it

is the case here for prices. I thus extend the analysis by combining Bayesian with adaptive

learning, departing from the assumption that agents know a priori the statistical properties

of their environment and instead assuming that they need to learn such properties through

experience.

I �rst show that, under a decreasing gain algorithm, learning converges to the Bayesian

equilibrium. This is not an obvious result: because prices are endogenous and depend on

agents�beliefs, higher beliefs could lead to higher prices and thus to even higher beliefs, in

a self-reinforcing destabilizing loop. This doesn�t happen, though, because Bayesian weights

have a stabilizing e¤ect: a higher variance of prices decreases the relative weight put on

prices in the signal extraction problem, thus helping stabilizing the system.

Adaptive learning is particularly suited to investigate the case where fundamentals can

change over time: in particular, a constant gain algorithm has been suggested in the lit-

erature as an e¤ective way to track changes in estimated parameters. I thus substitute

the decreasing gain with a constant gain in the learning algorithm, capturing the idea that

agents fear changes in the statistical properties of their environment. This framework allows

me to highlight a connection between the constant gain parameter in the adaptive learning

algorithm and the probability of changes in fundamentals in the Bayesian learning setting.
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While the constant gain allows agents to e¤ectively capture changes in the exogenous signal,

it still doesn�t fully prevent them from relying only on prices in the long run and discard

private information. Still, for sensible values of the gain parameter, which governs how new

information gets incorporated into estimates, agents keep using their private information for

a long time and prices can thus re�ect changes in fundamentals.

Results in this paper show that an over-reliance on public signals can arise when informa-

tion is accumulated over time: this e¤ect follows from the fact that the precision of the public

signal is endogenous, and it improves over time faster than that of the private signal. This

�nding is reminiscent of the rational herding literature where agents, acting sequentially, end

up relying only on information from previous agents, conveyed through their actions, rather

than their own private information. In my setting, agents act all simultaneously, rather than

sequentially, but repeatedly over time: in the limit, as the relative precision of the two signals

changes, they disregard their own private information and all act only on the basis of the

aggregate signal represented by prices. Adaptive learning, introducing uncertainty over the

precision of the signals, can attenuate this e¤ect and e¤ectively allow prices to incorporate

private information over possible changes in fundamentals over time.

1.1 Literature review

This work touches upon di¤erent streams of literature. The main link is with the body of

work on noisy rational expectations equilibria and information aggregation in asset markets.

In noisy rational expectations models, prices reveal only partially the information available

to agents, operating as noisy aggregators for information. In seminal work, Grossman (1976)

and Grossman (1978) show how prices can aggregate information perfectly and substitute for

private information on capital markets; Hellwig (1980) and Diamond and Verrecchia (1981)

instead show conditions under which prices can only be partially revealing of the private

information of agents, resulting in a noisy and partially aggregating equilibrium. My work

will show how, under certain conditions, prices can e¤ectively cease to aggregate private in-

formation. Admati (1985) extends the framework to a multi-asset market and �nds that the

presence of many risky assets introduces novel features into the noisy equilibrium. Grossman

(1981) provides a general discussion of the informational role played by prices in contexts

of asymmetric information, while Admati (1991) considers the same problem from the per-

spective of the market microstructure and the impact of di¤erent trading arrangements on

market performance when agents have asymmetric information. Particularly relevant for my

paper is the line of work on dynamic noisy rational expectations equilibria. Vives (1993) and
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Vives (1995b) study, respectively, the rate at which dispersed information is incorporated

into prices and asymmetrically informed agents can learn the return of an asset. Kyle (1985)

analyses how quickly new private information about the underlying value of a speculative

commodity gets incorporated into market prices and how it a¤ects the liquidity of the mar-

ket. Vives (1995a) considers the e¤ect of investors�horizons on the information content of

prices and shows that such e¤ect depends on the temporal pattern of private information

arrival. In particular, long horizons reduce the �nal price informativeness when the arrival

of information is di¤use; nevertheless, as the number of trading periods increases without

bound, prices converge to the fundamental value, as it is the case in my work with constant

fundamental value. Amador and Weill (2012) consider a dynamic framework where agents

receive repeated public and private signals about the state of the world. A key di¤erence

with my work is that in their case, while the initial signals realizations are centered around

the true state of the world, subsequent realizations are centered around the average popula-

tion action: that is, after the �rst period, all new information about the state of the world

comes from others and there is no additional arrival of "new" information.

Signal extraction problems and Bayesian learning have been applied in the literature on

global games in order to analyze various scenarios where agents face coordination problems

with heterogeneous information. While often agents rely on exogenous signals in this line of

literature, an analysis of a coordination problem with an endogenous signal is provided by

Allen et al. (2006). A notable application of this idea to asset prices is proposed by Angeletos

and Werning (2006), who consider a model where asset prices act as an endogenous signal

in a two stage game where agents need to decide whether or not to carry out a speculative

attack: the �rst stage of that model is similar to the static setting proposed in this paper.

Angeletos, Hellwig and Pavan (2007) propose instead a dynamic global game, where agents

can take repeated actions, but contrary to my framework, both public and private signals

are there exogenous. The endogeneity of prices as signal is crucial for results in this paper.

My work is also related to the literature on rational herding and informational cascades.

Banerjee (1992) proposes a model of herd behavior where agents follow what others are doing

rather than using their own information. Bikhchandani, Hirshleifer and Welch (1992) de�ne

an informational cascade as occurring when it is optimal for an individual, after observing the

actions of those ahead of him, to follow the behavior of those preceding individuals without

regard to his own information. Welch (1992) analyses the rise of informational cascades in

sequential sales in the market for initial public stock o¤erings and Devenow andWelch (1996)

propose a review of papers on the economics of rational herding in �nancial markets. While
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I do not have a proper informational cascade in this work, some of the results I �nd share the

same �avour, as under certain conditions agents will discard their own private information

in their decision problem.

Bray and Kreps (1987) highlight the distinction between learning within and learning

about an equilibrium: I will consider both types of learning, within and about the equilib-

rium, in the form of, respectively, Bayesian and adaptive learning, and shed some light on

the relationship between the two concepts. Berardi (2015) considers a coordination problem

with both Bayesian and adaptive learning, but crucially in that setting both private and

public signals used in the signal extraction problem are exogenous and thus their precision

is not a¤ected by agents�behavior.

Less directly related to this work, a growing literature has also been studying the impact

of expectations, bounded rationality and learning on asset prices. Brock and Hommes (1998)

analyze the impact of evolutionary dynamics in price predictors on price �uctuations; Branch

and Evans (2010) consider a setting where agents predict prices by choosing between two

underparameterized models and show that multiple equilibria emerge and the model can

reproduce regime-switching returns and volatilities similar to those observed in real data;

Branch and Evans (2011) propose a model where agents learn about risk and show that escape

dynamics from the fundamental price emerge; Hommes and Zhu (2014) use the concept of

stochastic consistent expectations equilibrium to explain excess volatility in stock prices;

�nally, Adam et al (2016) show how adaptive learning on future prices can generate excess

volatility. A common feature of all these works is that agents are uncertain (and care) about

the future price of the asset, rather than about its fundamental value, as it is the case in

this paper.

