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Abstract This paper considers a model of firm dynamics to study how well aggregate

shocks account for fluctuations in the entry and exit of establishments. To do this, I construct

measures of aggregate financial and technology shocks. Under reasonable parameters, the

model indicates that financial shocks (and not technology shocks) have contributed to the

majority of cyclical fluctuations in entry and exit rates. In particular, the reduction in entry

and the increase in exit during the 2007-09 recession have contributed to the slow recovery

of output and hours that followed.
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1 Introduction

Fluctuations in real GDP and employment are a natural starting point for any study

of business cycles. However, fluctuations in establishment1 entry and exit rates are often

overlooked. Entry and exit rates were notably affected during the Great Recession, with

entry rates falling by 17% and exit rates rising by 21%. Nevertheless, models of the business

cycle typically have abstracted from entry and exit. This omission is not inconsequential,

as entry and exit have been found to amplify the response of output and hours to aggregate

shocks (e.g., see Clementi and Palazzo (2014)). For this reason, I construct a model of firm

dynamics to address how much measured aggregate technology and financial shocks account

for cyclical movements in entry and exit rates. Under reasonable parameters, the model

predicts that financial shocks (and not technology shocks) account for most of the observed

cyclical changes in entry and exit rates.

Building on Hopenhayn (1992), I assume that establishments face idiosyncratic produc-

tivity shocks and must pay fixed costs both to enter and to operate. However, in addition to

an aggregate technology shock, I add an aggregate financial shock as well. While both Lee

and Mukoyama (2013) and Clementi and Palazzo (2014) also augment Hopenhayn (1992)

with aggregate technology shocks, this paper goes further by adding financial shocks as well.

Financial shocks are assumed to be a direct source of aggregate fluctuations, as in Benk et

al. (2005), Gilchrist and Zakraǰsek (2011) and Jermann and Quadrini (2012). In this model,

they are assumed to affect the marginal cost of hiring an additional worker. This is similar to

how financial frictions have been modeled in the literature recently, in that they introduce a

wedge between the marginal product of labor and the wage (e.g., see Jermann and Quadrini

(2012) and Arellano et al. (2012)).

The financial shock is motivated by several financial frictions modeled in the literature.

On the one hand, it reflects binding collateral constraints such as those in Kiyotaki and

Moore (1997). However, since it operates through the labor wedge, it is most similar to

the collateral constraints seen in Jermann and Quadrini (2012). On the other hand, it is

motivated by the “credit spread puzzle,” the observation in the corporate finance literature

that default risk accounts for a small fraction of corporate bond spreads (both levels and

changes).2 This is similar in principle to the excess bond premium in Gilchrist and Zakraǰsek

(2012). It is also motivated by the portion of the financial frictions literature3 which stresses

1An establishment (or plant) is one location of a firm. A firm may consist of many establishments.
2For example, see Collin-Dufresne et al. (2001), Elton et al. (2001), Huang and Huang (2003),

Houweling et al. (2005) and Driessen (2005). See also Gourio (2013).
3For example, Bernanke and Gertler (1989) build on the “costly state verification” model of Townsend

(1979) and Gale and Hellwig (1985) to generate endogenously an external finance premium. Carlstrom and
Fuerst (1997) and Bernanke et al. (1999) build on this model by embedding the agency problem in a general
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the role of the external finance premium. Consequently, the financial shock (and not the

technology shock) is correlated with several quantitative indicators of financial distress, such

as lending standards and credit spreads.

To construct empirical measures of both the technology and financial shocks, I utilize

the procedure of Chari et al. (2007). That is, the sequence of shocks is set to guarantee that

cyclical fluctuations of output and hours in the model match the data. This method parallels

approaches used in the literature, such as measuring productivity shocks as the Solow residual

or using an enforcement constraint to measure a financial shock as in Jermann and Quadrini

(2012). Nevertheless, this procedure is more general, as it requires fewer assumptions to

implement. With these measured shocks, it is then possible to evaluate the contribution of

each shock to cyclical fluctuations in entry and exit rates, as well as output and hours. To

do this, each shock is then fed back into the model, both in combination and one at a time.

Under reasonable parameters, the model indicates that financial shocks account for the

majority of fluctuations in entry and exit rates. This has been true since at least the

early 1990s, when the data on entry and exit begin. Specifically, the financial shock alone

explains 69.2% of cyclical fluctuations in entry rates, and 51.6% of exit rates. Meanwhile,

the technology shock alone accounts for practically none of the observed cyclical fluctuations

in entry and exit rates. This result has significant implications for the aggregate economy,

as entry and exit have amplified and propagated the effects of these financial shocks. In

particular, the reduction in entry and the increase in exit during the 2007-09 recession have

contributed to the slow recovery in output and hours that followed. Clementi and Palazzo

(2014) obtained a similar result in a model with only technology shocks. Therefore, this

paper highlights how entry and exit have further propagated the effects of financial shocks.

Moreover, financial shocks are also a much better explanation for both output and hours

between 1964-I and 2014-I. Specifically, financial shocks account for 87.9% of cyclical fluctu-

ations in output and 111.4% of hours. Meanwhile, technology shocks only explain 10.7% of

output and -11.5% of hours over the same time period. Therefore, for hours, the technology

shock actually tends to dampen fluctuations in hours caused by the financial shock. Fur-

thermore, this paper shows that the importance of financial shocks has grown considerably

since the 1980s. Between 1964-I and 1983-IV, financial shocks account for 20.4% of output

and 78.3% of hours. Meanwhile, technology shocks account for 70.3% of output and 18.0%

of hours. Therefore, before 1984, technology shocks are a relatively better explanation for

output while financial shocks do better explaining hours. However, after 1984, financial

shocks have since contributed to the vast majority of fluctuations in both output and hours.

Specifically, between 1984-I and 2014-I, financial shocks account for essentially all of the

equilibrium model.
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fluctuations in output and 117.4% of hours. Meanwhile, technology shocks account for none

of fluctuations in output and -16.9% of hours.

The result that financial shocks have grown in importance since the 1980s is a finding

that, up to now, has only been hinted at in the literature. On the one hand, Chari et al.

(2007) found that the efficiency wedge (i.e., the technology shock) was a better explanation

for output during the early 1980s recession, while the labor wedge was a better explanation

for hours. Since the financial shock manifests itself in the labor wedge in this paper, this

paper is consistent with those results. On the other hand, Gilchrist and Zakraǰsek (2011)

and Jermann and Quadrini (2012) also found a strong role for financial shocks in explaining

cyclical fluctuations in output and hours. However, Gilchrist and Zakraǰsek (2011) focus only

on the 2007-09 recession, and the analysis of Jermann and Quadrini (2012) begins in 1984.

Yet, Jermann and Quadrini (2012) chose to begin their analysis in 1984 because that was

also a time in which financial flows (e.g., payouts to debt and equity) became more volatile.

Moreover, the credit shock in Benk et al. (2005) does appear to become more volatile in

the 1980s, but their analysis (naturally) excludes the 2007-09 recession. Nevertheless, by

considering a long time period going back to 1964, this paper is able to explicitly identify

the growing importance of direct financial shocks.

This paper is related to many studies which model the dynamics of heterogeneous firms.

In particular, Cooley and Quadrini (2001) consider a model of firm dynamics and financial

frictions, but they do not consider aggregate shocks and exit is exogenous in their model.

Albuquerque and Hopenhayn (2004) and Clementi and Hopenhayn (2006) both study firm

dynamics and financial frictions with endogenous exit, but abstract from aggregate uncer-

tainty. Both Gomes and Schmid (2010) and Arellano et al. (2012), however, do model entry

and exit endogenously. However, the model of exit in these two papers is a bit stylized,

as exit is only assumed to occur when firms default. Nevertheless, they do not focus on

the effect of aggregate shocks on entry and exit. Furthermore, Arellano et al. (2012) model

financial frictions, which introduces a wedge between the expected marginal product of la-

bor and the wage, as in this paper. However, the key aggregate shock in their paper is an

uncertainty shock.

Others, however, have studied the effect of aggregate shocks on entry and exit. Samaniego

(2008) considers endogenous entry and exit, and characterizes the transition path between

two steady states. In contrast to this paper, he finds that a reasonably-sized aggregate

productivity shock has little effect on entry and exit rates. Lee and Mukoyama (2013) find

the same for exit rates, but not for entry rates.4 Meanwhile, Clementi and Palazzo (2014)

4Lee and Mukoyama (2013) also document that the exit rate of manufacturing firms is less cyclical than
the entry rate. However, this same pattern is not observed in the data considered in this paper.
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find significant effects on both entry and exit. Therefore, relative to these studies, the

contribution is two-fold. First, it includes a financial shock in addition to a productivity

shock, making it possible to evaluate the relative significance of the two shocks for entry and

exit. Second, this paper highlights the theoretical determinants of the sensitivity of entry

and exit to aggregate shocks. Of particular importance is the hazard rate, which measures,

at the margin, how many more producers would enter (or exit) relative to the number of

producers which actually enter (or exit), given a marginal change in the aggregate state. The

strong response of entry and exit to aggregate shocks in this paper is due to a calibration in

which the hazard rate is high in the steady state.

