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Abstract
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strained, and di¤erent assumptions are likely to lead to di¤erent economic predictions.
In a simple forward looking model we compare adaptive learning and evolutionary dy-
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rium and transition dynamics, and we try to shed some light on the reasons for such
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Expectations formation under adaptive learning and evolutionary
dynamics

1 Introduction

Rational expectations (RE) represent a powerful way of closing and solving an economic

model but they impose strong requirements on agents in terms of information and computa-

tional capabilities. In recent years, a growing number of studies have tried to understand the

e¤ect of replacing RE with more realistic ways of modelling agents�expectations. One popu-

lar method is adaptive learning, where agents are treated as econometricians that repeatedly

adjust the parameter values in their model economy. Prominent examples are Sargent (1999),

Evans and Honkapohja (2003), Evans, Honkapohja and Mitra (2009) and, for an extensive

treatise on methodology and applications, Evans and Honkapohja (2001).

Other methods have been used to model the way agents revise their expectations over time

that can be characterized as evolutionary methods. For example Sethi and Franke (1995)

consider an environment with strategic complementarities where adaptive expectations com-

pete with a costly sophisticated predictor under evolutionary pressures and �nd that the

costly rational predictor survives asymptotically; Branch and McGough (2008) extend this

analysis to a deterministic cobweb model, and �nd that similar results emerge.

The two approaches, adaptive learning and evolutionary dynamics, have also been studied

together: for example Berardi (2011) combines evolutionary selection among heterogeneous

classes of models with adaptive learning on the parameters of each model and �nds that

heterogeneous equilibria are possible when there is autocorrelation in the exogenous driving

process for the economy; Branch and Evans (2006) propose the concept of misspeci�cation

equilibrium, where di¤erent underparameterized predictors are selected even in the limit

under least-squares learning and dynamic predictor selection based on average pro�ts; Guse

(2010) considers a setting where agents can choose between a minimum state variable and

a sunspot forecasting model and �nds that with an ad hoc cost to using the sunspot predic-

tor, heterogeneity cannot be sustained under the combined evolutionary-adaptive learning

dynamics.

The relation between learning and evolution has been debated in biology for a long time:

Sznajder, Sabelis and Egas (2012) recently reviewed some of the literature concerning the

so called Baldwin e¤ect (Baldwin, 1896), i.e., the hypothesis that adaptive learning, by

improving �tness, accelerates evolution. Closer to our �eld of investigation, Marimon (1993)
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Expectations formation under adaptive learning and evolutionary dynamics

considers a game theoretical framework and compares key properties of adaptive learning

(adaptation, experimentation and inertia) with their counterparts in evolutionary dynamics

(reproduction, mutation and conservation).

We are not concerned here with the interplay between these two alternative schemes, but

instead with the comparison of their properties as drivers of beliefs dynamics and selectors of

equilibria. A key di¤erence between adaptive learning and evolutionary schemes as ways of

modelling the evolution of expectations is that in the �rst case the researcher usually endows

agents with a single forecasting model and then allows them to optimize the parameters

in such model through learning; in the second case instead the researcher selects a set of

alternative forecasting models, and then allows agents to choose among this �xed set of

rules based on their relative performance.1 Anufriev and Hommes (2012) for example pre-

determine a set of rules, or heuristics, available to agents and investigate how the switching

between these rules can explain results from experimental data.

Another fundamental point is that under adaptive learning schemes dynamics are driven

by the di¤erence between what is predicted by the forecasting model (beliefs) and actual

outcomes, while under evolutionary schemes dynamics are driven by the di¤erence in perfor-

mance between di¤erent predictions (beliefs). If the performance is de�ned by the forecasting

error, then, in the �rst case dynamics are driven by forecast errors in absolute terms, while

in the second case by forecast errors in relative terms.

In order to investigate these issues, we chose a simple framework that is nevertheless

rich enough to allow for an understanding of the key properties of these two schemes. In

particular, we use a simple, one-dimensional forward looking model that allows for multiple

equilibria. An essential feature of the setting proposed is the self-referentiality induced

by expectations: without such self-referentiality, there would be only one forecasting model

consistent with equilibrium, and that would always prevail in the end. In addition, we need a

framework where the di¤erent schemes used to model belief dynamics (i.e., adaptive learning

and evolutionary dynamics) could lead to the same outcome: this requires that the di¤erent

heuristics used under replicator dynamics be nested into each other and within the perceived

law of motion (PLM) used under adaptive learning. We achieve this by assuming only two

heuristics (models for beliefs), one overparameterized with respect to the other (and with

respect to the fundamental equilibrium). There are in principle two possibilities in terms

of overparameterization: extra exogenous variables (sunspots), or extra lagged endogenous

1From an evolutionary perspective, only selection is allowed, but not mutation or crossover that could
generate new alternatives.
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variables. The �rst case has been analyzed in Berardi (20015) in a similar setting. We will

instead compare here a model with the minimum possible number of state variables against

one that is overparameterized with respect to it by the addition of a lagged endogenous

variable: crucially, both models are consistent with RE equilibrium.

