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Abstract This paper builds a model of firm dynamics to study the consequences of

“limited re-entry” for macroeconomic dynamics. Matched individual-level data from the

Current Population Survey indicate that only 8% of unemployed chief executives, on av-

erage, find employment again as a chief executive after 12 months. Given the close link

between entrepreneurs and chief executives, this suggests that it is very difficult for exiting

entrepreneurs to “re-enter” in the future. The model, calibrated to match this observation,

indicates that “limited re-entry” has made business cycles more volatile and persistent.
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1 Introduction

Given the well-documented heterogeneity among both plants and firms,1 a number of

recent papers have explicitly modeled the entry and exit of plants or firms for the purpose

of studying macroeconomic dynamics.2 In the literature, exit has typically been modeled

as a permanent decision whereby it is not possible for the exiting plant or firm to “re-

enter” in the future. However, evidence from the venture capital literature suggests that

the managers or directors of these exiting plants and firms are not permanently excluded

from the market. For example, Gompers et al. (2005) report that when a company’s sales

are declining, employees tend to leave at a higher rate to found their own venture-capital

backed startups. This suggests that higher exit rates today may lead to higher entry in the

future. Furthermore, serial entrepreneurs, or entrepreneurs who have founded other startups

in the past, constitute a relatively large fraction of all entrepreneurs. In particular, Gompers

et al. (2010) report that serial entrepreneurs made up about 10% of all entrepreneurs in

venture-capital backed startups during the 1990s. They also report that serial entrepreneurs

all have a similar probability of founding a company that eventually goes public, regardless

of whether they have failed to do so in the past. This suggests that failure or exit is not

necessarily permanent.

Consequently, if higher exit rates today lead to higher entry rates in the future, the

increase in establishment exit rates during the 2007-09 recession3 could actually have con-

tributed to the recovery that followed. Therefore, this paper seeks to address two questions.

First, how much “re-entry” is possible? In this paper, I will take a broad view of “re-entry,”

in that “re-entry” can be loosely interpreted to mean that the managers of an exiting estab-

lishment directly lead to the entry of a new establishment in the future. Utilizing matched

individual-level data from the Consumer Population Survey (CPS), I find that re-entry is

very difficult. Using unemployed chief executives as a proxy for the managers of exiting

establishments, I find that about 8% of these individuals on average find employment again

as a chief executive after 12 months. This is in contrast to an overall 12-month job finding

rate of 56%. Second, what are the consequences of this for the aggregate economy? Using a

model of firm dynamics calibrated to be consistent with observations from the CPS, I find

that “limited re-entry” has made output both more volatile and persistent.

1For example, see Bartelsman and Doms (2000) and Henly and Sánchez (2009).
2For example, Foster et al. (2001) argue that entry and exit is an important source of aggregate pro-

ductivity growth. While studying aggregate fluctuations, entry and exit have been modeled endogenously in
Samaniego (2008), Gomes and Schmid (2010), Arellano et al. (2012), Lee and Mukoyama (2013), Clementi
and Palazzo (2014), and Macnamara (2014).

3Macnamara (2014) documents the behavior of establishment entry and exit rates during the 2007-09
recession.
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More specifically, I first study matched individual-level data from the CPS. Using this

data set, it is possible to track individuals over time by occupation and labor market status.

Of particular interest is the occupational code for “chief executives,” which is included in

the 2002 and 2010 Census occupational classifications. As this occupation is most closely

associated with the role of an entrepreneur in the model, I focus on the rate at which

unemployed chief executives return to employment as a chief executive. Specifically, an

individual is identified as an unemployed chief executive if he was last employed as a chief

executive. Next, I compute the rate at which these individuals transition back into chief

executive occupations. Between January 2003 and December 2012, only 4% of unemployed

chief executives returned to employment as a chief executive in 3 months. In contrast, after

3 months, 30% of these individuals found any type of job and 15% left the labor force. After

12 months, 8% found another job as a chief executive, while 56% found any type of job and

19% left the labor force. Therefore, unemployed chief executives are much more likely to

switch occupations or even leave the labor force than they are to return to employment as a

chief executive. This suggests that when a plant exits, it is very difficult for the associated

managers (i.e., entrepreneurs) to cause the entry of new establishments in the near future.

To assess the economic significance of these numbers, I build a model of firm dynamics

calibrated to match these transition rates. Building on Macnamara (2014), I assume that the

economy is populated by a continuum of perfectly competitive producers, where labor is the

only input in a decreasing returns-to-scale production function. Each producer can be inter-

preted as consisting of an “entrepreneur” and some amount of labor. The “entrepreneur” in

this model is then analogous to the “chief executive” position in the data. Entrepreneurs are

heterogeneous in terms of their idiosyncratic productivity, which is stochastic and represents

the management skills of entrepreneurs. Because entrepreneurs must pay fixed costs in order

to operate, only those entrepreneurs with a sufficiently high idiosyncratic productivity will

operate and enter. However, in contrast to Macnamara (2014), I assume that exit is not

necessarily permanent for entrepreneurs. Specifically, I assume that exiting entrepreneurs

can become potential entrants, enabling them to possibly “re-enter” in the future.

Next, I calibrate the model so that exiting entrepreneurs re-enter at the same rate un-

employed chief executives find jobs as chief executives. Then, using the procedure of Chari

et al. (2007), I measure an aggregate technology shock by setting the sequence of shocks

so that the model-predicted fluctuations in output match the those seen in the data. This

requires that the equilibrium of the model be solved to back out the sequence of technology

shocks. After feeding this sequence of shocks back into the model, it does well accounting

for the dynamics of observed entry and exit rates. This is consistent with the results of

Macnamara (2014). Specifically, it matches the empirical observation that entry rates are
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procyclical and exit rates are countercyclical. It does particularly well accounting for the

fall in entry and the increase in exit during the 2007-09 recession.

In the benchmark economy, as suggested by the CPS data, re-entry is very limited. In the

steady state of the model, only 8.3% of exiting entrepreneurs are eventually able to re-enter.

To evaluate the economic impact of limited re-entry, I conduct a counterfactual experiment

in which exiting entrepreneurs can re-enter more easily. Specifically, I re-calibrate the model

so that exiting entrepreneurs re-enter at the same rate unemployed chief executives find any

kind of job. In the steady state, this implies that exiting entrepreneurs will eventually re-

enter with a probability of 60%. I then feed into the model the exact same technology shock

measured using the benchmark economy. I find that “quick re-entry” would have significant

implications for the dynamics of entry rates. In particular, after the 2007-09 recession, entry

rates would have recovered much more quickly than was seen in the data. The entrepreneurs

who exited during the crisis would immediately start re-entering, causing a quick recovery in

entry rates. Moreover, I show that this would have significant implications for the economy

as a whole. In the data (and the benchmark model), real GDP grew at an annual rate of

2.2% between 2009-II and 2014-I. In contrast, with quick re-entry, real GDP would have

grown at an annual rate of 2.7% over the same time period. This suggests that the limited

ability of exiting entrepreneurs to re-enter has contributed to the slow recovery in output

following the 2007-09 recession.

Furthermore, the predictions of the benchmark model with limited re-entry turn out to

be very similar to a model with no re-entry. This indicates that re-entry is so limited in the

data that models can safely abstract from this feature. While it has been assumed in the

literature4 that exit is permanent, the model, calibrated to be consistent with the empirical

evidence reported in this paper, confirms that this is a justifiable assumption. Nevertheless,

this paper still highlights the economic consequences of limited re-entry (or permanent exit),

which have not been explored in the literature. For example, while the selection introduced by

entry and exit tends to raise aggregate productivity in models along the lines of Hopenhayn

(1992), this paper shows that limited re-entry actually hampers this mechanism. While entry

and exit still do work to increase aggregate productivity with limited re-entry, the effect on

aggregate productivity would be even larger with quick re-entry. With limited re-entry,

many low-productivity entrepreneurs choose to operate because they do not have the option

to re-enter later.

Moreover, while it has been documented that entry rates are procyclical,5 this paper

4For example, see Hopenhayn (1992), Hopenhayn and Rogerson (1993), Samaniego (2008), Lee and
Mukoyama (2013), Clementi and Palazzo (2014) and Macnamara (2014).

5Devereux et al. (1996) report that the number of new business incorporations is procyclical. The
procyclicality of the entry rate has also been documented for manufacturing plants by Lee and Mukoyama
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shows that this result is a consequence of limited re-entry. These results also highlight the

importance of limited re-entry for the amplification result in the literature. In particular,

Clementi and Palazzo (2014) find that entry and exit further amplify and propagate the

effects of aggregate shocks. Macnamara (2014) obtains a similar result with technology and

financial shocks. Devereux et al. (1996), Bilbiie et al. (2012), Jaimovich and Floetotto (2008)

and Chatterjee and Cooper (2014) have found similar results in models with monopolistic

competition. However, the quick re-entry experiment demonstrates that the magnitude of

this effect is dependent on limited re-entry. With quick re-entry, not only would aggregate

output be less volatile, but it would be quicker to recover in response to aggregate shocks.

This paper is organized as follows. First, Section 2 presents an overview of the model.

Next, Section 3 reports evidence on the ability of entrepreneurs to re-enter. Section 4 reviews

the model’s calibration. Section 5 examines the main results and Section 6 concludes.

2 Model

In this model, time is discrete and the unit of observation can be thought to be an

entrepreneur. Nevertheless, the words “producer,” “establishment” or “entrepreneur” may

be used interchangeably when discussing the theory. While this model is closely related to

Macnamara (2014), two important modifications are made. First, to keep the focus on the

effects of re-entry, only aggregate technology shocks are included. Second, to evaluate how

re-entry affects the dynamics of entry and exit, the exit decision is modified to allow for

the possibility that exiting producers can re-enter at some point in the future. For the same

reason, the entry decision is modified to allow potential entrants to wait until the next period

to enter. Nevertheless, these last two modifications are done in a way that nests a standard

model of entry and exit under certain parameters.

In the following subsections, the components of the model are described in detail.

2.1 Producers

The economy is populated by a continuum of producers who are perfectly competitive and

produce a single homogeneous good. Labor is the only input in the producer’s production

function, f(z, s, n) = zsnγ, where z is aggregate productivity, s is idiosyncratic productivity

and n is the labor input. It is assumed that γ ∈ (0, 1), implying that there are decreasing

returns to scale at the producer level.

(2013).
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One way to interpret diminishing returns to scale at the producer-level is to think of

the “span of control” models of Lucas (1978) and Rosen (1982). Here a “producer” can

be interpreted as consisting of an entrepreneur and n units of labor. The idiosyncratic

productivity, s, can reflect heterogeneity in the skill of managers and diminishing returns

to scale is a consequence of the diminishing returns of an entrepreneur in managing larger

operations. However, management is not being modeled directly and entrepreneurs earn

positive profits because of diminishing returns to scale. Although there are decreasing returns

to scale at the producer level, there still are constant returns to scale in the aggregate because

the producer can be replicated. With perfect competition, producer-level diminishing returns

allow for heterogeneity to exist in equilibrium and prevents the most productive producers

from taking over the market completely.

In addition to the standard idiosyncratic productivity shock, producers face an aggregate

productivity shock. The processes for both shocks are assumed to be AR(1). Specifically,

the productivity processes are given by

ln z′ = (1− ρz) az + ρz ln z + σεzεz (1)

ln s′ = ρs ln s+ σεsεs (2)

where (z′, s′) are the next-period productivity shocks and (εz, εs) are independent innovations

drawn from a standard normal distribution.