This paper is organized as follows. Section 2 discusses the features of the data on entry

and exit this paper seeks to explain. Section 3 presents an overview of the model. Section 4

characterizes the model. Section 5 discusses the construction of the aggregate shocks and

Section 6 reviews the model’s calibration. Section 7 examines the main results and Section 8

concludes.

2 Observations on Entry and Exit

To motivate the study of entry and exit, I first focus on some observations from the

data. Specifically, I utilize establishment birth and death rates from the BLS’s Business

Employment Dynamics (BED) survey. In the BED survey, an establishment death is defined

to occur when an establishment reports zero employment in the third month of a quarter

and does not report positive employment in the third month of the next four quarters. The

establishment death rate (i.e., exit rate) is then defined as the number of deaths divided

by the average of the total number of establishments who operated today and the total

number who operated in the previous quarter. The establishment birth rate (i.e., entry rate)

is defined analogously. This strict definition of entry and exit eliminates most temporary or

seasonal entry and exit. The data for entry begins in 1993-II, while the data for exit begins

in 1992-III. This time period covers two recessions: the 2001 recession and the 2007-09

recession.

[Figure 1 about here.]

The top panel of Figure 1 plots historical establishment entry and exit rates in the United

States. This shows historical entry rates to be procyclical and exit rates to be countercyclical,

facts which have been documented for manufacturing establishments by Lee and Mukoyama

(2013). More precisely, the contemporaneous correlation of HP-filtered entry rates with

HP-filtered real GDP is 0.58. Meanwhile, the analogous correlation for exit rates −0.22.
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However, both entry and exit rates tend to lead real GDP. The correlation of entry rates

with real GDP 1-quarter ahead is 0.64. Meanwhile, the correlation of exit rates with real

GDP 3-quarters ahead is −0.55.

At a quarterly frequency, entry and exit rates have typically averaged about 3%. This rate

of turnover is higher than the rates reported by Lee and Mukoyama (2013) for manufacturing

establishments between 1972 and 1997 (roughly 6% at an annual frequency). In the BED

survey, these entering and exiting establishments account for roughly 20% of the jobs created

and destroyed each quarter. Therefore, they are a significant contributor to job creation

and destruction. During the 2001 recession, exit rates increased but there was little effect

on entry rates. In contrast, during the 2007-09 recession, both entry and exit rates were

affected. Furthermore, while Lee and Mukoyama (2013) also document that exit rates are

less cyclical than entry rates, this pattern is not apparent in the BED survey.

Cyclical fluctuations in entry and exit also have important implications for the cyclicality

of the number of operating establishments. Decreases in entry rates and increases in exit

rates both tend to decrease the growth of the number of establishments. Therefore, the

observation that entry is procyclical and exit is countercyclical implies that the growth rate

of the number of establishments will tend to slow down during recessions. This fact can

be seen in the bottom panel of Figure 1, which plots the total number of establishments,

expressed as the percent deviation from a log-linear trend. Therefore, this suggests that entry

and exit help propagate the effects of aggregate shocks to the economy. A negative technology

shock, for example, may have a larger and more persistent effect on aggregate output and

employment through its effect on entry, exit and the number of operating establishments.

3 Model

In this model, time is discrete and the unit of observation can be thought to be an estab-

lishment or a producer. Throughout this paper, the words “producer,” “establishment” or

“entrepreneur” may be used interchangeably when discussing the theory. This model is based

on Hopenhayn (1992) in that producers face idiosyncratic productivity shocks and must pay

fixed costs both to enter and to operate. However, to account for cyclical fluctuations in

output, hours, entry and exit, I add aggregate financial and technology shocks.

In the following subsections, the components of the model are described in detail.
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3.1 Producers

The economy is populated by a continuum of producers who are perfectly competitive.

Labor is the only input in the producer’s production function, f(z, s, n) = zsnγ, where z

is aggregate productivity, s is idiosyncratic productivity and n is the labor input. It is

assumed that γ ∈ (0, 1), implying that there are decreasing returns to scale at the producer

level. One way to interpret diminishing returns to scale at the producer-level is to think

of the “span of control” models of Rosen (1982) and Lucas (1978). Here a “producer” can

be interpreted as consisting of an entrepreneur and n units of labor. The idiosyncratic

productivity, s, can reflect heterogeneity in the skill of managers and diminishing returns

to scale is a consequence of the diminishing returns of an entrepreneur in managing larger

operations. However, management is not being modeled directly and entrepreneurs earn

positive profits because of diminishing returns to scale. Although there are decreasing returns

to scale at the producer level, there still are constant returns to scale in the aggregate because

the producer can be replicated. With perfect competition, producer-level diminishing returns

allow for heterogeneity to exist in equilibrium and prevents the most productive producers

from taking over the market completely.

Idiosyncratic productivity is assumed to follow an AR(1) process. This process is given

by

ln s′ = ρs ln s+ εs (1)

where s′ is the next-period shock and εs is an independent innovation drawn from N(0, σ2
εs).

In addition, producers face two aggregate shocks: (1) an aggregate productivity shock, and

(2) an aggregate financial shock. The current aggregate technology shock is denoted by z

and the current financial shock is denoted by θ. I will discuss precisely how θ enters the

model in Section 3.1.1. I assume that these aggregate shocks follow a VAR(1) process given

by [
ln z′

ln θ′

]
=

[
az

aθ

]
+

[
ρz,z′ ρθ,z′

ρz,θ′ ρθ,θ′

][
ln z

ln θ

]
+

[
εz

εθ

]
(2)

where (z′, θ′) are the next-period shocks and (εz, εθ) are normally distributed innovations

with mean zero and covariance matrix Σ. Assuming σ2
εz is the variance of εz, σ

2
εθ is the

variance of εθ, and ρεz ,εθ is the correlation of εz and εθ, Σ is parameterized as follows

Σ =

[
σ2
εz ρεz ,εθσεzσεθ

ρεz ,εθσεzσεθ σ2
εθ

]
.

I now discuss how financial shocks enter the model.
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3.1.1 Financial Frictions

To model financial frictions, I take a reduced-form approach. Specifically, given the wage

w, I assume producers choose today’s labor n to maximize profits:

π(z, θ, s;w) = max
n

{
f(z, s, n)− wn

θ

}
(3)

The first order condition implies that the optimal choice of n must satisfy w/θ = fn(z, s, n).

Therefore, the financial shock θ drives a wedge between the wage and the marginal product

of labor. This is consistent with how financial frictions have been modeled in several recent

papers, such as Jermann and Quadrini (2012) and Arellano et al. (2012). Since it is assumed

that f(z, s, n) = zsnγ, the optimal labor demand of an individual producer is given by:

nd(z, θ, s;w) =

[
γθzs

w

]1/(1−γ)

. (4)

By driving a wedge between the wage and the marginal product of labor, the financial shock

directly affects labor demand. Consequently, a “negative” financial shock refers to a scenario

in which θ is lower and thus labor demand is lower.

This setup can be rationalized by an intra-period working capital constraint. This as-

sumption can be motivated by the observation that inputs such as labor and materials have

to be purchased in advance. Specifically, at the beginning of the period, the producer chooses

today’s employment n and pays wages wn. To partially finance the wage bill, producers issue

a non-defaultable intra-temporal bond at the beginning of the period. With the bond, the

producer promises to re-pay b at the end of the period. In return, the producer receives qb

at the beginning of the period, where q is the price of the intra-temporal bond. Assuming

that producers only finance a fraction κ of wages with debt, this will imply that producers

choose b under the constraint that qb = κwn.

Financial frictions then consist of two components. The first is that the price of the intra-

temporal bond is q = 1 − φ. With no frictions, the price of this bond should be 1. When

φ > 0, this indicates that producers are paying a premium for debt. The second friction is

that producers face a collateral constraint. Namely, it is assumed that the promised debt

payment cannot exceed some fraction of output:

b ≤ ξf(z, s, n).

When ξ is lower, the collateral constraint is tighter. When the collateral constraint binds,
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the producer’s labor demand is given by:

nd =

[
ξ(1− φ)zs

κw

]1/(1−γ)

.

This is equivalent to the reduced-form labor demand in Equation 4 when θ = ξ(1−φ)/(κγ).

Therefore, low values of θ can arise from three sources: (1) a tighter collateral constraint

(i.e., lower ξ), (2) a higher premium on debt (i.e., higher φ), and (3) a situation in which

producers are more dependent on external finance (i.e., higher values of κ).

Therefore, this model specification simultaneously incorporates multiple views of financial

frictions seen in the literature. On the one hand, it includes a collateral constraint. Similar to

Jermann and Quadrini (2012), the collateral constraint in this model drives a wedge between

the wage and the marginal product of labor. On the other hand, it allows for a external

finance premium, which is stressed in the financial frictions literature. This premium is

motivated by the “credit spread puzzle,” the observation in the corporate finance literature

that default risk accounts for a small fraction of corporate bond spreads (both levels and

changes). Related to this is the excess bond premium in Gilchrist and Zakraǰsek (2012).

Nevertheless, in Section 5, only θ will be measured. Consequently, it is not necessary to

make specific assumptions about the value of κ. While it will not be possible to separate out

the effects of the individual financial frictions, this approach is general enough to capture

multiple sources of frictions. Moreover, as will be seen in Section 5, the measured financial

shock (and not the technology shock) turns out to be highly correlated with quantitative

measures of financial distress, such as lending standards and credit spreads.