2 The model

We consider the simple, one-dimentional, forward looking model

yt = A+BEtyt+1 + vt; (1)

with vt a zero mean, i.i.d. process with variance �2v. Etyt+1 represents expectations held by

agents, not necessarily rational.

This model has a minimum state variable (MSV) rational expectations (RE) equilibrium

(see McCallum, 1982) given by

yt =
A

1�B + vt (2)

and a continuum of AR(1) RE equilibria in the form

yt = �
A

B
+
1

B
yt�1 �

1

B
vt�1 + "t (3)

where "t = yt � Et�1yt. These equilibria are non-explosive for jBj > 1. If we set "t � vt,

we obtain the MSV equilibrium with an AR(1) representation, given appropriate initial

conditions.

3 Adaptive learning

Adaptive learning is usually modelled through schemes such as recursive least squares (RLS)

and stochastic gradient, but, more in general and for our purposes, could comprise any

scheme where beliefs are measured against actual outcomes and updated in the direction of

the error. We will assume here that agents use a RLS algorithm to form their expectations,

and we will follow Evans and Honkapohja (2001) for the ensuing analysis of stability under

learning (E-stability).

Consider �rst an homogenous setting. Assume agents use a PLM consistent with the

MSV equilibrium

yt = a; (4)

3



Expectations formation under adaptive learning and evolutionary dynamics

where a is a constant to be recursively estimated from data. Then their expectations are

Etyt+1 = a

and the ensuing actual law of motion (ALM) for the economy is

yt = A+ aB + vt:

The so called T-map from PLM to ALM is given by

T (a) = A+ aB

and the ensuing ODE representing learning dynamics2 is given by

_a = A+ aB � a

whose stability is governed by
@ _a

@a
= B � 1:

The MSV equilibrium is thus said to be E-stable if B < 1.

Consider now an economy where agents use a PLM consistent with the AR(1) equilibrium

yt = a+ byt�1: (5)

Expectations are then given by

Etyt+1 = a (1 + b) + b
2yt�1

and the ensuing ALM is

yt = [A+ a (1 + b)B] +Bb
2yt�1 + vt:

The ODEs are now

_a = A+ a (1 + b)B � a
_b = Bb2 � b

2See Evans and Honkapohja (2001) for details on the E-stability analysis.
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and stability is governed by the Jacobian

J =

"
(1 + b)B � 1 aB

0 2bB � 1

#
:

The eigenvalues of Jacobian J , evaluated at the AR(1) equilibrium values (a; b) =
�
�A
B
; 1
B

�
,

are 1 and B, and thus such equilibrium is unstable under learning dynamics (E-unstable).

The eigenvalues of Jacobian J evaluated at the MSV equilibrium (a; b) =
�

A
1�B ; 0

�
are instead

�1 and B�1: for B < 1 the system is locally asymptotically stable and the MSV equilibrium
is therefore said to be strongly E-stable w.r.t. PLM (5). Agents can learn to discard the

lagged endogenous variable and converge to the MSV solution.

3.1 Heterogeneous expectations

We consider now an economy where there are two groups of agents, one using (4) and the

other using (5).

Group 1 is endowed with PLM1, consistent with the MSV equilibrium

yt = a1

while group 2 is endowed PLM2, consistent with the AR(1) equilibrium

yt = a2 + byt�1:

Denoting by � the fraction of agents using PLM1, the ensuing aggregate expectations

are

Etyt+1 = �a1 + (1� �)
�
a2 (1 + b) + b

2yt�1
�

and the ALM

yt = A+B (�a1 + (1� �) a2 (1 + b)) +B (1� �) b2yt�1 + vt:

The T-maps are

a1 = A+B (�a1 + (1� �) a2 (1 + b)) (6)

a2 = A+B (�a1 + (1� �) a2 (1 + b)) (7)

b2 = B (1� �) b2: (8)
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The stability of the ensuing system of ODEs is governed by the Jacobian

J =

264B�� 1 B (1� �) (1 + b) B (1� �) a2
B� B (1� �) (1 + b)� 1 B (1� �) a2
0 0 2bB (1� �)� 1

375 :
The two equilibria (�xed points of the system of ODEs) are the MSV, where (a1; a2; b) =�

A
1�B ;

A
1�B ; 0

�
, and the AR(1), where (a1; a2; b) =

�
�A
B
;�A

B
; 1
B(1��)

�
:

We then evaluate the Jacobian at the two equilibria. At the MSV equilibrium we have

JMSV =

264B�� 1 B (1� �) AB
1�B (1� �)

B� B (1� �)� 1 AB
1�B (1� �)

0 0 �1

375 ;
which has eigenvalues f�1;�1; B � 1g and so the MSV equilibrium is E-stable for B < 1.

