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Prices, fundamental values and learning

1 Introduction

Shiller (1981) famously showed that asset prices display a level of volatility unexplained

by the underlaying fundamentals. Numerous studies - for example, see Cont (2001) - have

shown that returns are characterized by volatility clustering, a feature that is unexplained by

patterns of volatility in exogenous shocks. We show in this work that both excess volatility in

prices and volatility clustering in returns can be explained by uncertainty about fundamental

values and learning.

One of the key issues in asset pricing is represented by the relationship between market

prices and the underlaying fundamental value of an asset. This issue is of utmost importance

both for policymakers and for investors. For example, in terms of policymaking, former

Federal Reserve Chairman Ben Bernanke wrote (Bernanke and Gertler, 1999):

"Trying to stabilize asset prices per se is problematic for a variety of reasons, not the

least of which is that it is nearly impossible to know for sure whether a given change in asset

values results from fundamental factors, nonfundamental factors, or both."

It is just as di¢ cult for investors as it is for policymakers to infer fundamental values,

and it is on this aspect, and its consequences for asset prices, that we focus in this work. To

this end, we merge two lines of literature: one on signal extraction and Bayesian equilibrium,

and one on adaptive learning. From the �rst, we take the basic building blocks to model

prices as an endogenous signal for agents, that summarizes the opinion of the market about

the value of an asset. From the second, we take the key insight that agents can only learn

from observables. Unfortunately, fundamental values are not observable, even after decisions

have been made, demands posted and prices realized: we therefore assume that theory helps

agents in guiding their learning activity.

Angeletos and Werning (2006) show that, in a coordination game, agents can use prices

as an endogenous signal to better predict other agents�actions. In our model, agents use

prices as a signal as they summarize the view of other agents about fundamental values. We

assume agents are only concerned about the fundamental value of their portfolio, relative to

what they paid for it, and so they are not trying to pro�t from exploiting short term capital

gains. Still, because of the uncertainty about fundamental values and the weight to give to

di¤erent signals, deviations of prices from equilibrium emerge. In particular, when agents put

too much weight on prices in the prediction of fundamental values, large non-fundamental
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movements in prices arise. It is important to stress that our economy is populated only

by fundamentalists and there are no speculators or noise traders here trying to gain from

short-term trading strategies that have often been indicated as destabilizing and a cause for

excess volatility (e.g., De Long et al., 1990).

Most work on adaptive learning and asset prices has focused on uncertainty about future

prices. Uncertainty about fundamental values, on the other hand, has been largely neglected,

though it seems a key element for investment strategies of fundamentalists, who should want

to buy assets that are underpriced and sell assets that are overpriced with respect to their

fundamental value. A key issue, of course, is that the fundamental value of an asset is not

known and it can only be inferred, or guessed, using observables such as past dividends and

prices as signals.

We will assume that agents receive a noisy exogenous signal about the fundamental

value of the stock: this could be thought of as news about long run dividends and other

information a¤ecting the value of a �rm. Besides this exogenous signal, agents also use prices

to infer fundamental values. The reason is that prices summarize information of other market

participants: if prices are above what an agent expects, given her own private information,

she will think that other people have di¤erent information about the fundamental value of

the stock, and revise her own beliefs accordingly.

Bayesian theory provides us with the optimal relative weight on the two signals: in the

�rst part of the paper we derive such value and discuss its implications for asset prices.

We then depart from the assumption that agents know a priori such optimal weight,

which depends on the relative precision of the signals, and instead require agents to learn it

through experience. A key issue here is that fundamental values are not observables, so there

can not be direct feedback guiding the learning activity. Instead, agents rely on a mix of

theory and evidence: we assume they know that the optimal weight depends on the relative

variance of the two signals, and learn about such values.

We �rst prove that, under decreasing gain, learning converges to the Bayesian equilibrium.

This is not an obvious result: because prices are endogenous and depend on agents�beliefs,

it could be that higher beliefs lead to higher prices and thus to even higher beliefs, in a

self-reinforcing destabilizing loop. This doesn�t happen, though, because when the variance

of prices increases the relative weight on prices is revised downwards, thus helping stabilizing

the system.

We then substitute the decreasing gain with a constant gain, which captures the idea

that agents are unsure about the stationarity of the environment and allow for changes. This
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opens the door to the possibility that the estimated weight used by agents �uctuates over

time and never settles down to its optimal value. In particular, because of the feedback from

prices to beliefs, we observe that at times there is herding in beliefs,1 where excessive weight

is given to prices in the formation of beliefs about fundamental values: it is at such times

that volatility in prices increases and actual prices deviate signi�cantly from equilibrium.

