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stage game model where all market power resides with firms, on both the
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and prices, and under constant returns there exists a continuum of subgame
perfect Nash equilibria involving unemployment and positive profits. A firm
does not undercut the equilibrium wage since then high wage firms would
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1 Introduction

This paper provides a new explanation for involuntary unemployment as an equilib-

rium phenomenon under imperfect competition. We consider an oligempory1 market

structure, modelled as a multi–stage game, in which all market power resides with

firms; the same set of firms are wage–setting oligopsonists in their homogeneous

labour market and price–setting oligopolists in their homogeneous output market.

Equilibrium involuntary unemployment emerges in a novel way, driven essentially

by a Bertrand mechanism, and yet with positive profits and robustness to decreasing

returns.

Motivated in parts by Roberts (1987, 1989) and Jones and Manuelli (1992), the

oligempory is modelled as a four–stage game with n (≥ 3) firms facing an upward–

sloping labour supply function and a downward–sloping elastic output demand func-

tion; implicitly these functions emanate from decisions of a large (competitive) num-

ber of workers and consumers, so that firms possess all the market power on both

labour and output markets. As in the previous literature we assume that firms

precommit to announcing wages (stage I). Thereafter, and unlike the predecessors,

firms make labour demand decisions which (via a rationing mechanism) determine

employment levels (stage II), output is produced (stage III) and output prices are

announced (stage IV). This sequence seems natural for a “produce for inventory”

industry where firms employ many homogeneous workers. Plausibly such firms post

or advertise the wage on offer (stage I) prior to any commitment on the employment

level at this wage (stage II); then output is produced (stage III) and the stock of out-

put is “taken to the market” where price decisions are made (stage IV). The results

are that, under constant returns the Walrasian equilibrium is a subgame perfect Nash

equilibrium, but there also exists a continuum of subgame perfect Nash equilibria

involving involuntary unemployment in which firms earn strictly positive profits and

1The terms monempory (a single trader) and oligempory (a few traders) were coined by Nichol

(1943). An extensive study of oligempory from the industrial organization viewpoint can be found

in Dobson (1990).
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which therefore payoff dominate the zero–profit competitive equilibrium. Moreover,

the existence of a continuum of involuntary unemployment equilibria which payoff

dominate any full employment equilibria is robust to small amounts of decreasing

returns.

The reason why firms do nut undercut a symmetric wage which leads to involuntary

unemployment and positive profits is as follows. Take the constant returns case, with

“output=input” technologies. Suppose firm 1 undercuts at stage I and suppose that

the n−1 high wage firms then expand labour demands at stage II so that any n−2 of

them would exhaust the labour supply at the high wage. Then, at stage II: (i) all the

(homogenous) labour supply offered at the high wage is employed, and this will be

so even if one of the high wage firms deviates from its assumed large stage II labour

demand to any other level; (ii) because a labour demand deviation by any one high

wage firm has no impact on aggregate employment, it has no impact on aggregate

output (stage III) or its price (stage IV), and if this price, as it can, exceeds the

high wage it becomes a best response for each high–wage firm to choose the initially

assumed high level of labour demand; (iii) irrespective of its labour demand, firm

1 ends up with zero residual labour supply, and gets no workers, no output and

no profit. Thus there emerges a stage II continuation after undercutting by firm

1 which leaves firm 1 with zero profits. Moreover, this Bertrand–style conclusion

remains under small amounts of decreasing returns. So in our “double–market”

model, unlike in the classic Bertrand story, there emerges a continuum of equilibria

with rationing of labour supply and with positive profits, and this outcome does not

depend in a “knife–edge” way on constant returns.

Our explanation for involuntary unemployment differs from previous explanations

as follows.

(a) It is well–known that involuntary unemployment can be generated by exogenous

wage/price rigidities (in the so–called disequilibrium literature), efficiency wages

(where firms set high wages as it leads to greater productivity), output market power

with inelastic product demand (where the competitive wage drops to zero) or trade
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unions (demanding a wage which is too high for full employment). In our model

there are no exogenous restrictions on the wages/prices firms may choose, there are

no efficiency wage effects, output demand is elastic, and labour supply is competitive

with all labour market power residing with firms on the demand side.2 On the other

hand, market power of firms in both the output and the labour market are decisive

for our results; when the number of firms tends to infinity, unemployment converges

to zero and equilibrium wages and prices converge to their Walrasian values.3

(b) Closest to ours is the multi–stage game, constant returns model of Roberts

(1987, 1989) who assumes that firms must precommit to both wages and prices.

Subsequent and simultaneous signalling of labour supplies and output demands4

creates a continuum of involuntary unemployment equilibria at Walrasian prices,

again for a Bertrand reason, but quite different from ours – now the undercutting

firm’s fear is that, having committed to wages and prices, workers and consumers will

subsequently move their labour supply and output demand offers to other firms who

(at Walrasian prices, under constant returns) will accept them. However, like the

classic Bertrand story and unlike ours, the argument depends on constant returns

(see Roberts (1987, p. 872)) and the equilibria generate zero profits, thus ceasing

to payoff dominate the Walrasian equilibrium.5 Moreover, as shown by Jones and

Manuelli (1992), the involuntary unemployment disappears if the simultaneity of

labour supply and output demands signals is broken.

2For surveys on the microfoundations of Keynesian unemployment with imperfect competition

in labour and product markets, see Dixon and Rankin (1994) and Silvestre (1993).
3This result is not surprising in the light of related results for general equilibrium economies

with wage and price setting firms (see Funk (1995)).
4In the games of Roberts and Jones and Manuelli, workers and consumers are “players” who

signal individual labour supply and output demand offers to firms. In our model, labour supply

and output demand are described by continuous functions which may come from a continuum of

workers and consumers, and trades on the output and labour market are described by well–behaved

rationing schemes.
5Drèze (1997) shows that similar supply-constrained equilibria at Walrasian prices exist in

a more general model (compatible with decreasing returns and positive profits). However, his

argument rests on exogenous price rigidities.
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(c) Other explanations of involuntary unemployment equilibrium where firms ratio-

nally fail to lower wages are provided by recent theories of reciprocity (e.g. Duf-

wenberg and Kirchsteiger (2000))6, and the examples of Heal (1981) and Böhm

et al. (1983) where price–setting agents impose binding quantity constraints on

other agents in equilibrium, because of certain nonconvexities (Heal) or agent het-

erogeneities (Böhm et al.).7 In our model such reciprocities, nonconvexities and

heterogeneities are all absent.