3.1.2 Exit Decision

Each period the producer must pay a fixed operating cost, cf > 0, denominated in terms

of the output good. If the producer chooses to operate today, it pays the fixed cost, earns

profits today and continues to tomorrow. Otherwise, it exits. When making the exit decision,

an entrepreneur compares the value of operating with the value of exiting, which is zero.

Denote by V (x, s) a producer’s value of operating in the current period, where x is the

aggregate state today and s is the producer’s idiosyncratic productivity. This value function

is defined later in Equation 8. The aggregate state x is a vector of state variables which

includes z and θ, the current-period technology and financial shocks, respectively. Therefore,

the producer will exit today if and only if V (x, s) < 0. This implies that there exists an exit

cutoff productivity, s(x), such that the producer will exit if and only if s < s(x). This cutoff

is defined as the value s such that

V (x, s) = 0. (5)
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Because s(x) depends on the aggregate state, aggregate shocks will influence exit rates by

shifting this productivity threshold. In particular, during good times, s(x) will be lower,

reducing the fraction of incumbent producers who will exit.

3.1.3 Entry Decision

As in Clementi and Palazzo (2014), I assume that there is a finite mass M̄e of prospective

entrants every period. Each potential entrant receives a “signal” se about its productivity,

where se is drawn from a log normal distribution with mean µg and standard deviation σg.

If a potential entrant with signal se chooses to operate today, it would immediately begin

operation and its idiosyncratic productivity would be se. After a potential entrepreneur

makes the decision to enter, it pays a fixed entry cost, ce ≥ 0. In contrast to Hopenhayn

(1992), potential entrants know se when they pay the fixed entry cost.5 The advantage of

this assumption is that it introduces endogenous selection into entry.6 As a consequence,

only most productive producers will be able to enter during bad times.

In making its entry decision, a potential entrant compares the value of operating it would

receive if it enters against the total cost of entry. Thus, a potential entrant with signal se

will enter if and only if V (x, se) ≥ ce. This implies that there is an entry cutoff for potential

entrants, s̄e(x), where s̄e is defined as the value of se such that

V (x, s̄e) = ce. (6)

A potential entrant will enter if and only if se ≥ s̄e(x). Because s̄e(x) depends on the

aggregate state, aggregate shocks will influence entry rates by shifting this threshold. In

particular, during good times, s̄e(x) will be lower, increasing the fraction of potential entrants

who will enter. In addition, since ce ≥ 0, it follows that s(x) ≤ s̄e(x). In other words, all

entrants will choose to operate.

3.1.4 Transition Rule for Distribution of Producers

Given the description of the entry and exit conditions, it is now possible to define the law

of motion for the distribution of producers. First, define g(·) to be a function over the current

period’s signal, se. This function represents the distribution of potential entrants. M̄e =∫∞
0
g(se)dse is then the total mass of potential entrants. In this model, g(se) = M̄eϕ(se),

5The model of entry in this paper is also consistent with a modified version of Hopenhayn (1992), in
which the entry cost ce varies with M̄e. In particular, suppose ce varies with M̄e as follows: ce = c̄eM̄

η
e .

Recall that M̄e is endogenous in Hopenhayn (1992). However, if η →∞, the equilibrium value of M̄e is fixed
at 1. Therefore, when η is very large, that model of entry is the same as assuming ce = 0 in this paper.

6This is also the reason Lee and Mukoyama (2013) modeled entry with a “two-step” process.
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where ϕ(·) is the probability density function for a log normal random variable with mean µg

and standard deviation σg. Similarly, define µ(·) to be a function over the current period’s

idiosyncratic shock, s. This function represents the distribution of incumbent producers at

the beginning of the period before the entry and exit decisions are made. M =
∫∞

0
µ(s)ds

is then the total mass of incumbent producers. In contrast to g(·), the distribution µ(·) is

endogenously determined in this model.

Let x = (z, θ, µ) be the vector of aggregate state variables. Given today’s aggregate state

x, tomorrow’s incumbent distribution µ′ will be given by

µ′(s′) =

∫ ∞
s(x)

h(s′|s)µ(s)ds+

∫ ∞
s̄e(x)

h(s′|se)g(se)dse. (7)

The function h(s′|s) is the conditional probability density function for s′, as determined by

the process assumed in Equation 1. The first term represents the mass of incumbents who

do not exit today and transition to s′ tomorrow. The second term represents the mass of

potential entrants who enter today and transition to s′ tomorrow.

3.1.5 Producer’s Optimization Problem

The producer’s problem can now be formulated recursively. Let x ≡ (z, θ, µ) be the vector

of aggregate state variables. Define V (x, s) as the value of continuing for an entrepreneur

with aggregate state x and idiosyncratic productivity s in the current period, after any

dividends from the operations of the current period have been issued. Then, V (x, s) is

defined as the function which solves the following Bellman equation:

V (x, s) = π(z, θ, s;w(x))− cf +
1

1 + r
E [max {V (x′, s′), 0} |z, θ, s] (8)

subject to

µ′ = Tµ(x).

Tµ(x) is the transition rule defined in Equation 7 and w(x) is the equilibrium wage. If the

producer operates, it earns profits π(z, θ, s;w(x)) and pays the fixed cost cf . Next period,

the incumbent producer receives V (x′, s′) if it operates and zero otherwise.
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3.2 Labor Supply

The supply of labor is assumed to be given by the function

N s(w) = (w/ψ)ν (9)

where ν is the Frisch elasticity of labor supply.7 The parameter ψ will just be used to

normalize the wage to 1 in the steady state. By assuming an elastic labor supply, the

equilibrium wage will change in response to aggregate technology and financial shocks.

3.3 Recursive Competitive Equilibrium

A recursive competitive equilibrium can then be defined as follows. A recursive com-

petitive equilibrium consists of (i) the value function V (x, s) (ii) policy function n(x, s)

(iii) cutoff rules s(x), s̄e(x) (iv) wage function w(x) and (v) law of motion Tµ(x) such that

1. V (x, s) solves the Bellman equation given by Equation 8.

2. The policy rule n(x, s) = n(z, θ, s;w(x)), where w(x) is the equilibrium wage and

n(z, θ, s;w) is the solution to Equation 3.

3. The cutoff rules, s(x) and s̄e(x), are given by Equations 5 and 6, respectively.

4. The wage w(x) clears the labor market for aggregate state x. First, define aggregate

labor demand, given wage x and w, as follows:

Nd(x, w) =

∫ ∞
s(x)

n(z, θ, s;w)µ(s)ds+

∫ ∞
s̄e(x)

n(z, θ, se;w)g(se)dse.

The function n(z, θ, s;w) is the solution to Equation 3. Thus, the wage w clears the

labor market when Nd(x;w) = N s(w), where N s(·) is the labor supply function defined

in Equation 9.

5. The actual transition rule for the distribution of producers, Tµ(x), is given by Equa-

tion 7, implying that it is consistent with the transition rule assumed by producers.

7This setup is observationally equivalent to a general equilibrium model in which labor is supplied by
households with preferences linear in consumption and separable in consumption and leisure.
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4 Characterization of Model

With the model fully specified, I now characterize theoretically how financial shocks

influence entry and exit. I then describe how fluctuations in entry and exit rates propagate

the effects of aggregate financial and technology shocks on aggregate output and hours.

4.1 Entry and Exit Rate Elasticities

To understand the impact aggregate shocks have on entry and exit rates, I construct

aggregate-shock elasticities for entry and exit rates. In what follows, it is useful to define

µ̂(x) = µ(ex)ex and ĝ(x) ≡ g(ex)ex. Note that µ̂(·) and ĝ(·) are equivalent to µ(·) and g(·),
but defined over log productivity. Furthermore, the entry rate is defined to be me ≡Me/M ,

where Me ≡
∫∞
s̄e
g(se)dse =

∫∞
ln s̄e

ĝ(x)dx is the mass of entrants and M ≡
∫∞

0
µ(s)ds =∫∞

−∞ µ̂(x)dx is the mass of incumbent producers. Similarly, the exit rate is defined to be mx ≡
Mx/M , where Mx ≡

∫ s
0
µ(s)ds =

∫ ln s

−∞ µ̂(x)dx is the mass of exiting producers. Note that

the definitions of entry and exit rates in the model differ slightly from their definition in the

data (see Section 2). Nevertheless, since entry and exit rates are small, these two measures

are approximately equal. Moreover, let Gc(a) ≡
∫∞
a
g(se)dse =

∫∞
ln a

ĝ(x)dx be the mass of

potential entrants with a signal higher than a and let M(a) ≡
∫ a

0
µ(s)ds =

∫ ln a

−∞ µ̂(x)dx be

the mass of incumbent producers at the beginning of the period with productivity less than

a. Furthermore, define he(s) ≡ g(s)s/Gc(s) and hx(s) ≡ µ(s)s/M(s) to be the hazard rates

for entry and exit, respectively.