2 Learning from prices

I follow Allen, Morris and Shin (2006) in the basic set up of the demand function for traders

but modify it to allow for information over the fundamental to cumulate over time. I assume

there is an asset available for trade on the market, whose fundamental value is denoted by

�. Such value can be thought of as representing the net (per share) value of the �rm. The

asset is traded at dates t = 1; :::; T and is liquidated at time T +1 at the value �. I consider

both a static setting, as benchmark, where T = 1, and a dynamic setting where information

is cumulated over time, with T > 1. For simplicity I assume no discount and zero risk

free rate, so the present discounted value of the fundamental at each time t is equal to �:
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this assumption serves the purpose to make the equilibrium price stationary, and it avoids

complications in the derivations. It does not a¤ect the problem of aggregation of information

and the link between the fundamental value and prices that are the focus of the analysis.

I assume that agents are only concerned with the long term (expected) return on their

portfolio, de�ned as the di¤erence between the present value of the fundamental and the cur-

rent price. Agents are mean variance maximizers, so they attach a penalty to the portfolio

variance in their maximization problem.1 At each time, agents consider the di¤erence be-

tween the current price and the expected �nal liquidation value (the fundamental) and trade

accordingly. This could be thought of as representing successive generations of long-term

investors, who only trade once and never re-enter the market, while information is passed on

from one generation to the next. In particular, at each time t agent i inherits the information

of agent i in the time t� 1 population.
I assume that, at each time t, there is a continuum of agents of unit mass, indexed by

i 2 [0; 1]. Agents are homogeneous in all aspects except for the private information they
receive. Throughout the paper, I will follow the convention that for every time-varying,

agent-speci�c variable z, zit represents a sequence of measurable functions zt(i) : [0; 1]! R,
indexed by t, mapping the set of agents at each time t onto the real line. Moreover, for a

given t, each function zit is assumed to be continuous and bounded in i.

The problem for a trader i at time t is thus to choose the number of shares (kit) such that

max
kit

EitW
i
t �



2
V arit

�
W i
t

�
where  is the coe¢ cient of risk aversion and the return on the portfolio at time t, W i

t , is

de�ned as the di¤erence between its �nal value and what one has to pay for it

W i
t = k

i
t (� � pt) :

It follows that the optimal demand for trader i is

kit =
Eit� � pt

�
i�2w;t

� ; (1)

where i�2w;t is agent i�s conditional variance for the return on the asset, de�ned as the di¤er-

ence between its price and the fundamental. With � unknown and prices observable, such

1Basak and Chabakauri (2010) show that dynamic mean-variance portfolio choices are not dynamically
consistent. While this is an important issue, mean-variance behavior is still commonly assumed as it leads
to analytically tractable demand functions.
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conditional variance is equal to the conditional variance for �, the only source of uncertainty

for agents. Agents thus need to form expectations about the unobservable � and its con-

ditional variance in order to implement their strategy. With homogeneous information,

agents would all have the same conditional expectations and variance and therefore demand

the same quantity.

In order to close the model with an equilibrium condition, I assume an exogenous and

stochastic supply of shares s = "t, which follows a normal distribution with zero mean

and variance �2". This noise term will prevent prices from being fully revealing later on

when agents have imperfect information, a common result in the literature on noisy rational

expectations equilibria.2

Equilibrium with homogeneous information therefore implies

pt = Et� � �2w;t"t; (2)

where Et� and �2w;t represent, respectively, agents� common conditional expectations and

variance for �. With no uncertainty then, Et� = � and �2w;t = 0 and thus prices would be

constant at the fundamental value, i.e., pt = �.

2.1 Information structure and equilibrium: static setting

I now introduce uncertainty and heterogeneous information in the model. In particular I

assume that agents don�t observe the value of the fundamental directly but receive two

signals on it: one, exogenous and private, and the other, prices, endogenous and public.

I start presenting the static setting: with T = 1, there is only one period available for

agents to receive information and to trade. Nature moves �rst and draws � from an improper

uniform distribution over the real line R.3 This gives agents a �at uninformative prior for
the fundamental, which simpli�es the Bayesian updating from the information they receive.

Agents don�t observe directly � but observe two signals on it: one, endogenous and public,

from prices (pt) and one, exogenous and private, from news (xit). This last component

can be interpreted as agents receiving di¤erent news because accessing di¤erent sources of

information, or as the subjective interpretation of the same news. News could be about any

2Such assumption can be interpreted to capture variations in the availability of publicly tradable shares
(asset �oat). See, e.g., Mele and Sangiorgi (2015) and Branch and Evans (2011).

3Note that the fundamental can be negative, and so do prices. Such feature can be justi�ed by assuming
that there is no free disposal of the risky asset. This simpli�es the set up, as it avoids having a truncation
in the support of agents�beliefs, but does not a¤ect the main results of the paper.
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element that is perceived to a¤ect the long term value of an asset. This static setting is

equivalent to the one proposed in Hellwig (1980), and so are the results. I propose it here

as benchmark on which to build the dynamic setting in the next Section.

The exogenous signal (news) is represented as

xit = � + v
i
t; (3)

where vit is an i.i.d. random variable, normally distributed with zero mean and variance �2v.

With signals normally distributed and conditionally independent, Bayesian updating

gives a posterior E [� j xit; pt] that is linear in the two signals and equal to

~�
i

t � E
�
� j xit; pt

�
= �xit + (1� �) pt; (4)

where (see Appendix 6.1 for a derivation) the optimal value for � (denoted ��) is given by

the solution to

�� =
�2p;t

�2p;t + �
2
v

; (5)

with �2p;t denoting the conditional variance of prices. For generic parameterizations, �
� 2

(0; 1) and it is thus optimal for agents to put some weight on prices, together with the

exogenous signal, when forming beliefs about fundamental values.

Individual demand is then given by

kit =
�� (xit � pt)
�2w;t

; (6)

where �2w;t is the variance of the value of the asset conditional on x
i
t and pt, common for all

agents and given by

�2w;t = E

��
� � ~�it

�2
j xit; pt

�
= (��)2 �2v + (1� ��)

2 �2p;t: (7)

Aggregate demand is then given by

Kt �
Z
�� (xit � pt)
�2w;t

di =
�� (� � pt)
�2w;t

and prices evolve according to

pt = � �
�2w;t
��

"t; (8)
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which implies

�2p;t =

�
�2w;t
��

�2
�2": (9)

Using (5) together with (7) and (8) I then get the price equation (see Appendix 6.2 for

details)

pt = � � �2v"t; ; (10)

which then determines

�2p;t = 
2
�
�2v
�2
�2"; (11)

con�rming that prices are normally distributed and conditionally independent from the pri-

vate signals. As already noted by Angeletos and Werning (2006), it can also be seen from

(11) that public information improves with private information. The linear equilibrium is

here unique, de�ned by the optimal value of ��.