On the other hand, there are multi–stage game models of firm interaction which

fail to produce our equilibrium with rationing. Crucial features of our model are

the strategic links between labour demand decisions and employment determination

(stage II) and the subsequent determination of output prices (stage IV). It is the

presence of these links which allows high wage firms to credibly coordinate on the

increase in their labour demands (after one firm undercuts) which makes undercut-

ting unprofitable, and which is critical for our conclusions. However in Jones and

Manuelli (1992) firms precommit to prices at stage I (as in Roberts), and in Stahl

(1988) there is no separate labour (=input)8 demand decision (inputs being allocated

automatically on the usual Bertrand “winner–takes–all” basis), thus absenting these

models from our crucial mechanism and leading to their “no equilibrium rationing”

conclusions.9 And finally, the dynamic oligempory model of Gaygisiz and Madden

6The view that firms may be reluctant to cut wages even in the face of unemployment is also

supported by interview studies (e.g. Bewley (1998)) and by experimental labour market studies

(e.g. Fehr et al. (1993, 1998)).
7Of course there are many models where the equilibrium actions of agents with market power

on one side of a market lead to no rationing of the other side of the market but to implicit rationing

of their own trades; see Madden & Silvestre (1991, 1992) for a discussion of the relation between

some of these models and fixprice equilibria.
8In Stahl’s model firms are “middlemen” making a market by buying from suppliers before

selling to purchasers - but one may equivalently think of firms buying labour input, producing

output under constant returns and selling output to the demanders.
9Stahl’s model may also generate a non–Walrasian conclusion under inelastic demand. If at

equal input prices it is assumed that a “winner” is randomly selected, the winner will take all the

supply (so there is still no rationing) but may retain some of this as unsold stock to force up output
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(2002) focuses on multiple long–run equilibria with heterogeneous labour markets

and voluntary unemployment, albeit with a similar market structure to ours.

The paper is organized as follows. In the next section we introduce the model, in

Section 3 we show the existence of a continuum of unemployment equilibria in the

constant returns case, and in Section 4 we show that the competitive equilibrium is

the unique symmetric equilibrium with full employment. Section 5 addresses equi-

librium selection, Section 6 discusses competitive limits, and in Section 7 we show

robustness to decreasing returns. Section 8 looks at other variations, including alter-

native rationing specifications and sequencing of decisions, and Section 9 concludes.

Some proofs which are not included in the text are contained in the Appendix.

2 The model

The setup

There are n ≥ 3 profit–maximizing firms producing a homogeneous output good

from inputs of homogeneous labour under, for now, unit constant returns.10 So

each firm’s technology is yi ≤ f(`i) = `i, where yi denotes output and `i labour

input of firm i = 1, . . . , n. These firms face a supply of labour function S(w) and a

demand for output function D(p) which are both assumed to be differentiable such

that S ′ ≥ 0 > D′ whenever these functions are defined and positive. We assume

that there is a unique positive Walrasian equilibrium wage (=price) w∗ = p∗ > 0

such that S(w∗) = D(p∗) > 0. The supply of labour is assumed to be bounded,

S(w) ≤ S. It is assumed that the inverse demand function P = D−1 is defined and

positive on the domain 0 < Y < S, and that the revenue function P (Y )Y is strictly

concave, i.e.

P ′′(Y )Y + 2P ′(Y ) < 0 , 0 < Y < S . (1)

price at the second stage. See also Yanelle (1989).
10Most of our results extend to n = 2 firms as well, but require slightly different proofs. Thus

we assume n ≥ 3 for convenience and refer to the two–firms case when necessary.
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We further assume that the revenue function is increasing, or equivalently that

demand is elastic:

MR(Y ) ≡ P ′(Y )Y + P (Y ) > 0 , 0 < Y < S . (2)

Moreover, we assume MR(0) = P (0) (which may be infinity). Obvious examples

of demand functions satisfying these requirements are the uniformly elastic demand

functions D(p) = Ap−α, α > 1, or the linear demand functions D(p) = a − bp

provided that S ≤ a/2.

The game

We will analyze a game between firms which has four stages. All actions are taken

simultaneously at each stage and firms are perfectly informed of past actions.11

Firms set wages at stage I, decide on employment at stage II and on production

at stage III, and they set output prices at stage IV. After firms announce wages

w1, . . . , wn at stage I, labour would be supplied first to the highest wage firms,

but these firms need not want to employ all labour supplied to them. Instead, at

stage II firms decide on employment by signalling labour demands (or job offers)

J1, . . . , Jn ≥ 0 to the market. If now labour demand of the highest wage firms falls

short of labour supply at that wage, the latter is rationed and some residual labour

supply spills over to the firms setting the second highest wage. We assume that

labour supply is efficiently rationed (see e.g. Kreps and Scheinkman (1983), Osborne

and Pitchik (1986)). That is, if labour supply at the highest wage is S(wH) and

total labour demand of the highest wage firms is JH < S(wH), then residual labour

supply at the second highest wage wL < wH is max(0, S(wL) − JH). Similarly,

labour supply is efficiently rationed at all other wages.12

If, on the other hand, there is an excess demand for labour at some wage, firms are

rationed. Specifically, if J1, . . . , Jm are the labour demands of firms setting the same

11Though an extension of our model to an environment of a repeated game with imperfect

information would be interesting, it is beyond the scope of this paper.
12The robustness of our results to the random (also Beckman or proportional) rationing rule

(Beckman (1965), Allen and Hellwig (1986)) will be discussed in Section 8.
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wage and if S is the (residual) labour supply at that wage, labour is allocated to

the firms via a rationing scheme which satisfies

`i = min
(
Ji, c

(
(Jk)k=1,...,m, k 6=i, S

))
, i = 1, . . . , m, (3)

where the continuous function c : IRm
+ → IR+ defines employment constraints for

all firms. Thus, we are assuming that the rationing scheme is non–manipulable

(i.e. the employment constraint of each firm does not depend on its own demand)

and symmetric (i.e. employment constraints are identical functions for all firms).

Moreover, we assume that the rationing is frictionless (i.e. only one side of the

market is rationed,
∑m

i=1 `i = min(
∑m

i=1 Ji, S)).13 An important consequence of

these assumptions (see Lemma A.1 in the Appendix) is that if m− 1 of these firms

offer the same labour demand (J say) then the employment constraint facing the

remaining firm is

c(J, . . . , J, S) = max
(

S
m, S − (m− 1)J

)
. (4)

After firms pay the wage bill wi`i at the end of stage II, they decide on production

yi ≤ `i at stage III, and at stage IV they set output prices p1, . . . , pn. Stage IV thus

becomes a Bertrand–Edgeworth game with “capacities” (y1, . . . , yn) in which costs

are sunk.

The stage III and stage IV equilibrium

Because demand is elastic, there are unique Nash equilibrium payoffs to the stage

IV subgame which are those that emerge from the firms setting the market clearing

price:

p1 = . . . = pn = P (y1 + . . . + yn) . (5)

Unlike Kreps and Scheinkman (1983), this result does not depend on the way con-

sumers’ demand is rationed at asymmetric prices (i.e. according to the efficient or

13The uniform rationing scheme (see Benassy (1982, Appendix J)) is an example of a rationing

scheme satisfying our assumptions. Non–manipulability is a decisive feature to guarantee existence

of equilibrium, see also our discussion in Section 8.
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the random rationing rule) and ensures that the Bertrand price setting produces an

essentially Cournot outcome (see Madden (1998)). Also because demand is elastic,

each firm’s revenue P (yi +y−i)yi is strictly increasing, and thus the unique subgame

perfect Nash equilibrium of each stage III subgame is that firms produce at their

capacity level

yi = `i , i = 1, . . . , n . (6)

We are interested in the set of symmetric equilibria of this game, which are defined

as subgame perfect Nash equilibria in which firms play equal pure strategies at each

stage along the equilibrium path. Given the subgame perfect Nash continuations

of the stage III and stage IV subgames noted in (5) and (6), it remains to consider

the 2–stage game in wages (w1, . . . , wn) (stage I) and labour demands (J1, . . . , Jn)

(stage II).