Then, elasticities can be derived for entry and exit rates as follows:

d lnme

d ln θ
= −he(s̄e)

d ln s̄e
d ln θ

d lnme

d ln z
= −he(s̄e)

d ln s̄e
d ln z

d lnmx

d ln θ
= hx(s)

d ln s

d ln θ

d lnmx

d ln z
= hx(s)

d ln s

d ln z

For each elasticity, there are two components which determine the quantitative impact of

an aggregate technology or financial shock. The first is the hazard rate, which reflects how

many entrepreneurs are near the productivity cutoff threshold relative to all entrepreneurs

who enter or exit, respectively. The second is the slope of the corresponding productivity

cutoff, which reflects how much the productivity cutoff responds to the aggregate shock.

These elasticities do not readily admit a functional form, which requires the model to be

solved numerically to quantify the effect that aggregate shocks will have on entry and exit

rates.

Nevertheless, it can be seen qualitatively what determines these elasticities. In particular,
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consider the the exit hazard rate. This hazard rate can be re-written as follows:

hx(s) ≡
µ(s)s

M(s)
=
µ̂(ln s)/M

M(s)/M
=
µ̂(ln s)/M

mx

(10)

where M is the total mass of incumbents at the beginning of the period. The function

µ̂(ln s)/M is the probability density function (over ln s) representing the distribution of

incumbent producers. Thus, the numerator of Equation 10 is the probability density at

the exit threshold, ln s. Meanwhile, the denominator is just mx, the fraction of incumbent

producers who exit (i.e., the exit rate).

Computationally, it turns out that there are two determinants of the hazard rate hx(s).

The first is the exit rate mx. It turns out that the higher the exit rate, mx, the lower the

hazard rate hx(s). Given the distribution of incumbent entrepreneurs, varying mx can be

interpreted as varying the default threshold ln s. Then, suppose that mx increases and thus

ln s increases. Increasing mx will tend to increase the denominator in Equation 10, which

tends to decrease hx(s). However, the numerator may increase as well. If ln s is sufficiently

large, increasing ln s will tend to cause µ̂(ln s)/M to fall. In that case hx(s) unambiguously

falls. But for low ln s, µ̂(ln s)/M increases as well. From the computations it turns out that

the increase in the numerator µ̂(ln s)/M is smaller than the increase in the denominator mx.

Thus, in general, the exit hazard rate tends to decrease with mx.

[Figure 2 about here.]

The second determinant of the exit hazard rate is the shape of the incumbent producer

distribution. To see how the distribution matters, consider Figure 2. Figure 2 considers a

scenario in which the incumbent distribution exhibits less dispersion in idiosyncratic produc-

tivity, but the exit rate mx is the same as before. In this case, to match the same exit rate

mx, µ̂(ln s)/M will have to be higher. Therefore, the lower the dispersion in productivity,

the higher the hazard rate will be at the exit threshold. The dispersion in productivity

is largely determined by the assumed process for idiosyncratic productivity in Equation 1.

When σεs/
√

1− ρ2
s is higher, the incumbent distribution will exhibit more dispersion in

productivity, and thus the hazard rate will be lower for a given exit rate, mx.

The determinants of the entry hazard rate are analogous to those for exit. As with exit,

re-write the entry hazard rate as follows:

he(s̄e) =
g(s̄e)s̄e
Gc(s̄e)

=
ĝ(ln s̄e)/M̄e

Gc(s̄e)/M̄e

=
ĝ(ln s̄e)/M̄e

m̄e

(11)

where M̄e = Gc(0) =
∫∞

0
g(se)dse is the total mass of potential entrants and m̄e ≡ Gc(s̄e)/M̄e

is the fraction of potential entrants who enter in a period. The function ĝ(ln se)/M̄e is the
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probability density function (over ln se) representing the distribution of potential entrants.

Thus, the numerator of Equation 11 is this probability density at the entry threshold. Mean-

while, the denominator of Equation 11 is the entry probability m̄e and not the entry rate

me.

Recall that g(se)/M̄e is exogenously given. In the calibration in Section 6, g(se)/M̄e

is assumed to be the log normal probability density function with mean µg and standard

deviation σg. In this case, it trivially follows that (1) the entry hazard rate will decrease

when m̄e increases, and (2) given m̄e, the hazard rate will be higher when σg is lower.

4.2 Aggregate Output and Hours

Given that aggregate shocks will influence entry and exit, it can now be seen how this

affects the aggregate economy. Given aggregate state x = (z, θ, µ), let Y (x) and N(x) denote

aggregate output and hours in equilibrium. Then, define Γ(x) as follows:

Γ(x) ≡
∫ ∞
s(x)

s1/(1−γ)µ(s)ds+

∫ ∞
s̄e(x)

s1/(1−γ)
e g(se)dse. (12)

Intuitively, Γ(x) is the productivity-weighted mass of incumbents and entrants who operate

today. Γ(x) will tend to be higher when there are a lot of producers operating. Then, using

Yt, Nt, and Γt as short-hand notation for Y (xt), N(xt) and Γ(xt), aggregate output must

satisfy the following relationship:

Yt = ztN
γ
t Γ1−γ

t . (13)

With exogenous entry and exit, Γt is constant. However, with endogenous entry and exit,

Γt is another channel through which aggregate shocks will be propagated. During boom

periods, not only will Nt increase, but so will Γt, further amplifying the effect of aggregate

shocks.

Furthermore, cyclical fluctuations in Yt and Nt can be related to cyclical fluctuations in

zt, θt and Γt. To express each variable as the percentage deviation from its steady state

value, I indicate this using a circumflex (e.g., Ŷt is the percent deviation of Yt from its steady

state value). Then, Ŷt and N̂t can be related to ẑt and θ̂t and Γ̂t as follows:

Ŷt =
1

1 + ν(1− γ)

[
(1 + ν)ẑt + γνθ̂t + (1 + ν)(1− γ)Γ̂t

]
(14)

N̂t =
ν

1 + ν(1− γ)

[
ẑt + θ̂t + (1− γ)Γ̂t

]
. (15)
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Now suppose that there is an unexpected increase in zt or θt. On impact, the contribution of

entry and exit to the dynamics will be small as the effect on Γt will be small. However, over

time, the effect on Γt will be larger, and this will have an additional effect on both output

and hours.

5 Measurement of Shocks

To measure the sequence of technology and financial shocks, I apply the procedure of

Chari et al. (2007). Specifically, I set the sequence of {zt, θt} so that model-predicted fluc-

tuations in output and hours match those seen in the data. To be more precise, let Ŷ m
t

and N̂m
t denote the cyclical component of model-predicted output and hours, respectively,

at date t. Output and hours are de-trended with log-linear trend. Let Ŷ d
t and N̂d

t be the

corresponding series from the data. Then, I constructed the sequence of {zt, θt} so that

Ŷ m
t = Ŷ d

t and N̂m
t = N̂d

t for all t. Using this procedure, it is not possible to identify the level

of zt and θt. Nevertheless, the precise level of these shocks is irrelevant, as only changes in zt

and θt are relevant for the results. Consequently, I normalized the level of ln zt and ln θt to

zero by assuming az = aθ = 0. Then, using this procedure, I measured the technology and

financial shocks between 1964-I and 2014-I. For Y d
t , I used quarterly seasonally adjusted real

GDP from the BEA’s National Income and Product Accounts. For Nd
t , I used the quarterly

average of aggregate weekly hours of production and non-supervisory employees from the

BLS’s Current Employment Statistics (CES) survey.

This procedure parallels approaches used in the literature where the model is used to

identify an exogenous sequence of shocks. Examples include using the Solow residual to

measure a technology shock, or using an enforcement constraint to measure a financial shock

(as in Jermann and Quadrini (2012)). However, it is a more general approach since it

requires less stringent assumptions to identify the shocks. For example, the Solow residual

only identifies the technology shock in models where there are constant returns-to-scale.

In contrast, this procedure does not require the assumption of constant returns-to-scale to

identify the technology shock from the data.

[Figure 3 about here.]

The top panel of Figure 3 plots the resulting technology shocks against output. The

contemporaneous correlation of the technology shock with real GDP is 0.41 (see Table 1).

However, the technology shock is essentially uncorrelated with hours, as the contemporaneous

correlation with hours is -0.01. Also shown in Figure 3 is the Solow residual. Since there is no

capital in the model, the Solow residual is calculated assuming that quarterly changes in the

16



capital stock are zero. Since the model matches both output and hours, the model-generated

Solow residual matches the Solow residual in the data, given both aggregate shocks. From

Figure 3, it can be seen that the Solow residual is highly correlated with the technology

shock. In fact, the contemporaneous correlation is 0.86. Moreover, from Equation 13, it can

be seen why the Solow residual does not exactly identify the technology shock. Namely, it

ignores fluctuations in Γt, which also contribute to fluctuations in output.

[Table 1 about here.]

Meanwhile, the bottom panel of Figure 3 plots the measured financial shock against

hours. Compared to the technology shock, the financial shock is more volatile. Whereas

the standard deviation of ln zt is 1.3%, the standard deviation of ln θt is 4.4%. Moreover,

the financial shock is also highly correlated with output and hours. The contemporaneous

correlation of the financial shock with hours is 0.92, while the correlation with output is

0.64.