Instead at the AR(1) equilibrium we have

JAR(1) =

264B�� 1 B (1� �) + 1 �A (1� �)
B� B (1� �) �A (1� �)
0 0 1

375 ;
whose eigenvalues are f�1; 1; Bg and so the equilibrium is E-unstable for any � 2 [0; 1].
Note that an heterogeneous solution with (a1; a2; b) =

�
A
1�B ;�

A
B
; 1
B(1��)

�
is not possible,

as it is not a �xed point of the ODEs.

4 Evolutionary dynamics

Evolutionary dynamics are modelled here using replicator dynamics. Other schemes could be

used, such as the Brock and Hommes (1997) dynamics based on a logit model, or even models

of reinforcement learning. In general, any scheme where competing rules (beliefs/models)

are measured in terms of performance (some "distance" from actual outcomes) and the best

performing one(s) get reinforced.

A crucial issue in any evolutionary scheme without mutation/crossover is to decide the

set of alternatives that will compete against each other. We will consider di¤erent cases,

driven by considerations about the equilibria of the model. In each case we will have two

models (PLMs) competing against each other.

We assume that there is a continuum of agents of unit mass, distributed on the unit in-
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terval, and the fraction of agents using each forecasting model evolves according to replicator

dynamics driven by relative performance, as measured by mean squared errors (MSEs). In

notation, the fraction of agents � using PLM1 evolves according to the ODE

_� = � (1� �)� (9)

where

� =MSE2 �MSE1; (10)

with MSE2 the mean squared error of forecasts made using PLM2, and MSE1 the mean

squared error of forecasts made using PLM1. Clearly equilibrium points of evolutionary

dynamics are points where � = 0; � = 1 or � = 0.

Local stability of equilibrium points under replicator dynamics is governed by � _�
��
. We

have that
� _�

��
= (1� 2�)� + � (1� �) ��

��
:

In particular, at � = 1 or � = 0 local asymptotic stability is governed only by the sign of �:

� = 0 is stable for � < 0 while � = 1 is stable for � > 0.

Using the mean squared error as a driver of evolutionary dynamics might seem to impose

strong informational requirements on agents. An alternative would be to assume that agents

use an adaptive process to estimate the MSE over time, such as

MSEt = (1� gt)MSEt�1 + gt (yt � Et�1yt)2

with gt a small �xed or decreasing gain.3 For simplicity and analytical tractability, we will

assume in this work instead that agents have full knowledge of the relevant MSEs at each

point in time.

4.1 Competing models

There are two possible models available to agents at all times. The �rst, denoted, PLM1, is

consistent with the MSV equilibrium

yt = a1 (11)

3In order to use this measure of performance in our analysis, we would also need to replace the continuous
time replicator dynamics with a discrete time version.
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while the second, PLM2, is consistent with the AR(1) equilibrium

yt = a2 + byt�1; (12)

where parameters a1, a2 and b will be speci�ed later for di¤erent scenarios.

With an endogenous fraction � of agents using the �rst model and the remaining fraction

(1� �) using the second model, the ensuing aggregate expectations are

Etyt+1 = �a1 + (1� �)
�
a2 (1 + b) + b

2yt�1
�

and the ALM is given by

yt = A+B (�a1 + (1� �) a2 (1 + b)) +B (1� �) b2yt�1 + vt: (13)

The fraction of agents using each model is endogenous and evolves according to the replicator

dynamics system (9)-(10), where

MSE1 = E (yt � a1)2

MSE2 = E (yt � (a2 + byt�1))2 :

Inserting the ALM into the equations for the MSEs we obtain

MSE1 = E
�
A+ (B�� 1) a1 +B (1� �) a2 (1 + b) +B (1� �) b2yt�1 + vt

�2
(14)

MSE2 = E
�
A+B (�a1 + a2 ((1� �) (1 + b)� 1)) +

�
B (1� �) b2 � b

�
yt�1 + vt

�2
:(15)

Fixing parameters (a1; a2; b) will allow us to derive conditions for the dynamics of �.