3 Unemployment equilibria

We start the analysis by considering the Nash equilibria of the second stage game

following symmetric wages w1 = . . . = wn = w at stage I. Naturally, if the wage is

sufficiently large, there are stage II Nash equilibria with involuntary unemployment

(rationing of labour supply), and we show later on that some of these wages followed

by their unemployment stage II continuation are in fact subgame perfect. For this it

is sufficient to show that neither an undercutting nor an overbidding by any firm (say

firm 1) can be profitable. Thus we have to show that both the stage II subgames

following wages w1 > w2 = . . . = wn = w and w1 < w2 = . . . = wn = w have

stage II Nash equilibrium continuations which give the deviating firm 1 a profit not

larger than its profit at the symmetric wage w1 = . . . = wn = w.14 Our arguments

refer at various points to the following Cournot Nash equilibrium levels of labour

14We do not consider the other (irrelevant) subgames at asymmetric wages, but we notice that

since the payoffs are continuous in (J1, . . . , Jn) ∈ [0, S]n, Glicksberg’s Theorem (see Fudenberg

and Tirole (1991)) implies that there exists a Nash equilibrium of any stage II subgame, at least

in mixed strategies.
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demand. Given w1, . . . , wn, the Cournot best response problem is (ignoring labour

supply constraints)

max
`i

P (`1 + . . . + `n)`i − wi`i s.t `i ≥ 0 . (7)

The objective is strictly concave in `i by assumption (1), and the Cournot Nash

equilibrium levels of labour demand (at w1, . . . , wn) are Nash equilibria of the game

with payoffs given by (7).

Symmetric wage subgames

Suppose firms announce equal wages w1 = . . . = wn = w at stage I. The first order

conditions for an interior (`i > 0 for all i) Cournot Nash equilibrium are

P ′(`1 + . . . + `n)`i + P (`1 + . . . + `n) = w , i = 1, . . . , n.

It follows immediately that any interior Cournot Nash equilibrium is symmetric,

`i = L/n, where L satisfies

Ψ(L) ≡ P ′(L)Ln + P (L) = w .

(1) and (2) imply that Ψ′(L) < 0 and 0 < MR(L) < Ψ(L) < P (L) for all 0 < L < S,

and thus also Ψ(0) = P (0). Hence, there exists a unique positive wage w < w∗ such

that Ψ(S(w)) = w, and so L = Ψ−1(w) < S(w) for all w < w < P (0) (see Figure

1). Therefore, any Cournot Nash equilibrium at a wage w > w involves an excess

supply of labour and thus provides a candidate for an unemployment equilibrium at

stage II in our model. And of course, since price exceeds the wage all these Cournot

Nash equilibria involve positive profits.

It is now straightforward to see that the Cournot Nash employment levels ` =

Ψ−1(w)/n are also Nash equilibrium strategies of the original stage II game in

labour demands J1, . . . , Jn provided that w > w. Since the rationing scheme is

non–manipulable and symmetric, the employment constraint facing each firm is

c = S(w) − (n− 1)` given that all firms signal Cournot Nash labour demands (see
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Figure 1: The supply, demand, and Cournot equilibrium curves. The bold curves

indicate stage II Nash equilibrium employment after symmetric wages at stage I.

(4)). If firm 1 deviated from the Cournot Nash labour demand to some J1, its

employment level would be `1 = min(J1, c) and the employment levels of all other

firms would remain unchanged; thus, firm 1 would make a strictly lower profit. This

implies

Proposition 1: If firms set equal wages w1 = . . . wn = w ∈ (w, P (0)) at stage I,

there is a Nash equilibrium of the stage II game with involuntary unemployment

and positive profits in which firms’ labour demands and employment levels are

J1 = . . . = Jn = `1 = . . . = `n = ` = Ψ−1(w)/n < S(w)/n .

The bold part of the curve Ψ in Figure 1 shows the unemployment equilibria of

Proposition 1. We are now going to show that some of these wages followed by their
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stage II Nash equilibrium continuation of Proposition 1 are subgame perfect, and

for this we show that neither undercutting nor overbidding is profitable.

Undercutting is unprofitable

Suppose that firm 1 undercuts at stage I to some w1 < w2 = . . . = wn = w where

w > w. Then, as explained in the introduction, the other firms credibly expand

their labour demands so as to force the undercutting firm 1 out of both markets,

provided that their wage is no higher than the competitive wage. More precisely,

if w ≤ w∗ there exists a Nash equilibrium of the stage II game in which all firms

i > 1 signal labour demands S(w)/(n − 2) and in which firm 1’s labour demand

is any arbitrary J1 ≥ 0. Since there is an excess labour demand at the highest

wage, employment constraints of all firms i > 1 are S(w)/(n − 1) (see (4) with

m = n− 1), and so all high wage firms are rationed to S(w)/(n− 1). The residual

labour supply to firm 1 is zero, and hence firm 1 gets zero employment irrespective

of its labour demand. Thus, any J1 ≥ 0 is a best response to Ji = S(w)/(n − 2),

i > 1. On the other hand, Ji = S(w)/(n − 2) is also a best response, since for

any other labour demand of firm i there would still be an excess demand for labour

at the wage w, and thus aggregate employment would remain at S(w) and the

resulting output price would stay constant at p = P (S(w)). Hence firm i’s profit is

(P (S(w)) − w) min(Ji, S(w)/(n − 1)) which is (when w ≤ w∗) non–decreasing and

constant for Ji ≥ S(w)/(n− 1). Therefore, Ji = S(w)/(n− 2) is a best response to

J1 and Jk = S(w)/(n− 2), k > 1, k 6= i. This proves15

Proposition 2: If firms set wages w1 < w2 = . . . = wn = w ∈ (w,w∗] at stage I,

there exists a Nash equilibrium of the stage II game in which firms’ labour demands

and employment levels are

J1 ≥ 0, J2 = . . . = Jn = S(w)/(n−2) and `1 = 0, `2 = . . . = `n = S(w)/(n−1) .

15When there are n = 2 firms, a Nash equilibrium which gives zero profits to the undercutting

firm 1 would be J1 = J2 = S(w). This Nash equilibrium requires that the undercutting firm signals

also a high labour demand.
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In particular, firm 1 makes zero profit and thus undercutting from w1 = . . . = wn =

w is unprofitable.