Furthermore, from Figure 3 it can be seen that financial shocks have become more volatile

over time. To see this precisely, consider the observations before and after 1984. I focus on

this particular date for two reasons. First, it roughly corresponds to the beginning of the

Great Moderation (e.g., see Stock and Watson (2002)). Second, as documented by Jermann

and Quadrini (2009) and Jermann and Quadrini (2012), the volatility of financial flows (e.g.,

payouts to equity and debt) increased after 1984. As reported in Table 1, the standard

deviation of ln θt between 1964-I and 1983-IV was 2.7%. However, between 1984-I and 2014-

I, this standard deviation almost doubled to become 5.1%. In contrast, the volatility of

technology shocks remained essentially the same over these two time periods. Moreover, the

correlation of the financial shock with output and hours both increased after 1984. At the

same time, the correlation of the technology shock with output and hours both decreased

after 1984. In fact, after 1984, the technology shock has exhibited a small negative correlation

with hours.

Moreover, the financial shock is correlated with other quantitative indicators of financial

distress. For example, the left-panel of Figure 4 plots a measure of lending standards reported

by the Federal Reserve’s Senior Loan Officer Opinion Survey. This particular measure is the

net percentage of domestic banks tightening lending standards for commercial and industrial

(C&I) loans to large and middle-market firms.8 Since this is a measure of the changes in

lending standards, a tightening of lending standards should correlate with decreases in θt.

8Large and middle-market firms are defined as those with annual sales of $50 million or more. Small
firms are the rest. The term “net percentage” means the fraction of banks that have tightened standards
minus the fraction of banks that have eased standards.
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Therefore, the left-panel of Figure 4 compares the Federal Reserve’s measure of lending

standards to −εθ,t, which is the negative of innovations to financial shocks. This shows

that −εθ,t tracks reasonably well with the Federal Reserve’s measure of lending standards.

In fact, the contemporaneous correlation between the two measures is 0.59. Meanwhile,

the contemporaneous correlation between εz,t and the Federal Reserve’s measure of lending

standards is only 0.08.

[Figure 4 about here.]

Furthermore, the financial shock is also correlated with credit spreads. The right-panel

of Figure 4 plots −εθ,t against the Baa-Aaa credit spread. The Baa-Aaa credit spread is

the difference between the Baa and Aaa interest rates reported in the Federal Reserve’s

H.15 release. It turns out that the innovations εθ,t are negatively correlated with credit

spreads. The contemporaneous correlation between εθ,t and the Baa-Aaa credit spread is

-0.42. Meanwhile, the contemporaneous correlation between εz,t and the credit spread was

only -0.03. Therefore, this seems to confirm that the estimated financial shock (and not the

technology shock) reflects financial market conditions. The shock θt tends to decrease both

when lending standards tighten and when credit spreads increase.

6 Calibration

The model can now be calibrated. Table 2 lists the calibrated parameters.

[Table 2 about here.]

6.1 Productivity Process Parameters

After using the procedure outline in Section 5, the sequence of aggregate shocks {zt, θt}
was fit to the VAR(1) process in Equation 2. This yielded estimates ρz,z′ = 0.883, ρθ,z′ =

−0.022, ρz,θ′ = 0.223 and ρθ,θ′ = 1.003. Moreover, σεz = 0.0051 and σεθ = 0.0092, while

ρεz ,εθ = −0.492.

Furthermore, the persistence of the idiosyncratic productivity shock was set to ρs = 0.850

and the standard deviation of the innovation was set to σεs = 0.103. These parameters were

chosen to be consistent with values assumed in the literature. At an annual frequency, Khan

and Thomas (2013) assume a persistence of 0.659 and an innovation standard deviation

of 0.118. Meanwhile, Clementi and Palazzo (2014) assume a persistence of 0.55 and an

innovation standard deviation of 0.22, at an annual frequency. Meanwhile, the values used
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in this paper are consistent with ρs = 0.653 and σεs = 0.135 at an annual frequency.9

Therefore, the values of (ρs, σεs) are similar to the values assumed by Khan and Thomas

(2013).

6.2 Parameters Directly Related to Entry and Exit

I now consider the parameters which directly influence the behavior of entry and exit.

First, consider the mass of potential entrants born each period, M̄e, which matters for the

number of producers which operate in the steady state. If M̄e is doubled, the equilibrium

number of producers which operate in the steady state is doubled as well. Given that M̄e

merely changes the scale of the economy, M̄e normalized to 1. Next, consider the fixed

operating cost, cf . This is set to target an average entry or exit rate of 3.2%. This is the

average quarterly establishment entry rate between 1993-II and 2007-III from the BLS’s

Business Employment Dynamics (BED) survey. As seen in Section 4.1, the target exit rate

is critical for the sensitivity of exit rates to aggregate shocks.

While the level of mx is critical for the sensitivity of exit rates to aggregate shocks, the

level of the entry probability m̄e is critical for the sensitivity of entry rates. This was seen

in Section 4.1. However, either ce or µg could be used to target the entry probability m̄e.

Increasing ce would tend to increase the entry threshold s̄e(x). Given the distribution of

potential entrants, g(se), a higher entry threshold would tend to reduce m̄e. The alternative

to this is to reduce µg below zero. This would shift the potential entrant distribution g(se)

to the left. Then, holding the entry threshold constant, this would tend to cause m̄e to fall.

The latter approach does not require s̄e to be above s to calibrate to a low m̄e. In contrast,

calibrating ce, by pushing s̄e above s, would tend to push up the relative size of entrants.

For low m̄e, entrants would need to be larger than incumbent producers, which is not true in

the data. Therefore, in the benchmark calibration, I set ce = 0, and calibrated µg to target

m̄e. As for m̄e, there is little guidance in the data for what m̄e should be. Consequently,

I set m̄e to guarantee that the volatility of entry rates in the model was roughly consistent

with the data. This required that I set m̄e to a low number. Therefore, in the benchmark

economy, I set m̄e = 10%.

9Some caution is required when converting between annual and quarterly frequencies. Given the pa-
rameters for a productivity process at a quarterly frequency, (ρq, σq), the corresponding annual parameters
(ρa, σa) were set so that one would obtain (ρa, σa) if the quarterly AR(1) process were estimated at an annual
frequency.
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6.3 Remaining Parameters

The Frisch elasticity of labor supply, ν, was set to 1.5. According to Keane and Rogerson

(2012), values commonly assumed in the literature range between 1 and 2. As for returns

to scale in the model, I assumed that γ = 0.6. This implies that the labor share will be

60%. Given the estimation procedure for the aggregate technology and financial shocks,

these parameters are not particularly important. The effect of different values for ν or γ will

be offset by different estimates for the aggregate shocks. And finally, since the model period

is assumed to be a quarter, the risk-free rate r was chosen to be 1%. The labor disutility

parameter ψ was set to normalize the wage to 1 in the steady state.

7 Results

The model was solved using dynamic programming techniques. Because the distribution

of incumbents in the aggregate state x is an infinite-dimensional object, I applied the algo-

rithm of Krusell and Smith (1998). When applying this algorithm, one potential problem is

that forecast errors may accumulate over time. Applying the suggested accuracy check in

Den Haan (2010), I find that this does not occur. Appendix A goes into more specific detail

on the numerical methods used and reports the results of several accuracy tests.

Starting with the steady state distribution of producers, I feed back into the model the

whole history of shocks measured in Section 5. To evaluate the quantitative importance

of each shock, I then consider a technology shock only economy and a financial shock only

economy. In both economies, I still feed both shocks into the model. However, in the

technology shock only economy, I solve the model assuming an individual producer’s profits

are π(z, θ̄, s;w), where π(z, θ, s;w) is defined in Equation 3 and θ̄ = 1 is the mean value of

θ. Meanwhile, in the financial shock only economy, I solve the model assuming profits are

π(z̄, θ, s;w), where z̄ = 1 is the mean value of z. Therefore, in each of these experiments,

the direct effect of one shock is eliminated, but the forecasting effect is retained. This is the

accounting procedure outlined in Chari et al. (2007).

The model’s predictions for output, hours, entry and exit rates are then compared to

those observed in the data. The technology and financial shocks are measured between

1964-I and 2014-I. Meanwhile, the data for entry begin in 1993-II and the data for exit begin

in 1992-III. This means that the model was simulated for 114 quarters (or 28.5 years) until

it could generate results on entry and exit that could be compared to the data.
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7.1 Entry and Exit Rates

Figure 5 plots the model’s predictions for entry and exit rates against the data. For the

data, I used establishment birth and death rates from the BED survey. Both the model-

generated rates and the data are de-trended with a linear trend. The left three panels

plot entry rates and the right three panels plot exit rates. The top row of Figure 5 plots

the model’s prediction for entry and exit rates in the technology shock only economy. The

middle row shows the results for the financial shock only economy. And lastly, the bottom

row shows the results of the benchmark economy in which both shocks are fed into the model.

[Figure 5 about here.]

With both shocks, the model does well accounting for magnitude and cyclicality of both

entry and exit rates. During the 2007-09 recession, the two shocks together can account for

the decrease in entry rates and the increase in exit rates that occurred. Moreover, during the

2001 recession, the model with both shocks can partially account for the increase in exit rates

that occurred. However, Figure 5 indicates that financial shocks are a stronger explanation

for the behavior of both entry and exit rates than technology shocks. In particular, during

the 2007-09 recession, the financial shock only economy predicts a decrease in entry and

an increase in exit, consistent with the data. During the same time period, however, the

technology shock only economy counterfactually predicts an increase in entry and a decrease

in exit. Similarly, around the 2001 recession, the financial shock only economy accurately

predicts an increase exit rates while the technology shock only economy does not. And finally,

while the technology shock only economy predicts an increase in entry, the financial shock

only economy predicts a fall in entry during the 2001 recession. In the data, however, there

was at best a small decrease in entry rates.