4.2 PLMs consistent with RE equilibria

As seen above, there are two possible RE equilibria for the model (1). These equilibria de�ne

the two PLMs as follows: PLM1 is given by

a1 =
A

1�B; (16)

which is consistent with the MSV equilibrium; while PLM2 is given by

(a2; b) =

�
�A
B
;
1

B

�
; (17)
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consistent with the AR(1)equilibrium. The ensuing aggregate expectations are given by

Etyt+1 =
A (B2 + �� 1)
B2 (1�B) +

1� �
B2

yt�1

and the ALM is

yt =
A (B + �� 1)
B (1�B) +

1� �
B

yt�1 + vt: (18)

Inserting the ALM into the equations for MSEs we obtain

MSE1 = E

�
A (�� 1)
B (1�B) +

1� �
B

yt�1 + vt

�2
MSE2 = E

�
A�

B (1�B) �
�

B
yt�1 + vt

�2
:

Using the fact that, from (18) and assuming stationarity of yt,4

Eyt =
A

1�B

Ey2t =

�
A

1�B

�2
+

B2

B2 � (1� �)2
�2v

we have that

MSE1 =
B2�2v

B2 � (1� �)2

MSE2 =
(B2 + 2�� 1)�2v
B2 � (1� �)2

:

Clearly MSE2 > MSE1 , � < 1
2
: the model used by the majority of agents delivers better

forecasts and in the long run prevails under evolutionary dynamics. This means that both

� = 1 and � = 0 are locally asymptotically stable equilibria, with separating point � = 1
2
,

which is an unstable equilibrium. For � > 1=2, �! 1, while for � < 1=2, �! 0.

Proposition 1 In an economy represented by (1), the AR(1) model (17) delivers better
expectations (as measured by MSE) than the MSV model (16) if � < 1

2
: it follows that,

starting from any � < 1
2
, the economy would converge to an equilibrium with � = 0. If � > 1

2
,

instead, the MSV model dominates and the economy would converge to an equilibrium with
� = 1.

4Note, from ALM (18), that stationarity requires j1� �j < jBj : As � ! 1, this is satis�ed 8B, since
nobody is using the PLM2 anymore. As �! 0, instead, the requirement is the usual one for the existence
of stationary AR(1) solutions seen above, i.e., jBj > 1.
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This result is particularly interesting if compared to the outcome under adaptive learn-

ing: in that case the AR(1) equilibrium was not E-stable so agents using an AR(1) model

would not converge to equilibrium. Moreover, the MSV equilibrium was strongly E-stable

w.r.t. the AR(1) model, which means that agents, starting in a neighborhood of the MSV

equilibrium, would be able to learn to discard the additional lagged endogenous variable

and the economy would converge to the MSV equilibrium. We can see instead that under

evolutionary dynamics, contrary to learning, the economy can converge to an equilibrium

where all agents use the overparameterized AR(1) model: it only requires that enough agents

start using such model at the same time. This result is due to the fact that evolutionary

dynamics are driven by the di¤erence in performance between the two models, not the dis-

tance between the model forecasts and actual outcomes, as is the case under learning. Since

actual outcomes depend on forecasts, if enough people make forecasts using the overpara-

meterized PLM2, forecasts made with such model have smaller MSE and can prevail under

evolutionary dynamics.

4.3 Arbitrary beliefs on the lagged endogenous variable

We have seen that if enough agents use an AR(1) model consistent with the AR(1) RE

equilibrium, under replicator dynamics the economy can converge to such equilibrium. We

will show here an even stronger result, i.e., that the AR(1) model does not need to be

consistent with the AR(1) RE equilibrium for it to prevail.

The question we consider in this section can be reformulated in this way: suppose we are

in the MSV equilibrium, where all agents use PLM1 with a1 = A
1�B , and then at some point

some agents introduce a lagged variable with arbitrary coe¢ cient in their forecasting model,

therefore using PLM2 summarized by (a2; b) =
�

A
1�B ; b

�
, with arbitrary b. Could these

agents take over in the economy? In other words, could we move from a situation where

all agents use the MSV model to one where all agents use an AR(1) model with arbitrary

autoregressive coe¢ cient?

We know that, under adaptive learning, agents would learn to discard the additional

lagged endogenous variable, provided they start in a neighborhood of the fundamental equi-

librium, since we have seen that the MSV solution is strongly E-stable w.r.t. such overpara-

meterization. What would happen instead under evolutionary dynamics?

Starting from equation (13) with a1 = a2 = A=(1 � B) and arbitrary b we obtain the
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ALM

yt =
A+ AB (1� �) b

1�B +B (1� �) b2yt�1 + vt (19)

which implies, assuming stationarity of yt,

Eyt =
A (1 +B (1� �) b)

(1�B) (1�B (1� �) b2)

Ey2t =

�
A (1 +B (1� �) b)

(1�B) (1�B (1� �) b2)

�2
+

�2v
1� (B (1� �) b2)2

:

We can then compute

MSE1 = E

�
yt �

A

1�B

�2
=

b2 (1 + b)2A2B2 (1� �)2

(1�B)2 (1�B (1� �) b2)2
+

1

(1�B (1� �) b2)2
�2v

MSE2 = E

�
yt �

A

1�B � byt�1
�2
=

b2A2 (1�B (1� �))2

(1�B)2 (1�B (1� �) b2)2
+
b2 (1� 2B (1� �) b) + 1
(1�B (1� �) b2)2

�2v

and

� =
A2b2

�
1� 2B (1� �) + b

�
�2B2 (1� �)2

�
+ b2

�
�B2 (1� �)2

��
(1�B)2 (1�B (1� �) b2)2

+
b2 (1� 2B (1� �) b)
(1�B (1� �) b2)2

�2v:

Consider �rst the case without noise, i.e., �2v � 0. Clearly then the sign of � depends on the
quadratic (in b) polynomial

~� = 1� 2B (1� �) + b
�
�2B2 (1� �)2

�
+ b2

�
�B2 (1� �)2

�
(20)

whose roots are

b1 = � 1

B (1� �) ;

b2 = �2 + 1

B (1� �) :

Note that, besides the two homogeneous equilibria � = 0 and � = 1, there is the possi-

bility of an heterogeneous equilibrium here, when ~� = 0, i.e., when

� = 1 +
1

Bb
or � = 1� 1

B (2 + b)
:
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4.3.1 Homogeneous equilibria

We consider �rst the issue of stability for the homogeneous equilibria. De�ning bi < bj, we

have that for bi < b < bj, � > 0 while for b < bi [ b > bj, � < 0. We need to distinguish the
cases for positive and negative B.

If B < 0, then b1 > b2 8 � 2 [0; 1]. Moreover, since

lim
�!1

b1 = +1; lim
�!1

b2 = �1

lim
�!0

b1 = � 1
B
> 0; lim

�!0
b2 =

1

B
� 2 < 0

it follows that:

� at � = 1, 8b 2 (�1;+1), � > 0 , and therefore � = 1 is locally asymptotically stable;

� at � = 0, � < 0 i¤ b < 1
B
� 2 or b > � 1

B
: in such cases � = 0 is locally asymptotically

stable.

If instead B > 0, since

lim
�!1

b1 = �1; lim
�!1

b2 =1

lim
�!0

b1 = � 1
B
; lim
�!0

b2 = �2 +
1

B

it follows that:

� at � = 1, 8b 2 (�1;+1), � > 0, and therefore � = 1 is locally asymptotically stable;

� at � = 0, we need to distinguish between two cases:

� if 0 < B < 1, then b2 > b1: for b < b1 or b > b2, � < 0 and therefore � = 0 is

locally asymptotically stable;

� if B > 1, then b1 > b2: for b < b2 or b > b1, � < 0, and therefore � = 0 is locally

asymptotically stable.

We summarize results in the following two propositions:

Proposition 2 Case with A > 0, �2v = 0. The homogeneous equilibrium � = 1 is locally
asymptotically stable under replicator dynamics (since, at � = 1, � > 0, 8b).

12
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Proposition 3 Case with A > 0, �2v = 0. There exist values of b for which the homogeneous
equilibrium � = 0 is locally asymptotically stable under replicator dynamics (i.e., they imply
� < 0 at � = 0). Such values depend on B and are:

b < � 1
B
[ b > �2 + 1

B
, for 0 < B < 1

b < �2 + 1

B
[ b > � 1

B
for B < 0 or B > 1:

Note that, with a = A=(1�B), there is no "right" value of b, since b = 1
B(1��) is correct

only in the AR(1) equilibrium with a = �A=B. In the MSV equilibrium, with a = A=(1�B),
b should be 0.

We can see that the relative performance of the two models depends on the structure of

the economy (B) and the fraction of agents using each model (�). As more and more agents

use the MSV model (�! 1), this model dominates for any value chosen for b. As � decreases

to 0, though, the range of values for b that allow the MSV model to prevail shrinks, but it

still remains non negligible even as �! 0.

Note that for B = 0 (no self-referentiality in the structural model), the MSV solution

always prevails: it is the self-referentiality that allows evolutionary dynamics to introduce

additional variables into the equilibrium, since the �tness measure (here the MSE) becomes

endogenous to the choice of agents.

Propositions (2) an (3) imply that both � = 1 and � = 0 can be locally asymptotically

stable equilibria for some parameterizations: it follows that in such cases there need to be a

threshold ~� that separates the basins of attractions of these equilibria, i.e., for any given b,

there must be a ~� such that 8� > ~�, � > 0 (and �! 1), and 8� < ~�, � < 0 (and �! 0).

This threshold is de�ned as the value of � such that ~� = 0 and such value depends on the

arbitrary b. This is the heterogeneous equilibrium discussed in the next subsection.