Firms do not undercut because of the credible fear that, at stage II, high wage firms

would then expand their labour demands, employment and output so as to reduce the

undercutter to zero trades and profits. We remark that there may also be a stage II

Nash equilibrium after undercutting which corresponds to the Cournot Nash labour

demands at these asymmetric wages. In the following we use the Cournot Nash

labour demands at asymmetric wages to argue that overbidding is unprofitable in

some cases.

Overbidding is unprofitable

Suppose now that firm 1 overbids at stage I to w1 > w2 = . . . = wn = w ∈
(w,w∗]. Lemma A.2 in the Appendix shows that there exists then a Cournot Nash

equilibrium at these wages in which `1 ≥ 0, `2 = . . . = `n = ` > 0 and where there

is unemployment at both wages: `1 < S(w1) and (n − 1)` < S(w) − `1, and so

this Cournot Nash equilibrium provides a candidate for a stage II unemployment

equilibrium. Moreover, firm 1’s profit π1(w1, w) at this Cournot Nash equilibrium is

strictly decreasing in w1 whenever it is positive, and may possibly become zero when

w1 is large. Therefore, firm 1’s profit at the Cournot Nash equilibrium after w1 > w

is lower than its profit π1(w, w) at the symmetric wage outcome of Proposition 1.

We are now going to show that the Cournot Nash equilibrium at (w1, w) is indeed

a stage II Nash equilibrium of our game in labour demands, provided that the wage

w is not too low (or equivalently that there is sufficiently high unemployment at

the equilibrium wage), thus establishing that overbidding is unprofitable. On the

other hand, if the wage (and unemployment) is too low, it becomes profitable for

the overbidding firm to employ all labour, so as to force other firms out of both

markets. Thus, only at sufficiently high wages (unemployment levels) firms do not

want to overbid the equilibrium wage in order to corner the output market.

Consider first the best response problem of low wage firms i = 2, . . . , n at stage II. If

12



J1 = `1, the residual labour supply at the low wage w is S = S(w)−`1. By (4) (with

m = n− 1), the employment constraints facing firms 2, . . . , n are S− (n− 2)` when

all these firms signal the Cournot Nash labour demands Ji = `, i > 1. Therefore, to

signal any other labour demand cannot change employment of the other firms, and

is therefore not profitable. Hence, the Cournot Nash labour demand Ji = ` is a best

response for any low wage firm i > 1 when J1 = `1 and Jk = `, k > 1, k 6= i.

Consider now the best response problem of the overbidding firm 1. If Ji = ` for

all i > 1, J1 = `1 is clearly the best response amongst all J1 < S(w) − (n − 1)`

since for these labour demands no firm is rationed. Suppose however that firm 1

raises its labour demand to some J1 ∈ [S(w)− (n− 1)`, S(w)]. Because J1 < S(w1),

firm 1 would not be rationed and would employ J1, but firms i > 1 would be

symmetrically rationed to ˜̀ = (S(w) − J1)/(n − 1). Total employment would thus

be J1 + (n − 1)˜̀ = S(w) and the output price would be P (S(w)). Hence, firm 1’s

profit at any such J1 would be less than or equal to

π̂1(w1, w) ≡ max
{(

P (S(w))− w1

)
J1 s.t. 0 ≤ J1 ≤ S(w)

}
.

If firm 1 raised its labour demand to some J1 > S(w), all firms i > 1 would be

rationed to zero, and firm 1 would employ `1 = min(J1, S(w1)) and make profit

π(`1) = (p(`1) − w1)`1. This profit is decreasing in `1 ≥ S(w) and hence non–

increasing in J1 ≥ S(w) since

π′(`1) = MR(`1)− w1 < Ψ(`1)− w1 ≤ Ψ(S(w))− w1 < w − w1 < 0 .

Thus, firm 1 makes a lower profit than π̂1(w1, w) by signalling a labour demand

J1 > S(w).

Notice that π̂1(w1, w) = 0 if w1 ≥ P (S(w)) and that π̂1(w1, w) = (P (S(w)) −
w1)S(w) if w ≤ w1 ≤ P ((S(w)). Hence, the slope of π̂1 is −S(w) whenever it is

positive. On the other hand, Lemma A.2 also shows that dπ1/dw1(w1, w) > −S(w)

whenever π1 is positive. Therefore, firm 1’s profit at the Cournot Nash equilibrium

π1(w1, w) is higher than its profit when it deviates to an excess labour demand
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π̂1(w1, w) for all wages w1 > w if and only if

π1(w, w) =
(
P (Ψ−1(w))− w

)Ψ−1(w)
n ≥

(
P (S(w))− w

)
S(w) = π̂1(w, w) , (8)

see Figure 2. Condition (8) is clearly fulfilled in some neighborhood of w = w∗ since

π̂1(w
∗, w∗) = 0 < π1(w

∗, w∗) and since both π1 and π̂1 are continuous. (8) is however

not fulfilled in a neighborhood of the Cournot Nash market clearing wage w = w at

which Ψ−1(w) = S(w). At this wage (and at wages close to it) it is profitable for

any firm to raise the wage slightly, to force other firms out of the labour market by

employing all their labour supply S(w), and thus to corner the output market. The

cost of taking up all labour supply is a fall in the resulting output price, and this

cost is lower than the gain of cornering the output market only if unemployment at

w is low enough.
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Figure 2: Firm 1’s profit at the Cournot Nash equilibrium (π1) and at an excess

labour demand (π̂1).

We can conclude that there exists a w̃ ∈ (w,w∗) such that (8) holds with equality

at w̃ and holds strictly at any w > w̃. Therefore, if w1 > w ∈ [w̃, w∗], the Cournot

Nash equilibrium labour demand is a best response for firm 1.
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Proposition 3: There exists a w̃ ∈ (w,w∗) such that if firms set wages w1 >

w2 = . . . = wn = w ∈ [w̃, w∗] at stage I, there exists a Nash equilibrium of the

stage II game in which labour demands and employment levels are the Cournot

Nash equilibrium strategies J1 = `1, Ji = `, i > 1, and in which firm 1 makes

profit π1(w1, w) < π1(w, w). In particular, overbidding from w1 = . . . = wn = w is

unprofitable.

Propositions 1-3 together prove the existence of involuntary unemployment equilib-

ria:

Theorem 1: There exists a continuum of symmetric equilibria with involuntary

unemployment and positive profits in which firms set wages w1 = . . . = wn = w ∈
[w̃, w∗] and in which total employment is Ψ−1(w) < S(w).

4 The full employment equilibrium

We ask now whether there also exist symmetric equilibria with full employment, and

we start again with the analysis of the stage II game after equal wages w1 = . . . =

wn = w at stage I. Clearly, if this wage is larger than the competitive wage, firms

would not want to employ all labour supply at this wage, since then profits would be

negative and each firm would prefer not to produce at all. On the other hand, for any

w ≤ w∗ there exists a Nash equilibrium of the stage II game with full employment in

which all firms signal labour demands Ji = S(w)/(n−1), i = 1, . . . , n. No firm wants

to deviate from this labour demand since there is an excess demand for labour even

if one firm deviates to zero labour demand. Hence, aggregate employment stays

constant at S(w) and the resulting output price remains at p(S(w)) ≥ w. Since

all firms’ employment constraints are S(w)/n (by (4)), each firm’s profit function

is non–decreasing for J < S(w)/n and constant for J ≥ S(w)/n. In particular,

J = S(w)/(n− 1) is a best response. The bold part of the supply curve in Figure 1

shows the stage II full employment Nash equilibria after equal wages at stage I.