To quantify the contribution of the each shock to cyclical fluctuations in entry and exit

rates, I project the model’s predictions onto the data. Specifically, let x̂d,t denote the percent

deviation of x from trend in the data, where x is the variable of interest (e.g., entry or

exit rates). Analogously, suppose x̂m,t is the predicted percent deviation from trend in the

model, where m ∈ {zθ, z, θ}. In other words, x̂zθ,t is the model’s prediction in the benchmark

economy with both shocks, while x̂z,t and x̂θ,t correspond to the predictions of the technology

shock only and financial shock only economies, respectively. Then, I perform the following

simple linear regression:

x̂m,t = βm,c + βm,dx̂d,t + um,t. (16)

Note that βm,d = ρm,dσm/σd, where ρm,d is the correlation of x̂m,t and x̂d,t, σm is the standard

deviation of x̂m,t and σd is the standard deviation of x̂d,t. Intuitively, βm,d captures the relative
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variation of x̂m,t that is correlated with the data. Even if σm/σd is high, βm,d will still be

low if x̂m,t is uncorrelated with x̂d,t. Similarly, even if x̂m,t is highly correlated with x̂d,t, βm,d

will be small if σm/σd is small. Consequently, βm,d can be interpreted as the fraction of x̂d,t

explained by the model.

I then estimate βm,d for entry and exit rates. The resulting numbers, which are reported

in Table 3, indicate that financial shocks account for the majority of fluctuations in both

entry and exit rates. Specifically, the financial shocks only economy accounts for 69.2% of

fluctuations in entry rates. In contrast, the technology shock accounts for -4.0%, a num-

ber which is statistically insignificant. Overall, both shocks together account for 68.4% of

fluctuations in entry rates. Meanwhile, financial shocks account for 51.6% of fluctuations

in exit rates, while technology shocks account for -9.8%. However, the estimate of -9.8% is

statistically insignificant. Together, both shocks account for 44.6% of fluctuations in exit

rates. Either way, financial shocks alone account for most of the fluctuations in entry and

exit predicted by the benchmark economy with both shocks.

[Table 3 about here.]

These results indicate that aggregate shocks have a large effect on entry and exit, in

contrast to Samaniego (2008). As discussed in Section 4.1, the corresponding hazard rates

directly influence the sensitivity of entry and exit to aggregate shocks. Therefore, the results

of this paper are partly driven by a calibration in which these hazard rates are large in the

steady state. Nevertheless, calibrating to a smaller hazard rate would reduce the sensitivity

of entry and exit to both financial and technology shocks, leaving the relative contribution

of financial shocks unchanged.

7.2 Effect of Entry and Exit on Output and Hours

Since financial shocks are a strong explanation for the cyclical behavior of entry and

exit rates, they are also a strong explanation for the number of operating establishments

observed in Figure 1. The important question is whether this has significant consequences

for the aggregate economy. The effect of Γ̂t on output and hours suggests that it does (e.g.,

see Equations 14 and 15). To see this explicitly, consider Figure 6. The left panel of Figure 6

compares the benchmark economy’s prediction for aggregate output (with both shocks) to

an economy in which entry and exit are exogenous. The right panel of Figure 6 does the

same for aggregate hours. In the case of exogenous entry and exit, Γt is constant, and thus

Γ̂t = 0 in Equations 14 and 15. Since the benchmark economy with both shocks matches

the data for output and hours, this illustrates the effect that endogenous entry and exit has

on output and hours (through Γt).
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[Figure 6 about here.]

With exogenous entry and exit, the standard deviation of Ŷt would fall from 3.8% to 2.5%

and the standard deviation of N̂t would fall from 4.6% to 3.8%. Moreover, the quarterly

autocorrelation of Ŷt would fall from 0.984 to 0.950, and the quarterly autocorrelation of N̂t

would fall from 0.984 to 0.978. Therefore, by directly influencing entry and exit rates, the

effect of financial shocks on aggregate output and hours is amplified. Moreover, entry and

exit have also made aggregate output and hours more persistent. Consider for example the

response of the economy after the 2007-09 recession. With exogenous entry and exit, the

recovery in both output and hours would have been much faster. This indicates that the

reduction in entry and the increase in exit rates during the 2007-09 recession have contributed

to the slow recovery of output and hours that followed.

The result that entry and exit amplify and propagate the effects of aggregate shocks has

been seen in Clementi and Palazzo (2014). Devereux et al. (1996), Bilbiie et al. (2012),

Jaimovich and Floetotto (2008) and Chatterjee and Cooper (2014) have found similar re-

sults in models with monopolistic competition. However, in Clementi and Palazzo (2014),

technology shocks were the only source of aggregate uncertainty. Yet, this paper shows that

financial shocks (and not technology shocks) have been the main driver of observed cyclical

fluctuations in entry and exit rates since the 1990s. This result is not inconsequential, as

entry and exit have further propagated the effects of financial shocks on output and hours.

7.3 Output and Hours

While financial shocks are a strong explanation for entry and exit rates, they have also

directly contributed to fluctuations in output and hours. To see this, consider Figure 7,

which plots the model’s predictions for output and hours against the data. The top row of

Figure 7 plots output and hours under the technology shock only economy. The bottom row

shows output and hours under the financial shock only economy. By construction, output

and hours coincide with the data in the benchmark economy with both shocks. For output, I

used quarterly seasonally adjusted real GDP from the BEA’s National Income and Product

Accounts. For hours, I used the quarterly average of aggregate weekly hours of production

and non-supervisory employees from the BLS’s Current Employment Statistics (CES) survey.

Output and hours in the model and in the data are both de-trended with a log-linear trend.

[Figure 7 about here.]

From Figure 7, it can be seen that the financial shock only economy accounts for a

significant fraction of observed fluctuations in output and hours. However, the role of both
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financial and technology shocks has not been stable over time. In fact, before 1984, output

and hours under the technology shock only economy have been positively correlated with the

data. However, after 1984, this correlation has become zero or negative. Meanwhile, output

and hours under financial shock only economy have been positively correlated with the data

throughout the entire sample. Nevertheless, as financial shocks became more volatile after

1984, their importance for output and hours as grown as well.

To quantify precisely the overall contribution of the two shocks to cyclical fluctuations

in output and hours, I estimate βm,d for output and hours (see Equation 16). Table 4

reports the resulting estimates of βm,d. Over the entire sample, financial shocks account for

most of the fluctuations in output and hours. Specifically, the financial shock only economy

explains 87.9% of fluctuations in output, while the technology shock only economy explains

10.7%. Moreover, the financial shock only economy explains 111.4% of fluctuations in hours,

while the technology shock explains -11.5%. Consequently, these results indicate that the

technology shock actually tends to dampen fluctuations in hours caused by the financial

shock.

[Table 4 about here.]

As noted earlier, however, the relative contribution of financial shocks to fluctuations in

output and hours has not been stable over time. Considering only the observations between

1964-I and 1983-IV, technology shocks account for 70.3% of fluctuations in output, while

financial shocks only account for 20.4%. Over the same time period, technology shocks

account for 18.0% of fluctuations in hours while financial shocks account for 78.3%. In other

words, before 1984, technology shocks do better explaining output while financial shocks do

better explaining hours. In contrast, between 1984-I and 2014-I, financial shocks account

for 104.2% of fluctuations in output, while the technology shock accounts for -3.9%. In fact,

the estimate of -3.9% is statistically insignificant. Moreover, over the same time period,

financial shocks account for 117.4% of fluctuations in hours, while the technology shock

explains -16.9%. Therefore, after 1984, financial shocks are a better explanation for both

output and hours. Moreover, where the technology shock amplified fluctuations in hours

before 1984, it has dampened them after 1984.

Consequently, the result that financial shocks have been growing in importance since the

1980s is one which has only been hinted at in the literature. On the one hand, Chari et al.

(2007) find that the efficiency wedge (i.e., the technology shock) does a better job than the

labor wedge in accounting for the behavior of output during the Great Depression and the

early 1980s recession. In contrast, the labor wedge does relatively better accounting for the

behavior of hours. Consistent with these results, this paper finds that the labor wedge (i.e.,
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financial shocks in this paper) does better than technology shocks in explaining fluctuations

in hours before 1984, while technology shocks do relatively better explaining output. On

the other hand, Jermann and Quadrini (2012) measure a direct financial shock from an

enforcement constraint and a technology shock as the Solow residual. Consistent with this

paper, they find that financial shocks (which also operate though the labor wedge in their

paper) account for most of the observed fluctuations in both output and hours between 1984-I

and 2010-II. Yet, Jermann and Quadrini (2012) chose to begin their analysis in 1984 because

that was also a period during which financial flows (e.g., payouts to equity and debt) became

more volatile. Nevertheless, by considering a long time period going back to 1964, this paper

is able to explicitly identify the growing importance of direct financial shocks for output and

hours.

8 Conclusion

This paper develops a model of firm dynamics to study how well aggregate shocks account

for cyclical fluctuations in the entry and exit of establishments, as well as output and hours.