2.1.1 Entry Decision and the Role of Delayed Entry

As in Clementi and Palazzo (2014) and Macnamara (2014), I assume that a finite mass

M̄e of prospective entrants are born every period. Each potential entrant receives a signal

se at birth about its productivity. If a potential entrant with signal se chooses to operate

today, it would immediately begin operation and its idiosyncratic productivity would be se.

A new potential entrant’s initial se is drawn from a distribution with the probability density

function, gn(·). Throughout this paper, I will assume that gn(·) is the probability density

function for a log normal variable with mean ase (defined below) and the standard deviation

σεs/
√

1− ρ2
s. After a potential entrant makes the decision to enter, it pays a fixed entry

cost, ce ≥ 0. However, in contrast to Clementi and Palazzo (2014) and Macnamara (2014),

I assume that a potential entrant can survive to the next period if it chooses not to enter.

In particular, a potential entrant who does not enter dies with probability θ ∈ (0, 1].

Furthermore, if the potential entrant does survive to the next period, its signal tomorrow

is given by

ln s′e = (1− ρse)ase + ρse ln se + σεseεse (3)
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where εse is an i.i.d. innovation drawn from a standard normal distribution. In the bench-

mark calibration, I set ρse = 0 and σεse = σεs/
√

1− ρ2
s. This assumption makes the numeri-

cal calculations simpler. Nevertheless, in Section 5.4.1, I consider the case in which ρse = ρs

and σεse = σεs. The results in this case turn out to be qualitatively the same. Essentially,

given the assumption about gn(·) stated earlier, assuming ρse = 0 means that all potential

entrants (new and old) draw a new se each period from a log normal distribution with mean

ase and standard deviation σεs/
√

1− ρ2
s. In other words, potential entrants draw a new sig-

nal from a distribution with the same variance as the invariant distribution for idiosyncratic

productivity, but a different mean. In fact, in the benchmark calibration, it will be the case

that ase < 0.

Denote by V (x, s) a entrepreneur’s value of operating in the current period, where x is the

aggregate state today and s is the producer’s idiosyncratic productivity. The aggregate state

x is a vector of state variables which includes z and the distribution of potential entrants

and incumbent entrepreneurs. Similarly, denote by V w(x, se) a potential entrant’s value of

“waiting,” where se is the potential entrant’s signal. In other words, this is the value for

a potential entrant if it chooses not to enter in the current period, and “wait” until the

next period. These value functions are defined later in Equations 9 and 10, respectively.

In making its entry decision, a potential entrant compares the value of operating it would

receive if it enters against the fixed entry cost and the value of waiting. Thus, the potential

entrant with signal se will enter if and only if V (x, se) − ce ≥ V w(x, se). This implies that

there is an entry cutoff productivity for potential entrants, s̄e(x), where s̄e is defined as the

value of se such that

V (x, s̄e)− ce = V w(x, s̄e). (4)

A potential entrant will enter if and only if se ≥ s̄e(x). As will be seen in Section 2.1.4,

V w(x, s) = 0 when θ = 1. Therefore, the case of θ = 1 corresponds to what has been

commonly assumed in the literature.6 In this case, an entrepreneur who chooses not to enter

(1) permanently loses all information contained in its current-period signal, and (2) cannot

enter in the future. In contrast, I refer to the case when θ < 1 as a situation in which

“delayed entry” is possible. In other words, if a potential entrant chooses not to enter today

because of poor aggregate conditions, it can “delay” or “postpone” entry until aggregate

conditions improve. Furthermore, if ρse > 0, it retains some information about its potential

productivity.

6For example, see Clementi and Palazzo (2014) and Lee and Mukoyama (2013). This paper is also
consistent with a modified version of Hopenhayn (1992), in which the entry cost ce varies with M̄e. For
example, suppose ce depends positively on M̄e as follows: ce = c̄eM̄

φ
e . Recall that M̄e is endogenous in

Hopenhayn (1992). However, if φ→∞, the equilibrium value of M̄e is fixed at 1. Therefore, that model of
entry is the same as assuming θ = θx = 1 and ce = 0 in this paper.
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2.1.2 Exit Decision and the Role of Re-Entry

Each period the entrepreneur must pay a fixed operating cost, cf > 0, denominated in

terms of the output good. If the entrepreneur chooses to operate today, it pays the fixed

cost and gets the present discounted value of profits. However, in contrast to the existing

literature, I do not assume that exit is necessarily permanent for the entrepreneur. In

particular, I assume that it is possible for exiting entrepreneurs to “re-enter” in the future.

More specifically, with probability θx ∈ {0, 1}, the exiting entrepreneur dies and is never

able to re-enter. Otherwise, the entrepreneur immediately becomes a potential entrant. In

practice, θx is just used to parameterize two scenarios. When θx = 1, re-entry is not possible

at all. However, when θx = 0, all exiting entrepreneurs immediately become potential

entrants. I will refer to the potential entrants who have previously operated as “potential

re-entrants.” Meanwhile, the term “potential entrants” will be used to refer to both potential

re-entrants and potential entrants who have never entered.

When θx = 0, an exiting entrepreneur needs a signal for its productivity when it joins the

pool of potential entrants. This signal is assumed to be se = s, where s is the entrepreneur’s

idiosyncratic productivity when it exits. However, when ρse = 0, this signal will be irrelevant

for the entrepreneur’s signal tomorrow, s′e, which will determine whether the entrepreneur

re-enters next period. This is the case that will be considered in the benchmark calibration.

However, for robustness purposes, I consider the case when ρse > 0 in Section 5.4.1 and find

that the results are unaffected.

When making the exit decision, an entrepreneur compares the value of operating with its

outside option. The value of operating is V (x, s) and the outside option is (1− θx)V w(x, s).

This outside option reflects two assumptions stated earlier. First, if θx = 1, the exiting

producer is destroyed and the entrepreneur receives nothing. Second, if θx = 0, the exit-

ing entrepreneur becomes a potential entrant with signal se = s and receives the poten-

tial entrant’s value of waiting. Therefore, the entrepreneur will exit today if and only if

V (x, s) < (1 − θx)V w(x, s). Then, there exists an exit cutoff productivity, s(x), such that

the entrepreneur will exit if and only if s < s(x). This cutoff is defined as the value of s such

that

V (x, s) = (1− θx)V w(x, s). (5)

If θx = 1 or θ = 1, the entrepreneur’s outside option is zero. This corresponds to

what has been commonly assumed in the literature. In that case, the decision to exit is a

highly destructive one. As with entry, (1) all information contained in the entrepreneur’s

idiosyncratic productivity is permanently lost, and (2) exiting entrepreneurs cannot re-enter

in the future. However, when θx = 0 and θ < 1, the entrepreneur’s outside option is greater
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than zero. In other words, the decision to exit is no longer completely destructive, and it

is possible for the entrepreneur to re-enter in the future. Furthermore, when ρse > 0, an

exiting entrepreneur retains some information about its potential for future productivity.

In addition, since ce ≥ 0 and θx ∈ {0, 1}, it follows that s(x) ≤ s̄e(x). In other words,

all entrants will choose to operate. This also guarantees that exiting entrepreneurs will not

have the incentive to re-enter in the same period they exit. In fact, when ce = 0 and re-entry

is allowed (θx = 0), it follows from Equations 4 and 5 that s(x) = s̄e(x). However, when

ce = 0 and re-entry is not allowed (θx = 1), s(x) = s̄e(x) only when θ = 1. In this case,

delayed entry is not allowed either.

2.1.3 Transition Rules for Entrepreneur Distributions

Given the description of the entry and exit conditions, it is now possible to define the

law of motion for the distribution of entrepreneurs. Define µ(·) to be a function over the

current period’s idiosyncratic shock, s. This function represents the distribution of incum-

bent entrepreneurs over idiosyncratic productivity at the beginning of the period before the

entry and exit decisions are made. M =
∫∞

0
µ(s)ds is then the total mass of incumbent

entrepreneurs. Similarly, let g(·) be a function over the current signal se. This function

represents the distribution of all potential entrants, at the beginning of the period. This

distribution includes new potential entrants, and if θx = 0, potential re-entrants as well.

G =
∫∞

0
g(se)dse is then the total mass of potential entrants.

Let x ≡ (z, µ, g) be the vector of aggregate state variables. Given today’s aggregate state

x, tomorrow’s distribution of incumbent entrepreneurs µ′ is given by

µ′(s′) =

∫ ∞
s(x)

h(s′|s)µ(s)ds+

∫ ∞
s̄e(x)

h(s′|se)g(se)dse. (6)

The function h(s′|s) is the conditional probability density function for s′, as determined by

the process assumed in Equation 2. The first term represents the mass of incumbents who

do not exit today and transition to s′ tomorrow. Similarly, the second term represents the

mass of potential entrants (including potential re-entrants) who enter today and transition

to s′ tomorrow.

Analogously, given today’s aggregate state x, tomorrow’s distribution of potential en-
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trants g′ is given by

g′(s′e) = M̄egn(s′e) + (1− θ)
∫ s̄e(x)

0

he(s
′
e|se)g(se)dse+

(1− θx)(1− θ)
∫ s(x)

0

he(s
′
e|s)µ(s)ds. (7)

The function he(s
′
e|se) is the conditional probability distribution for s′e, as determined by the

process assumed in Equation 3. The first term represents the mass of potential entrants that

will be born tomorrow with signal s′e. Recall that M̄e is the mass of potential entrants born

each period, and gn(·) is the probability density function from which new potential entrants

tomorrow will draw their initial signal. The second term represents the mass of potential

entrants who do not enter today, survive to tomorrow and transition to s′e. And finally,

the third term represents the mass of incumbents who exit today, survive to tomorrow and

transition to s′e. When ρse = 0 in the benchmark calibration, g(se)/G will be equal to gn(se).

2.1.4 Entrepreneur’s Problem

The entrepreneur’s problem can now be formulated recursively. Given the wage w, the

entrepreneur’s labor demand is the solution to the following static problem:

π(z, s;w) = max
n
{f(z, s, n)− wn} . (8)

Now, let r be the risk-free rate and recall that x ≡ (z, µ, g) is the vector of aggregate

state variables. Let V (x, s) be the value of continuing for an entrepreneur with aggregate

state x and idiosyncratic productivity s in the current period, after any dividends from the

operations of the current period have been issued. Then, V (x, s) is given by

V (x, s) = π(z, s;w(x))− cf +
1

1 + r
E [max {V (x′, s′), (1− θx)V w(x′, s′)} |z, s] (9)

subject to

µ′ = Tµ(x)

g′ = Tg(x).

Tµ(x) and Tg(x) are the transition rules defined in Equations 6 and 7, respectively. If the

entrepreneur operates today, it receives profits π(x, s;w(x)) minus the fixed operating cost.

As discussed in Section 2.1.2, tomorrow an incumbent entrepreneur trades off the value of
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operating, V (x′, s′), with its outside option, (1− θx)V w(x′, s′).

Analogously, let V w(x, se) be the value of waiting for an entrepreneur with aggregate

state x and signal se. V
w(x, se) is then given by

V w(x, se) =
1− θ
1 + r

E [max {V (x′, s′e)− ce, V w(x′, s′e)} |z, se] (10)

subject to µ′ = Tµ(x) and g′ = Tg(x). If a potential entrant chooses to wait, it receives

nothing today. Nevertheless, with probability (1− θ) it is able to survive to the next period.

As discussed in Section 2.1.1, tomorrow the potential entrant trades off the value of entering

with the value of waiting another period. V (x, s) and V w(x, se) are then defined to be the

value functions which jointly solve Equations 9 and 10. However, if θ = 1, it trivially follows

that V w(x, se) = 0.