4.3.2 Heterogeneous equilibrium

The condition for the existence of an heterogeneous equilibrium under evolutionary dynamics,

where both PLMs are used simultaneously by some agents, is

~� = 1� 2B (1� �) + b
�
�2B2 (1� �)2

�
+ b2

�
�B2 (1� �)2

�
= 0

or equivalently�
1� 2B � 2B2b�B2b2

�
+ �

�
2B + 4B2b+ 2B2b2

�
+ �2

�
�2B2b�B2b2

�
= 0;

13



Expectations formation under adaptive learning and evolutionary dynamics

which is quadratic in �. Only one root can be 2 (0; 1) when conditions on Proposition (3)
are satis�ed (there need to be an odd number of roots for Propositions (2) and (3) to hold

simultaneously). The two roots are

�1 = 1 +
1

Bb

�2 = 1� 1

B (2 + b)
:

The threshold dividing the two basins of attraction for the equilibria � = 0 and � = 1 is

therefore ~� = �i 2 (0; 1), which is an unstable resting point for the evolutionary dynamics
(i.e., � _�

��
> 0 at ~�).

This means that, unless the economy starts out with exactly ~� agents using PLM1,

dynamics will converge to one of the two homogeneous equilibria, depending on the speci�c

parameterization of the model and the initial condition for �.

Note that the threshold separating the two stable equilibria depends on B and b. For

example, with B > 0 and b > 0, the relevant root is �2. Clearly, �2 is larger the larger

are B and b: as the feedback from expectations to outcomes increases, or as the correlation

parameter in beliefs increases, fewer agents with the AR(1) model are needed in order to

have ~� < 0 and the AR(1) model to be superior.

4.3.3 General case with noise

Now we look at the general case with noise, i.e., �2v > 0. Remember that

� =
A2b2

�
1� 2B (1� �) + b

�
�2B2 (1� �)2

�
+ b2

�
�B2 (1� �)2

��
(1�B)2 (1�B (1� �) b2)2

+
b2 (1� 2B (1� �) b)
(1�B (1� �) b2)2

�2v:

The sign of � depends on

�̂ = A2b2
�
1� 2B (1� �) + b

�
�2B2 (1� �)2

�
+ b2

�
�B2 (1� �)2

��
+b2 (1� 2B (1� �) b) (1�B)2 �2v:

Let�s consider �rst the case with A � 0. Then

�̂ = b2 (1� 2B (1� �) b) (1�B)2 �2v

and �̂ > 0 , (1� 2B (1� �) b) > 0, or B (1� �) b < 1
2
. This inequality has a simple

interpretation: it is the condition such that the quadratic distance between expected and

actual impact of the lagged endogenous variable is smaller for agents using PLM1 than for

14
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agents using PLM1. In fact, the maps from PLMs to ALM for the coe¢ cient on the lagged

endogenous variable are

PLM1 : 0! B (1� �) b2

PLM2 : b! B (1� �) b2:

The di¤erence in squared deviations is�
B (1� �) b2 � b

�2 � �B (1� �) b2 � 0�2
or

b2 (1� 2B (1� �) b)

whose sign condition reduces to the condition seen above for the sign of �̂. In particular,

� = 1 is always a stable equilibrium, while � = 0 is a stable equilibrium if

Bb >
1

2
. (21)

Moreover, for a given pair (B; b) that satis�es restriction (21), the threshold ~� separating

the two basins of attraction for the equilibria � = 0 and � = 1 is de�ned as

~� = 1� 1

2Bb

which is an unstable equilibrium of the replicator dynamics.

Proposition 4 Case with A = 0, �2v > 0. The equilibrium � = 1 is always locally asymp-
totically stable under replicator dynamics.

Proposition 5 Case with A = 0, �2v > 0. The equilibrium � = 0 is locally asymptotically
stable under replicator dynamics if Bb > 1

2
. Moreover, starting from any � < 1 � 1

2Bb
, the

economy will converge to the equilibrium � = 0 under replicator dynamics if Bb > 1
2
.

With A 6= 0, the constant term and the AR(1) term interact in the determination of the

relative performance of the two models and can compensate for each other, so the condition

for the sign restriction of � is less straightforward to understand:

�̂ > 0, A2

(1�B)2
(1�B (1� �) (2 +B (1� �) b (2 + b))) > b2 (2B (1� �) b� 1)�2v: (22)

The r.h.s. of the inequality is the term related to the AR(1) component, a¤ected by the size

of the noise in the system, and its contribution to �̂ is positive if B (1� �) b < 1
2
, which
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is the condition seen above for A = 0. The term on the l.h.s. is due to the constant in

the model, but it interacts with the AR(1) component: its contribution to �̂ is positive if

1 > B (1� �) (2 +B (1� �) b (2 + b)).
From condition (22), it follows that � = 0 is locally asymptotically stable if

A2

(1�B)2
(1�B (2 +Bb (2 + b))) < b2 (2Bb� 1)�2v; (23)

while � = 1 is always locally asymptotically stable.

Proposition 6 Case with A > 0, �2v > 0. The equilibrium � = 1 is always locally asymp-
totically stable under replicator dynamics.

Proposition 7 Case with A > 0, �2v > 0. The equilibrium � = 0 is locally asymptotically
stable under replicator dynamics if condition (23) is satis�ed.