An important element in the determination of the equilibrium level of � is the aggregation

of the noise in the private signal. If the exogenous signal was instead public information and

everyone was thus observing the same signal, say xt, xt = � + vt, vt � N (0; �2v), (5) would
become

�� =
Etp

2
t � Etptxt

Etp2t + Etx
2
t � 2Etptxt

=
�2p;t � �2v

�2p;t + �
2
v � 2�2v

= 1: (12)

Because the noise in the exogenous public signal would be transferred to prices, prices would

be completely useless as a signal for the fundamental value, as they would encompass both

the noise from the exogenous signal and the noise from supply: the optimal value for �

would thus be equal to one. In other words, in order for prices to have any informational

content above and beyond what is provided by the idiosyncratic signal, it must be that the

aggregation process that generates prices averages out some noise.

With private signals, instead, the optimal weight on private information is

�� =
�2p;t

�2p;t + �
2
v

=
2 (�2v)

2
�2"

�2v + 
2 (�2v)

2 �2"
=

2�2v�
2
"

1 + 2�2v�
2
"

; (13)

which shows that the optimal weight on private information depends positively on the coef-

�cient of risk aversion, the variance of the noise in the private information and the variance

of the supply.
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It is instructive to compute some limiting cases:

lim
�2"!0

�� = 0; lim
�2"!1

�� = 1

lim
�2v!0

�� = 0; lim
�2v!1

�� = 1:

If the variance of the supply goes to zero, then prices are fully revealing and only prices

are used to infer fundamental values. If instead it goes to in�nity, then only the exogenous

signal is used as prices lose all informational content regarding fundamental values.

Furthermore, if the variance of the idiosyncratic noise in the exogenous signal goes to

zero, �� goes to zero, as can be easily seen from (13): no weight is put on the private signal

and only prices are used. This might seem at �rst counter-intuitive, and looking at (5) one

might actually mistakenly think that �� goes instead to one as �2v ! 0. The reason why

this does not happen is that as �2v ! 0, the variance of prices goes to zero faster than that

of the private signal:4 this is due to the fact that the volatility of prices originates from

the volatility of the supply and from the volatility of the demand (multiplicatively): the

latter arises from uncertainty about the fundamental and in particular is quadratic in the

(conditional) variance of the private signal.

It is interesting to consider the condition under which agents put more weight on their

private information than on prices, i.e., �� > 1 � ��, which requires 2�2v�2" > 1. When

�2v�
2
" is small, thus, agents pay little attention to their private signal: this happens when

either the variance of the supply is low (and thus aggregate noise is low and prices are more

informative), or when private information is very precise (because, as explained above, this

enhances the informativeness of prices).

An important feature of the Bayesian equilibrium is that �� is not a free parameter but

depends instead on the deep structure of the model, as shown by (13). If � was to be

considered as a free parameter, instead of as the outcome of an optimization problem, it

would become an element a¤ecting prices and their volatility.

Remark 1 In the static setting presented in this Section, the optimal Bayesian weight on
private information is given by (13) and prices are de�ned by (10).

It is clear, by comparing (10) to the full information equilibrium (pt = �), that in a

Bayesian equilibrium prices are characterized by excess volatility with respect to the (con-

stant) fundamental value: uncertainty generates volatility.

4The variance of prices is in fact quadratic in �2v: see (11).
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The limiting results on the optimal use of information just discussed have implications

also for traders�demand. In fact, rewriting (6) as

kit = a
� �xit � pt� ;

with a� = ��

�2w;t
= (�2v)

�1, we can see that �2v ! 0 implies kit ! 1: as private infor-
mation becomes in�nitely precise, the demand�s response to deviations of prices from the

fundamental grows without bound as agents try to exploit any (risk free) arbitrage available.

Note instead that as �2" ! 0; prices become in�nitely precise through the aggregation of

private information but individual demands do not depend on the volatility of the supply:

agents demand the same quantity, irrespective of �2". As the volatility of supply decreases

towards zero, in fact, �! 0, which makes agents respond less and less to deviations of their

private signal from prices; at the same time, though, the conditional variance of the return

on the asset also decreases, which increases the demand of risk averse agents, with the result

that the amount demanded is constant with respect to �2".

2.2 Dynamic setting

In the previous section I have considered a static framework where information is only re-

ceived once and trading happens only in one period. The purpose of this work, though,

is to analyze the e¤ect of information accumulation and learning on the ability of prices to

reveal information about fundamentals. I extend therefore the framework to investigate such

issues.

I set T > 1, and arbitrarily large. Nature draws the fundamental � at time t = 0 and

agents at every period t, 1 � t � T receive a private and a public signal and thus accumulate
information over time. As before, the public signal is represented by prices, and the private

signal at each time t is given by (3). The supply of shares is still exogenous and stochastic,

with " t � N (0; �2") an i.i.d. process.5

Mean and precision of the posterior of � at each time t, conditional on the history of xit,

5This assumption is used, for example, in Allen, Morris and Shin (2006). After providing an interpretation
for such modelling choice, they write: "Clearly, the interpretation given above is somewhat contrived, but
we advance it merely as a modeling device that serves the purpose of preventing prices being fully revealing,
and preserving the independence of the supply shocks over time, so as to aid tractability of the analysis."
The same motivation for such modelling choice applies here.
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can be written, respectively, as

�xit =
�t�1
�t

�xit�1 +
��2v
�t
xit =

1

t

tX
z=1

xiz (14)

�t = �t�1 + �
�2
v =

tX
z=1

��2v =
t

�2v
; (15)

with �0 = 0 and �x
i
0 = 0 (that is, �x

i
1 = x

i
1).

In terms of the public endogenous signal represented by prices, the mean and precision

of the posterior of � at time t, conditional on the history of pt, are given, respectively, by

�pt =
!t�1
!t

�pt�1 +
��2p;t
!t
pt =

Pt
z=1 �

�2
p;zpzPt

z=1 �
�2
p;z

(16)

!t = !t�1 + �
�2
p;t =

tX
z=1

��2p;z; (17)

with !0 = 0 and �p0 = 0 (that is, �p1 = p1).

Hence, conditional on the two signals, the expected value of the fundamental E [� j �xit; �pt]
is given by

E
�
� j �xit; �pt

�
= �t�x

i
t + (1� �t) �pt; (18)

with �t determined by the relative precision of the two posteriors at each time t and given

by

�t =
�t

�t + !t
: (19)

Using the demand equation

kit =
Eit� � pt
�2w;t

(20)

with

Eit� = E
�
� j �xit; �pt

�
and

�2w;t = �
2
t�

�1
t + (1� �t)2 !�1t =

1

�t + !t
; (21)

aggregating and imposing demand equal supply, leads to

pt = (�t� + (1� �t) �pt)� �2w;t"t: (22)
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Solving for pt, using (16), (17) and (19), gives the price equation

pt =
�t

�t + !t�1
� +

!t�1
�t + !t�1

�pt�1 �
"t

�t + !t�1
: (23)

Note that, with !0 = 0 and �p0 = 0, at time t = 1, p1 from (23) reduces to (10), as in the

static case, since there is no previous information to exploit.