15



It is, however, immediate to see that no wage below the competitive wage followed by

a full employment stage II continuation can be a subgame perfect Nash equilibrium.

Any firm (say firm 1) could raise the wage to some w1 > w, employ all labour supply

at that wage so that residual labour supply to the other firms would be zero and firm

1’s profit would be (p(S(w1))−w1)S(w1) which is strictly greater than firm 1’s profit

at the symmetric full employment equilibrium (p(S(w))−w)S(w)/n when w1 is close

to w. Therefore, the only candidate for a symmetric full employment equilibrium is

the competitive wage, and it turns out that it is indeed an equilibrium.16

Theorem 2: The unique symmetric full employment equilibrium is the zero–profit

competitive equilibrium.

Proof: As in the proof of Theorem 1, we show that neither undercutting nor overbid-

ding by firm 1 is profitable. If firm 1 undercuts, the same stage II Nash equilibrium

as in Proposition 2 would result in zero profits for firm 1, and thus undercutting

is unprofitable. If firm 1 overbids to w1 > w∗, there exists a Nash equilibrium

of the stage II game in which J1 = 0 and Ji = S(w∗)/(n − 2), i > 1. Clearly,

Ji = S(w∗)/(n − 2) is a best response to J1 = 0 and Jk = S(w∗)/(n − 2), k > 1,

k 6= i, by the same argument as in the proof of Proposition 2 (firms i > 1 are now

the low wage firms, but since J1 = 0, the argument is the same). Now suppose

that firm 1 deviates to some J1 > 0. Since there is an excess labour demand at w∗,

total employment would be S(w∗) as long as J1 ≤ S(w∗). Hence, if 0 < J1 ≤ S(w∗)

firm 1’s profit π1 = (p(S(w∗)) − w1)J1 = (w∗ − w1)J1 would be negative. If firm 1

deviates to J1 > S(w∗), residual labour supply at w∗ would be zero, and thus firm

1’s profit would be π1(`1) = (p(`1)−w1)`1 where `1 = min(J1, S(w1)). π1 is however

decreasing in `1 > S(w∗) since

π′1(`1) = MR(`1)− w1 < MR(S(w∗))− w1 < P (S(w∗))− w1 = w∗ − w1 < 0 .

16This result does not extend to n = 2 firms. In fact, it can be shown that overbidding of

the competitive wage leads to positive (expected) profits for the overbidding firm in any (possibly

mixed strategy) Nash equilibrium continuation of the stage II game.
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Therefore, all J1 > 0 lead to negative profits for firm 1, and so J1 = 0 is a best

response. 2

5 Equilibrium selection

Although a full employment equilibrium may exist (Theorem 2), there are several

reasons which point towards involuntary unemployment (Theorem 1) as the more

natural outcome.

First, the full employment equilibrium is payoff dominated by all involuntary unem-

ployment equilibria of Theorem 1. In fact the involuntary unemployment equilibrium

at the symmetric wage w̃ has highest profits and payoff dominates all other equilib-

ria. As the analysis of the previous section shows, not only the four–stage game has

multiple equilibria, but also several of the second–stage subgames (at given wages

set at stage I). At symmetric wages w ∈ (w,w∗] these multiple equilibria are shown

by the bold curves in Figure 1, and also the subgames after asymmetric wages ana-

lyzed in Propositions 2 and 3 have multiple equilibria. One may wonder whether an

equilibrium selection by a payoff–dominance criterion of the stage II subgame equi-

librium could restrict the set of subgame–perfect equilibria of the full four–stage

game. However, such a “Pareto perfect” requirement (Fudenberg and Tirole (1991,

p. 174–9)) is too demanding, at least with pure strategies. For instance, the compet-

itive equilibrium of Theorem 2 strongly fails this test, both off the equilibrium path

(after undercutting, high wage firms need to coordinate at stage II on the payoff

dominated full employment continuation) and even on the equilibrium path (the

full employment play at stage II is payoff dominated by the alternative Cournot–

Nash continuation). The involuntary unemployment equilibria of Theorem 1 also

fail in general17, but only off the equilibrium path. Hence none of the equilibria in

Theorems 1 and 2 are Pareto perfect.

17In fact this is untrue when n = 2 and w1 = w2 = w̃. Then, after undercutting by one firm, the

rival makes more profit taking the whole market than at the Cournot–Nash continuation. When

n = 2 the symmetric wage equilibrium at w̃ is uniquely Pareto perfect.
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One may therefore wonder whether our game has a Pareto perfect mixed–strategy

equilibrium and whether such an equilibrium would involve involuntary unemploy-

ment. To eliminate payoff–dominated subgame equilibria at arbitrary wages and to

compute mixed strategy equilibria is difficult, but we are able to exclude mixed–

strategy equilibria that have full employment with probability one. Hence, if a

Pareto perfect mixed–strategy equilibrium exists, it must involve involuntary unem-

ployment with positive probability.

Proposition 4: There exists no symmetric mixed–strategy equilibrium that has

full employment with probability one.

Proof: Appendix.

Secondly, the competitive equilibrium is in a certain sense unstable since all wage

deviations at the first stage produce zero profits for the deviator, and since also all

labour demand deviations at the second stage lead to zero profits as well. Thus,

best responses at the first and second stage of the equilibrium path are not unique,

and all deviations from the equilibrium strategies are not costly. In contrast, our

unemployment equilibria have unique best responses at each stage along the equi-

librium path. Propositions 2 and 3 show that deviations from the symmetric wage

at stage I lead to strictly lower profits, Proposition 1 shows that the Cournot Nash

equilibrium labour demands are the unique best responses at stage II, and also the

stage III and stage IV equilibrium strategies (5) and (6) are unique best responses

(see Madden (1998) for the stage IV game). Hence, any deviation from the equi-

librium path would be costly, and therefore our unemployment equilibria are strict

along the equilibrium path (see Güth and Ritzberger (1998)).

Thirdly, there is a quite different sense in which the competitive equilibrium is

unstable. If one perturbs our assumption of identical technologies to non–identical

but still constant–returns technologies yi = ri`i where (generically without loss of

generality) r1 = 1 > r2 > . . . > rn, then Theorem 1 extends easily. There exists a

continuum of involuntary unemployment equilibria in which all firms i = 1, . . . , n
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offer the same wage w ∈ [w̃, w∗] and produce at their Cournot–Nash employment

level. The lowest equilibrium wage w̃ is now defined by the condition that firm 1 is

indifferent between taking the market and accepting the Cournot–Nash continuation.