As noted before, our economy is populated only by fundamentalists, who trade on dif-

ferences between actual prices and (expected) fundamental values. We do not introduce

chartists, as it is instead common in the literature, to generate non fundamental movements

in prices. All deviations of prices from equilibrium come instead from uncertainty and learn-

ing about fundamentals.

It is also worth noting that our model is a model of volatilities. We therefore do not try,

and are not able, to explain things like bubbles and crashes, which relate to trends, since

there are no trends in our model. All disturbances are i.i.d. random processes, fundamental

values are constant and there is no source of persistence arti�cially built in. We leave for

future work to enrich our framework with features that can generate bubble-like events.

The plan of the paper is as follows: after a literature review in the remainder of this

Section, in Section 2 we introduce the model, present the information structure and derive

the Bayesian equilibrium. In Section 3 we introduce adaptive learning: �rst we establish

convergence under decreasing gain, and then present simulations under constant gain. In

Section 4 we discuss the main results and insights, and Section 5 concludes. Some technical

details are con�ned to the Appendix.

1.1 Literature review

Volatility properties of prices and returns have often been explained in the �nance literature

by appealing to behavioral models of interacting agents. Lux (2009) provides a review of

works based on such ideas: in particular, interaction between fundamentalists and chartists,

models of local interaction between traders, and �eld e¤ects have been proposed and ana-

lyzed. Contrary to this line of enquiry, we do not assume heterogeneity in agents�degree of

sophistication or trading strategies.

A growing literature has also been studying the impact of expectations, bounded rational-

ity and learning on asset prices. Brock and Hommes (1998) analyze the impact of evolution-

ary dynamics in price predictors on price �uctuations; Branch and Evans (2010) consider a

1We de�ne precisely the concept of herding in our setting later on in the paper.
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setting where agents predict prices by choosing between two underparameterized models and

show that multiple equilibria emerge and the model can reproduce regime-switching returns

and volatilities similar to those observed in real data; Branch and Evans (2011) propose a

model where agents learn about risk and show that escape dynamics from the fundamental

price emerge; Hommes and Zhu (2011) use the concept of stochastic consistent expectations

equilibrium to explain excess volatility in stock prices; �nally, Adam et al (2008) show how

adaptive learning on future prices can generate excess volatility. The main di¤erence be-

tween our work and this line of literature is that in our model agent are uncertain about the

fundamental value of an asset instead of its future price and learn about a signal extraction

problem on exogenous and endogenous information. To the best of our knowledge, it is the

�rst attempt to merge Bayesian equilibrium and adaptive learning to understand asset price

dynamics.

In terms of signal extraction and Bayesian learning, there is a large literature on global

games, where agents face a coordination problem with heterogeneous information: agents

usually receive exogenous public and private signals, and need to extract information in order

to solve their coordination problem. An analysis instead of the coordination problem with

endogenous signal is provided by Morris and Shin (2006). A notable application of this idea

to asset prices is Angeletos and Werning (2006), who consider a model where asset prices act

as an endogenous signal in a two stage game where agents need to decide whether or not to

carry out a speculative attack: the �rst stage of that model is similar to our setting, though

they do not consider the e¤ect on price dynamics of an endogenously changing weight on the

signals. Ozdenoren and Yuan (2007) instead derive excess volatility in a setting where asset

prices, by a¤ecting �rms�cash �ow, impact on fundamental values and therefore create a

coordination problem for investors. Finally, Berardi (2015) considers a coordination problem

with signal extraction and learning, but in that setting both private and public signals are

exogenous.

2 The model

We assume the fundamental value of an asset is constant, given by �. We can think of it

as representing a measure of the present discounted value of future dividends. Assuming a

constant �ow of dividends d over the in�nite future

� =
1X
i=0

�id =
d

1� � ;
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where 0 < � < 1 is the discount factor.

Agents maximize their utility, which is a concave function of the value of their portfolio,

expressed as di¤erence between the fundamental value of an asset and the price paid for it.

They are mean variance maximizers, i.e., try to maximize the mean with a penalty for the

variance of their portfolio.

Their problem is thus to choose the number of shares (k) such that

max
k
EtWt �




2
V ar (Wt)

where 
 is the coe¢ cient of risk aversion and

Wt = k (� � pt) :

It follows that optimal demand is

k�t =
Et� � pt

�2w

; (1)

where, with � unknown and Etpt = pt,

�2w = Et [(� � pt)� Et (� � pt)]2 =
= Et [(� � Et�)]2 :

We assume an exogenous and stochastic supply of shares s = "t, which follows a normal

distribution with zero mean and variance �2". We will see that this noise term will prevent

prices from being fully revealing. Such assumption has been used before (see, e.g., Branch

and Evans 2011), in order to capture variations in the availability of publicly tradable shares

(asset �oat). Departing from their modelling choice, though, we do not assume that supply

becomes endogenous at low prices: instead, in order to avoid prices to fall below zero, we

impose a non-negativity constraint. It is worth noting that, for the main parameterization

reported in the simulation exercise below, such constraint never becomes binding.