From (23), it then follows that the conditional variance of prices is

�2p;t =
2�2"

(�t + !t�1)
2 : (24)

Note that both �xt;i and �pt are unbiased estimators for �, since E�xit = E�pt = �.

2.3 Limiting dynamics

The main result of this Section is that, over time, the relative weight put on private informa-

tion decreases towards zero and agents rely only on prices in their Bayesian signal extraction

problem. I state the result formally in the following Proposition

Proposition 2 In the dynamic setting presented in Section (2.2), where the optimal Bayesian
weight on private information is given by (19) and prices evolve according to (22), in the
limit, �t converges to 0 and pt converges to the fundamental value �.

Proof. The proof consists in deriving the limiting outcomes of the system as t!1 (which

clearly requires that also T ! 1). Starting with the exogenous signal, by the law of large
numbers

plim
t!1

�xit = � (25)

and clearly

lim
t!1

�t =
t

�2v
=1: (26)

That is, the sample mean converges in probability to the mean of the distribution and its

variance goes to zero. Consider then �2w;t =
1

�t+!t
. Since limt!1 �t = 1, and by de�nition

!t � 0, it follows from (21) that

lim
t!1

�2w;t = 0 (27)

and from (24)

lim
t!1

�2p;t = 0: (28)

13
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This last result also implies, from (17), that

lim
t!1

!t =1: (29)

Finally, since

!t = !t�1 + �
�2
p;t = !t�1 +

�
2�2"

��1
(�t + !t�1)

2 ;

it follows that

�t =
�t

�t + !t
=

1

1 + !t�1
�t
+ (2�2")

�1
�
�t +

!2t�1
�t
+ 2!t�1

� :
Combining then with results (26) and (29),

lim
t!1

�t = 0: (30)

Looking then at prices, starting from (22) and noting results (27) and (30)

plim
t!1

pt = plim
t!1

�
�t� + (1� �t) �pt � �2w;t"t

�
= plim

t!1
�pt: (31)

Given that �pt is a weighted average of all pz, 1 � z � t, each one centered around � and with
decreasing variance (and that, from (16), the weight on each pz is inversely proportional to

its variance)

plim
t!1

�pt = �

and thus pt converges over time to the fundamental �.

The key element to understand result (30) is to note that while both �t and !t tend

to 1 as t ! 1, �t grows linearly while !t grows quadratically: both private and public
information become in�nitely precise in the limit, but the precision of the public signal

improves faster and agents end up relying only on prices to infer fundamental values. Over

time, the variance of prices goes to zero: accumulated information reduces uncertainty and

dampens volatility. In the limit, given enough time to trade, the price converges to the

fundamental value, a result consistent with Vives (1995a). At the same time, prices become

the only source of information used by agents in predicting the fundamental value.

Because agents try to minimize the variance of the return on their portfolio by relying

more on the less volatile signal, and because the variance of prices decreases to zero faster

than that of private information, agents end up disregarding their private signals. This

result suggests that if the fundamental value changes at some point in time, such change

14
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might not get factored properly into prices, thus leading to a divergence between the two. In

order to investigate this issue properly, I modify the framework to allow for changes in the

fundamental value. As agents are aware of this possibility, they will account for it in their

signal extraction problem.

2.4 Allowing for changes in the fundamental

I have considered so far the case where the environment is stationary and agents accordingly

use past information to improve their estimates of the fundamental value. Over time, as

the precision of the public signal increases faster than the precision of the private one, �t
decreases to zero and agents end up relying only on prices in forming their beliefs: any change

in the fundamental would thus be neglected. The Bayesian learning analysis carried out so

far, though, was based on the assumption of a �xed fundamental, so there seems to be an

inconsistency there in deriving conclusions about what happens if the fundamental changes.

In order to address this issue, I consider now a framework where the fundamental is allowed

to change over time and agents are aware of this possibility. In particular, given that the

fundamental value of an asset is not observables, agents will never be sure whether a change

has actually taken place at any speci�c time, and only entertain subjective probabilities on

such events. I assume that such subjective probability is the same as the true (ex-ante)

unconditional probability that the fundamental changes at every period. I therefore do not

allow agents to update such prior based on ex post evidence from the signals. One could

instead think of allowing agents to revise their prior based on how far the new observation

for the exogenous signal has fallen from their most recent estimate of the fundamental:

the further that is, the more likely it is that such discrepancy comes from a change in

the fundamental rather than from noise in the private signal. I abstain here from such

complication and assume instead that the subjective probability of a change in fundamental

is equal to its ex ante unconditional probability: in other words, there is no learning from

agents along such dimension. I will discuss later on, in light also of results from simulations,

how results would likely di¤er if I were to allow agents to learn also along such dimension.

As before, Nature draws the fundamental from an improper uniform distribution over

R at time t = 0. Nature, though, can now also re-draw, with some �xed and known (to

agents) probability 0 � � � 1, a new value for the fundamental, from the same improper

distribution, at the beginning of each time t > 1.
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I �rst de�ne

�xit;j�t =
1

t� j + 1

tX
z=j

xiz;

the posterior of � at time t for agent i if a change in the fundamental had occurred at (the

beginning of) time j � t and agents knew it. This is simply the mean of the sample of

relevant observations for the exogenous signal, since the change in fundamental took place.

Given that agents don�t know if and when a change in the fundamental took place, the best

predictor for the fundamental at time t, conditional on exogenous signals only, is then given

by

~xit =
tX
j=1

atj�x
i
t;j�t

where

at1 = (1� �)t�1

atj = (1� �)t�j �; t � j > 1:

The coe¢ cients atj capture the probability that each (truncated) series �x
i
t;j�t is the ap-

propriate one for computing the conditional expected value of � (that is, the probability that

Nature re-drew the fundamental at the beginning of time j).

Note that
tX
j=1

atj = 1:

It is then possible to rewrite ~xit as a weighted sum of current and past values of xit

~xit =
tX
j=1

htjx
i
j; (32)

where

ht1 =
(1� �)t�1

t
(33)

htj = htj�1 +
(1� �)t�j �
t� j + 1 ; t � j > 1: (34)

Again,
Pt

j=1 h
t
j = 1. Clearly if � = 1, h

t
j = 0 for j < t and h

t
j = 1 for j = t: only the last

observation matters. If instead � = 0, then all observations receive the same weight 1=t.
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Figure 1: Weighting structure of signals.

To understand better the weighting structure, I propose Fig (1). Observation xi1, 8i, is
relevant for inference about the fundamental at time t only if Nature never re-drew over the

whole sample period from 1 to t, which happened with probability (1� �)t�1: in such case
each observation in that sample should be weighted equally, with weight 1=t. Observation

xi2, 8i, is relevant if Nature never re-drew (again, with weight 1=t), which happened with
probability (1� �)t�1, or if it re-drew at the beginning of period 2 and never after (and in
this case, with weight 1

t�1), which happened with probability (1� �)
t�2 �. And so on.