2.1.5 Definition of Entry and Exit Rates

It is now possible to define entry and exit rates in the model. Let me(x) be the equilibrium

entry rate and mx(x) be the equilibrium exit rate. The entry rate is defined to be

me(x) ≡ Me(x)

M(x)
(11)

where Me(x) ≡
∫∞
s̄e(x)

g(se)dse is the mass of entrants and M(x) =
∫∞

0
µ(s)ds is the mass

of incumbent entrepreneurs. Note that the denominator is M(x), not G(x) ≡
∫∞

0
g(se)dse,

the mass of potential entrants. In contrast, the fraction of potential entrants who enter is

defined to be the entry probability:

m̄e(x) ≡ Me(x)

G(x)
. (12)

Similarly, the exit rate is defined to be

mx(x) ≡ Mx(x)

M(x)
(13)

where Mx(x) =
∫ s(x)

0
µ(s)ds is the mass of exiting entrepreneurs. In contrast, Davis et al.

(1994) divide both the mass of entrants and exiting producers by the average of producers

who operated today and operated yesterday. However, since entry and exit rates are small,

these two measures will be approximately equal.
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2.2 Labor Supply

The supply of labor is assumed to be given by the function

N s(w) =

(
w

ψ

)ν
(14)

where w is the real wage, ν is the Frisch elasticity of labor supply.7 The parameter ψ will

just be used to normalize the wage to 1 in the steady state.

2.3 Recursive Competitive Equilibrium

A recursive competitive equilibrium can then be defined as follows. A recursive compet-

itive equilibrium consists of (i) the value functions V (x, s), V w(x, se) (ii) policy function

n(x, s) (iii) cutoff rules s(x), s̄e(x) (iv) wage function w(x) and (v) law of motions Tµ(x)

and Tg(x) such that

1. V (x, s) and V w(x, s) jointly solve the Bellman equations given by Equations 9 and 10.

2. The policy rule n(x, s) ≡ n(z, s;w(x)), where n(z, s;w) is the solution to Equation 8

and w(x) is the equilibrium wage as a function of x.

3. The cutoff rules s(x), s̄e(x) are given by 5 and 4, respectively.

4. The wage w(x) specifies the market clearing wage given aggregate state x. First, define

aggregate labor demand, given x and w, as follows:

Nd(x;w) =

∫ ∞
s(x)

n(z, s;w)µ(s)ds+

∫ ∞
s̄e(x)

n(z, se;w)g(se)dse.

The function n(z, s;w) is the solution to Equation 8. Therefore, the wage w clears

the labor market when Nd(x;w) = N s(w), where N s(·) is the labor supply defined in

Equation 14.

5. The actual transition rules, Tµ(x) and Tg(x), are given by Equations 6 and 7, implying

that they are consistent with the transition rules assumed by producers.

7This setup is observationally equivalent to a general equilibrium model in which labor is supplied by
households with preferences linear in consumption and separable in consumption and leisure.
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3 Empirical Evidence on Re-Entry

To ascertain how difficult it is for entrepreneurs to re-enter, I utilize matched monthly

data from the Current Population Survey (CPS). The CPS uses a 4-8-4 rotating sample

design. In other words, households are in the sample for four consecutive months, out of

the sample for the next 8 months, and then back in the sample for the final four months.8

The advantage of the CPS is that it not only categorizes individuals according to their labor

market status, but also their occupation. Of particular interest is the occupational code for

“chief executives,” which is included in the 2002 and 2010 Census occupational classifications.

This occupation is most closely associated with the role of an “entrepreneur” in the model.

Namely, chief executives (like entrepreneurs in the model) influence the productivity of their

businesses and are also responsible for decisions on entry and exit. Therefore, an empirical

counterpart to “re-entry” is the rate at which unemployed chief executives transition back

into employment as a chief executive. The resulting numbers will be used to discipline the

model.

Since the chief executive occupational code is only available in the 2002 and 2010 Census

occupational classifications, I restrict attention to observations between January 2003 and

December 2012. I define an “unemployed chief executive” as an unemployed individual

whose last reported job was as a chief executive. Over this time period, there were 90,638 raw

observations of chief executives and 1,745 observations for unemployed chief executives. Since

this time period covers 120 months, this is a relatively small sample size, with observations on

about 15 unemployed chief executives each month. For this reason, I pool all the observations

together to compute average transition rates. The numbers are very similar if I calculate

transition rates by month, and then average the resulting rates.

To calculate the transition rates, I compute the fraction of unemployed chief executives

who are employed as a chief executive after 1 month, 3 months and 12 months. For com-

parison purposes, I also calculate the rate at which these workers transition into four broad

occupational categories. For these four categories, I adapt the occupational classifications

used in the occupational mobility literature. In particular, using the occupational classifica-

tions of Acemoglu and Autor (2011), jobs can be classified along two dimensions: (1) routine

versus non-routine, and (2) manual versus cognitive. Since non-routine cognitive (NRC) jobs

include chief executives, the first category I use is all NRC jobs except chief executives (NR-

CxE). The final three categories are then routine cognitive (RC), routine manual (RM) and

non-routine manual (NRM). The total job finding rate is then the sum of the transition rates

into these five occupational groups. I also report the fraction who exit the labor force.

8For details on the construction of this data set, see Nekarda (2009).
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The top panel of Table 1 reports the resulting transition rates for chief executives. This

shows that it is very difficult for unemployed chief executives to find another job as a chief

executive. After 1 month, 3.60% of unemployed chief executives find another job as a chief

executive. However, 8.30% take a NRCxE job and 15.67% find a job of any kind. Moreover,

13.77% exit the labor force after 1 month. Therefore, after 1 month, few unemployed chief

executives find chief executive jobs.

[Table 1 about here.]

At longer horizons, a similar story holds. After 3 months, only 3.92% of unemployed

chief executives return to employment as a chief executive. However, after 3 months, the

job finding rate rises to 30.49%. After 12 months, these numbers increase to 7.64% and

56.46%, respectively. Moreover, almost a quarter of these workers transition into the lowest

ranked occupations (RC, RM and NRM) after 12 months, and 18.98% leave the labor force.

Therefore, unemployed chief executives are more likely to switch occupations (or even leave

the labor force) than they are to find another job as a chief executive. While this exercise

is not perfect, it does nevertheless indicate that it is relatively difficult for entrepreneurs to

re-enter.

One concern, however, might be that the chief executive position is too narrowly defined.

Nevertheless, after expanding the analysis to all managers,9 not just chief executives, a

similar story holds. To see this, consider the bottom panel of Table 1, which repeats the

analysis for unemployed managers over the same time period. Between January 2003 and

December 2012, there were 887,332 raw observations of managers, and 25,640 observations

of unemployed managers. The management occupations are much more broadly defined,

and may include many occupations that are not entrepreneurial in nature. Nevertheless, the

results are qualitatively similar to those reported for chief executives. After 3 months, only

about 8% of unemployed managers obtain another management job. After 12 months, this

increases to 14%. In fact, as was the case with chief executives, unemployed managers are

more likely to switch occupations or even leave the labor force than find another management

job.

In the calibration, I will use the transition rates for chief executives to discipline the

rate at which exiting entrepreneurs re-enter. Given the low rates at which unemployed chief

executives find chief executive jobs, I will refer to this calibration as one in which re-entry

is “limited.” This is an interpretation that is guided by the model. In fact, as will be seen

in the results, the model’s predictions for entry and exit rates with “limited re-entry” turn

out to be very similar to one in which there is no re-entry at all.

9In the 2002 and 2010 Census occupational classifications, the management occupations have codes
between 10 and 430. The chief executive occupation has code 10.

14



4 Calibration

The model can now be calibrated. The model period is a quarter. Table 2 lists the

calibrated parameters. First, in Section 4.1, I discuss how I calibrate the key parameters

which govern the ability of entrepreneurs to re-enter. Second, in Section 4.2, I explain how

the historical technology shock is measured from the data. And finally, in Section 4.3, I

cover the calibration of the remaining parameters.

[Table 2 about here.]

4.1 Backing Out the Key Entry Parameters from the Data

I calibrate the model to be consistent with the unemployment-to-employment transition

rates for chief executives, which were reported in Section 3. Specifically, I allow re-entry

by assuming θx = 0 and I calibrate the model so that potential re-entrants re-enter at the

same rate unemployed chief executives find jobs as a chief executive. Very similar results are

obtained when the model is calibrated to be consistent with the transition rates of managers.

Consider the pool of surviving potential re-entrants in the steady state of the model at date

0. Let pre,t be the fraction of these potential entrants who re-enter in period t ≥ 1. Since

the model period is quarterly, in the benchmark calibration, I calibrate the model so that

pre,1 and
∑4

t=1 pre,t equal the 3-month and 12-month transition rates, respectively. Using

the numbers reported in Table 1 for chief executives, this implies that pre,1 = 3.92% and∑4
t=1 pre,t = 7.64%.

In the benchmark calibration, I assume that ρse = 0 (see Section 4.1.1 for a further

discussion of this choice). Under this scenario, pre,t can be expressed analytically as follows:

pre,t =
m̄e

1− m̄e

[(1− θ)(1− m̄e)]
t . (15)

Here, m̄e is the steady state fraction of potential entrants who enter (i.e. the entry probabil-

ity). The entry probability was defined in Equation 12. Given the targets in the benchmark

calibration for pre,1 and
∑4

t=1 pre,t, this requires that θ = 43.5% and m̄e = 6.9%. Now let

pre ≡
∑∞

t=1 pre,t be the fraction of surviving potential re-entrants at date 0 who eventually

re-enter in the steady state. Using Equation 15, it can easily be shown that:

pre =
(1− θ)m̄e

θ + (1− θ)m̄e

. (16)

Therefore, the calibrated values of θ = 43.5% and m̄e = 6.9% imply that pre = 8.3%.

Furthermore, let mre be the steady-state fraction of all potential entrants who are potential
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re-entrants. It turns out that mre = pre. Therefore, to be consistent with unemployment-

to-employment transition rates for chief executives, it needs to be the case that (1) exiting

entrepreneurs have a low probability of re-entry, and (2) the number of potential re-entrants

(or “serial entrepreneurs”) should be small relative to all potential entrants.

Furthermore, this calibration approach implies that m̄e should be a low number. This is

consistent with the calibrated value for m̄e in Macnamara (2014). It is perhaps also consistent

with evidence from the venture capital literature. For example, Sahlman (1990) notes that

typical large venture capital firms only invest in about 1% of the proposals it receives each

year. However, venture capital plays a small role in the entry decisions. In particular, Robb

et al. (2010) reports that in the Kauffman firm survey, less than 1% of startups receive any

funding from venture capitalists. Nevertheless, this does potentially illustrate the difficulty

in turning an idea into a new business.

4.1.1 Remaining Entry Parameters

As noted earlier, I set ρse = 0 in the benchmark calibration. Essentially, the entry

signal is assumed to be independent across periods. In this sense, the decision not to enter

is a destructive one, as the potential entrant does not retain its signal for productivity.

Nevertheless, in Section 5.4.1, I compare the benchmark calibration to one in which ρse =

ρs and the results are unaffected. Given that ρse = 0, I set σεse = σεs/
√

1− ρ2
s. The

distribution, gn(·), from which new potential entrants draw their signal is assumed to be log

normal with mean ase and standard deviation σεs/
√

1− ρ2
s. These assumptions will then

imply that V w(x, se) does not depend on se. Furthermore, the probability distribution of all

potential entrants (over signal se) will be log normal with mean ase and standard deviation

σεse. However, the total mass of potential entrants, G =
∫∞

0
g(se)dse, will vary with the

aggregate state.

