
 

 

 

 
Discussion Paper Series 

 
On the fragility of sunspot equilibria under learning 

and evolutionary dynamics 
By 

 
Michele Berardi 

 

Centre for Growth and Business Cycle Research, Economic Studies, 
University of Manchester, Manchester, M13 9PL, UK 

 
July 2013 

Number 185 
 

 

Download paper from: 

http://www.socialsciences.manchester.ac.uk/cgbcr/discussionpape
rs/index.html 

 

 



On the fragility of sunspot equilibria under
learning and evolutionary dynamics�

Michele Berardi
The University of Manchester

July 19, 2013

Abstract

In this paper we investigate the possibility of sunspot equilibria to emerge from a process
of learning and adaptation on agents� beliefs. To such end, we consider both �nite state
Markov sunspots and sunspots in autoregressive form and derive conditions for the existence
of an heterogeneous equilibrium where only a fraction of agents condition their forecasts on
the sunspot: such conditions impose restrictions across primitive parameters, which are the
equivalent, in a heterogeneous setting, of the resonant conditions found in the literature for
homogeneous equilibria. We then show that evolutionary dynamics on predictor selection
imply that such restrictions need to evolve endogenously with population shares, and argue
that such requirement questions the possibility of sunspot equilibria to emerge through a
process of evolution and adaptation on agents�beliefs. It follows that, in order for a sunspot
equilibrium to obtain, all agents must simultaneously coordinate on using the same sunspot
variable at the same time.
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On the fragility of sunspot equilibria under learning and evolutionary dynamics

1 Introduction

Sunspot equilibria are an intriguing possibility, as they open the door to �uctuations in economic

activity driven purely by agents� expectations and disconnected from economic fundamentals.

From the seminal works of Azariadis (1981) and Cass and Shell (1983), the possibility of self-

ful�lling equilibria is well known among economists: because agents expect some particular state

of the system to get realized in the future, that very state emerges as an equilibrium outcome for

the economy.

While the early works considered the possibility of �nite state Markov sunspot equilibria (and

in particular 2 state sunspot equilibria - 2-SSE), in the business cycles literature a di¤erent class of

sunspot solutions is more frequently considered, with an autoregressive-moving average (ARMA)

form. Examples are found in McCallum (1983) and Farmer (1993).

As Evans and McGough (2011) recently remarked, the fact that sunspot equilibria are theoret-

ically possible in a model does not make them necessarily relevant from an economic perspective,

as it might not be possible for agents to coordinate on such equilibria. Because of this, a number

of authors have tried to understand the conditions under which sunspot equilibria are learnable.

Woodford (1990), Evans and Honkapohja (1994a) and Evans and Honkapohja (2003) analyze learn-

ability for �nite state Markov sunspot equilibria, while Evans and Honkapohja (1994b) and Evans

and McGough (2005a, 2005b) show that also sunspot solutions in ARMA form can be learnable.

In particular, Evans and McGough (2005a) demonstrate how in this last case the representation of

the solution is crucial for its learnability properties. Building on this result, Evans and McGough

(2011) show in a purely forward looking model that when �nite state Markov sunspots equilibria

are stable under learning, all sunspot equilibria are, provided a common factor representation is

used.

All these works take a representative agent approach, and consider only the possibility of all

agents conditioning their expectations on an extraneous sunspot component. Heterogeneity in

expectations, though, has attracted increasing interest in the recent literature, as it is recognized

that it represents a real world feature that economists must take into account in their understanding

of expectations formation. In particular, the possibility of di¤erent predictors being endogenously

chosen on the basis of their relative performance has been investigated in di¤erent contexts. From

the seminal work of Brock and Hommes (1997), a number of works have analyzed the evolutionary

selection of forecasting rules and their impact on economic outcomes. Recent examples include

Branch and Evans (2006), Hommes (2009), Guse (2010) and Berardi (2011).

Much less investigated so far has been the link between heterogeneity and sunspot equilibria.