I can then de�ne

~�t =
�
vart

�
~xit
���1

=

 
vart

 
tX
j=1

htjx
i
j

!!�1
;

which, since all the xij are i.i.d. over time, reduces to

~�t = �
�2
v

 
tX
j=1

�
htj
�2!�1

:

Again, if � = 0 then ~�t = �t = t�
�2
v as in the dynamic case with constant fundamental. If

� = 1 then ~�t = �
�2
v as in the static case.

As for the public signals, I de�ne similarly the composite signal

�pt;j�t =

Pt
z=j �

�2
p;zpzPt

z=j �
�2
p;z

;
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which summarizes the relevant information from prices if the fundamental had changed at

the beginning of time j. The best predictor for the fundamental at time t, conditional on

endogenous signals only, is then given by

~pt =
tX
j=1

atj �pt;j;

with each atj de�ned as before. This can then be rewritten as a combination of current and

past prices as follows

~pt =

tX
j=1

ktjpj;

where

kt1 =
(1� �)t�1 ��2p;1Pt

z=1 �
�2
p;z

ktj =
��2p;j

��2p;j�1
ktj�1 +

(1� �)t�j ���2p;jPt
z=j �

�2
p;z

; t � j > 1

or

ktj = �
�2
p;j

"
(1� �)t�1Pt

z=1 �
�2
p;z

+ �

jX
z=2

(1� �)t�zPt
m=z �

�2
p;m

#
for t � j > 1; (35)

with
Pt

j=1 k
t
j = 1.

Note that for � = 0, ktj =
��2p;jPt
z=1 �

�2
p;z
; and for � = 1, ktj 6=t = 0 and ktt = 1. That is, for

� = 0 the framework converges to the dynamic setting analyzed in Section 2.2, since no

past information needs to be discounted for its probability of being no longer relevant. For

� = 1, instead, the framework converges to the static setting seen in Section 2.1, since every

period agents discount completely the past.6 The logic behind the weighting structure is the

same as the one seen in Fig (1) for the exogenous signal, with the only di¤erence now that

price observations are also weighted by their relative variance, since ��2p;t di¤ers from period

to period.

6For � = 1, there is an indeterminate form of 00 for kt1 at t = 1: this is resolved by considering it equal
to 1, which is correct if the exponential is solved before substituting out for �. Alternatively, we can take
the limit as � ! 1.
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I can then de�ne

~!t = (vart (~pt))
�1 =

 
vart

 
tX
j=1

ktjpj

!!�1
;

which, since prices are conditionally independent, reduces to

~!t =

 
tX
j=1

�
ktj
�2
�2p;j

!�1
: (36)

It can be seen that, for � = 0, ~!t = !t from (17) and for � = 1, ~!t = ��2p;t as in the static

case.

Consider then the pricing equation

pt = Et� � �2w;t"t; (37)

where

Et� =

Z
Eit�di = ~�t

Z
~xt;idi+ (1� ~�t) ~pt

and

~�t =
~�t

~�t + ~!t
: (38)

Since ~pt includes current prices, solving (37) for pt gives

pt = ~�t

Z
~xitdi+ (1� ~�t) ~pt � �2w;t"t

=
~�t

1� (1� ~�t) ktt

Z
~xitdi+

(1� ~�t)
1� (1� ~�t) ktt

t�1X
j=1

ktjpj �
�2w;t"t

1� (1� ~�t) ktt
; (39)

where Z
~xitdi =

Z  tX
j=1

htjx
i
j

!
di =

tX
j=1

�
htj

Z
xijdi

�

=
tX
j=1

htj�j:

Note that, since the fundamental can now change, I have denoted �j as the fundamental

prevailing at time j.
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I thus obtain the price equation

pt =
~�t

1� (1� ~�t) ktt

tX
j=1

htj�j +
(1� ~�t)

1� (1� ~�t) ktt

t�1X
j=1

ktjpj �
�2w;t"t

1� (1� ~�t) ktt
: (40)

The conditional variance of prices, �2p;t, is endogenous and only implicitly de�ned by the

above equations. From (40), I �rst derive

�2p;t =
2�2"h

~�t + ~!t (1� ktt)
i2 ; (41)

where both ~!t and ktt depend on �
2
p;t. I then use (36) and (35) (with j = t) to substitute k

t
t

and ~!t in (41) and solve numerically for �2p;t. Note that, for � = 0, �
2
p;t from (41) reduces

to �2p;t from (24). As (41) is non-linear and could admit more than one real root, I search

locally for a solution for �2p;t near �
2
p;t�1, starting with �

2
p;0 as the equilibrium value for the

dynamic case derived in (11), which is indeed the correct value for the �rst period, where

there is no previous information to exploit. The idea is that new information doesn�t create

big jumps in the system as it gets incorporated into prices.

In order to understand the behavior of this system, I now turn to simulations.

2.4.1 Simulations

I �rst investigate the long run behavior of ~�t for all possible values of �: To this end, I

let the system run until convergence of ~�t and thus compute numerically the function � (�),

representing the long run value for ~�t for all possible values of � 2 [0; 1]. I repeat this exercise
for di¤erent values of the risk aversion parameter : I report results for two commonly used

values of risk aversion,  = :75 and  = 1:5, respectively in Fig. (2) and Fig. (3).7 The red

circle corresponds to ��, the optimal value for the static case, where the system converges

to for � = 1, as Nature re-draws the fundamental every period with probability 1.

As it can be seen from the pictures, for relatively low values of � (roughly below :6 for

 = :75 and below :4 for  = 1:5) the optimal weight on private information in the long run

approaches zero. For example, with  = :75, for � = :6 I �nd that � (:6) = 1:9767e � 016.
This is due to the fact that, while the precision of the private information remains bounded

for any value of �, the precision of the public signal instead increases without bound for

relatively low values of � > 0 (see Fig. 4, where I report the convergence values for the

7The other two relevant parameters are set to �2v = �
2
" = 1:
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Figure 2: Long run values for ~�t:  = :75:
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Figure 3: Long run values for ~�t:  = 1:5:
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Figure 4: Precision of public and private signal and relative weight on the two signals.

inverse of ~�t and ~!t against values of �): as the variance of prices is endogenous, for low

values of � a self-reinforcing mechanism is at play by which an increase in the precision of

the public signal leads to an increased weight on public information, which in turns leads to

a further increase in the precision of prices. If � is large enough, instead, the uncertainty

about whether past observations are relevant for current inference is high enough to prevent

the precision of the public signal, now heavily skewed towards most recent observations, from

increasing without bound.

One important issue is how fast ~�t converges to its long run value, in particular in relation

to the expected frequency of changes in the fundamental. For example, with � = :1 it could

be expected on average to have a change in the fundamental every 10 periods: would ~�t
have already converged to its equilibrium value � (:1) at that point? To try and answer this

question I show the simulated path for ~�t for � = f:1; :4; :7; :9g where in each case I initialize
the algorithm at ~�t = ��, the optimal level for the static setting. I report in Fig (5) results

for  = :75;�2v = �
2
" = 1:

It is possible to see that, for � = :1, ~�t converges to zero after about 7 periods: given

that � = :1 implies that Nature redraws on average once every 10 periods, this means that

changes in the fundamental are likely to be missed out and not passed on to prices. On the
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Figure 5: Convergence paths for ~�t, for � = :1, :4, :7, :9.  = :75:

other end, for � = :9, ~�t converges after about 5 periods to a positive value and never drops

down to zero: any change in the fundamental is going to be passed on to some extend to

prices.