Furthermore, the target for m̄e in the benchmark calibration is 6.9%. However, either ce

or ase could be used to target the entry probability m̄e. Increasing ce would tend to increase

the entry threshold s̄e(x). Given the distribution of potential entrants, g(se), a higher entry

threshold would tend to reduce m̄e. The alternative to this is to reduce ase below zero. This

would shift the potential entrant distribution g(se) to the left. Holding the entry threshold

constant, this would tend to cause m̄e to fall. The latter approach does not require s̄e to

be above s to calibrate to a low m̄e. In contrast, calibrating ce, by pushing s̄e above s,

would tend to push up the relative size of entrants. For low m̄e, entrants would need to be

larger than incumbent producers, which is not true in the data. Therefore, in the benchmark

calibration, I set ce = 0, and calibrate ase to target m̄e. Nevertheless, in Section 5.4.3, I

consider an alternative calibration in which ce > 0 and find that the results are unaffected.
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The remaining parameters related to entry and exit are M̄e and cf . First, consider

the mass of potential entrants born each period, M̄e, which influences the number of en-

trepreneurs who operate in the steady state. If M̄e is doubled, the equilibrium number of

entrepreneurs who operate in the steady state is doubled as well. Given that M̄e merely

changes the scale of the economy, M̄e is normalized to 1. Second, consider the fixed operat-

ing cost, cf . This is set to target an average entry or exit rate of 3.2%. This is the average

quarterly establishment entry rate between 1993:II and 2007-III from the BLS’s Business

Employment Dynamics (BED) survey.

4.2 Construction of the Technology Shock

Later in Section 5, I will feed into the model a sequence of technology shocks. Following

Chari et al. (2007), I measure this shock by setting the sequence of {zt} so that the model-

predicted fluctuations in output match those seen in the data. To be more precise, let Y m(xt)

denote the model-predicted aggregate output, given the aggregate state xt at date t. Now

let Ŷ m(xt) denote the cyclical component of Y m(xt), which is constructed using a log-linear

trend. Similarly, let Ŷ d
t be the corresponding series from the data. Then, I construct a

sequence of shocks, {zt}, to ensure that Ŷ m(xt) = Ŷ d
t for each t. This procedure is not

trivial, as the equilibrium of the model needs to be solved repeatedly to back out zt.

Using quarterly seasonally adjusted real GDP from the BEA’s National Income and

Product Accounts (NIPA), I measure the technology shock between 1964-I and 2014-I. Fig-

ure 1 plots the resulting technology shock calculated using this procedure. Also plotted is

the cyclical component of real GDP, which is constructed using the log-linear trend. The

correlation of the technology shock with real GDP is very high (0.96).

[Figure 1 about here.]

Fitting this technology shock to the AR(1) process in Equation 1 yields estimates ρz =

0.947 and σεz = 0.0045. The mean az is normalized to zero. While ρz is similar to the typical

value used in the literature, this shock is less volatile than technology shocks constructed

using the Solow residual. In particular, the standard calibration follows Cooley and Prescott

(1995) who choose ρz = 0.95 and σεz = 0.007. However, because of the assumption of

decreasing returns to scale, the Solow residual10 is not equivalent to the technology shock

in this model. In fact, the model-predicted Solow residual has a higher volatility than the

input technology shock. Moreover, it is highly correlated with the residual from the data,

and exhibits similar volatility.

10Since there is no capital in the model, the Solow residual can be calculated assuming that the quarterly
change in capital is zero.
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4.3 Calibration of Remaining Parameters

This still leaves a the process for idiosyncratic productivity. The persistence of the

idiosyncratic productivity shock was set to ρs = 0.850 and the standard deviation of the

innovation was set to σεs = 0.103. As in Macnamara (2014), these parameters were chosen

to be consistent with values assumed in the literature. At an annual frequency, Khan and

Thomas (2013) assume a persistence of 0.659 and an innovation standard deviation of 0.118.

Meanwhile, Clementi and Palazzo (2014) assume a persistence of 0.55 and an innovation

standard deviation of 0.22, at an annual frequency. In contrast, at an annual frequency, the

values used in this paper are consistent with ρs = 0.653 and σεs = 0.135.11 Therefore, the

persistence assumed in this paper is close to the value assumed by Khan and Thomas (2013)

and more persistent than in Clementi and Palazzo (2014). Furthermore, the assumed value

of σεs/
√

1− ρ2
s in this paper falls in between the values assumed by Khan and Thomas

(2013) and Clementi and Palazzo (2014). Nevertheless, in Section 5.4.2, I consider some

alternative calibrations in which I let the persistence of idiosyncratic productivity be even

higher. The results are unaffected.

The Frisch elasticity of labor supply, ν, was set to 1.5. According to Keane and Rogerson

(2012), values commonly assumed in the literature range between 1 and 2. As for returns

to scale in the model, I assumed that γ = 0.6. This implies that the labor share will be

60%. Given the estimation procedure for the technology shock, these parameters are not

particularly important. A higher labor supply elasticity or higher returns to scale will tend

to make aggregate labor demand more elastic as well as making entry and exit rates more

sensitive to aggregate shocks. However, in such a case, the estimated technology shock would

be less volatile. And finally, since the model period is assumed to be a quarter, the risk-free

rate r was chosen to be 1%. The labor disutility parameter, ψ, was set to normalize the

equilibrium wage to 1 in the steady state.

5 Results

The model is solved using dynamic programming techniques. Because the distribution

of incumbents and entrants in the aggregate state x is a high-dimensional object, I apply

the algorithm of Krusell and Smith (1998). When applying this algorithm, one potential

problem is that forecast errors may accumulate over time. Applying the suggested accuracy

11Some caution is required when converting between annual and quarterly frequencies. Given the pa-
rameters for a productivity process at a quarterly frequency, (ρq, σq), the corresponding annual parameters
(ρa, σa) were set so that one would obtain (ρa, σa) if the quarterly AR(1) process were estimated at an annual
frequency.
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check in Den Haan (2010), I find that this does not occur. Appendix A goes into more

specific detail on the numerical methods used and reports the results of several accuracy

tests.

First, in Section 5.1, I report the results of the benchmark calibration. Second, in Sec-

tion 5.2, I conduct an experiment in which exiting entrepreneurs can re-enter at a higher

rate than is observed in the data. I will label this the “Quick Re-Entry” experiment. In

Section 5.3, I examine the mechanism behind these results by considering further alterna-

tive calibrations. I will label these the “Slow Re-Entry” and “No Re-Entry” calibrations,

respectively, and they will differ in the ability of entrepreneurs to re-enter. And finally, in

Section 5.4, I perform some robustness checks.

5.1 Fit of Benchmark Calibration

As discussed in Section 4.2, I used the benchmark model to back out an historical sequence

of technology shocks. Then, starting with the steady state distributions of entrepreneurs

and potential entrants, I fed these shocks back into the model. This procedure generates

predictions for entry and exit rates, which can be compared to the data. As for data on entry

and exit, I utilize establishment birth and death rates from the BLS’s Business Employment

Dynamics (BED) survey. In the BED survey, an establishment death is defined to occur

when an establishment reports zero employment in the third month of a quarter and does not

report positive employment in the third month of the next four quarters. The establishment

birth rate is defined analogously. This strict definition of entry and exit eliminates most

temporary or seasonal entry and exit. The data for entry begins in 1993-II, while the data

for exit begins in 1992-III. This time period covers two recessions: the 2001 recession and

the 2007-09 recession. Because the technology shock begins in 1964-I and the entry/exit

data do not begin until 1992-III, this means that the model was simulated for 114 quarters

(or 28.5 years) until it could generate results on entry and exit that could be compared to

the data.

The left two panels of Figure 2 plot the benchmark calibration’s predictions for entry

and exit rates against the data. Entry and exit rates, in the model and in the data, are both

de-trended with a linear trend. As in the data, entry rates are predicted to be procyclical

and exit rates are predicted to be countercyclical. Table 3 reports the raw correlations and

standard deviations. The model does well accounting for the decrease in entry rates and

the increase in exit rates which occurred during the 2007-09 recession. It also does well

accounting for the increase in exit rates which occurred during the 2001 recession. However,

the model does predict a decrease in exit rates during the 2001 recession, which did not
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occur. Nevertheless, under the benchmark calibration in which few exiting entrepreneurs are

able to re-enter, the model does very well overall explaining both entry and exit rates.

[Figure 2 about here.]

Meanwhile, the right panels of Figure 2 plot the benchmark calibration’s predictions for

output and hours against the data. The data for output is quarterly seasonally adjusted

real GDP from the BEA’s National Income and Product Accounts. Hours is obtained as the

quarterly average of aggregate weekly hours of production and non-supervisory employees

from the BLS’s Current Employment Statistics survey. A log-linear trend is used to de-trend

both output and hours, in the model and the data. In Figure 2, it can be seen that the model’s

predictions for output coincides with the data (by construction). The model’s prediction for

hours is highly correlated with the data, but less volatile. With only a technology shock in

this paper, the model is better suited to explain fluctuations in output.

Moreover, the benchmark economy does well accounting for stylized facts that have not

been targeted. Table 3 also reports the model’s predictions for several of these statistics.

In particular, in the steady state of the model, 66.6% of entrants survive after one year.

According to the BLS’s BED survey, 78.9% of private sector establishments survive after

one year. In fact, for establishments born between 1994 and 2012, this survival rate has

been stable around 79%. Furthermore, the benchmark calibration predicts that entrants will

be smaller (in terms of employment) than incumbents, with entering producers on average

51.7% of the size of incumbents. According to the BED survey, the average relative size of

entering establishments between 1994 and 2013 was 37.3%. However, since 1999, the relative

size of entrants has been declining. In 1999, the relative size of entrants was about 45%,

while by 2013 it had declined to 29%. Furthermore, in the steady state of the benchmark

calibration, the productivity of entrants (relative to incumbents who operate) is 78.2%.

Similarly, the productivity of exiting entrepreneurs (relative to incumbents who operate) is

67.8%. For manufacturing plants, Lee and Mukoyama (2013) report that entrants are 75% as

productive as incumbent plants, while exiting plants are 65% as productive as incumbents.12

[Table 3 about here.]

5.2 Quick Re-Entry Experiment

At this stage, it is hopefully apparent that the benchmark calibration produces a rea-

sonable description of the economy, since it does well accounting for the dynamics of entry

12Lee and Mukoyama (2013) report the relative productivity of entering and exiting plants to be 75% and
65%, respectively, when productivity is measured without capital.
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and exit. Moreover, the results of the benchmark model are similar to Macnamara (2014),

where it was assumed that exit is permanent. In contrast, exit is not permanent in this

model, but it is still difficult for exiting entrepreneurs to re-enter in the future. This was

motivated by the observation in Section 3 that very few unemployed chief executives (a proxy

for entrepreneurs) return to employment as a chief executive after 12 months. Specifically,

in Table 1, it was reported that only 7.64% of unemployed chief executives return to employ-

ment as chief executives after 12 months. This stands in contrast to a 56.46% job finding

rate after 12 months. Therefore, to evaluate the economic significance of these transition

rates, I now perform an experiment in which exiting entrepreneurs can re-enter more quickly

than is suggested by the data. I label this calibration the “Quick Re-Entry” calibration.