All firms are active, with high–cost firms producing less than low–cost firms. But

the competitive equilibrium ceases to be an equilibrium, indeed there is no full

employment equilibrium under small perturbations. Only firm 1 would be active in

the competitive equilibrium (J2 = . . . = Jn = 0) and firm 1 would then benefit from

reducing J1 below S(w∗). One might expect a “second–price” result, namely a full

employment equilibrium with real wage r2 in which only firm 1 is active, but again

firm 1 would want to reduce J1 if r2 is close to 1; and if firm 2 also was active, firm 1

would benefit from raising w1 a little and taking the whole market. Extending this

reasoning rules out all full employment equilibria when rn is sufficiently close to 1 –

only the involuntary unemployment equilibria remain.

6 “Competitive” limits

To illustrate the role of product and labour market power for our results, it is

instructive to use a parametric example. Suppose that output demand is uniformly

elastic, D(p) = Ap−α with α > 1, and that labour supply below the upper bound has

a constant wage elasticity, S(w) = min(Bwβ, S), β ≥ 0. Suppose that A,B < S so

that the Walrasian equilibrium wage (=price) is given by w∗ = p∗ = (A/B)1/(α+β)

with employment/output level D(p∗) = S(w∗) = B(A/B)β/(α+β). The Cournot

marginal revenue function Ψ is

Ψ(L) =
(
A
L

)1/α(
nα− 1

nα

)
.

Theorem 1 implies that for wages in the interval [w̃, w∗] there are unemployment

equilibria with employment levels Ψ−1(w). The unemployment rates in these equi-

libria are

u = 1− Ψ−1(w)
S(w)

= 1− A
B · (1− 1/(nα))α

wα+β , w̃ ≤ w ≤ w∗ .
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In particular, the (highest) equilibrium unemployment rate at the Walrasian wage

is

u∗ = 1−
(
1− 1

nα

)α
. (9)

According to the proof of Proposition 3, the lowest equilibrium wage w̃ is determined

by equation (8) which, after substituting for the corresponding unemployment rate

ũ, turns out to be

nα− 1 + 1
n(1− ũ) = nα(1− ũ)1/α . (10)

It is easy to see that this equation has a unique solution ũ in the interval (0, u∗). All

unemployment rates in the interval [ũ, u∗] are attained in the unemployment equilib-

ria of Theorem 1. Equations (9) and (10) reveal that this interval only depends on

the number of firms, n, and on the elasticity of product demand, α, but not on the

elasticity of labour supply. If the number of firms tends to infinity, u∗ (and so also

ũ) converge to zero and therefore unemployment vanishes in the limit. In contrast,

if the elasticity of product demand tends to infinity, unemployment remains positive

in all equilibria: u∗ converges to u∗∞ = 1− e−1/n, whereas ũ converges to the unique

solution ũ∞ ∈ (0, u∗∞) of the equation

1 + n ln(1− u) = 1− u
n .

Hence, unemployment persists in the limit of a perfectly elastic product demand,

whereas wages and prices converge to their Walrasian values. One may wonder

whether even the oligopsony model in which firms take the competitive price p∗

as given (i.e. our model without stage IV) has unemployment equilibria. Indeed it

turns out that firms setting the Walrasian wage at stage I and rationing labour sup-

ply to any arbitrary level at stage II is a subgame perfect equilibrium; any attempt

to undercut can be punished by an employment expansion of the rivals. However,

all these equilibria involve zero profits, and thus they do not payoff dominate the

competitive equilibrium. More importantly, these unemployment equilibria are not

robust to decreasing returns, as has been shown in an earlier version of this paper

(Kaas and Madden (1999)). In contrast, the unemployment equilibria of the oligem-
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pory (i.e. oligopsony and oligopoly) model are robust to decreasing returns, as will

be shown in the next section.

7 Decreasing returns

Under constant returns there exists a continuum of involuntary unemployment equi-

libria which payoff dominate any full employment equilibria. The reason why firms

did not undercut an involuntary unemployment equilibrium wage was that the other

high–wage firms would expand labour demand forcing the undercutter to zero trade

and profits. A similar response supports the classic, single market Bertrand paradox

equilibrium under constant returns, an equilibrium which disappears under decreas-

ing returns. We argue now that the main features of our model have no such

knife–edge dependency on constant returns. Specifically, if production functions

exhibit a small amount of decreasing returns, there continues to be a continuum

of involuntary unemployment equilibria which payoff dominate any symmetric full

employment equilibria. The full argument is lengthy and technical, so we merely

provide a sketch here – a complete proof and discussion is available on request from

the authors or from http://mailbox.univie.ac.at/˜kaasl9/appB.pdf.

We consider decreasing returns production functions f(`i) which belong to the family

F (σ), σ ∈ [0, 1), of twice continuously differentiable concave functions defined on

[0, S] where f(0) = 0 and f ′(`i) ∈ [1 − σ, 1 + σ] for all `i ∈ [0, S]. For f ∈ F (σ),

f(`i) ∈ [(1 − σ)`i, (1 + σ)`i] and so the output level and the marginal product of

labour are “uniformly close” to their unit constant returns values if σ is “small”.

With w∗ and w as defined earlier (see Figure 1), the result is:

Theorem 3: There exists some σ∗ > 0 and some wa < wb where wa, wb ∈ (w,w∗),

such that if the production function f(`i) belongs to the family F (σ∗) then;

(a) there exists a continuum of symmetric equilibria with involuntary unemployment

and positive profits in which firms set wages w1 = . . . = wn = w ∈ [wa, wb],
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(b) for firms, the equilibria in (a) payoff dominate any symmetric equilibrium with

full employment.

The argument parallels that of Section 3 as follows. Suppose f(`i) belongs to F (σ).

Then;

(i) For σ small enough, there are symmetric wage Cournot Nash equilibria with

involuntary unemployment at wages w ∈ [wa, wb], described by w = Ψf (L) say,

where Ψf (L) is close to Ψ(L) in Figure 1. Exactly as in Section 3 these equilibria

are stage II Nash equilibria after the symmetric wages w ∈ [wa, wb] at stage I, and

produce positive profits.

(ii) Undercutting a symmetric wage w ∈ [wa, wb] is unprofitable. There is only

one real complication to the earlier argument (that high wage firms expand labour

demand to S(w)/(n−2) and produce zero profits for the undercutter). In Section 3,

deviations at stage II by a high wage firm i to Ji 6= S(w)/(n−2) produce a profit of

(p(S(w))−w) min(Ji, S(w)/(n− 1)). When w < w∗ the graph of this function of Ji

is a positively sloped line, becoming flat at S(w)/(n− 1). With decreasing returns,

the corresponding profit function is highly non–linear, but, with σ small enough, it

still has a positively sloped graph up to S(w)/(n−1), ensuring that high wage firms

will continue to expand their labour demand to the required extent.