We can see that as A! 0, condition (23) reduces to condition (21). As �2v ! 0 instead,

(23) reduces to conditions presented in Proposition (3)

4.4 A simpler case

To help gain insight into the previous results, we consider here an even simpler case, which

will allow us to highlight some of the issues discussed above.

Consider the case with A = 0, vt � 0 and the two PLMs given by

PLM1 : yt � 0
PLM2 : yt = a;

where a is to be estimated under learning, and �xed under evolutionary dynamics.

4.4.1 Adaptive learning

Assume that only a fraction (1� �) of agents implements adaptive learning, while the re-
maining fraction � use PLM1, and therefore believe yt to always be at its steady state level.

Aggregate expectations are (1� �) a and the ALM is

yt = B (1� �) a: (24)

Learning analysis leads to the ODE

_a = (B (1� �)� 1) a
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and stability of the fundamental equilibrium with a = 0 requires

B (1� �) < 1: (25)

4.4.2 Evolutionary dynamics

Under evolutionary dynamics, beliefs parameter a is �xed and what evolves over time is in-

stead �, the fraction of agents using each PLM . For any arbitrary a, aggregate expectations

are (1� �) a and the ALM is again (24). The fraction � evolves according to replicator

dynamics

_� = � (1� �)�

where

� =MSE2 �MSE1:

Mean squared errors are given by

MSE1 = E (B (1� �) a� 0)2

MSE2 = E (B (1� �) a� a)2

and therefore

� = a2 (1� 2B (1� �)) :

Dynamics depend on the sign of � and clearly

� > 0, B (1� �) < 1

2
: (26)

Clearly conditions (25) and (26) di¤er from each other. The reason of this di¤erence

is that dynamics of a under adaptive learning are driven by the distance between PLM2

and ALM , while dynamics of � under replicator dynamics are driven by the di¤erence

in the distance between each PLM and the ALM , as only relative performance matters.

Evolutionary dynamics therefore impose a less restrictive condition for non-fundamental

beliefs to prevail: forecast errors made using the overparameterized model don�t need to

vanish over time (as it would be required under learning), they just need to remain smaller

than the errors made using the alternative model.
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5 Two examples

We present here two examples that show the relevance of the previous results for our under-

standing of what long run outcomes can emerge in macroeconomic models under alternative

expectations formation mechanisms. We consider a model with positive feedback from expec-

tations to outcomes, and one with negative feedback. In both cases, the long run outcome

under adaptive learning and evolutionary dynamics di¤er, with adaptive learning always

favouring the MSV equilibrium, which implies that, respectively, in�ation and consumption

are white noise variables, while evolutionary dynamics allow for the emergence of persistency

in these processes.

5.1 Positive feedback

Consider the simple Phillips curve

�t = �Et�t+1 + vt (27)

which is a simpli�cation of the standard NK Phillips curve where output is assumed to be

�xed at the equilibrium level, so in�ationary pressures can come only out of expectations

and exogenous cost push shocks.

The fundamental, or MSV, RE equilibrium is represented by

�t = vt: (28)

Under adaptive learning, for the usual range of values 0 < � < 1, the MSV equilibrium

is E-stable, while the AR(1) is not: the economy will therefore converge to the fundamental

equilibrium over time.

Under evolutionary dynamics, instead, we have that, with 0 < � < 1, � = 0 can be an

equilibrium provided that b, which de�nes beliefs in PLM2

�t = b�t�1 (29)

is such that �b > 1=2. In this case, in�ation will then follow the process (ALM)

�t = �b
2�t�1 + vt: (30)

For example, with � = :97, any b > 0:515 would guarantee this outcome. Adding the
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restriction of stationarity for in�ation, i.e., j�b2j < 1 ,5 it means that the range of values for
which � = 0 is an equilibrium is :515 < b < 1:015. Moreover, starting from any � < ~� =

1 � 1
2Bb
, the economy would converge to the equilibrium � = 0: For example, with � = :97

and b = :99, such threshold is equal to 0:4793: just less than half the population needs to

start use the AR(1) model for it to prevail.

5.2 Negative feedback

We consider now the cash in advance model analyzed in Evans, Honkapohja and Marimon

(2007). They show that the dynamics of that economy can be summarized by a univariate

reduced form model that represents an optimality condition for consumption, and in the

linearized version takes the form

ct = �Etct+1 + gt;

where ct is consumption of the cash good (i.e., a good that has to be paid in cash, and is

therefore subject to the cash in advance constraint) and gt is (net) government spending,

here taken to be a random variable with zero mean and constant variance for simplicity.

Parameter � depends, among other things, on the coe¢ cient of risk aversion � (which is

the inverse of the intertemporal elasticity of substitution 1=�). The model implies that

� > 1 , � < 0: an expected increase in consumption tomorrow decreases consumption

today.