To be more precise, I first feed into the model the same technology shock constructed with

the benchmark economy, using the method described in Section 4.2. Second, I now calibrate

the re-entry process so that exiting entrepreneurs re-enter at the same rate unemployed chief

executives find any kind of job. Specifically, I calibrate the model to match the 3-month

and 12-month job finding rates in Table 1. In other words, I calibrate the model so that

pre,1 = 30.49% and
∑4

t=1 pre,t = 56.46%. Here, pre,t is the fraction of potential re-entrants

who re-enter in period t ≥ 1, conditional on surviving to period 0. Using Equation 15,

this now requires that θ = 20.4% and m̄e = 38.3%. Following the same strategy as in

the benchmark calibration, I set ase to meet the new target for m̄e. Table 4 reports the

new parameter values. Whereas in the benchmark calibration exiting entrepreneurs would

eventually re-enter with a probability of 8.3%, these new calibration targets imply that 60.0%

of exiting entrepreneurs will eventually re-enter (in the steady state). All other calibration

targets are the same as in the benchmark calibration.

[Table 4 about here.]

The left two panels of Figure 3 plot the results of this experiment for entry and exit rates.

It is apparent that quick re-entry would have a significant effect on the dynamics of entry

rates, but less of an effect on the dynamics of exit rates. First, as confirmed in Table 3,

entry rates would be significantly less volatile with quick re-entry. Second, after the 2007-09

recession, entry rates would have recovered much more quickly than was seen in the data.

In fact, as seen in Table 3, the quick re-entry model produces the counterfactual implication

that entry rates would be countercyclical. This is because many of the entrepreneurs that

exit during the crisis would immediately start re-entering, causing an increase in entry rates.

This suggests that the procyclicality of entry rates is a consequence of limited re-entry.

[Figure 3 about here.]
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While quick re-entry certainly has large effects on the dynamics of entry, the important

question is whether this has broader effects on the economy as a whole. For this purpose,

consider the right two panels of Figure 3, which plots the Quick Re-Entry model’s predictions

for output and hours against the data. This shows that quick re-entry makes both output

and hours less volatile, predictions which are confirmed in Table 3. Furthermore, quick

re-entry has significant implications for the recovery of output after the 2007-09 recession.

Whereas in the data (and the benchmark calibration), output is about 9.5% below trend in

2014-I, it would have only been 7% below trend in 2014-I with quick re-entry.

To see this result in another way, consider Figure 4, which plots the predicted recovery

in output after the 2007-09 recession with quick re-entry. First, it restricts attention to

the time period after 2007-IV, which is identified by NBER as the peak of the 2007-09

recession. Second, the model’s prediction for output is shown with the data’s log-linear trend.

Therefore, while it does ignore any level effects on output, it nevertheless illustrates more

clearly the effect quick re-entry has on the recovery of output after the 2007-09 recession. In

the data, real GDP grew at an annual rate of 2.2% between 2009-II and 2014-I. In contrast,

the model predicts that real GDP would have grown at an annual rate of 2.7% over the

same time period with quick re-entry. This difference of 0.5% in growth is significant. This

suggests that the inability of exiting entrepreneurs to re-enter, as suggested by the CPS

data, has been a contributing factor to the slow recovery in output that followed the 2007-09

recession.

[Figure 4 about here.]

5.2.1 Impulse Responses

To gain more intuition about these results, consider Figure 5, which compares the impulse

responses generated by the Quick Re-Entry experiment to those generated under the bench-

mark economy. Each impulse response is generated by a one standard deviation decrease

in the innovation to aggregate productivity at date 0. First, consider the left two panels of

Figure 5, which plot the impulse responses for entry and exit rates. As seen before, quick

re-entry has a large effect on the response of entry rates. While entry rates fall on impact,

they increase above the steady state level only one quarter after the shock. In contrast, the

dynamics of exit rates are similar under the two calibrations. However, with quick re-entry,

exit rates take longer to return to normal.

[Figure 5 about here.]

Moreover, with quick re-entry, both entry and exit rates are less sensitive to technology

shocks. Using the results of Macnamara (2014), elasticities for entry and exit rates can be
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derived for entry and exit rates as follows:

d lnme

d ln z
= −he(s̄e)

d ln s̄e
d ln z

d lnmx

d ln z
= hx(s)

d ln s

d ln z
.

Note that he(s̄e) = [g(s̄e)s̄e/G] /m̄e is the hazard rate for entry and hx(s) = [µ(s)s/M ] /mx is

the hazard rate for exit. Therefore, for both entry and exit rates, there are two components

which determine the quantitative impact of a technology shock. The first is the hazard

rate, which reflects how many entrepreneurs are near the productivity cutoff relative to

all entrepreneurs who enter or exit, respectively. The second component is the slope of

the corresponding productivity cutoff, which reflects how much the cutoff responds to the

aggregate shock.

Table 5 reports the steady state hazard rates for entry and exit under each calibration.

With quick re-entry, it turns out that the hazard rate for entry is smaller in the steady state.

Nevertheless, the hazard rate for exit is very similar in the two calibrations. The reason

for this is that m̄e is higher under Quick Re-Entry, but mx is still calibrated to the same

value. With a higher entry probability, a change in the entry threshold has a smaller effect

on the total number of entrants. Nevertheless, it turns out that both the entry and exit

productivity cutoffs are less sensitive to technology shocks with quick re-entry. This can be

seen in the middle panels of Figure 5, which show the impulse responses for the entry and

exit thresholds. The intuition behind this result can be seen from the entry and exit cutoff

rules defined in Equations 4 and 5. A decrease in technology tends to reduce the value of

operating. Everything else being equal, this tends to increase the cutoff productivity for both

entry and exit. However, a decrease in technology also lowers the value of waiting. Since

the value of waiting is affected more with quick re-entry, this implies that the entry and exit

cutoffs are less affected by the same technology shock in the Quick Re-Entry calibration.

Moreover, the different response of entry and exit rates has implications for the behavior

of output and hours. The right two panels of Figure 5 plot the impulse responses for output

and hours. It can be seen that both output and hours are less affected on impact under

the Quick Re-Entry experiment. Moreover, because entry and exit are less affected by

the technology shock, the number of entrepreneurs who operate is also less affected. As a

consequence, both output and hours recover more quickly. This suggests that output would

be less persistent with quick re-entry.

Furthermore, these results highlight the importance of limited re-entry for the amplifi-

cation result in the literature. In particular, Clementi and Palazzo (2014) find that entry

and exit further amplify and propagate the effects of aggregate shocks. Macnamara (2014)
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obtained a similar result in a model with both financial and technology shocks. Devereux

et al. (1996), Bilbiie et al. (2012), Jaimovich and Floetotto (2008) and Chatterjee and Cooper

(2014) have found similar results in models with monopolistic competition. However, the

quick re-entry experiment demonstrates that the magnitude of this effect is dependent on

limited re-entry. With quick re-entry, not only would aggregate output be less volatile, but

it would be quicker to recover in response to aggregate shocks. Therefore, when exit is more

permanent, entry and exit tend to make aggregate output more volatile and more persistent.

5.2.2 Contribution of Re-Entry to the Total Entry Rate

Given the quick recovery in entry rates in the Quick Re-Entry experiment, one question

is how much of this prediction is driven by the re-entry of old entrepreneurs and how much

is driven by the entry of new entrants. It turns out that most of the recovery in entry rates

after 2007-09 is driven mostly by re-entry. To see this, it is useful to decompose the entry

rate as follows: me = mne +mxe. Let mne denote the “new entry rate.” In other words, this

is the part of the entry rate arising only from entrants who have never previously operated.

Analogously, let mxe denote the “re-entry rate.” This is the portion of the entry rate arising

from re-entrants. In the steady state of the benchmark model, it was the case that mne = 3%

and mxe = 0.3%. Consequently, re-entry made up a very small portion of the total entry

rate. In contrast, in the quick re-entry model, mne = 1.3% and mxe = 2%. Not surprisingly,

with quick re-entry, potential re-entrants made up a larger portion of all potential entrants.

Therefore, re-entry made up a larger portion of the total entry rate.

Furthermore, it can be seen from Figure 6 that changes in re-entry drive changes in

entry rates in the Quick Re-Entry experiment. For the benchmark economy, the top panel

of Figure 6 plots mne, mxe and me against the entry rate in the data. The bottom panel

of Figure 6 does the same for the Quick Re-Entry experiment. In the benchmark economy,

mxe is so small that changes in mne drive changes in me. However, in the Quick Re-Entry

economy, mxe is relative large. Consequently changes in re-entry appear to drive most of the

changes in the overall entry rate, me.

[Figure 6 about here.]

5.2.3 Effect of Quick Re-Entry on Aggregate Productivity

Furthermore, quick re-entry has consequences for aggregate productivity. For example,

Foster et al. (2001) find that entry and exit contribute to long-run productivity growth, as

entrants tend to be more productive than the exiting plants they replace. While the long-run

growth rate is zero in this model, this is the mechanism by which entry and exit will increase
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the level of aggregate productivity. To see this, consider Table 5, which reports the average

log productivity of entrants and exiting producers under the benchmark calibration and the

Quick Re-Entry experiment. In both economies, entering producers are more productive

than the exiting producers they replace. As a consequence, the average productivity of all

producers (who operate) is above zero. Without entry and exit, the average productivity

would have been zero, which is the mean of the invariant distribution for idiosyncratic

productivity.

[Table 5 about here.]

In fact, the productivity advantage of entrants over exiting producers is larger under the

Quick Re-Entry experiment. As a consequence, the average productivity of all producers

(who operate) is higher under the Quick Re-Entry experiment. This is because the cutoff

productivity for entry and exit is higher with quick re-entry. The intuition behind this result

can be seen from the entry and exit cutoff rules defined in Equations 4 and 5. The ability to

re-enter quickly under the Quick Re-Entry experiment tends to increase the value of waiting.

As a consequence, marginal entrepreneurs, who would have operated in the benchmark

calibration, will choose to exit and wait under the Quick Re-Entry calibration. The same

is true for potential entrants. This tends to raise the productivity of all entrepreneurs

who operate. Therefore, while models along the lines of Hopenhayn (1992) predict that the

selection introduced by entry and exit will raise aggregate productivity, these results indicate

that this selection effect is hampered by limited re-entry.

5.3 Further Alternative Calibrations

To further clarify the mechanism behind these results, I compare the benchmark cal-

ibration to an additional two calibrations. In the first alternative calibration, I assume

θ = θx = 1, implying that exiting entrepreneurs cannot re-enter and potential entrants

cannot delay entry. I label this the “No Re-Entry” calibration. To be consistent with the

benchmark calibration, I maintain the original target for m̄e, which was 6.9%. In the second

calibration, I allow re-entry, but assume that it takes much longer for exiting entrepreneurs

to re-enter. Consequently, I label this the “Slow Re-Entry” calibration. All other calibration

targets remain the same. Table 4 reports the parameter values assumed in these calibrations.

To be more specific, recall that in the Quick Re-Entry calibration, pre = 60%. In other

words, 60% of exiting entrepreneurs eventually re-enter in the steady state. Moreover, let

tre = 1
pre

∑∞
t=1 tpre,t denote the average number of quarters it takes for an exiting entrepreneur

to re-enter in the steady state, conditional on re-entry. Using Equations 15 and 16, this can
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be shown to be

tre =
1

θ + (1− θ)m̄e

(17)

when ρse = 0. In the Quick Re-Entry calibration, tre was equal to 2 quarters. Therefore,

in the Slow Re-Entry calibration, I assume that pre = 60%, but now assume that tre = 12

quarters (or three years). In other words, exiting entrepreneurs are just as likely to re-enter

as in the Quick Re-Entry experiment, but it will take six times as long. Using Equations 16

and 17, this requires that θ = (1− pre)/tre ≈ 3.33% and m̄e = pre/(pre + tre− 1) ≈ 5.17% in

the Slow Re-Entry calibration.