Equilibrium condition therefore implies

pt = Et� � 
�2w"t: (2)

Agents need to form an expectation about the unobservable � and its conditional variance

�2w in order to implement this strategy. With no uncertainty, prices are constant at the

fundamental value, i.e., pt = �.
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2.1 Information structure and equilibrium

We now introduce uncertainty in the model. We assume that there is a continuum of agents

of unit mass, indexed by i 2 [0; 1]. Throughout the paper, we will follow the convention
that for every time-varying, agent-speci�c variable z, zit represents a sequence of measurable

functions zt(i) : [0; 1] ! R, indexed by t, mapping the set of agents at each time t into

a real number. Moreover, for a given t, each function zt(i) is assumed to be continuous

and bounded in i. Aggregating over agents, Zt =
R
i
zitd	

z
t (i), where 	

z
t (i) is the marginal

cumulative distribution for zit.

Agents observe two signals on the fundamental value: one, endogenous and public, from

prices (pt) and one, exogenous and private, from news (xit). We can think of it as a subjective

interpretation of news about dividends and other things that a¤ect the long run value of an

asset.

The exogenous signal on dividends is represented as

xit = � + vi;t;

where vi;t is an i.i.d. random variable, normally distributed with zero mean and variance �2v.

Because signals are normally distributed and conditionally independent, the expected

fundamental value conditional on the two signals, denoted by ~�
i

t � Et [� j xit; pt], is equal to

~�
i

t = �x
i
t + (1� �) pt; (3)

where (see Appendix) the optimal value for � (denoted ��) is given by the solution to

�� =
Etp

2
t � Etptxit

Etp2t + Et (x
i
t)
2 � 2Etptxit

=
�2p

�2p + �
2
v

; (4)

where �2p represents the variance of prices. It is important to note that it is optimal for agents

to put some weight on prices, together with the exogenous signal, when forming beliefs about

fundamental values (i.e., in general �� 6= 1).
Individual demand is then given by

k�i;t =
�� (xit � pt)


~�2w
;

where ~�2w is the portfolio variance conditional on x and p (see Appendix).
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Aggregate demand is then given by

K�
t =

Z
�� (xit � pt)


~�2w
d	xt (i) =

�� (� � pt)

~�2w

;

where 	xt (i) is the standard normal distribution, and prices evolve according to

pt = � �

~�2w
��
"t: (5)

Substituting in for ~�2w (see Appendix for details) we then get the price equation

pt = � � 
�2v"t; (6)

with

�2p = 

2
�
�2v
�2
�2": (7)

As already noted by Angeletos and Werning (2006), we can see from (7) that public in-

formation improves with private information. Note also that in this setting equilibrium is

unique, de�ned by the optimal value of �: excess volatility will therefore be derived not

from switching between multiple equilibria, but from deviations from the unique equilibrium

induced by uncertainty and learning.

An important feature of equilibrium prices is that they do not depend explicitly on ��.

This is due to the fact that, in deriving (6), we have used the optimal (from a Bayesian

point of view) values of � and ~�2w (which are themselves function of structural parameters

and volatilities of exogenous shocks). When instead � is not at its optimal level, it becomes

a parameter that a¤ects prices and their volatility: in particular, the more weight is put on

prices in the signal extraction problem (lower �), the higher is the volatility of prices. In

fact, we can see from (5) that, for arbitrary �,

var(pt) =

�

~�2w
�

�2
�2"

and therefore
�var(pt)

��
< 0:

Proposition 1 In an economy where prices act as endogenous signals for fundamental val-
ues, the higher is the weight put on prices in the signal extraction problem, the higher is the
volatility of prices.

Note that if the exogenous signal was public information and everyone was thus observing
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the same signal xt, (4) would become

�� =
Etp

2
t � Etptxt

Etp2t + Etx
2
t � 2Etptxt

=
�2p � �2v

�2p + �
2
v � 2�2v

= 1 : (8)

the noise in the exogenous public signal would be transferred to prices, and thus prices would

be completely useless as a signal for the fundamental, since they would encompass both the

noise from the exogenous signal and the noise from supply: optimal � would thus be one.

In other words, in order for prices to have any informational content above and beyond that

provided by the idiosyncratic signal, it must be that the aggregation process that generates

prices averages out some of the noise in the information about fundamentals.

Instead, with xit a private signal, we have

�� =
�2p

�2p + �
2
x

=

2 (�2v)

2
�2"

�2v + 

2 (�2v)

2 �2"
=


2�2v�
2
"

1 + 
2�2v�
2
"

(9)

and therefore

lim
�2"!0

�� = 0; lim
�2"!1

�� = 1

lim
�2v!0

�� = 0; lim
�2v!1

�� = 1:

If the variance of supply goes to zero, then prices are fully revealing and only prices are

used to infer fundamental values. If instead it goes to in�nity, then only the exogenous signal

is used as prices loose all information content regarding fundamental values.