The main conclusion from this Section is that for relatively low values of � the weigh on

the private signal quickly converges to zero, thus preventing any change in the fundamental

to be passed on to prices, while if � is high enough, the possibility of a change in the

fundamental having occurred in the past prevents the precision of the public signal from

increasing without bounds and thus maintains a positive weight on private information in

the signal extraction problem.

3 Adaptive learning

Bayesian learning assumes agents know the relative precision of the di¤erent signals they

receive, and use such information optimally. I will now relax the �rst assumption by merging

Bayesian learning with adaptive learning, using the framework of Section (2.2). One essential

element of any learning analysis is to decide what aspects of their decision problem agents

should be learning about. I take here the view that agents know their own preferences and
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know how to solve relatively simple problems of signal extraction. This means that I assume

they can work out the way the optimal weight on private versus public information depends

on the relative precision of the two signals. What they don�t know a priori, and need to

learn about, are the statistical properties of the two signals.

Agents will thus need to learn about mean and variance of the two signals they receive.

While prices are publicly observable, the exogenous signal is instead idiosyncratic: it follows

that, under adaptive learning, agents will hold homogeneous beliefs about prices�moments

(assuming common initial beliefs and updating algorithms) but heterogeneous beliefs about

the statistical properties of the exogenous signal.

I �rst provide convergence results under decreasing gain in a stationary environment,

with constant fundamental, and then consider the case of constant gain, which will allow

me to draw a connection with the framework of Section 2.4. Constant gain learning, in fact,

places relatively more weight on most recent observations and is therefore better suited to

analyze adaptive learning in a setting where changes in the fundamental can take place.

In order to implement their optimal demand (20), agents need to learn about �xit; �pt; �t; !t
and �2w;t: At each time t, each agent i observes the whole history from 1 to t of his own

private signal and of prices, i.e., he observes fxizg
t
z=1 and fpzg

t
z=1. An agent i at time t

is thus de�ned by the history of signals he receives and his beliefs system x̂it; �̂
i

t; p̂t; !̂t; s
i
w;t,

which are the learning counterparts to �xit; �t; �pt; !t; �
2
w;t, plus s

i
x;t and sp;t, which are the

estimated second raw moments for the two signals. These last two measures are needed

in the adaptive learning environment in order for agents to be able to estimate the second

central moments of the signals (see equations (44)-(45) later on). Individual demand is then

given by

kit =
�̂itx̂

i
t +
�
1� �̂it

�
p̂t � pt

siw;t
; (42)

where

�̂it =
�̂
i

t

�̂
i

t + !̂t
; (43)

with

�̂
i

t = �̂
i

t�1 +
�
six;t �

�
x̂it
�2��1

(44)

!̂t = !̂t�1 +
�
sp;t � (p̂t)2

��1
(45)
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and

siw;t =
�
�̂it
�2 �

�̂
i

t

��1
+
�
1� �̂it

�2
!̂�1t =

1

�̂
i

t + !̂t
: (46)

Equations (44)-(45) say that agents use estimated means and second raw moments (based

on observables) in order to derive the relevant central moments (which can not be estimated

directly).

Aggregate demand is thus given by

Kt =

Z �
�̂itx̂

i
t +
�
1� �̂it

�
p̂t
�
� pt

siw;t
di: (47)

From the market clearing condition, it follows that prices evolve according to

pt =

�R �̂it
siw;t
di
�
� +

�R (1��̂it)
siw;t

di

�
p̂t � "tR

1
siw;t
di

; (48)

or, since p̂t�1 is common across agents, xit does not covariate with the other state variables

(see below the updating rules for time t variables in the beliefs system, which all depend on

time t� 1 information) and
R
xitdi = �,

pt =

R
�̂
i

tdiR
�̂
i

tdi+ !̂t�1
� +

!̂t�1R
�̂
i

tdi+ !̂t�1
p̂t�1 �

"tR
�̂
i

tdi+ !̂t�1
; (49)

which is the adaptive learning counterpart of (23).

I now de�ne how beliefs are updated through recursive algorithms that implement adap-

tive learning. Agents learn about raw second moments according to

six;t = six;t�1 + gt

h�
xit
�2 � six;t�1i (50)

sp;t = sp;t�1 + gt
�
(pt)

2 � sp;t�1
�
; (51)

and the means of the two signals according to

x̂it = x̂it�1 + gt
�
xit � x̂it�1

�
(52)

p̂t = p̂t�1 + gt [pt � p̂t�1] : (53)

Equations (49)-(53), together with (44)-(45), represent the dynamics of the system under

adaptive learning. It is a non-linear stochastic recursive algorithm and its long-run properties
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can be analyzed using stochastic approximation techniques. The learning gain gt, which

controls how new information gets factored into the estimates, is set equal to 1=t for the

decreasing gain case, and to a small constant (more on this later) in the case of constant

gain.

3.1 Convergence results

I provide here convergence results for the decreasing gain case gt = 1=t, which reduces

the learning algorithms to instances of recursive least squares estimates. Since agents are

estimating only means and second moments, the algorithms are greatly simpli�ed: care

has still to be taken, though, when such values are endogenous, because of the feedback

e¤ect from estimates to actual values. Using stochastic approximation techniques (see Evans

and Honkapohja (2001) for details), I can represent the evolution, in notional time � , of

estimated variables through ordinary di¤erential equations (ODEs). Fixed points of these

ODEs represent possible limiting points of the original stochastic recursive algorithm and

thus allow one to analyze the long run behavior of such algorithm. Results from this section

require that T !1 in the dynamics setting, so that asymptotic results can apply.

The analysis of the learning equation (50) is rather straightforward, since xit is exogenous

and agents are e¤ectively estimating the value of an exogenous constant (the second moment

of the distribution). The relevant ODE can be derived as follows

dsix
d�

:= lim
t!1

E
��
xit
�2 � six;t�1� = �2 + �2v � six: (54)

Clearly this ODE has a unique �xed point six = �2 + �2v, 8i. Moreover, this �xed point is
stable since the derivative of the ODE w.r.t. six is equal to �1.
Similarly for (52), which gives rise to the ODE

dx̂i

d�
:= lim

t!1
E
�
xit � x̂t�1

�
= � � x̂i; (55)

with stable �xed point x̂i = �; 8i.
The two results above imply that, 8i,

lim
t!1

�
six;t �

�
x̂it
�2�

= �2v (56)

and thus, from (44),

lim
t!1

�̂
i

t =1: (57)
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In terms of the endogenous variables, starting from p̂t, since "t is a zero mean i.i.d. process

independent from the other variables, the relevant ODE derived from (53) is
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whose �xed point is p̂ = �. Stability depends on limt!1�
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, which is negative and,

I will show, converges asymptotically to zero: in the limit, deviations of prices from the

fundamental will stop being factored into estimates.