Next, for each of the two alternative calibrations, I feed into the model the technology

shock measured using the benchmark economy. It turns out that the dynamics of both

entry and exit are very similar to the benchmark calibration under both the No Re-Entry

and Slow Re-Entry calibrations. The same is true for output and hours. Although 60% of

exiting entrepreneurs are eventually able to re-enter in the steady state of the Slow Re-Entry

calibration, only 5% re-enter in the first quarter after exit. In the benchmark calibration, the

corresponding number was 3.9%. In contrast, 30% of exiting entrepreneurs re-enter in the

first quarter after exit under the Quick Re-Entry calibration. Therefore, in the benchmark

calibration and the Slow Re-Entry calibration, few entrepreneurs actually re-enter shortly

after exit, which means that re-entry has a small effect on the dynamics of entry.

To understand this further, it is useful to decompose fluctuations in entry rates as follows:

m̂e = M̂e − M̂ =
[
Ĝ+ ˆ̄me

]
− M̂. (18)

This uses the definition of the entry rate in Equation 11. To express each variable in terms

of the percentage deviation from its steady state value, I indicate this using a circumflex

(e.g., m̂e is the percent deviation of me from its steady state value). Therefore, fluctuations

in the entry rate can be decomposed into fluctuations in the mass of entrants (M̂e) minus

fluctuations in the mass of incumbent entrepreneurs (M̂). Using Equation 12, M̂e can be

decomposed further into fluctuations in the mass of potential entrants (Ĝ) plus fluctuations

in the entry probability ( ˆ̄me).

For each calibration, Figure 7 plots the impulse responses for the individual components

of m̂e in Equation 18. Each impulse response is generated by a unit standard deviation

decrease in technology at date 0. The top-left panel of Figure 7 plots the impulse response

for the mass of potential entrants and the bottom-left panel shows the entry probability.

The top-right panel shows the mass of entrants, which is just the sum of the left two panels.

The bottom-right panel shows fluctuations in the mass of incumbents. Consequently, the

percentage change in the entry rate is just the top-right panel minus the bottom-right panel.
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[Figure 7 about here.]

First, consider the benchmark, Slow Re-Entry and No Re-Entry calibrations. From

Figure 7 it can be seen that the model’s predictions are very similar for these economies.

The only exception to this is the model’s predictions for fluctuations in the mass of potential

entrants. In the No Re-Entry calibration, the mass of potential entrants is constant by

assumption. In the benchmark calibration, the mass of potential entrants is still quite

stable, but does tend to rise during periods of low aggregate productivity. However, in the

Slow Re-Entry calibration, the mass of potential entrants is much more volatile. However,

despite the fact that M̂e = Ĝ + ˆ̄me, the mass of entrants still behaves quite similarly for

these three economies. Even though Ĝ is more volatile in the Slow Re-Entry calibration, it

is not enough to have a large effect on M̂e. In fact, in the Slow Re-Entry calibration, the

mass of potential entrants (Ĝ) rises too slowly to have a large effect on the dynamics of M̂e.

Not surprisingly, the starkest differences can be seen in the predictions of the Quick

Re-Entry calibration. The mass of potential entrants is most volatile in this calibration.

A decrease in technology leads to an increase in exit rates, which causes a large increase

in the mass of potential entrants with quick re-entry. However, since the entry threshold

is less sensitive to technology shocks, the entry probability is less affected by the negative

technology shock. As a consequence, the mass of entrants is much less affected, which

dampens the effect of the technology shock on the mass of incumbent producers.

The similarity of the benchmark and No Re-Entry calibrations suggests that models can

safely abstract from re-entry. While not shown, the benchmark and No Re-Entry calibrations

are also very similar to one in which re-entry is disabled, but not delayed entry. Re-entry is

so limited in the data that a model with (limited) re-entry performs just as well as a model

without this feature. While it has been assumed in the literature that exit is permanent,

the benchmark model, calibrated to be consistent with the empirical evidence reported in

Section 3, confirms that this is a justifiable assumption. Nevertheless, the quick re-entry

experiment highlights the economic consequences of limited re-entry (or permanent exit),

which have not been explored in the literature.

5.4 Robustness Checks

I now evaluate whether these results are robust to some of the key modeling assumptions.

First, in Section 5.4.1, I consider how the results change if ρse > 0. Second, in Section 5.4.2,

I consider different assumptions for the idiosyncratic productivity process. And finally, in

Section 5.4.3, I examine alternative assumptions on the entry cost.
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5.4.1 Persistence of Signal Process

One key assumption of the benchmark calibration was that ρse = 0. This meant that

an exiting entrepreneur’s idiosyncratic productivity had no relevance for its entry signal.

The skills or intellectual capital encompassed by the producer are essentially lost by the

decision to exit. Similarly, a potential entrant’s signal today had no relevance for its signal

tomorrow. The skills of a potential entrant are assumed to be lost by the decision not to

enter. However, one advantage of this assumption was that it made it possible to derive

closed form expressions for pre and tre. To evaluate whether this has affected the results, I

now relax this assumption.

Specifically, I assume that ρse = ρs and σεse = σεs. In other words, the persistence of

the signal is the same as the persistence of idiosyncratic productivity. Assuming σεse =

σεs implies that the invariant distribution of ln se will still have the same variance as the

invariant distribution of ln s. Furthermore, I still assume that gn(·), the distribution from

which new potential entrants draw their initial signal, is log normal with mean ase and

standard deviation σεs/
√

1− ρ2
s. All other parameters are re-calibrated to maintain the

original targets of the benchmark model. However, now θ and m̄e cannot be determined

directly as Equation 15 no longer holds. Therefore, I directly calibrate θ and ase to meet the

benchmark calibration’s targets for pre,1 and
∑4

t=1 pre,t.

I then repeat the same exercise as in Sections 5.1 and 5.2. Specifically, I used the model

with persistent signals to back out a historical sequence of technology shocks. It turns

out that the sequence of technology shocks calculated using the calibration with persistent

signals is very similar to those obtained under the benchmark calibration. Specifically, the

maximum percentage difference (in absolute value) between the two shock sequences was

0.27%. Then, as before, I feed in this sequence of technology shocks back into the model

with persistent signals. It turns out that the model’s predictions for entry, exit rates, output

and hours are unchanged. In fact, the differences are negligible.

[Figure 8 about here.]

Next, I repeat the Quick Re-Entry experiment with persistent signals. Figure 8 plots the

resulting dynamics of entry and exit rates against the data. Also plotted are the dynamics of

entry and exit rates under the original Quick Re-Entry experiment. With persistent signals,

entry and exit are more volatile. Focusing in particular on 2007-09 recession, entry rates

recover even faster with persistent signals. Exit rates increase even more with persistent

signals, as now exit is less destructive to the entrepreneur. The effect on the dynamics

of output and hours (not shown) are similar as before. However, with persistent signals,

model predicts that the average growth rate of real GDP between 2009-II and 2014-I would
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have been 2.8%, instead of 2.7%. Therefore, the assumption of ρse = 0 in the benchmark

calibration has no effect on the core results.

5.4.2 Process for Idiosyncratic Productivity

Up to this point, it has been assumed that ρs = 0.850 and σεs = 0.103. To evaluate

whether this has affected the results, I consider two alternative calibrations in which the

process for idiosyncratic productivity differs. First, I suppose ρs = 0.90, but σεs = 0.085.

In this case, the persistence is higher, but σεs/
√

1− ρ2
s is still equal to 19.6%. Second, I

suppose ρs = 0.90, but σεs = 0.103. This will now imply that σεs/
√

1− ρ2
s is higher. I

then repeat same exercises as in Sections 5.1 and 5.2. Specifically, I first use the model to

back out a sequence of technology shocks, and then feed these shocks back into the model.

Second, I repeat the Quick Re-Entry experiment.

Under both calibrations, the results turn out to be very similar. In particular, the

alternative assumptions on (ρs, σεs) do reduce the sensitivity of entry and exit rates to ag-

gregate shocks. Nevertheless, the estimated technology shock tends to be more volatile

for (ρs, σεs) = (0.90, 0.085), and even more volatile for (ρs, σεs) = (0.90, 0.103). Whereas

(ρz, σεz) = (0.947, 0.0045) in the benchmark economy, (ρz, σεz) = (0.952, 0.0046) when

(ρs, σεs) = (0.90, 0.085). In other words, the technology shock becomes more persistent,

and σεz/
√

1− ρ2
z rises from 1.41% to 1.50%. When (ρs, σεs) = (0.90, 0.103), it turns out

that (ρz, σεz) = (0.954, 0.0047). The technology shock, therefore, becomes even more persis-

tent and σεz/
√

1− ρ2
z increases to 1.58%. Therefore, changes in the aggregate productivity

process offset the impact of changes in the idiosyncratic productivity process.

5.4.3 Entry Cost

And finally, up until this point, it has been assumed that ce = 0. In contrast, I now

consider two alternative calibrations where ce > 0. Because ce > 0, it will now be the case

that s(x) < s̄e(x), and this will tend to push up the relative size of entrants. In Clementi and

Palazzo (2014), the ratio between ce and the expected value of cf (which was stochastic) was

0.96. Therefore, in one scenario, I assume ce is constant and ce = 0.96cf . In another scenario,

I allow ce to vary countercyclically. In particular, I assume ce = c̄e exp [−βz (ln z − az)], where

βz > 0. This will imply that the entry cost will rise during recessions, making entry more

difficult. For this calibration, I assume βz = 3 and c̄e = 0.96cf . Therefore, when ln z = az,

the entry cost will be the same as in the case when ce is constant. Moreover, because βz = 3,

a 1% decrease in technology will lead to a 3% increase in the entry cost. While they had

a two-stage entry condition, this is roughly consistent with the cyclical entry costs assumed
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by Lee and Mukoyama (2013). All other calibration targets are the same.

As before, I repeat the same exercises as in Section 5.1 and 5.2. The results turn out to be

very similar. On the one hand, the estimated technology shocks turn out be less volatile when

the entry costs are positive. Whereas (ρz, σεz) = (0.947, 0.0045) in the benchmark economy,

(ρz, σεz) = (0.944, 0.0044) in the case of a constant entry cost. In other words, σεz/
√

1− ρ2
z

falls from 1.41% to 1.34%. When the entry cost is countercyclical, (ρz, σεz) = (0.940, 0.0044)

and σεz/
√

1− ρ2
z falls to 1.29%. Despite a technology shock that is less volatile, entry rates

in the (re-calibrated) benchmark economy turn out to be more volatile when the entry cost is

countercyclical. For example, in the original benchmark calibration, the standard deviation

of HP-filtered entry rates was 3.8%. In the cast of a constant entry cost, this falls to 3.4%,

but rises to 4.3% in the case of a countercyclical entry cost. Despite the small differences,

the results of the benchmark and quick re-entry economies are qualitatively the same.

6 Conclusion

This paper studies the consequences of “limited re-entry” for macroeconomic dynamics.

First, matched individual-level data from the CPS indicate that it is very difficult for exiting

entrepreneurs to re-enter in the future. Using unemployed chief executives as a proxy for

exiting entrepreneurs, it is observed that only about 4% of these individuals find employment

again as a chief executive after 3 months. After 12 months, this number increases to only 8%.