A notable exception is Berardi (2009), who shows the possibility of heterogeneous equilibria, where

only a fraction of agents use a sunspot variable in their forecasts, to emerge in a purely forward

looking model, but who also points out the fragility of such equilibria under predictor choice

dynamics. If agents are allowed to choose endogenously whether to include or not a sunspot in

their forecasting model, based on a mean squared error measure of performance, it does not exist
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an equilibrium where only a fraction of agents uses the sunspot.

The aim of this paper is to study the conditions that are required for a sunspot equilibrium

to emerge from a process of learning and adaptation on agents�beliefs. The main contribution

will be to provide general results about the fragility of sunspot equilibria when learning and

evolutionary dynamics are taken into account. In particular, we will show that evolutionary

dynamics are intrinsically incompatible with sunspot equilibria, as they require the (exogenous)

sunspot�s statistical properties to endogenously change together with population dynamics.

Friedman (1991) advocates for evolutionary dynamics as models of repeated anonymous strate-

gic interaction, where actions that are more "�t", given the distribution of behaviors, tend over

time to displace actions that lead to lower rewards. In our setting, the "game" is between agents

conditioning their forecasts only on fundamentals, and agents using also a sunspot variable in their

model. Would either group prevail in the long run? Note that those agents using only fundamen-

tals have a model that is in fact mispeci�ed (or underparameterized), since the sunspot, through

the expectations of the other group, enters into the dynamics of the economy. It will turn out that

the answer to our question will not depend on the stability of the evolutionary process but will be

instead of a more general nature: evolutionary dynamics kill the possibility of sunspot equilibria

altogether, by imposing a time-varying restriction between population dynamics and sunspots.

We will present our argument both for �nite state Markov sunspots and for sunspots in au-

toregressive form and show that the results are not a feature of the particular form assumed for

the sunspot, but depend instead on the restrictions that evolutionary dynamics impose on it.

We will model agents�endogenous selection of forecasting rules by using replicator dynamics,

which represents the evolution of the fraction of agents using each of the possible predictors

available. The concept of replicator dynamics is popular in game theory and it is used to model

evolutionary dynamics of strategies in the population of players. While it is borrowed from biology,

where it was �rst introduced by Taylor and Jonker (1978) to formalize the notion of evolutionarily

stable strategy, Borgers and Sarin (1997) give it a learning interpretation at the individual level.

Fudenberg and Levine (1998) provide an extensive treatment in game theory, while Sethi and

Franke (1995), Branch and McGough (2008) and Guse (2010) have applied it to macroeconomic

settings. We will then show in a later section that our results do not hinge on the speci�c choice of

model for evolutionary dynamics, and present our argument using the Brock and Hommes (1997)

model of evolution in predictor choices.

In order to pin down parameters in each forecasting model, or perceived law of motion (PLM),

we will follow a growing literature in macroeconomics and assume that agents act as econometri-

cian and recurrently estimate those parameters using techniques such as recursive least-squares

(for a detailed treatment of the concepts and techniques used in this literature, see Evans and

Honkapohja, 2001). In equilibrium, parameter values in agents�forecasting models will therefore

minimize the mean squared error for that speci�c class of models.

The plan of the paper is as follows: in Section 2 we present �nite state Markov sunspot equilibria

and extend them to a heterogeneous setting; in Section 3 we present equilibria with sunspots in

AR(1) form and extend them to a heterogeneous setting; in Section 4 we introduce evolutionary

dynamics, show how heterogeneity impacts on the resonant condition for the existence of sunspot
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equilibria and derive implications for the possibility of sunspot equilibria to emerge endogenously

in an economy; Section 5 considers alternative predictor choice dynamics; Section 6 concludes.

2 Finite state Markov sunspot equilibria

The early literature on sunspot equilibria focused on �nite state Markov equilibria, see for example

Azariadis (1981), Azariadis and Guesnerie (1986), Guesnerie (1986) and Chiappori and Guesnerie

(1989).

To �x ideas, consider the univariate linear model

yt = �E
�
t yt+1; (1)

where E�t yt+1 represents expectations held by agents, not necessarily rational.