(iii) Overbidding is unprofitable. After overbidding by firm 1 to w1 > w ∈ [wa, wb],

the Cournot Nash equilibria again provide a candidate for a stage II Nash equilibrium

with firm 1 profits now πf
1 (w1, w) say (π1(w1, w) in Section 3). For σ sufficiently

small, we are able to show that πf
1 (w1, w) has the qualitative features of, and is

close to, π1(w1, w) shown in Figure 2, and that the analogue of π̂1(w1, w) is also

close to that shown in Figure 2. The Cournot Nash equilibria thus provide a stage

II Nash equilibrium after overbidding by 1 with lower profits for 1 than originally,

thus completing (a).

(iv) For (b), as σ → 0 profits in any symmetric full employment equilibrium also

converge to zero, and so, for σ small enough, these profits are less than those in (a).

Theorem 3 cannot apply to production functions which satisfy the Inada condition
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f ′(0) = ∞. However in an earlier version (Kaas and Madden (1999)) which is based

on the example of Section 6 and a Cobb–Douglas production function f(`i) = `γ
i ,

2/3 < γ < 1, extensive calculations showed that the conclusions of Theorem 3

still hold. The conditions in Theorem 3 are therefore sufficient but by no means

necessary. Anyway Theorem 3 does show that our constant returns message is

robust to perturbations of the technology in the direction of decreasing returns.

8 Other variations

Finally we explore some other variations on the model of Section 2. First, our results

do not depend on the assumption that labour supply is efficiently rationed. If we

assume random rationing instead, the residual supply at the second highest wage

wL < wH would be (with JH < S(wH) denoting labour demand at the highest

wage) (1 − JH/S(wH))S(wL). Residual supply is thus larger than under efficient

rationing. The undercutting argument would be exactly the same as under efficient

rationing, since high wage firms’ labour demand exceeds supply, leaving zero residual

supply to the undercutting firm again. If firm 1 overbids the equilibrium wage and

deviates from the Cournot Nash labour demand to above such that low wage firms

are rationed, the resulting output price would be lower than under efficient rationing

since residual labour supply at the low wage is higher. Hence, firm 1’s profit would

not be greater than its profit under efficient rationing, π̂1(w1, w), if it deviates to an

excess labour demand, and therefore the Cournot Nash labour demand is again a

best response of the overbidding firm 1 to the Cournot Nash labour demands of the

low wage firms.

On the other hand, non–manipulability of rationing is a decisive feature for our

results. Some other formulations of rationing schemes in Bertrand games specify the

firms’ rationing to be proportional and thus manipulable (see, e.g., Allen and Hellwig

(1986)). When firms are proportionally rationed, labour allocated to firms would

be, instead of (3), given by `i = min(Ji, S ·Ji/(
∑m

k=1 Jk)). Hence, any firm could get
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all (residual) labour supply by raising its labour demand to infinity, in particular it

could attract all workers from other firms paying the same wage. We believe that

such a feature would not be a credible description of the matching of jobs and workers

in the labour market. It would also lead to serious non–existence problems in several

stage II subgames. Our undercutting argument would break down at all wages below

the competitive wage since high wage firms cannot coordinate on an excess labour

demand equilibrium at stage II to punish the deviator; any high wage firm would

want to raise its labour demand to infinity to get all labour supply whenever the price

exceeds the wage. However, there would still exist an unemployment equilibrium at

the competitive wage; here the undercutting argument goes through since high wage

firms would make zero profit and do not have an incentive to signal an infinite labour

demand. Also the competitive equilibrium would be an equilibrium of the game.

However, we would expect these results not to be robust to decreasing returns.

Our results depend crucially on some specifications of the timing of the game, while

others may be varied. It is decisive to assume that firms commit to wages before

they decide on employment and also that they decide on employment before they

set prices. If firms decide either wages and employment or employment and prices

simultaneously, our undercutting argument breaks down. However, other timing

assumptions may be changed. If firms decided on employment and production si-

multaneously at stage II and then on prices at stage III, the game’s equilibria would

be the same, since firms would still set yi = `i in any stage II equilibrium. Further-

more, if firms decided on production and prices simultaneously after employment,

the stage III game would be a simultaneous Bertrand–Edgeworth game with capaci-

ties (`1, . . . , `n) in which costs are sunk. Because demand is elastic, the unique Nash

equilibrium of this game would again be given by (5) and (6) irrespective of the way

demand is rationed.

As in Stahl (1988), our model is partial equilibrium, and output demand and

labour supply schedules are not explicitly derived from utility maximizing work-

ers/consumers, unlike in the models of Roberts (1987), Jones and Manuelli (1992) or

Drèze (1997). However, it is straightforward to integrate our model in a multi–sector

24



general equilibrium model in the spirit of Blanchard and Kiyotaki (1987) in which

a continuum of consumers demand consumption goods from all sectors, but supply

labour in only one sector. If consumers receive profit income from various sectors

and if the number of sectors is large, there are no income feedbacks on the labour

supply and output demand functions of each sector. Hence, the equilibrium in each

sector is as in the partial equilibrium model, and if firms in all sectors coordinate

on unemployment equilibria, the general equilibrium also involves unemployment.

9 Conclusions

Involuntary unemployment can be easily explained as a disequilibrium phenomenon

emanating from ad hoc nominal or real rigidities. To provide an equilibrium ac-

count for involuntary unemployment is a more difficult matter. Efficiency wages

provide perhaps the best–known explanation. Here we have taken up the theme

from another well–known story (Roberts (1987, 1989)), where a multi–stage game,

in which constant returns firms possess labour and output market power, produces

zero–profit equilibria with involuntary unemployment and with full employment.

The involuntary unemployment equilibria are generated by a coordination failure

arising from the assumed simultaneity of labour supply and output demand offers

at the second stage of the game after wages and prices have been set at the first

stage. With first stage wage and price commitment, but variations in the subse-

quent timing of demand and supply offers, Jones and Manuelli (1992) find that the

involuntary unemployment disappears from equilibrium, an outcome also found in

the related model of Stahl (1988). Our model differs from these predecessors in that

firms make labour demand decisions before they have to commit to output prices,

and these employment decisions then have a strategic influence on prices.

Our results also differ markedly from the previous literature – there exists a contin-

uum of positive profit, involuntary unemployment equilibria which payoff dominate

full employment equilibria, and this conclusion holds under constant returns and
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under (small amounts of) decreasing returns. The mechanism supporting the equi-

librium involuntary unemployment is essentially Bertrand, but quite different from

that of Roberts. Firms do not undercut the wage since they fear that the other firms

would each expand their labour demand so as to leave the undercutter with zero

employment and profit; and it is optimal for each of the high–wage firms to expand

labour demand if the others do since, under constant or near constant returns, the

expansion has a negligible impact on output price. The paper thus claims to pro-

vide a new and robust explanation for involuntary unemployment as an equilibrium

phenomenon.

Appendix

Lemma A.1 If there are m firms setting the same wage, if (residual) labour supply

at this wage is S, and if the labour demands of firms 2, . . . , m are all equal to J , then

firm 1 is rationed according to `1 = min(J1, c(J, . . . , J, S)) where the employment

constraint is

c(J, . . . , J, S) = max
(

S
m, S − (m− 1)J

)
.