Given the close relationship between chief executives and the role of entrepreneurs in the

model, I take this as evidence that re-entry is “limited.” Second, this paper builds a model

of firm dynamics to study the consequences of limited re-entry for the aggregate economy.

Calibrating the model to be consistent with the observed unemployment-to-employment

transition rates for chief executives, the model indicates that limited re-entry has increased

the volatility of output and slowed the recovery in output following the 2007-09 recession.

While it has been assumed in the literature that exit is permanent, the empirical evidence

reported in this paper confirms that this is a justifiable assumption. Nevertheless, this paper

still highlights the economic consequences of limited re-entry or permanent exit, which has

not been explored in the literature. For example, these results demonstrate that aggregate

output is more volatile and more persistent because of permanent exit. Moreover, while entry

and exit tend to raise aggregate productivity in models derived from Hopenhayn (1992),

these results demonstrate that aggregate productivity would be even higher if quick re-entry

was possible. With permanent exit, many low-productivity entrepreneurs choose to operate

because they do not have the option to re-enter later.

While the data in this paper refers to the entry and exit of establishments, the analysis
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can be extended to the entry and exit of firms, the creation or discontinuation of product

lines, or a company’s entry into or exit from markets. Nevertheless, this paper suggests

that limited re-entry of any form has significant effects on the aggregate economy. The

model, however, does not take a stand as to why re-entry is difficult. This is a question for

future research. However, it does suggest that policies which make re-entry easier could raise

aggregate productivity and reduce the volatility of output.
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A Computational Method

The entrepreneur’s value functions are approximated by value function iteration. The

aggregate state x includes µ and g, both of which are high-dimensional objects. Therefore,

I applied the algorithm of Krusell and Smith (1998) by assuming that agents are boundedly

rational in their perceptions of µ and g. In particular, I assumed that agents only perceived

the aggregate state as (z, Γ̄), where Γ̄ is the productivity-weighted mass of incumbents and

potential entrants:

Γ̄ ≡
∫ ∞

0

s1/(1−γ)µ(s)ds+

∫ ∞
0

s1/(1−γ)
e g(se)dse.

Moreover, define aΓ to be the mean of ln Γ̄ in the steady state. Similarly, Γ is defined as the

productivity-weighted mass of incumbents and potential entrants who actually operate:

Γ ≡
∫ ∞
s

s1/(1−γ)µ(s)ds+

∫ ∞
s̄e

s1/(1−γ)
e g(se)dse.
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When f(z, s, n) = zsnγ, the optimal labor demand is n(z, s;w) = [γzs/w]1/(1−γ). The

policy rule n(z, s;w) is the function which solves the static maximization problem in Equa-

tion 8. Then, the equilibrium wage should satisfy

lnw = c+
1

1 + ν(1− γ)
ln z +

1− γ
1 + ν(1− γ)

ln Γ (A.1)

where the parameter c is a constant which depends only on parameters. Since Γ depends

on the entry and exit thresholds, I use Γ̄ instead of Γ in the numerical calculations to

approximate Equation A.1 with

lnw ≈ 1

1 + ν(1− γ)
(ln z − az) +

1− γ
1 + ν(1− γ)

(ln Γ− aΓ) . (A.2)

The parameter c depends on ψ, which determines the household’s disutility from working.

Therefore, I set ψ to guarantee that the wage is 1 in the steady state. Using Γ̄ instead of

Γ turns out to be a reasonable approximation. After simulating the benchmark model for

10,500 periods and dropping the first 500 observations, the maximum wage error (in absolute

value) from this approximation was 0.21%. In the Quick Re-Entry model, the maximum

wage error was even lower (0.06%). Furthermore, since agents need to know tomorrow’s Γ̄

to determine wages in the future, I suppose that Γ̄ obeys the following law of motion:

ln Γ̄ = β0 + β1 ln Γ̄ + β2 ln z. (A.3)

In Appendix A.4 , I discuss the accuracy of this forecasting rule.

Then, to solve the model, the following algorithm is used.

1. Construct an artificial sequence of technology shocks, {zt} = (z1, z2, . . . , zT ), for T =

10, 500.

2. Start with an initial guess for (β0, β1, β2).

3. Approximate the value functions V (ln z, ln Γ̄, ln s) and V w(ln z, ln Γ̄, ln se) using the

algorithm from Appendix A.1.

4. Approximate the steady state distributions, µ(ln s) and g(ln se), using the algorithm

in Appendix A.2.

5. Simulate the economy under {zt}, using the algorithm in Appendix A.3.
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6. Using the simulation results, estimate (β′0, β
′
1, β

′
2) via the following OLS regression:

ln Γ̄t+1 = β′0 + β′1 ln Γ̄t + β′2 ln zt + ut.

Drop the all observations for t = 1, . . . , t0, where t0 = 500. If (β′0, β
′
1, β

′
2) is sufficiently

close to the initial guess, (β0, β1, β2), stop. Otherwise, return to step 2. To ensure

convergence, return to step 2 with a convex combination of (β0, β1, β2) and (β′0, β
′
1, β

′
2).

A.1 Approximation of Value Functions

In this case, the entrepreneur’s value function has three state variables, current-period

productivity ln s and the aggregate state (ln z, ln Γ̄). The value of operating and the value of

waiting are then jointly solved by iterating on the Bellman equations defined in Equations 9

and 10. The details of the algorithm can then be described as follows.

1. Define the grid points for the state variables (ln z, ln Γ̄, ln s).

2. Start with an initial guess for (β0, β1, β2).

3. Start with some initial guess for the value functions V0(ln z, ln Γ̄, ln s) and

V w
0 (ln z, ln Γ̄, ln s).

4. Given Vn(ln z, ln Γ̄, ln s) and V w
n (ln z, ln Γ̄, ln s), do the following for each (ln z, ln Γ̄, ln s)

on the grid:

(a) Calculate the optimal labor demand, n(z, s;w) = [γzs/w]1/(1−γ). Calculate the

equilibrium wage using Equation A.2.

(b) Using the law of motion for ln Γ̄ in Equation A.3, calculate the tomorrow’s set of

liquidation cutoffs, s(ln z′, ln Γ̄′), and entry cutoffs, s̄e(ln z
′, ln Γ̄′). To interpolate

the value functions between grid points, the log of Vn and V w
n are interpolated

with trilinear interpolation.

(c) Given the optimal choice of labor, approximate the entrepreneur’s value,

Vn+1(ln z, ln Γ̄, ln s) and the value of waiting V w
n+1(ln z, ln Γ̄, ln s). The key diffi-

culty is the need to calculate the continuation values in the value of operating

and the value of waiting. For accuracy reasons, the processes for z and s are not

approximated with a discrete Markov process as in Tauchen (1986). Thus, this

integral is numerically approximated using an adaptive integration routine from

the GNU Scientific Library.

5. Keep iterating until Vn(ln z, ln Γ̄, ln s) and V w
n (ln z, ln Γ̄, ln s) converge.
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A.2 Approximation of Steady State Distributions

Let µ(ln s) be a function representing the distribution of incumbent entrepreneurs over

productivity at the beginning of the period. Similarly, let g(ln se) be a function representing

the distribution of potential entrants over the entry signal. The steady state µ and g are

calculated by jointly iterating on the transition rules in Equations 6 and 7. The details of

the algorithm can then be described as follows.

1. Define a grid for the idiosyncratic productivity ln s and the signal ln se.

2. Given the value functions V (ln z, ln Γ̄, ln s) and V w(ln s, ln Γ̄, ln se), calculate the entry

cutoff s̄e and exit cutoff s for ln z = az and ln Γ̄ = aΓ. Given (β0, β1, β2), aΓ is computed

as aΓ = (β0 + β2az)/(1 − β1). This procedure yields the steady state entry and exit

cutoffs.

3. Start with some initial guess for the distributions, µ0(ln s) and g0(ln se).

4. Given µn(ln s) and gn(ln se), compute µn+1(ln s′) and gn+1(ln s′e) using Equations 6 and

7. These integrals are numerically approximated using an adaptive quadrature routine

from the GSL Scientific Library. When calculating this integral, the prior distributions,

µn(ln s) and gn(ln se), are interpolated using linear interpolation.

5. Keep iterating until µn(ln s) and gn(ln se) converge.

A.3 Simulation

To simulate the model by feeding in a history of aggregate shocks, {zt} = (z1, z2, . . . , zT ),

the following approach was used.

1. Take as a given the entrepreneur’s value functions V (ln z, ln Γ̄, ln s) and

V w(ln z, ln Γ̄, ln se), which implicitly depend on (β0, β1, β2).

2. Initialize the distributions, µ0(ln s) and g0(ln se), to their steady state values.

3. For each t, given distributions µt(ln s) and gt(ln se) at the beginning of the period, do

the following:

(a) Calculate the current period productivity-weighted mass of incumbents and en-

trants, Γ̄t.

(b) Solve for s(ln zt, ln Γ̄t) and s̄e(ln zt, ln Γ̄t). To interpolate the value functions be-

tween the grid points, the log of V and V w are interpolated with trilinear inter-

polation.
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(c) Calculate the mass of entrants (Me,t), mass of exiting entrepreneurs (Mx,t) and the

mass of incumbent entrepreneurs (Mt) in period t. These statistics are calculated

by approximating the following integrals:

Me,t =

∫ ∞
ln s̄e(ln zt,ln Γ̄t)

gt(ln se)d ln se

Mx,t =

∫ ln s(ln zt,ln Γ̄t)

−∞
µt(ln s)d ln s

Mt =

∫ ∞
−∞

µt(ln s)d ln s.

These integrals are numerically approximated using an adaptive quadrature rou-

tine from the GSL Scientific Library. The distributions gt(·) and µt(·) are inter-

polated using linear interpolation.

(d) Calculate the period-t entry and exit rates:

me,t = Me,t/Mt

mx,t = Mx,t/Mt.

(e) Using Equations 6 and 7, update the distributions, µt+1(ln s) and gt+1(ln se), for

next period.

A.4 Accuracy of Forecasting Rule

As noted before, I applied the algorithm of Krusell and Smith (1998) to solve the model.

In the benchmark economy, the parameters of the forecasting rule in Equation A.3 were

estimated to be (β0, β1, β2) = (0.15433, 0.91604, 0.21500). In the quick re-entry case, the

forecasting rule was found to be (β0, β1, β2) = (0.15064, 0.96452, 0.06600). Two standard

measures to assess the accuracy of the forecasting rule are the R2 and root mean square error

of the regression equation. In the benchmark economy, the R2 turned out to be 0.99992 and

the root mean square error was 2.7854 × 10−4. In the quick re-entry economy, the R2 was

0.99991 and the root mean square error was 1.5013× 10−4.

However, as demonstrated by Den Haan (2010), these tests are flawed. Therefore, fol-

lowing Den Haan (2010), I assess the accuracy of the forecasting rule by calculating the

maximum error between the actual Γ̄ and the forecasted Γ̄ generated by the rule without

updating. More specifically, I first construct an artificial sequence of technology shocks,

{zt}Tt=1 for T = 20, 500. Next, I simulate the model under {zt}Tt=1. After doing this, I obtain

a sequence of realized moments {Γ̄t}Tt=1. Next, I drop the first 500 observations. Using only
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the forecasting rule and the initial realized value, Γ̄501, I generate a forecast for Γ̄t for all

t > 501. I denote this forecast by ˆ̄Γt. I then compute the simulated percentage error as

êt = ln ˆ̄Γt − ln Γ̄t for all t > 501.