Under rational expectations (RE), the fundamental equilibrium takes the form

yt = 0;

but this is not the only possible equilibrium under RE. A �nite state Markov sunspot equilibrium

would take the form

yt = �yi when st = si for i = 1; :::; k; (2)

where the sunspot st 2 fs1; :::; skg is an exogenous, stationary �nite state Markov process with
�xed transition probabilities �ij = P (st+1 = sj jst = si). Solutions of the form (2) are called �nite

Markov stationary sunspot equilibria (SSEs), or k-state sunspot equilibria (k-SSEs). Considerable

attention has been given in particular to the special case 2-SSEs, on which we will focus here.

Note though that the argument of this paper carries out to any k-SSE.

For (2), with k = 2, to be a RE solution to (1) we need

�y1 = � (�11�y1 + �12�y2)

�y2 = � (�21�y1 + �22�y2)

or

�y = ���y; (3)

where � is the matrix of transition probabilities and �y = [�y1; �y2]0. It is well known (see, e.g., Evans

and Honkapohja (2003a)) that conditions for the sunspot solutions to exist are

�11 + �22 � 1 = ��1 (4)

(1� �22) �y1 + (1� �11) �y2 = 0; (5)

where condition (4) is usually referred to as a "resonant frequency condition" (see Evans and

Honkapohja, 2003b) since it imposes a restriction on the transition probabilities of the Markov

sunspot variable.

It is also well known (see Evans and Honkapohja (2003b), Evans and McGough (2011)) that
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the stationary sunspot equilibrium (3) is stable under learning if � < �1. This means that if
all agents use a model consistent with (2), they would be able to learn the sunspot equilibrium

provided such condition holds.

2.1 Heterogeneous solutions

We introduce now heterogeneity and consider the possibility of solutions where only a fraction of

agents uses the sunspot. We will see that this requirement modi�es the resonant condition for the

existence of an equilibrium.

We assume there is a continuum of agents on the unit interval, and in forming expectations

they can use one of two models or perceived laws of motion (PLM). Agents in group 1 are

"fundamentalists" and use a PLM1 consistent with the fundamental equilibrium y = 0:

yt = y
f (6)

where yf is estimated from data. It follows that

E1t yt+1 = y
f :

Agents in group 2 instead believe to be in a sunspot equilibrium, with PLM2

yt = �yj if st = sj , j = 1; 2; (7)

that is, they condition their forecasts on an observable exogenous variable st. Following much of

the literature, we assume transition probabilities are known. It follows

E2t yt+1 = �11�y1 + (1� �11) �y2 if st = s1
E2t yt+1 = (1� �22) �y1 + �22�y2 if st = s2:

Assuming there is a proportion � (to be endogenised later) of group 1 agents (and a proportion

of 1� � group 2 agents), aggregate expectations are therefore given by

E�t yt+1 = �E
1
t yt+1 + (1� �)E2t yt+1

and the ensuing actual law of motion (ALM) for the economy is

yt = ��yf + � (1� �) [�11�y1 + (1� �11) �y2] if st = s1
yt = ��yf + � (1� �) [(1� �22) �y1 + �22�y2] if st = s2:

In order for PLM i, i = 1; 2, to be consistent with the ALM , we need the following sets of

restrictions.

Agents using PLM1 will try to minimize the mean squared error from their predictor, i.e., they

estimate their PLM with least-squares techniques. We denote by T1 and T2, respectively the time

spent in state 1 and state 2 from the stationary distribution associated with �. The stationary

distribution T = [T1; T2] is the normalized (i.e., the sum of its entries is equal to 1) left eigenvector
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of the transition matrix associated with the eigenvalue equal to 1, such that T = �T , and is given

by

T1 =
1� �22

2� �11 � �22
T2 =

1� �11
2� �11 � �22

:

Asymptotically, the least-squares estimate for yf will converge to the weighted average of the

two ALMs across states, i.e.,

yf = T1
�
��yf + � (1� �) [�11�y1 + (1� �11) �y2]

�
+ T2

�
��yf + � (1� �) [(1� �22) �y1 + �22�y2]

�
(8)

or

yf = ��yf + � (1� �) [T1 (�11�y1 + (1� �11) �y2) + T2 ((1� �22) �y1 + �22�y2)] : (9)

Restrictions for PLM2, such that it also minimizes the mean squared error of predictions, can

instead be found by mapping the PLM into the ALM in each state, obtaining

�y1 = ��yf + � (1� �) [�11�y1 + (1� �11) �y2] if st = s1; (10)

�y2 = ��yf + � (1� �) [(1� �22) �y1 + �22�y2] if st = s2: (11)

We therefore have three equations, (9), (10) and (11) which jointly determine yf , �y1 and �y2.