To do this, I construct measures of aggregate technology and financial shocks and feed them

into the model. The result is that financial shocks have been growing in importance since the

1980s. Before 1984, technology shocks are a relatively better explanation for output, while

financial shocks better account for hours. However, after 1984, financial shocks have become

significantly more volatile. Consequently, they have since become the better explanation for

both output and hours. In fact, after 1984, the technology shock accounts for practically

none of output, and has actually dampened fluctuations in hours caused by the financial

shock.

However, the model indicates that financial shocks are also a much stronger explanation

for the behavior of entry and exit rates than technology shocks. This has been true for

at least since the early 1990s, when the data on entry and exit begin. This has further

influenced the aggregate economy, as the model shows that entry and exit have propagated

and amplified the effects of financial shocks. Not only have entry and exit made output and

hours more volatile, they have made them more persistent as well. In fact, if it were not for

the effect of financial shocks on entry and exit, the recovery of output and hours after the

2007-09 recession would have been much faster.
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A Computational Method

The producer’s value functions are approximated by value function iteration. The ag-

gregate state x includes µ, which is an infinite-dimensional object. Therefore, I applied the
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algorithm of Krusell and Smith (1998). In particular, I assumed that agents only perceived

the aggregate state as (z, θ, Γ̄), where Γ̄ is defined as follows:

Γ̄ ≡
∫ ∞

0

s1/(1−γ)µ(s)ds+

∫ ∞
0

s1/(1−γ)
e g(se)dse.

In other words, Γ̄ is the productivity-weighted mass of incumbents and potential entrants.

This slightly differs from Γ(x), defined in Equation 12. When f(z, s, n) = zsnγ, the optimal

labor demand n(z, θ, s;w) is given by Equation 4. Aggregating across all producers and

combining with the labor supply function, this implies that the equilibrium wage should

satisfy

lnw = c+
1

1 + ν(1− γ)
[ln z + ln θ + (1− γ) ln Γ(x)] (A.1)

where c is a constant which depends only on model parameters. Since Γ(x) depends on the

entry and exit cutoffs, in the numerical calculations, I approximated Equation A.1 with the

following:

lnw ≈ 1

1 + ν(1− γ)

[
ln z + ln θ + (1− γ)

(
ln Γ̄− aΓ

)]
(A.2)

where aΓ is the steady state level of ln Γ̄. First, I used Γ̄ instead of Γ(x). Second, I calibrated

ψ in the labor supply function so that the wage is normalized to 1 in the steady state.

After simulating the model with an artificial sequence of shocks, {zt, θt}Tt=1, for T = 20, 500

and dropping the first 500 observations, the maximum error (in absolute value) from this

approximation was 0.16%.

Furthermore, since agents need to know tomorrow’s Γ̄ to determine wages in the future,

I suppose that Γ̄ obeys the following law of motion:

ln Γ̄′ = β0 + β1 ln Γ̄ + β2 ln z + β3 ln θ (A.3)

Then, to solve the model, the following algorithm is used.

1. Construct an artificial sequence of technology shocks, {zt} = (z1, z2, . . . , zT ) and an

artificial sequence of financial shocks, {θt} = (θ1, θ2, . . . , θT ), for T = 10, 500.

2. Start with an initial guess for (β0, β1, β2, β3).

3. Approximate the value function V (ln z, ln θ, ln Γ̄, ln s) using the algorithm from Ap-

pendix A.1.

4. Approximate the steady state distribution of incumbent producers, µ(ln s), using the

algorithm in Appendix A.2.
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5. Starting with the steady state distribution of producers, simulate the economy under

{zt} and {θt} using the algorithm in Appendix A.3.

6. Using the simulation results, estimate (β′0, β
′
1, β

′
2, β

′
3) via the following OLS regression:

ln Γ̄t+1 = β′0 + β′1 ln Γ̄t + β′2 ln zt + β′3 ln θt + ut.

Drop the first 500 observations. If (β′0, β
′
1, β

′
2, β

′
3) is sufficiently close to the initial guess,

(β0, β1, β2, β3), stop. Otherwise, return to step 2. To ensure convergence, use as the

new guess a convex combination of (β′0, β
′
1, β

′
2, β

′
3) and (β0, β1, β2, β3).

7. With the converged values for (β0, β1, β2, β3), simulate the economy with the sequence

of measured aggregate productivity and financial shocks.

A.1 Approximation of Value Function

The producer’s value function is approximated by value function iteration. In this case,

the producer’s value function has four state variables, current-period productivity ln s and

the aggregate shocks (ln z, ln θ, ln Γ̄). This value of operating is then jointly solved by

iterating on the producer’s Bellman equation. The details of the algorithm can then be

described as follows.

1. Define the grid points for the state variables (ln z, ln θ, ln Γ̄, ln s).

2. Starting with the initial guess for the value function, Vn(ln z, ln θ, ln Γ̄, ln s), calculate

the set of liquidation cutoffs, s(ln z, ln θ, ln Γ̄), and entry cutoffs, s̄e(ln z, ln θ, ln Γ̄). To

interpolate the value function in between grid points, the log of Vn is interpolated with

quadrilinear interpolation.

3. For each (ln z, ln θ, ln Γ̄, ln s) on the grid, given the optimal choice of n, approximate the

producer’s value, Vn+1(ln z, ln θ, ln Γ̄, ln s). The key difficulty is the need to calculate the

continuation values in the value of operating and the value of waiting. For accuracy

reasons, the processes for z, θ and s are not approximated with a discrete Markov

process as in Tauchen (1986). Thus, this integral is numerically approximated using

an adaptive integration routine from the GNU Scientific Library.

4. Keep iterating until Vn(ln z, ln θ, ln Γ̄, ln s) converges.
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A.2 Approximation of Steady State Distribution

Let µ(ln s) be the density representing the distribution of incumbent producers over

productivity at the beginning of the period. Given the steady state entry cutoff, s̄e, and

the steady state exit cutoff, s, the steady state µ is calculated by iterating on the transition

rule for the distribution of incumbent producers. The details of the algorithm can then be

described as follows.

1. Define a grid for the idiosyncratic productivity ln s and the signal ln se.

2. Given the value function V (ln z, ln θ, ln Γ̄, ln s), calculate the entry cutoff s̄e and exit

cutoff s for ln z = 0, ln θ = 0 and ln Γ̄ = aΓ. Given the law of motion for Γ̄ in

Equation A.3, aΓ is computed as aΓ = β0/(1− β1). This yields the steady state entry

and exit productivity cutoffs.

3. Start with some initial guess for the distribution of incumbent producers, µ0(ln s).

4. Given µn(ln s), compute µn+1(ln s′) by iterating on transition rule defined in Equa-

tion 7. These integrals are numerically approximated using an adaptive quadrature

routine from the GSL Scientific Library. When calculating this integral, the prior

distribution, µn(ln s), is interpolated using linear interpolation.

5. Keep iterating until µn(ln s) converges.

A.3 Simulation

To simulate the model by feeding in a history of aggregate shocks, {zt, θt}, the following

approach was used.

1. Take as a given the producer’s value function V (ln z, ln θ, ln Γ̄, ln s), which implicitly

depends on (β0, β1, β2, β3).

2. Initialize the distribution µ0(ln s), to its steady state value.

3. For each t, given the initial distribution µt(ln s) at the beginning of the period, do the

following:

(a) Solve for s(ln zt, ln θt, ln Γ̄t) and s̄e(ln zt, ln θt, ln Γ̄t).

(b) Calculate the mass of entrants (Me,t), the mass of exiting producers (Mx,t), the

mass of incumbent producers (Mt), entry rates (me,t) and exit rates (mx,t), as
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follows:

Me,t = M̄e

[
1− Φ

(
ln s̄e(ln zt, ln θt, ln Γ̄t)− µg

σg

)]
Mx,t =

∫ ln s(ln zt,ln θt,ln Γ̄t)

−∞
µt(ln s)d ln s

Mt =

∫ ∞
−∞

µt(ln s)d ln s

me,t = Me,t/Mt

mx,t = Mx,t/Mt.

Note that Φ(·) is the cumulative distribution function of the standard normal

distribution.

(c) Using Equation 7, calculate the distribution, µt+1(ln s), for next period.

A.4 Accuracy of Forecasting Rule

As noted before, the algorithm of Krusell and Smith (1998) to solve the model. In the

benchmark economy with both shocks, the parameters of the forecasting rule in Equation A.3

were estimated to be (β0, β1, β2, β3) = (0.12532, 0.90925, 0.24896, 0.07828). Two standard

measures used to assess the accuracy of the forecasting rule are the R2 and root mean square

error of the regression equation. The R2 turned out to be 0.99992 and the root mean square

error was 2.4176× 10−4.

However, as demonstrated by Den Haan (2010), these tests are flawed. Therefore, fol-

lowing Den Haan (2010), I assess the accuracy of the forecasting rule by calculating the

maximum error between the actual Γ̄ and the forecasted Γ̄ generated by the rule without

updating. More specifically, I first construct an artificial sequence of technology and financial

shocks, {zt, θt}Tt=1 for T = 20, 500. Next, I simulate the model under {zt, θt}Tt=1. After doing

this, I obtain a sequence of realized moments {Γ̄t}Tt=1. Next, I drop the first 500 observations.