Note also that if the variance of the idiosyncratic noise in the exogenous signal goes to

zero, �� goes to zero, as can be easily seen from (9): no weight is put on the private signal

and only prices are used. This might seem at �rst counter-intuitive, and looking at (4) one

might actually mistakenly think that �� goes instead to one when �2v ! 0. The reason why

this does not happen is that as �2v ! 0, the variance of prices goes to zero faster than that

of the private signal:2 this is due to the fact that demand (in absolute value) increases as

the precision of the information on the fundamental increases and, as �2v ! 0, it goes to

(plus or minus) in�nity. To avoid this result, we could introduce an additional, aggregate,

noise in the exogenous signal so that when the idiosyncratic noise disappears, there would

still be uncertainty about the fundamental value of the asset. We avoid this complication

here, since we will stay away from the limiting case.

2The variance of prices is in fact quadratic in �2v: see (7).
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While it is optimal for agents to use prices, together with the exogenous signal, to form

beliefs about fundamental values, it is perhaps too much to assume that they know the exact

value of the optimal weight to put on each signal. It is for this reason that we now turn to

adaptive learning.

3 Learning about variances

One essential element of any learning analysis is to decide what aspects of their decision

problem agents should be learning about. Put it another way, how much a priori knowledge

should they be granted? How much information should they have about the environment

they live in? We take the view that agents know their own preferences, and know how to

solve relatively simple problems of signal extraction. This means that we assume they can

work out the way the optimal weight depends on the relative precision of the two signals.

What they don�t know a priori, and need to learn about, are the statistical properties of the

environment they live in, and thus of the relevant variables involved in their decision problem.

Both prices and news contain information about the fundamental: news in addition have

idiosyncratic volatility due to noise, and prices have added volatility due to supply variation.

The aim of agents is to disentangle these sources of volatility to extract information about

the fundamental.

In particular, agents will need to learn about mean and variances of the two signals.

While prices are publicly observable, the exogenous signal is instead idiosyncratic: it follows

that, under learning, agents will hold heterogeneous beliefs about the statistical properties

of the exogenous signal while, given homogeneous initial beliefs and updating algorithms,

they will hold instead homogeneous beliefs about prices.

We denote by six:t agents� heterogeneous estimates about (x
i
t)
2 (i.e., six:t � Eit (x

i
t)
2),

by sp;t agents� homogeneous estimates about (pt)
2 (i.e., sp:t � Et (pt)

2), by sipx;t agents�

heterogeneous estimates about ptxit (i.e., s
i
px;t � Eitptx

i
t) and by s

i
w;t agents�heterogeneous

estimates about ~�2w (i.e., s
i
w;t � Eit [(� � Eit�)]

2 ). We also de�ne ~xit as agent i�s time t

estimate of the mean of x, ~pt as agents�time t (homogeneous) estimate of the mean of p and

covit(x; p) as agent i�s time t estimate of the covariance between x and p.

An agent i at time t is therefore de�ned by the signal she receives, xit, and her idiosyn-

cratic beliefs system [six:t; s
i
px:t; s

i
w;t; ~x

i
t; cov

i
t(x; p)]. The beliefs system is completed by the two

homogeneous elements sp:t and ~pt. The state space 
 is therefore de�ned as 
 = R8, with an
element ! =

�
xit; s

i
x:t; s

i
px:t; s

i
w;t; ~x

i
t; cov

i
t(x; p); sp:t; ~pt

�
. There is a joint probability distribution
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	t (i) that de�nes the cumulative distribution of agents at each point in time, and we de�ne

as 	zt (i) the marginal distribution for the generic variable z.

Individual demands are

kit =
�it (x

i
t � pt)

siw;t

; (10)

where

�it =
Etp

2
t � Etptxit

Etp2t + Etx
i
t � 2Etptxit

=
sp;t � sipx;t

sp;t + six;t � 2sipx;t
(11)

and3

siw;t = varit(�
i
tx
i
t +

�
1� �it

�
pt) (12)

=
�
�it
�2 �

six;t �
�
~xit
�2�

+
�
1� �it

�2 �
sp;t � (~pt)2

�
+ 2�it

�
1� �it

�
covit(x; p): (13)

We then have that aggregate demand is given by

Kt =

Z
�it (x

i
t � pt)

siw;t

d	t (i) : (14)

From the market clearing condition Kt = "t, it follows that prices evolve according to

pt =

R �itx
i
t


siw;t
d	t (i)� "tR �it


siw;t
d	t (i)