In terms of the second raw moment
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and, using result (57) together with the fact that, by de�nition, !̂t > 0,
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The �xed point of this ODE is thus sp = �2, which implies that the variance of prices

converges to zero since the second raw moment converges to the squared mean.
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From (45), using the results that, in equilibrium, sp = �
2 and p̂ = �,
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Finally, convergence in all the learning algorithms ensures that �it also converges to its long

run equilibrium value, i.e.,
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I summarize results from this Section in the following Proposition:

Proposition 3 Consider the system of ODEs (54), (55), (58), (60), de�ning learning in
notional time. All ODEs are stable and agents learn the means and variances of the relevant
exogenous and endogenous variables: it follows that �̂it converges to 0 as t grows without
bound and the system converges asymptotically to the Bayesian equilibrium de�ned in Sections
(2.2)-(2.3).

The economy under combined Bayesian and adaptive learning thus converges asymptot-

ically to the same equilibrium derived under Bayesian learning only, where agents had full

information about the statistical properties of their signals. This means that, as agents learn

the relevant moments for the signals, the precision of those signals still increases over time

without bound: in particular, prices still become a more precise predictor for the fundamen-

tal even when agents�s beliefs about the moments of the signals evolve over time in light of

new information generated within the system itself.

Establishing convergence of the adaptive learning algorithm under decreasing gain is a

necessary step in order to consider the evolution of prices under real time learning with

constant gain, which has the property of discounting past information more heavily and

has been used in the literature to model adaptive learning in situations where agents might

fear structural breaks taking place in the parameters they are estimating. If the learning

algorithms were not stable under decreasing gain, in fact, they would not be stable under

constant gain either, and would therefore be unsuitable to model the evolution of beliefs in

environments where variables are not observed to diverge.
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3.2 Constant gain

Having established convergence to the Bayesian equilibrium under adaptive learning with

decreasing gain, I now consider the dynamics of the system under constant gain adaptive

learning. Constant gain learning discounts past observations exponentially and thus allows

new information to play a larger role in the determination of beliefs. It has been proposed

as a practical way to allow learning algorithms to incorporate changes in the estimated

parameters and seems thus suitable to capture the need to allow for possible time variation

in the fundamental value of the asset in this model.

A growing literature in applied macroeconomics has used constant gain learning to ex-

plain a range of features, from the rise and fall of U.S. in�ation in the 70s and 80s (in

particular, the seminal works of Sargent (1999) and Sargent at el. (2006)) to the causes of

business cycles (e.g., Milani (2011) and Eusepi and Preston (2011)). By allowing beliefs to

change endogenously according to evidence, these models account for the co-movements of

expectations and economic outcomes and are able to capture the important self-referentiality

element of this joint determination while at the same time allowing for delays in the adjust-

ments.

In order to understand the impact of constant gain learning in my model, I simulate the

system composed by equations (49) to (53) plus (44)-(45) setting gt � g, a small constant.
Though there is no direct evidence of the appropriate value for such parameter, Berardi and

Galimberti (2017) provide a thorough discussion of the role and estimates bands for the gain

parameter in macroeconomic applications. In general, higher gains imply faster reaction to

changes, but more volatile estimates. I will take g = 0:025, a fairly common value used in

the macroeconomic applied literature, as benchmark in my simulations, and compare results

with a lower gain. I also set �2v = �
2
" = 1;  = :75 as before.

In Fig. (6) I show !̂t and average (across agents) �̂
i

t and �̂
i
t for g = :025. It can be seen

that while average �̂
i

t grows linearly, !̂t grows exponentially and �̂
i
t converges towards zero:

the shift in weight towards more recent observations induced by the constant gain is not

su¢ cient to prevent the weight on the public signal to decrease towards zero. Note though

that such decrease is rather slow, as average �̂it is still positive at t = 200. This means that

changes in fundamental would be factored into prices for quite a long time.

To investigate the impact of the learning gain on the evolution of the relative weight on

private versus public information, I repeat the simulations with the lower gain g = :005,

using the same history of shocks "t and vit. Results are reported in Fig. (7). It can be
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Figure 6: Evolution of !̂t and average �̂
i

t and �̂
i
t under constant gain learning. g = :025.

seen that a lower gain parameter implies a slower convergence of average �̂it towards zero:

this is due to the fact that a lower gain implies a slower increase in the precision of the

public signal, as estimates of the variance of prices converge more slowly. The impact on the

estimated precision of the private signal, �̂
i

t, is instead negligible. This is due to the fact that

xit is exogenous and its variance is thus not a¤ected by the beliefs of agents: while a lower

gain does marginally slow down convergence also in this case, the self-reinforcing mechanism

introduced by the endogeneity of the variance of prices with respect to its estimates is not

at play here.

One issue with the way I have set up the adaptive learning algorithm is that (44)-(45) are

the counterpart of (15)-(17) and thus do not account for possible changes in the fundamental

value (that is, they represent the sample variance of the whole series of observations for

private and public signals from day one, not discounted for the possibility that a change in

the fundamental value has taken place at some point in time). While there is no clear way to

amend these equations under a constant gain learning, I try to account for this shortcoming

by considering a framework that embeds both extreme cases of no change and sure change

in the fundamental as special cases. In particular, I rede�ne equations (44)-(45) as
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Figure 7: Evolution of !̂t and average �̂
i

t and �̂
i
t under constant gain learning. g = :005.
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Though not grounded in any formal optimization problem, this framework captures the

fact that, when Nature can redraw the fundamental value, there is uncertainty about the

cumulative nature of the signals. In particular, for � = 1 theory would dictate that g = 1

and equations (61)-(62) would reduce to a static framework where the optimal signals (both

endogenous and exogenous) are represented only by current realizations; for � = 0, instead,

theory would dictate that g = 1=t, which converges to zero at t increases without bound

and leads to a dynamic framework where no changes in the fundamental are allowed and

the optimal signal is a weighted cumulative aggregation of all past realizations. Simulating

the system with these new speci�cations for �̂
i

t and !̂t, I �nd that for values of g usually

considered in the literature (between :005 and :05), �̂it still converges to zero: the reason

is that, while �̂
i

t remains bounded, !̂t increases without limit. This result is similar to the

one found in Section 2.4.1, where a low � led to ~�t converging to zero as the precision of

the public signal grew without bounds. Values of the constant gain usually adopted in the
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literature, thus, are not high enough to compensate for the tendency of the precision of the

public signal to increase without bound due to the endogeneity of prices. I will discuss in

more detail the relationship between � and g in the next Section.

The main result from this Section, thus, is that while constant gain adaptive learning

is e¤ective in tracking changes in the exogenous variables (simulations show that estimates

of xit and s
i
x;t adjust quickly after a change in the fundamental value), it does not prevent

the weight on private information from decreasing towards zero over time as the estimated

variance of prices decreases towards zero and the precision of the public signal grows without

bound. At the same time, though, because such convergence is rather slow at conventional

values for the gain parameter, changes in the fundamental can be passed onto prices under

such a learning scheme for a long time.