[Figure 9 about here.]

The left two panels of Figure 9 plot a histogram of the simulated forecast error, êt, for the

benchmark and quick re-entry economies. The mean error was 0.0053% in the benchmark

economy and 0.0020% in the quick re-entry model, indicating that the forecasting rules were

essentially unbiased. In the benchmark model, the maximum error (in absolute value) was

0.66% and only 0.75% of observations had a forecast error above 0.5% in absolute value.

In the quick re-entry model, the maximum error was 0.70% and 0.98% of observations had

a forecast error above 0.5%. Moreover, the right two panels of Figure 9 plot êt against t

for the benchmark and quick re-entry models. This shows that the forecast errors do not

accumulate in either model.
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Figure 1: Constructed Technology Shock

Note: The technology shock (plotted on the left axis) is measured by setting the sequence of each
shock so that the model-predicted fluctuations in output match those seen in the data. Seasonally-
adjusted Real GDP (plotted on the right axis) is obtained from the BEA’s National Income and
Product Accounts. Real GDP is de-trended using a log-linear trend.
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Figure 2: Fit of Benchmark Calibration

Note: The left panels plot the model-generated entry and exit rates against the data, under the
benchmark calibration. The right panels plot the model-generated output and hours against the
data. Entry and exit rates (model and data) are de-trended with a linear trend. Output and
hours (model and data) are both de-trended with a log-linear trend. Note that the model-predicted
output coincides with the data by construction. Data for entry and exit rates are obtained from
the BLS’s Business Employment Dynamics survey. Output is quarterly seasonally adjusted real
GDP from the BEA’s National Income and Product Accounts. Hours is obtained as the quarterly
average of aggregate weekly hours of production and non-supervisory employees from the BLS’s
Current Employment Statistics Survey.
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Figure 3: Results of Quick Re-Entry Experiment

Note: The left panels plot the model-generated entry and exit rates against the data, under the
Quick Re-Entry experiment. The right panels plot the model-generated output and hours against
the data. Entry and exit rates (model and data) are de-trended with a linear trend. Output
and hours (model and data) are both de-trended with a log-linear trend. Data Sources: BLS’s
Business Employment Dynamics survey, BEA’s National Income and Product Accounts, BLS’s
Current Employment Statistics Survey.
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Figure 4: Hypothetical Recovery in Output under Quick Re-Entry Experiment

Note: Plotted is the hypothetical recovery in output after the 2007-09 recession, under the Quick
Re-Entry experiment. The log-linear trend from the data is added to the model-predicted cyclical
fluctuation in output. Data for real GDP is quarterly seasonally adjusted real GDP from the BEA’s
National Income and Product Accounts. Real GDP is reported as an index, with 100 referring to
real GDP in 2009. The average annual growth rate of Real GDP between 2009-II and 2014-I was
2.2%. With quick re-entry, it would have been 2.7%.
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Figure 5: Model Impulse Responses: Benchmark versus Quick Re-Entry

Note: These figures plot the evolution of several variables given a 1-standard deviation decrease in
aggregate productivity at date 0. Impulse responses are generated for the benchmark calibration
and Quick Re-Entry calibrations. Each variable is shown as the percentage deviation from its
corresponding steady state value.
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Figure 6: Contribution of Re-Entry to Entry Rates

Note: Entry rates, me, can be decomposed into the sum of the “New Entry Rate” (mne) and the
“Re-Entry Rate” (mxe). The new entry rate is the part of the total entry rate arising from entrants
who have never previously operated. The re-entry rate is the portion arising from re-entry. The
top panel plots mne, mxe and me against the data for me in the benchmark model. The bottom
panel does the same for the Quick Re-Entry experiment.
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Figure 7: Impulse Responses for Components of Entry Rates

Note: Using Equation 18, the percentage change in entry rates (m̂e) can be decomposed into
fluctuations in the mass of entrants (M̂e) minus fluctuations in the mass of incumbents (M̂). M̂e can
be further decomposed into the fluctuations in the mass of potential entrants (Ĝ) plus fluctuations
in the entry probability ( ˆ̄me). The top left panel plots Ĝ and the bottom left panel plots ˆ̄me.
The top right panel plots M̂e and the bottom right panel plots M̂ . Each of these components of
m̂e are shown for four different calibrations: (1) benchmark calibration, (2) the Quick Re-Entry
calibration, (3) the Slow Re-Entry calibration and (4) the No Re-Entry calibration.
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Figure 8: Effect of Persistent Signals on Quick Re-Entry Experiment

Note: This top panel plots the model’s predictions for entry rates against the data. The bottom
panel plots exit rates. Entry and exit rates are de-trended with a linear trend. The results for two
models are shown here. The first is the “Quick Re-Entry” model, considered in Section 5.2. In this
model, ρse = 0. The second is “Quick Re-Entry with Persistent Signals.” In this model, ρse > 0.
Data source: BLS’s Business Employment Dynamics survey.
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Figure 9: Accuracy of Forecasting Rule in Benchmark Model

Note: This figure plots the results of the accuracy check suggested by Den Haan (2010). Forecasts
for the future aggregate state are generated by the rule without updating. The left panels plot the
histogram of the resulting forecast errors, and the right panels plot these forecast errors over time.
The top two panels show the results for the benchmark economy and the bottom two panels show
the results for the quick re-entry model.
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Table 1: Unemployment-to-Employment Transition Rates for CEOs and Managers

A. Chief Executives

1 month 3 months 12 months
to CEO 3.60% 3.92% 7.64%

(0.59%) (1.10%) (1.74%)
to NRC excluding CEOs 8.30% 18.72% 24.71%

(0.90%) (2.27%) (2.83%)
to RC 2.35% 5.86% 15.50%

(0.46%) (1.33%) (2.57%)
to RM 1.05% 1.38% 3.32%

(0.31%) (0.68%) (1.34%)
to NRM 0.36% 0.61% 5.28%

(0.18%) (0.40%) (1.80%)
Total Job Finding Rate 15.67% 30.49% 56.46%

(1.19%) (2.67%) (3.42%)
to Not in the Labor Force 13.77% 15.07% 18.98%

(1.20%) (2.10%) (2.49%)

B. Managers

1 month 3 months 12 months
to Manager 5.34% 7.77% 14.35%

(0.19%) (0.40%) (0.65%)
to NRC excluding Managers 3.96% 7.63% 11.71%

(0.17%) (0.40%) (0.58%)
to RC 4.10% 8.46% 14.27%

(0.17%) (0.42%) (0.64%)
to RM 3.10% 4.38% 6.80%

(0.15%) (0.31%) (0.44%)
to NRM 2.08% 3.66% 5.21%

(0.12%) (0.28%) (0.40%)
Total Job Finding Rate 18.59% 31.89% 52.33%

(0.35%) (0.72%) (0.92%)
to Not in the Labor Force 14.50% 16.43% 20.08%

(0.31%) (0.56%) (0.66%)

Note: The top panel reports unemployment-to-employment transition rates for chief executives (i.e.,
CEOs). The bottom panel does the same for all managers (which includes chief executives). The
1-month, 3-month and 12-month transition rates are reported. Standard errors are in parentheses.
These numbers are calculated using matched individual-level data from the Current Population
Survey. Given the occupational classifications of Acemoglu and Autor (2011), NRC denotes “Non-
Routine Cognitive,” RC denotes “Routine Cognitive,” RM denotes “Routine Manual” and NRM
denotes “Non-Routine Manual.”

48



Table 2: Parameter Values (Benchmark Calibration)

Parameter Value Notes
Process for Aggregate Productivity Shock

az 0.000 Normalized to zero
ρz 0.947 Match output
σεz 0.0045 Match output

Process for Idiosyncratic Productivity Shock
ρs 0.850 Consistent with literature
σεs 0.103 Consistent with literature

Process for Entry Signal
ase -0.574 Match transition rates for chief executives
ρse 0.000 Set to zero in benchmark calibration

σεse 0.196 Set to σεs/
√

1− ρ2
s

Production Function Parameters
γ 0.600 Set labor share to 60%

Household Parameters
ψ 0.748 Normalize wage to 1 in steady state
ν 1.500 Consistent with literature

Risk-Free Rate
r 0.010 Set risk-free rate to 4% annually

Entry and Exit Parameters
M̄e 1.000 Normalize to 1
cf 0.200 Target quarterly entry/exit rate = 3.2%
ce 0.000 Set to zero in benchmark calibration
θ 0.435 Match transition rates for chief executives
θx 0.000 Set to zero in benchmark calibration
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Table 3: Predictions of the Model versus the Data

Statistic Benchmark Quick Re-Entry Data
ρ(me, Y ) 0.730 -0.488 0.557
ρ(mx, Y ) -0.491 -0.845 -0.218
σ(me) 3.8% 1.6% 3.7%
σ(mx) 4.2% 3.6% 4.7%
σ(Y ) 1.5% 1.4% 1.5%
σ(N) 1.0% 0.9% 2.0%
Yearly Survival Rate, Entrants 66.6% 72.6% 78.9%
Relative Size, Entrants 51.7% 60.9% 37.3%
Relative Productivity, Entrants 78.2% 83.0% 75.0%
Relative Productivity, Exits 67.8% 68.3% 65.0%

Note: This table reports additional model-generated statistics against the data. ρ(me, Y ) is the
correlation of HP-filtered entry rates with HP-filtered output. ρ(mx, Y ) is the correlation of HP-
filtered exit rates with HP-filtered output. An HP filter is used here as it better captures the
business cycle correlations. σ(me), σ(mx), σ(Y ), σ(N) is the standard deviation of (HP-filtered)
entry rates, exit rates, output and hours. The data for the yearly survival rate of entrants and the
relative size of entrants is obtained from the BLS’s Business Employment Dynamics. The data for
the relative productivity of entrants and exiting plants is obtained from Lee and Mukoyama (2013).
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Table 4: Parameters for Alternative Calibrations

Calibration θ θx ase cf m̄e

Benchmark 0.435 0.000 -0.574 0.200 0.069
Quick Re-Entry 0.204 0.000 -0.328 0.202 0.383
Slow Re-Entry 0.033 0.000 -0.605 0.201 0.052
No Re-Entry 1.000 1.000 -0.574 0.200 0.069

Note: This table reports the parameters for several alternative calibrations considered in the text.
Since m̄e (the entry probability) is not a parameter, ase is calibrated to meet the specified target
for m̄e. All parameters not reported here are the same as in the benchmark calibration.
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Table 5: Comparison of Benchmark and Quick Re-Entry Calibrations

Statistic Benchmark Quick Re-Entry
Avg. Log Productivity, All Operators 0.031 0.042
Avg. Log Productivity, Entrants -0.196 -0.131
Avg. Log Productivity, Exits -0.337 -0.321
Entry/Exit Cutoff Productivity -0.283 -0.268
Entry Hazard Rate 9.8 5.1
Exit Hazard Rate 15.6 15.7

Note: “Avg. Log Productivity, All Operators” is the average log idiosyncratic productivity (in the
steady state) of all producers who choose to operate. Corresponding averages are also reported
for entrants (who operate) and exiting entrepreneurs (who do not operate). “Entry/Exit Cutoff
Productivity” is the log of the steady state cutoff productivities for entry and exit, defined in
Equations 4 and 5. Since ce = 0 and θx = 0 in these calibrations, the exit cutoff productivity is
equal to the entry cutoff productivity. The entry (exit) hazard rate is the steady state measure
of entering (exiting) entrepreneurs at the entry (exit) cutoff productivity, divided by the mass of
entrepreneurs who enter (exit).
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