; (15)

or, since xit does not covariate with the other state variables (see below the updating rule

for six;t, s
i
xp;t, sp;t and s

i
w;t, which all depend on time t� 1 information) and

R
xitd	

x
t (i) = �

(where again 	xt (i) is the standard normal distribution)

pt = � �
"tR �it


siw;t
d	t (i)

: (16)

We now de�ne how beliefs are updated, according to recursive algorithms. Agents learn

about raw second moments according to

six;t+1 = six;t + gt

h�
xit
�2 � six;ti (17)

sp;t+1 = sp;t + gt
�
(pt)

2 � sp;t
�

(18)

sipx;t+1 = spx;t + gt
�
ptx

i
t � sipx;t

�
(19)

3Here we are using the identity V ar(x) = E[x2]� [Ex]2.
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and about the central moment siw;t using

siw;t =
�
�it
�2 �

six;t �
�
~xit
�2�

+
�
1� �it

�2 �
sp;t �

�
~pit
�2�

+ 2�it
�
1� �it

�
covit(x; p): (20)

Moreover, means and covariance of the two signals are updated according to

~xit+1 = ~xit + gt
�
xit � ~xit

�
(21)

~pt+1 = ~pt + gt [pt � ~pt] (22)

covit(x; p) = sipx;t � ~xit~pt: (23)

The learning gain gt, which controls how new information gets factored into the estimates,

is set equal to 1=t for the decreasing gain case, and to a small constant (more on this later)

in case of constant gain.

Note that pt depends on sp;t, as

pt = � �
"tR �it


siw;t
d	t (i)

= � � "tZ
sp;t�sipx;t

sp;t+six;t�2sipx;t
1


siw;t
d	t (i)

(24)

so (18) and (19) become

sp;t+1 = sp;t + gt

2664
0BB@� � 
"tZ

sp;t�sipx;t
sp;t+six;t�2sipx;t

1
siw;t
d	t (i)

1CCA
2

� sp;t

3775 (25)

sipx;t+1 = spx;t + gt

2664
0BB@
0BB@� � 
"tZ

sp;t�sipx;t
sp;t+six;t�2sipx;t

1
siw;t
d	t (i)

1CCAxit
1CCA� sipx;t

3775 : (26)

The system (17), (20), (21)�(23), (24)-(26) is a non-linear stochastic recursive algorithm,

whose long-run properties can be analyzed using stochastic approximation techniques.

3.1 Convergence results

We analyze convergence results for the decreasing gain case gt = 1=t, which reduces the

learning algorithms in instances of recursive least squares estimates. Since agents are esti-

mating only constants (means, variances, covariances), the algorithms are greatly simpli�ed:

care has still to be taken, though, when such values are endogenous, because of the feedback
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e¤ect from estimates to actual values.

Convergence of (17) is easy to establish, since xit is exogenous and agents are e¤ectively

estimating the value of an exogenous constant (the variance of the distribution). Using

stochastic approximation techniques (see Evans and Honkapohja (2001) for details), we can

represent the evolution, in notional time � , of estimated variables through an ordinary dif-

ferential equation (ODE) derived as follows

dsix
d�

= lim
t!1

E
��
xit
�2 � six;t� = �2 + �2v � six; (27)

and therefore in equilibrium six = �
2 + �2v, 8i. Moreover, this �xed point is stable since the

derivative of the ordinary di¤erential equation represented by (27) is equal to �1.
Similarly for (21), which gives rise to the ODE

d~xi

d�
= lim

t!1
E
�
xit � ~x

�
= � � ~xi (28)

with stable �xed point ~xi = �; 8i. Moreover, since "t is a zero mean i.i.d. process independent
from all time-t beliefs, we have, from (18),

d~p

d�
= lim

t!1
E

0BB@� � "tZ
sp;t�sipx;t

sp;t+six;t�2sipx;t
1


siw;t
d	t (i)

� ~pt

1CCA = � � ~p (29)

and therefore the stable �xed point is ~p = �.

To establish convergence of (25) and (26), we rewrite (20) as

siw;t =

�
sp;t � sipx;t

sp;t + six;t � 2sipx;t

�2
�2v+

�
1�

sp;t � sipx;t
sp;t + six;t � 2sipx;t

�2 �
sp;t � �2

�
+2�it

�
1� �it

�
covit(x; p)

(30)

so that our system is given by (25) and (26) plus (24) and (30). De�ning �t =

"
sp;t

sipx;t

#
, we

can write this system as

�t+1 = �t + t
�1H

�
t; sp;t; s

i
px;t; s

i
x;t; s

i
w;t; cov

i
t(x; p); "t

�
: (31)

and again, using stochastic approximation theory, we have that asymptotically the dynamics

of (31) are governed by the ODE
d�

d�
= h(�)