Using only the forecasting rule and the initial realized value, Γ̄501, I generate a forecast for

Γ̄t for all t > 501. I denote this forecast by ˆ̄Γt. I then compute the simulated percentage

error as êt = ln ˆ̄Γt − ln Γ̄t for all t > 501.

[Figure 8 about here.]

The top panel of Figure 8 plots a histogram of the simulated forecast error, êt. The

mean error was −0.0089%, indicating that the forecasting rule was essentially unbiased.

The maximum error (in absolute value) was 0.51% and only 0.015% of observations had a
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forecast error above 0.5% in absolute value. Moreover, the bottom panel of Figure 8 plots

êt against t, showing that the forecast errors do not accumulate.
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Figure 1: Historical Establishment Entry and Exit Rates

Note: The top panel plots establishment entry and exit rates. The establishment entry rate mea-
sures the number of new entrants as a percentage of the average of the previous and current total
number of establishments. Exit rates are defined analogously. Both series are seasonally adjusted.
The bottom panel plots the number of establishments over time, de-trended by a log-linear trend.
NBER recession dates are highlighted.
Source: Business Employment Dynamics from the Bureau of Labor Statistics
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Figure 2: Exit Hazard Rate with Less Productivity Dispersion

Note: This depicts how the exit hazard rate changes when the productivity dispersion of incumbent
entrepreneurs decreases. The exit rate, mx, does not change because it is calibrated to target a
specific value. Thus, the height of the probability density function at the exit cutoff, ln s, must
increase and the hazard rate will be higher.
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Figure 3: Measured Aggregate Shocks

Note: The top panel plots the measured technology shock, output and the Solow residual. The
bottom panel plots the measured financial shock against hours. Output (Y ) is quarterly seasonally
adjusted real GDP from the BEA’s National Income and Product Accounts. Hours (N) is obtained
as the quarterly average of aggregate weekly hours of production and non-supervisory employees
from the BLS’s Current Employment Statistics survey. The Solow residual is calculated as SR =
Y/Nγ , where γ = 0.6 is the labor share, Y is output and N is hours. Each series is de-trended with
a log-linear trend.
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Figure 4: Financial Shocks vs Lending Standards and Credit Spreads

Note: The left panel compares the negative of innovations to financial shocks (−εθ) to lending
standards from the Federal Reserve’s Senior Loan Office Opinion survey. The measure of lending
standards is the net percentage of domestic banks tightening lending standards for commercial and
industrial (C&I) loans to large and middle-market firms. The right panel compares −εθ to Baa-Aaa
credit spreads. The Baa-Aaa credit spread is the difference between interest rates on Baa and Aaa
corporate bonds, as reported in the Federal Reserve’s H.15 release.
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Figure 5: Benchmark Results for Entry and Exit Rates

Note: Both the model-generated series and the data are de-trended with a linear trend. Data for
entry and exit rates are obtained from the BLS’s Business Employment Dynamics survey.
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Figure 6: Effect of Entry and Exit on Output and Hours

Note: The left panel plots the model’s prediction for output in the benchmark economy with both
shocks. Also plotted is the model’s prediction when entry and exit are exogenous. The right panel
does the same for hours. Output and hours with exogenous entry and exit are obtained from
Equations 14 and 15 by setting Γ̂t = 0.
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Figure 7: Benchmark Results for Output and Hours

Note: Output and hours are both de-trended with a log-linear trend. Note that in the benchmark
economy with both shocks, both output and hours coincide with the data by construction. The
data on output is obtained as quarterly seasonally adjusted real GDP from the BEA’s National
Income and Product Accounts. Hours is obtained as the quarterly average of aggregate weekly
hours of production and non-supervisory employees from the BLS’s Current Employment Statistics
survey.
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Figure 8: Accuracy of Forecasting Rule

Note: This figure plots the results of the accuracy check suggested by Den Haan (2010). Forecasts
for the future aggregate state are generated by the rule without updating. The top panel plots the
histogram of the resulting forecast errors, and the bottom panel plots these forecast errors over
time.
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Table 1: Summary Statistics for Measured Shocks

Technology Financial
Shock Shock

1964-I to 2014-I
Standard Deviation 0.013 0.044

Correlation with Output 0.410 0.644
Correlation with Hours -0.012 0.917

1964-I to 1983-IV
Standard Deviation 0.014 0.027

Correlation with Output 0.706 0.438
Correlation with Hours 0.288 0.825

1984-I to 2014-I
Standard Deviation 0.013 0.051

Correlation with Output 0.299 0.671
Correlation with Hours -0.134 0.929

Note: For xt = zt and xt = θt, three statistics are reported: (1) the standard deviation of lnxt, (2)
the correlation of lnxt with Ŷ d

t and (3) the correlation of lnxt with N̂d
t . Ŷ d

t and N̂d
t are the cyclical

components of output and hours, respectively, in the data. Output and hours are both de-trended
with a log-linear trend.
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Table 2: Parameter Values

Parameter Value Notes
Process for Aggregate Shocks

az 0.000 Normalize to zero
aθ 0.000 Normalize to zero

ρz,z′ 0.883 Match output and hours
ρθ,z′ -0.022 Match output and hours
ρz,θ′ 0.223 Match output and hours
ρθ,θ′ 1.003 Match output and hours
σεz 0.0051 Match output and hours
σεθ 0.0092 Match output and hours

ρεz ,εθ -0.492 Match output and hours
Process for Idiosyncratic Productivity Shock

ρs 0.850 Consistent with literature
σεs 0.103 Consistent with literature

Signal Distribution for Potential Entrants
µg -0.534 Target probability potential entrant enters = 10%

σg 0.196 Set to σεs/
√

1− ρ2
s

Production Function Parameter
γ 0.600 Set labor share to 60%

Labor Supply Parameters
ψ 0.980 Normalize wage to 1 in steady state
ν 1.500 Consistent with literature

Risk-Free Rate
r 0.010 Set risk-free rate to 4% annually

Entry and Exit Parameters
M̄e 1.000 Normalize to 1
cf 0.203 Target entry/exit rate = 3.2%
ce 0.000 Set to zero

43



Table 3: Benchmark Results for Entry and Exit Rates

ρm,d σm/σd βm,d p-val R2

Entry Rate
Technology shock only -0.029 1.378 -0.040 0.797 0.001

Financial shock only 0.422 1.640 0.692 0.000 0.178
Both shocks 0.630 1.087 0.684 0.000 0.397

Exit Rate
Technology shock only -0.119 0.820 -0.098 0.288 0.014

Financial shock only 0.538 0.959 0.516 0.000 0.290
Both shocks 0.539 0.828 0.446 0.000 0.291

Note: Let x̂m,t denote cyclical fluctuations in the model-generated series (either entry or exit rates)
and let x̂d,t denote the corresponding cyclical fluctuations in the data. ρm,d is the correlation of
x̂m,t with x̂d,t. σm is the standard deviation of the x̂m,t, while σd is the standard deviation of x̂d,t.
βm,d = ρm,dσm/σd is the coefficient obtained by regressing x̂m,t against x̂d,t. Also reported is the
R2 of this regression and the p-value for the null hypothesis that βm,d = 0. See Equation 16. All
time series are de-trended with a linear trend.
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Table 4: Benchmark Results for Output and Hours

ρm,d σm/σd βm,d p-val R2

Output, 1964-I to 2014-I
Technology shock only 0.142 0.752 0.107 0.044 0.020

Financial shock only 0.749 1.174 0.879 0.000 0.561
Both shocks 1.000 1.001 1.001 0.000 1.000

Output, 1964-I to 1983-IV
Technology shock only 0.733 0.959 0.703 0.000 0.538

Financial shock only 0.283 0.722 0.204 0.011 0.080
Both shocks 1.000 1.002 1.002 0.000 1.000

Output, 1984-I to 2014-I
Technology shock only -0.055 0.703 -0.039 0.548 0.003

Financial shock only 0.825 1.263 1.042 0.000 0.681
Both shocks 1.000 1.001 1.001 0.000 1.000

Hours, 1964-I to 2014-I
Technology shock only -0.291 0.393 -0.115 0.000 0.085

Financial shock only 0.942 1.182 1.114 0.000 0.888
Both shocks 1.000 0.999 0.999 0.000 1.000

Hours, 1964-I to 1983-IV
Technology shock only 0.304 0.592 0.180 0.006 0.092

Financial shock only 0.791 0.990 0.783 0.000 0.625
Both shocks 1.000 0.998 0.998 0.000 1.000

Hours, 1984-I to 2014-I
Technology shock only -0.473 0.358 -0.169 0.000 0.224

Financial shock only 0.964 1.217 1.174 0.000 0.930
Both shocks 1.000 1.000 1.000 0.000 1.000

Note: Let x̂m,t denote cyclical fluctuations in the model-generated series (either output or hours)
and let x̂d,t denote the corresponding cyclical fluctuations in the data. ρm,d is the correlation of
x̂m,t with x̂d,t. σm is the standard deviation of the x̂m,t, while σd is the standard deviation of x̂d,t.
βm,d = ρm,dσm/σd is the coefficient obtained by regressing x̂m,t against x̂d,t. Also reported is the
R2 of this regression and the p-value for the null hypothesis that βm,d = 0. See Equation 16. All
time series are de-trended with a log-linear trend.
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