4 Relation between g and �

In light of results so far, it is instructive to analyze the relationship between the adaptive

learning gain g and the parameter � in the Bayesian learning framework. The gain parameter

in an adaptive learning algorithm determines the weight put on past observations: with a

decreasing gain 1=t, all observations receive equal weight; with a constant gain g instead the

weight decays exponentially with past observations. A similar interpretation can be given

to �, but for di¤erent reasons. The parameter � represents the probability of a change in

the fundamental happening at each time t. The probability that a time t� j observation is
relevant for time t inference is thus (1� �)t�j: again, the weight decays exponentially as we
move back in time.

Formally, if we look at the exogenous private signal (the same considerations hold for the

endogenous signal), the updating rule for the adaptive learning scheme, equation (52), with

constant gain leads to

x̂it = x̂it�1 + g
�
xit � x̂it�1

�
= (1� g) x̂it�1 + gxit

= g

tX
j=1

(1� g)t�j xij;

assuming x̂i0 = 0. I thus de�ne the weight at time t on observation from time j as

btj = g (1� g)
t�j
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for j = 1; :::; t.

In the Bayesian framework, ~xit is given by (32), with weights from (33)-(34), which, in a

non-recursive way, can be rewritten as

ht1 =
(1� �)t�1

t

htj =
(1� �)t�1

t
+

jX
m=2

(1� �)t�m �
t�m+ 1 :

While the weighting structure in the Bayesian framework is more convoluted, it can be seen

that both btj and the leading term in h
t
j (represented by

(1��)t�j�
t�j+1 ) decay exponentially, leading

to similar weight pro�les on older observations in both cases. In order to provide some more

insight into such weighting structures, I show btj and h
t
j in Figure 8. Curves are computed for

g = 0:025 and � = 0:01, with t = 100. It can be seen that, despite being derived in di¤erent
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Figure 8: Weights on past observation under constant gain adaptive learning (b) and
Bayesian learning (h).

frameworks and through di¤erent assumptions, the shape of the two weighting structures is

remarkably similar, leading to similar weighting on past information in the two cases.
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5 Discussion and conclusions

I have proposed in this paper a model of uncertainty and learning about fundamental val-

ues. Agents are faced with a signal extraction problem, which in a static setting introduces

volatility in prices compared to the full information case, where prices would simply coin-

cide with the fundamental value at all times. The possibility to learn over time drives the

volatility of signals to zero, but it also implies that all weight in the limit is put on the public

endogenous signal (prices) and none on the private exogenous one. While prices aggregate

information perfectly in the limit, this opens up the possibility of a misalignment of prices

from the fundamental should such fundamental change.

To investigate this issue, I have extended the framework to allow for the fundamental

to change with some �xed, exogenous probability. While past information gets discounted

according to the probability of it being still relevant for current inference, even for a relatively

high probability of changes in the fundamental happening every period agents still end up

relying only on prices as signals in the long run. Private information is disregarded in the

limit and only the public signal is used: a form of rational herding with informational cascade

emerges.

The literature on informational cascades has usually focused on sequential games, where

subsequent agents discard their own private information and base their actions only on infor-

mation derived from previous agents�behavior. Though in the present model all agents act

simultaneously, in the dynamic framework where agents trade repeatedly over time I obtain

a similar outcome: private information gets neglected in favour of public one. Bikhchandani,

Hirshleifer and Welch (1992) write: "The problem with cascades is that they prevent the ag-

gregation of information of numerous individuals." In my framework, similarly, as the weight

on private information converges to zero, private information of each individual about the

fundamental value of the asset is neglected and does not contribute to the determination of

prices: aggregation of information e¤ectively fails. If a change in the fundamental happens

at this point, it does not get factored into prices.

Two assumptions are important for the results in this paper and are worth discussing in

detail here. First, the fact that changes in the fundamental are statistically uncorrelated.

That is, when the fundamental changes, the new value and the old one are independent and

drawn from the same improper distribution. Moreover, there is an exogenous probability �

that such changes take place at each time. This implies that, while past signals never become

completely uninformative, as there is always a chance that a change in the fundamental never
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happened, such probability decreases very fast even for relatively large values of �. For

example, for � = :5, the probability that a signal received at time t = 1 will is still relevant

at time t = 20 is :000095%. If changes in the fundamental were smooth and correlated, such

decline in probability would be much more gradual, thus quantitatively limiting the e¤ect of

agents discarding private signals when forming beliefs about the fundamental.

The second important assumption is that agents don�t update the probability of changes

in the fundamental, their subjective probability always being equal to the unconditional

probability �. One could instead allow agents to update their (prior) subjective probability

based on the observed signal: signals close to the current estimate of the fundamental would

be more likely to come from a normal distribution centered around the old fundamental

rather than from a new draw from the improper distribution of fundamentals. If such

updates were allowed, it is possible to conjecture that, for any given � (and thus prior),

the subjective posterior that the fundamental has changed would be higher the farther away

the new observation falls from the most recent estimate of the fundamental. Results from

simulations in Section (2.4.1) thus suggest that in this case small changes in the fundamental

would be more likely to be overlooked, as they would more likely be misinterpreted as noise

in the signal rather than as a change in the fundamental. That is, small changes in the

fundamental would lead to a relatively smaller posterior (for any given �) for the subjective

probability of changes, which would have the e¤ect of making ~�t more likely to converge to

zero and at a faster rate.

In the second part of the paper I then relaxed a strong assumption in Bayesian learning,

namely that agents know the statistical properties of the signals they are receiving. This

assumption is particularly troublesome in cases where, like in this paper, the precision of

a signal is endogenous and changes over time. For this reason I model agents as joint

Bayesian and adaptive learners: they use adaptive learning to infer the moments of the

distributions of the two signals from past data, and then use such moments to update their

priors through Bayesian learning. In this setting, adaptive learning with a decreasing gain

allows the investigation of long run convergence in case of a stationary environment; a

constant gain algorithm instead provides the suitable framework to analyze outcomes in case

changes to the underlying fundamental are possible. Overall, joint Bayesian and adaptive

learning lead to results that con�rm the possibility of prices and fundamental values to

become misaligned in the long run, though over long periods of time agents keep using their

private information and prices can re�ect changes in fundamentals.
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6 Appendix

6.1 Derivation of �� with private and public signals

The optimal linear weight on the two signals, ��, can be obtained by solving the problem

�� = argmin
�
Et

�
� � ~�it

�2
(63)

with
~�
i

t � �xit + (1� �) pt: (64)

Minimizing (63) subject to (64) leads to the �rst order condition

Et

�
� � ~�it

� �
pt � xit

�
= 0;

whose solution implies
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2
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Etp2t + Et (x
i
t)
2 � 2Etptxit

: (65)

Given that prices and exogenous signals do not covariate (since the noise in the exogenous

signal is averaged out by aggregation), this reduces to

�� =
�2p

�2p + �
2
v

: (66)

6.2 Derivation of the price equation

Combining (5) and (7) gives
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Substituting then (68) into (8) leads to

pt = � � �2v"t

and therefore

�2p;t = 
2
�
�2v
�2
�2":
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