12
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where

h(�) = lim
t!1

EH
�
t; sp;t; s

i
px;t; s

i
x;t; s

i
w;t; cov

i
t(x; p); "t

�
:

We can then decompose h (�) into

hp = lim
t!1

E

0BB@
0BB@� � 
"tZ

sp;t�sipx;t
sp;t+six;t�2sipx;t

1
siw;t
d	t (i)

1CCA
2

� sp;t

1CCA (32)

hpx = lim
t!1

E

0BB@
0BB@� � 
"tZ

sp;t�sipx;t
sp;t+six;t�2sipx;t

1
siw;t
d	t (i)

1CCAxit � sipx;t
1CCA : (33)

Since xit does not covariate with the other state variables, (33) reduces to

hpx = �
2 � sipx (34)

and therefore sipx = �
2 8i: this �xed point is stable since the derivative of ODE (34) is equal

to �1.
As for (23), given that xit is exogenous and independent from prices, results about sipx,

~xi and ~p imply that sipx = ~x
i~p = �2 and therefore in equilibrium covit(x; p) = 0.

Using sipx = �
2 and six = �

2 + �2v, we have that (32) reduces to

hp = lim
t!1

E

0BB@
0BB@� � 
"tZ

sp;t��2
sp;t+�

2+�2v�2�2
1
siw;t
d	t (i)

1CCA
2

� sp;t

1CCA
and substituting in

siw;t =

�
sp;t � �2

sp;t � �2 + �2v

�2
�2v +

�
1� sp;t � �2

sp;t � �2 + �2v

�2 �
sp;t � �2

�
we have

hp = lim
t!1

E
��
� � 
�2v"t

�2 � sp;t�
and therefore

hp = �
2 + 
2

�
�2v
�2
�2" � sp: (35)

It follows that the equilibrium point is sp = �2 + 
2 (�2v)
2
�2" which leads to the Bayesian

13
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equilibrium found above. Moreover, the equilibrium is stable under learning (E-stable) since

the derivative of ODE (35) is equal to �1. The key result here is that agents can learn about
the variance of prices, which is endogenous and changes with agents�beliefs. Such result

might seem particularly surprising, since the value of the derivative of the ODE implies that

convergence does not depend on the speci�c parameterization assumed: the reason is that,

although prices are endogenous, opposing forces between �it and s
i
w;t in the demand schedule

ensure stability of prices. In fact, at equilibrium

�it
siw;t

=

sp;t��2
sp;t��2+�2v�

sp;t��2
sp;t��2+�2v

�2
�2v +

�
�2v

sp;t��2+�2v

�2 �
sp;t � �2

� = 1

�2v
:

Finally, convergence in all the learning algorithms ensures that �it also converges to its

equilibrium value, i.e., from (4),

lim
t!1

�it = lim
t!1

sp;t � sipx;t
sp;t + six;t � 2sipx;t

=

2�2v�

2
"

1 + 
2�2v�
2
"

; 8i:

Proposition 2 Consider the system of ODEs (27),(28), (29), (34), (35), de�ning learning
in notional time. All ODEs are stable and agents learn the means, variances and covariances
of the relevant exogenous and endogenous variables: it follows that �it ! �� and the system
converges to the Bayesian equilibrium with prices given by (6).

3.2 Constant gain

Though the decreasing gain case allows us to establish convergence of the model under

learning to the Bayesian equilibrium, from an applied perspective it seems more relevant

the case with constant gain. It might be argued, in fact, that agents trying to learn the

fundamental value of an asset would use a constant gain algorithm, to allow for time variation

in the fundamentals. A growing literature in applied macroeconomics has used constant gain

learning to explain a range of features, from the rise and fall of U.S. in�ation in the 70s and

80s (in particular, the seminal work of Sargent (1999) and Sargent at el. (2006)) to the

causes of business cycles (e.g., Milani (2011) and Eusepi and Preston (2011)).

Though for simplicity we model the underlying fundamental as a constant, in reality the

fundamental value of an asset is likely to change over time as conditions and pro�tability

of a �rm change, and with them the expected future cash �ow. We choose to model the

fundamental as constant because it simpli�es the analysis and it allows us to clearly identify

the e¤ects of the time variation in � on prices and volatilities. A time-varying fundamental

14



Prices, fundamental values and learning

would add to the volatility of the model, thus making it harder to disentangle the e¤ect that

comes from learning. Note, however, that such feature would likely enhance even further our

conclusions on the e¤ects of learning on prices and volatilities, as agents would then need to

learn about a time-varying variable.

It is well known that, with constant gain, beliefs can not converge point-wise, but they

can still converge in distribution. Provided some regularity conditions hold (See Evans and

Honkapohja (2001), pp. 162-166), parameter estimates converge in distribution to their

equilibrium values, and the variance of the distribution is proportional to the gain.