The MSV equilibrium takes the form of a "noisy steady state" and is given by

c = gt,

which is stable under adaptive learning for any value of � < 0 (the stability requirement is

� < 1). On the contrary, the AR(1) solution is unstable under learning.6

Turning now to outcomes under evolutionary dynamics, the condition for � = 0 to be an

equilibrium is �b > 1=2, where b de�nes beliefs in PLM2

ct = bct�1:

5Note that, with � > 0, in order to be possible to �nd a b such that �b > 1
2 and

���b2�� < 1,the model
must satisfy the restriction � > 1

4 .
6Evans, Honkapohja and Marimon (2007) show that when � > 1, there exist Markov stationary sunspot

equilibria that are stable under learning.
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Given that � < 0, as long as b < 1
2�
the economy will then converge to the ALM

ct = �b
2ct�1 + gt:

With the additional requirement that j�b2j < 1 for stationarity of consumption,7 we have
that, for example with � = �1, an equilibrium with � = 0 would emerge if agents were to

use a PLM with �1 < b < �1
2
. While the MSV solution implies white noise consumption,

and such solution would be selected by adaptive learning, under evolutionary dynamics we

would instead have an AR(1) process with negative correlation for consumption.

6 Discussion

We have proposed a model where evolutionary dynamics and adaptive learning deliver di¤er-

ent results in terms of selection of beliefs and equilibrium outcomes: while adaptive learning

always favours the fundamental (MSV) model, for some parameterizations evolutionary dy-

namics allow beliefs based on an overparameterized model to prevail. The key issue in

understanding this result is the self-referentiality of (1), since the environment changes with

the behavior of agents. This means that the measure of �tness for beliefs, their forecasting

accuracy, is endogenous to the choice of agents, and thus multiple equilibria can emerge.

Consider in fact the alternative model with B = 0: it follows from Proposition 5 that in

this case � = 0 cannot be an equilibrium and beliefs based on the MSV model would always

dominate under evolutionary dynamics.8

Self-referentiality has a stronger impact on evolutionary dynamics than on adaptive learn-

ing because evolutionary dynamics are based on the relative performance of competing be-

liefs, rather than the absolute performance of beliefs against actual outcomes as it is the case

under adaptive learning. In a sense, therefore, beliefs under evolutionary dynamics are less

constrained by outcomes, as they only need to prevail in relative terms.

A similar result was derived by Berardi (2015) for the case of sunspot equilibria: while

equilibria based on sunspots are learnable only under speci�c parameterizations, beliefs based

on a sunspot always prevail under replicator dynamics (even though in that case, because

of a time-varying resonant condition on the sunspot, sunspot equilibria could not emerge

7Note that, with � < 0, in order to be possible to �nd a b such that �b > 1
2 and

���b2�� < 1, the model
must satisfy the restriction � < � 1

4 .
8Of course, it wouldn�t matter for aggregate dynamics which model agents use for their forecasts, since

these forecasts do not impact on actual outcomes. Still, forecasts quality could matter at the individual
level.
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endogenously under replicator dynamics).

Another way to look at it is that adaptive learning takes place at the individual level,

while evolution takes place at population level. Under learning, at individual level, ex-

pected outcomes are measured against realized ones, and if unsatisfactory, current actions

are changed. Under evolutionary dynamics, instead, strategies are played against each other

in a population, and the better ones are reinforced.

The relation between learning and evolutionary dynamics has been studied extensively

in the literature, especially in game theory. Fudenberg and Levine (1998), ch. 3, derive

replicator dynamics from models of individual learning. Borgers and Sarin (1997) also show,

in a game theoretical framework, that in a continuous time limit a learning model based

on reinforcement of strategies with higher payo¤ converges to the replicator dynamics of

evolutionary game theory. The key to these results is that in those cases, even under learning,

beliefs (or, in their case, strategies) are played against each other, and not against actual

outcomes.

Our analysis is based on a measure of performance summarized by the MSE: other mea-

sures could be conceived of, and it would be interesting to see whether alternative choices

change results. In particular, it would be interesting to study the case where evolutionary

dynamics are based on some measure of short run performance (such as the forecast error in

the previous n periods).

7 Conclusions

In this work we compare adaptive learning and evolutionary dynamics as means to model the

evolution of beliefs. Using a model that allows for multiple equilibria, we investigate what

equilibrium outcomes can be expected to emerge under di¤erent belief dynamics. While

speci�c conditions somewhat di¤er from case to case for the di¤erent speci�cations consid-

ered, in general we �nd that while adaptive learning favours the fundamental, or minimum

state variables equilibrium, evolutionary dynamics can instead select beliefs based on an

overparameterized model and therefore lead to non-fundamental solutions. This result is

particularly important since it is not clear what is the best way to model belief dynamics in

macroeconomic models, and we have shown here that di¤erent choices determine the set of

outcomes that one can expect to emerge in the economy.
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