Clearly the three equations determine a linear homogeneous system in the three unknowns, whose

solution is either the zero vector or indeterminate. Only in this last case a sunspot solution exists.

Denoting this system

Hy = 0 (12)

where

y0 = [yf ; �y1; �y2]

H =

264��� 1 � (1� �) (T1�11 + T2 (1� �22)) � (1� �) (T1 (1� �11) + T2�22)
�� � (1� �)�11 � 1 � (1� �) (1� �11)
�� � (1� �) (1� �22) � (1� �)�22 � 1

375 ; (13)
we therefore need one eigenvalue of H to be equal to zero.

Noting that T1�11 + T2 (1� �22) = T1 and T1 (1� �11) + T2�22 = T2, we can rewrite H as

H =

264��� 1 � (1� �)T1 � (1� �)T2
�� � (1� �)�11 � 1 � (1� �) (1� �11)
�� � (1� �) (1� �22) � (1� �)�22 � 1

375 :
Given that T1+T2 = 1, the three eigenvalues ofH are� 1

2

�
�2 + � �

p
�2
�
and�1+� (1� �) (�11 + �22 � 1).

The �rst two reduce to �1 and �1 + � and therefore, for generic � 6= 1, we need the condition

�11 + �22 = 1 +
1

� (1� �) (14)
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to be satis�ed in order to have a non-zero solution for vector y.

Note that this condition poses a restriction between transition probabilities �11 and �22, �

and �. This is the equivalent, in the heterogeneous setting, of the resonant condition found in the

literature for the homogeneous case. In fact, for � = 0, our condition (14) reduces exactly to the

one for the homogeneous case: �11 + �22 = 1 + �
�1.

Transition probabilities are therefore restricted by � and �. Note that this imposes a restriction

on the admissible values for � and �, as we must have 0 � �11; �22 � 1 . This is similar to what
happens in the homogeneous case, where bounds on transition probabilities pose a restriction on

�. If we impose the restriction 0 � �11 + �22 � 2 (necessary, but not su¢ cient, for transition

probabilities to be well de�ned), we have in fact that in the homogeneous case the restriction is

� > 1 or � < �1, while in our heterogeneous setting the restriction is � > 1
1�� or � < �

1
1�� . As

�! 0, the two sets of conditions coincide.

The vector y is then the eigenvector of the zero eigenvalue associated with matrix H.1 Note

that yf = 0, since T1�y1 + T2�y2 = 0: this is consistent with agents in group 1 believing to be in a

fundamental equilibrium.

De�nition 1 A 2-states heterogeneous sunspot equilibrium is an endogenous stochastic process
yt, an exogenous 2-state Markov process st with a set of transition probabilities {�11; �22} and a
set of values

�
yf ; �y1; �y2

	
, and a population fraction � 2 (0; 1) such that: i) yt solves (1) for any

t; ii) expectations are formed according to (6) and (7); iii) expectations deliver �xed points of the
maps (9), (10), (11).

2.1.1 A numerical example

As an example, we consider an economy represented by the following parameter values: � = 1:5,

� = :1, �11 = :9, �22 = :8407: Note that this parameterization satis�es the resonant condition

outlined above. Such values mean that there is 10% of the population using the "fundamental"

PLM and 90% of agents using instead PLM2 and conditioning their forecast on a sunspot with

transition probabilities pinned down by �11 = :9 and �22 = :8407.

From these values, we can compute T1 = 0:6143 and T2 = 0:3857, and [yf ; �y1; �y2] = [0; 1;�1:5926].
In steady state, the economy will be around 61% of the time in state 1 and 39% in state 2, where

the value of y will be, respectively 1 and �1:5926: this means that the weighted average of y in
steady state is 0, consistent with beliefs of agents in group 1.