We resort here to simulations to investigate the transient dynamics of the system with

constant gain.

3.2.1 Simulations

Simulations of the model under real-time learning are run with a �nite number of agents

(n = 1000). Results reported are obtained with 
 = :9, �2v = 1, �
2
" = 1, g = :005, but we

will discuss the impact of di¤erent parameter values on results later on.

We �rst present the evolution of prices and of average weight in Figure 1.4 We can

see that, because of variations in the relative weight on signals, prices show excess volatility

with respect to their equilibrium values. In particular, periods of high volatility coincide with

periods of low �: as agents put more weight on prices in an attempt to predict fundamentals,

herding (to be de�ned precisely below) emerges and leads prices away from equilibrium.

While � deviates away from its equilibrium value for considerable time, both above and

below it, because equilibrium is unique and stable under learning deviations sooner or later

tend to be corrected and the system moves back towards equilibrium. These dynamics are

driven by a mix of herding and contrarian behavior, as explained in the next Section.

In Figure 2 we then show the evolution of average beliefs about means and variances of

the relevant variables. We can see that there is quite some variability in these values, driven

by the constant gain learning algorithm. The combination of sp, spx and sx contribute

to determine the evolution of �, while ~x, ~p and cov(x; p) contribute to determine demand

(and thus prices) through sw.In Figure 3 we then report returns from prices generated in a

Bayesian equilibrium and returns under learning. It can be seen that under learning returns

show clear patterns of volatility clustering that are missing in a Bayesian equilibrium: the

learning-induced variations in � account for this feature. In particular, periods of high

4While we report here only the average value of �, simulations show that there is also quite some
dispersion across agents in its value, driven by the idiosyncratic shocks in xit.
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Figure 1: Prices and �.
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Figure 2: Average beliefs
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volatility in returns coincide with periods of low �.
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Figure 3: Returns

In terms of our choice of parameter values, we run some sensitivity analysis to verify the

impact of di¤erent values on results. It emerges that, as expected, the volatility of � and

of prices is proportional to g: a smaller gain leads to limited variation in � and therefore

reduced volatility in prices; clustering in returns volatility also reduces. As a comparison,

for a gain equal to 0:001, average � �uctuates roughly between 0:3 and 0:6, a much smaller

range than that shown in Figure 1. In terms of 
, this parameter must be large enough

for changes in � to be re�ected in prices, but not too high to become destabilizing: a good

range found to work is roughly between 0:3 and 2.5 Finally, the variances �2v and �
2
" impact

in rather di¤erent ways. The variance of the supply shock must not be too high to avoid

prices becoming negative at times, when large shocks realize. The variance of the noise in

the private information instead a¤ects the estimates of siw, and through this channel demand

and prices: higher �2v leads, other things equal, to larger s
i
w, and thus smaller demand and

lower price variability.

5In particular, for a given �2", increasing 
 is more likely to lead to occasional negative prices, when large
supply shocks hit the system.
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4 Discussion

In our model fundamental values are constant, there is no persistence in any of the state

variables and shocks are i.i.d., stationary and homoscedastic. In addition, persistence is

not built in ad hoc, for example by imposing past values of the state variables in agents�s

perceived laws of motion. As a result, and as already noted before, our model is a model of

volatilities and not of trends.

In the Bayesian equilibrium, prices are normally distributed with mean � and variance


2 (�2v)
2
�2". Uncertainty about the signal extraction problem generates additional volatility

in prices, which is greater the more weight is put on prices in the formation of beliefs

about fundamental values. In fact, the correlation coe¢ cient between the average of �it and

jpt � peqt j is �0:5718: when � decreases, prices become more volatile, since more weight is
put on the endogenous signal (prices). A herd-like behavior emerges, where agents put more

weight on information that depends on other agents�actions rather than on their own private

information.

Results are not driven by changes in perception of risk, like in Branch and Evans (2011):

in fact, even if we �x siw;t to its equilibrium value, siw;t = ~�2w = ��2v, volatility in � still

emerges and impacts on prices. The key element in driving results here is instead the change

in weight on the two signals, exogenous and endogenous, due to changes in beliefs about

variances and covariances.

From individual demand under uncertainty (10), it follows

�kit
�pt

= � �it

siw;t

:

We can see that � contributes to determine the downward sloping curve of individual demand,

that is, the extend to which higher prices lead to lower demand. A smaller � means that

such e¤ect is dampened, since higher prices are taken to imply higher fundamental values.

Looking at the dynamics of �, we can identify periods of herding and periods of anti-

herding or contrarian behavior. A low � leads to herding in agents�behavior: agents disregard

part of their own information and follow others in their demand. High �, on the contrary,

implies contrarian behavior: agents put more weight on their private information than what

would be optimal in deriving their demand schedule.