Proof: First consider J > S/m. If firm 1 signals J1 = J , by symmetry all firms

would be rationed to `i = S/m, i = 1, . . . , m. Thus, firm 1’s employment con-

straint is c(J, . . . , J, S) = S/m > S − (m − 1)J . Second consider J < S/m. Then

c(J, . . . , J, S) ≥ S−(m−1)J , since otherwise firm 1 would be rationed if it signalled

J1 = S − (m − 1)J which is impossible since the rationing scheme is assumed to

be frictionless. Now suppose c(J, . . . , J, S) > S − (m − 1)J . If then firm 1 signals

J1 = c(J, . . . , J, S) it gets `1 = J1 and by symmetry all other firms are rationed

to ` = (S − J1)/(m − 1) < J . In particular, if firm 2 deviated to the higher

labour demand J2 = J1 > J it would still be rationed to ˜̀
2 = ` < J (because

of non–manipulability), and because of symmetry firm 1 must then be rationed to

˜̀
1 = ˜̀

2 = `, too. All other firms signalling labour demands J get some ˜̀≤ J . But

this contradicts the assumption that the rationing scheme is frictionless since total
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employment is ˜̀
1+˜̀

2+(m−2)˜̀< mJ < S while total demand is J1+J2+(m−2)J >

mJ . Therefore we must have c(J, . . . , J, S) = S − (m − 1)J > S/m. Finally, the

case J = S/m follows from continuity of c(.). 2

Lemma A.2 Suppose that w1 > w2 = . . . = wn > w. Then there exists a Cournot

Nash equilibrium `1 ≥ 0, `2 = . . . = `n = ` > 0 such that `1 < S(w1) and

(n− 1)` < S(w)− `1. Firm 1’s profit in this Cournot Nash equilibrium π1(w1, w) is

strictly decreasing in w1 whenever it is positive. Moreover, dπ1
dw1

(w1, w) > −S(w).

Proof: Since profit functions are strictly concave by assumption (1), `1, `2 = . . . =

`n = ` is a Cournot Nash equilibrium (CNE) if the first order conditions

P ′(L)`1 + P (L) ≤ w1 , `1 ≥ 0 , `1(P
′(L)`1 + P (L)− w1) = 0 (11)

P ′(L)` + P (L) = w , ` > 0 (12)

are fulfilled, where L = `1 +(n−1)`. Clearly, an interior CNE (`1 > 0) has to satisfy

Ψ(L) = P ′(L)Ln + P (L) =
w1 + (n− 1)w

n (13)

and

` = `(w1, w) =
w − P (L)

P ′(L)
> 0 and `1 = `1(w1, w) =

w1 − P (L)
P ′(L)

> 0 .

A solution to (13) exists whenever (w1 + (n− 1)w)/n < P (0) = Ψ(0) and ` is then

always positive because w < (w1 + (n − 1)w)/n = Ψ(L) < P (L). If `1(w̃1, w) = 0

for some w̃1 > w, then for all w1 ≥ w̃1 there exists a CNE where `1 = 0 and where

` is uniquely determined by (12).

Whenever the CNE is interior, differentiation of (13) implies that

dL
dw1

= 1
P ′′(L)L + P ′(L)(1 + n)

< 0 (14)

(the denominator is negative because of (1)). Differentiation of (11) yields

d`1
dw1

= 1
P ′(L)

· P ′′(L)(L− `1) + P ′(L)n
P ′′(L)L + P ′(L)(1 + n)

< 0 (15)
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which is also negative because of (1) (the numerator is clearly negative when P ′′(L) ≤
0; when P ′′(L) > 0, we have P ′′(L)(L− `1) + nP ′(L) < P ′′(L)L + 2P ′(L) < 0). (14)

and (15) imply that

`1(w1, w) < `1(w,w) < S(w) ≤ S(w1) ,

`1(w1, w) + (n− 1)`(w1, w) < `1(w,w) + (n− 1)`(w,w) < S(w) .

Firm 1’s profit π1(w1, w) = (P (L) − w1)`1 is decreasing in w1 when the CNE is

interior since

dπ1
dw1

= − `1

P ′′(L)L + P ′(L)(1 + n)

(
P ′′(L)(2L− `1) + P ′(L)2n

)
< 0

(the term in the bracket is clearly negative when P ′′(L) ≤ 0; when P ′′(L) > 0 we

have P ′′(L)(2L− `1) + P ′(L)2n < 2(P ′′(L)L + 2P ′(L)) < 0).

Finally, we show that dπ1
dw1

> −L > −S(w). This amounts to showing that

P ′′(L)(2L− `1) + P ′(L)2n > L
`1

(
P ′′(L)L + P ′(L)(1 + n)

)
. (16)

From (14) and (15) it follows that dL/dw1 > d`1/dw1, and thus L/`1 ≥ n since

L(w, w)/`1(w,w) = n. Hence, (16) follows if

P ′′(L)(2L− `1) + P ′(L)2n > n
(
P ′′(L)L + P ′(L)(1 + n)

)

or if

P ′′(L)
((n− 2)L + `1

n− 1

)
+ P ′(L)n < 0 .

But this last condition follows again from (1) and ((n− 2)L + `1)/(n− 1) < L. 2

Proof of Proposition 4: Suppose that firms randomize at stage I over a set

of wages W ⊂ IR+ with common c.d.f. F : W → [0, 1], and that there is full

employment with probability one. Obviously, sup W ≤ w∗ since otherwise firms

would not want to employ all labour if they set wages above w∗.

Suppose first that F is not atomless, but gives positive probability f0 to some

w0 ∈ W . Since all firms set w0 with positive probability and split the market then
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at stage II, any firm (firm 1 say) would want to deviate to a randomized strategy

that gives probability f0 to w0 +ε, zero probability to w0 and the same probabilities

to all other wages. By doing so, firm 1 gains the whole market if all other firms set

w0 (which happens with positive probability fn−1
0 ) but loses arbitrarily little in all

other cases provided that ε is small enough. Therefore, F must be atomless.

Since F is atomless, each firm gains the whole market or nothing with probability

one. Hence, if firm 1 sets wage w, its expected profit is Eπ(w) = (P (S(w)) −
w)S(w)F (w)n−1. Since firms must be indifferent between all wages w ∈ W in a

mixed–strategy equilibrium, we know that Eπ(w) = k for some constant k ≥ 0.

Solving this identity, we obtain the c.d.f.

F (w) =
(

k
(P (S(w))− w)S(w)

)1/(n−1)
, w ∈ W.

For k = 0, this distribution degenerates to a Dirac distribution concentrated at

w = w∗. For k > 0, F (w) > 0 at the minimum equilibrium wage w = inf W . In

particular, F is not atomless, contradicting the previous argument; firms cannot set

the minimum equilibrium wage with positive probability since they would want to

overbid this wage slightly to gain the whole market with positive probability. 2
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