For the purpose of this paper, we de�ne herding as periods where �it < �
�. The e¤ects

on demand depend on the sign of the numerator of equation (10) and are as follows:
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if �it < �� and xit > pt then k
i
t < k

�
i;t;

if �it < �� and xit < pt then k
i
t > k

�
i;t:

In the �rst case, agents herd into low demand because they put too much weight on a low

price signal (compared to the private signal); in the second case instead agents herd into

high demand because they put too much weight on a high price signal.

We then de�ne contrarian behavior as periods where �it > �
�, with the following impact

on demand:

if �it > �� and xit < pt then k
i
t < k

�
i;t;

if �it > �� and xit > pt then k
i
t > k

�
i;t:

In the �rst case, agents�demand is too low because they put too much weight on their own,

low, private signal; in the second case, agents�s demand is too high because they put too

much weight on their own, high, signal.

In other words, there is herding when agents demand less (more) than what would be op-

timal because they put too much weight on a low (high) public price signal, which leads them

to revise downwards (upwards) their beliefs about fundamentals. Similarly, there is contrar-

ian behavior when agents demand less (more) than what would be optimal because they

put too much weight on a low (high) private signal, which leads them to revise downwards

(upwards) their beliefs about fundamentals.

We then de�ne a herding index, h, as the fraction of time there is aggregate herding

in our economy (i.e., when mean(�it) < ��): that is, when, on average, agents put an

excessive weight on each other�s opinion (as conveyed by prices) when assessing fundamentals.

Simulations show that, on average, herding happens around 15% to 20% of the time.

Similarly, we de�ne a contrarian index, c, as the fraction of time there is aggregate

contrarian behavior in our economy (i.e., when mean(�it) > �
�): that is, when, on average,

agents put too little weight on each other�s opinion (as conveyed by prices) when assessing

fundamentals. Simulations show that around 80% to 85% of the time there is contrarian

behavior in our setup.

Note that herding is destabilizing for prices, as it induces lower (higher) demand when

prices are low (high), thus reinforcing price deviations from equilibrium. Contrarian behavior

instead is stabilizing, as it induces lower (higher) demand when prices are high (low), thus

19



Prices, fundamental values and learning

correcting price deviations from equilibrium. It is the combination of these two phenomena

that lead to excess volatility in prices, a �nding already highlighted by Park and Sabourian

(2011) in a di¤erent setting.

5 Conclusions

We have proposed a model where uncertainty and learning about fundamental values can

lead to excess volatility in prices and volatility clustering in returns. The key insight is that

when agents use prices as an endogenous signal for fundamentals, herding and contrarian

behavior in the use of information can emerge that lead to prices and returns to deviate

from equilibrium. This work thus presents a new mechanism able to generate volatility

patterns in prices and returns similar to those observed in real markets: instead of focusing

on speculative forces, we highlight the role played by uncertainty and learning about assets�

fundamental values.

6 Appendix

6.1 Derivation of �� with private signal

The optimal weight on the two signals, ��, is obtained by solving the problem

�� = argmin
�
Et

�
� � ~�it

�2
(36)

with
~�
i

t = �x
i
t + (1� �) pt: (37)

Minimizing (36) subject to (37) leads to the FOC

Et

�
� � ~�it

� �
pt � xit

�
= 0;

whose solution implies

�� =
Etp

2
t � Etptxit

Etp2t + Et (x
i
t)
2 � 2Etptxit

: (38)

Given that prices and exogenous signal do not covariate (since the noise in the signal is

averaged out by aggregation), this reduces to

�� =
�2p

�2p + �
2
v

: (39)

20



Prices, fundamental values and learning

Individual demand is then given by

k�i;t =
�� (xit � pt)


~�2w
; (40)

where ~�2w is the portfolio variance conditional on x and p, which is equal to the conditional

variance of the fundamental and given by

~�2w = Et

��
� � ~�it

�2
j xit; pt

�
= �2�2v + (1� �)

2 �2p: (41)

Aggregating individual demand (40) and equating it with supply we obtain the price

equation

pt = � �

~�2w
��
"t (42)

which implies

�2p =

�

~�2w
��

�2
�2": (43)

It follows from (39) and (41) that

~�2w =

�
�2p

�2p + �
2
v

�2
�2v +

�
�2v

�2p + �
2
v

�2
�2p;

which leads to

~�2w =

�
�2p
�2
�2v + �

2
p (�

2
v)
2�

�2v + �
2
p

�2 =

�
�2v + �

2
p

�
�2p�

2
v�

�2v + �
2
p

�2 =
�2p�

2
v

�2v + �
2
p

= ���2v: (44)

Substituting (44) into (42) we obtain

pt = �t � 
�2v"t

and therefore

�2p = 

2
�
�2v
�2
�2":
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