3 Equilibria with sunspots in autoregressive form

While early literature considered mainly Markov state sunspot equilibria, in macroeconomics

sunspot solutions in ARMA form are more common. It is now known, though, that only when the

sunspot has an autoregressive form, such solutions can be learnable (Evans and McGough, 2005a).

We will thus focus on such form here.

In the previous section we have followed the literature and carried out the analysis of Markov

state sunspot equilibria in a purely forward looking model. While the same model has been used

1Since this vector is not uniquely de�ned, some normalization will be necessary (such as setting �y1 = 1).
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also to analyze equilibria with sunspots in AR(1) form (see, for example, Evans and Honkapohja

2003, Evans and McGough 2011), a more general framework, with stochastic shock and lagged

endogenous variable, has also been used (see, for example, Evans and McGough 2005a). We will

adopt this more general framework here:

yt = �E
�
t yt+1 + �yt�1 + vt; (15)

where the exogenous shock vt is white noise with variance �2v. Of course, equation (15) can be

reduced to (1) by setting � = 0, vt � 0.
Under rational expectations, with E� = E, the expectational operator, equation (15) has one

unique non-explosive solution if 0 <j �1 j< 1 <j �2 j, with �1 and �2 representing the two roots of
the polynomial ��2 � �+ �:

�1;2 =
1�

p
1� 4��
2�

;

with �1 being the root obtained with the minus sign. In this case the unique solution takes the

form2

yt = �1yt�1 + (��2)
�1vt: (16)

We will be interested here instead in the case with 0 <j �1 j<j �2 j< 1, as in this case solutions
other than the minimum state variable (MSV) one exist,3 and sunspots can play a role in the

model.

To �x ideas, consider the general solution to model (15), that can be written as

yt = �
�1yt�1 � ��1�yt�2 � ��1vt�1 + "t (17)

where

"t+1 = yt+1 � Etyt+1

is a martingale di¤erence sequence (mds). By de�ning

"t = (��i)
�1vt;

i 2 f1; 2g, we get the two MSV solutions: depending on the case, neither, one or both solutions
can be stable.

If instead

"t = (��i)
�1vt + (1� �iL) �t;

we have a sunspot solution, where �t is the sunspot component, independent of vt.
4 This last

equation imposes a restriction on the sunspot, which must "resonate" with the structural para-

meters for the economy, i.e., it must have an AR(1) form with coe¢ cient equal to �i (see Evans

and McGough 2005a).

2We will restrict our analysis to the case where these roots are real, which imposes the restriction �� < 1=4.
3The term "minimum state variables" was introduced by McCallum (1983) and refers to the solution with the

minimum possible number of state variables.
4For a derivation of the MSV and sunspot solutions from (17), see the Appendix 7.1.
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Formally, for a given sunspot variable

�t = ��t�1 + "t

we must have that

� = �i

in order for the sunspot to enter into the solution of (15).

Note that the sunspot solution imposes a restriction on the roots �i: they both need to be

smaller than one in absolute value in order to have a stable process for yt.

It is well known that, for a given solution, we can have alternative representations, as it has

been shown by Evans and McGough (2005a, 2005b). Only sunspot solutions with the so called

common factor (CF) representation, though, turn out to be learnable. We will thus focus on these

solutions in our analysis, and in particular on the only one being learnable:

yt = �1yt�1 + (��2)
�1vt + ��t; (18)

with

�t = �2�t�1 + "t:

Existence and E-stability of this solution requires � < �1=2; � + � < �1 and 4�� < 1.5 In this
case, moreover, the parameter � attached to the sunspot is free. Note that these conditions imply

�1;2 < 0.

3.1 Heterogeneous solutions

Starting from the results of Evans and McGough (2005a), outlined in the previous section, we

want now to introduce heterogeneity of beliefs in this framework and investigate whether solutions

exist where only a fraction of agents conditions their forecasts on the sunspot. We therefore allow

agents to use one of two di¤erent models, one that includes and one that does not include a sunspot

component: while the fraction of agents in each group is �xed in this section, it will be endogenized

later using evolutionary dynamics, where we will allow agents to choose between di¤erent models

on the basis of the relative performance in forecasting, as expressed by the expected mean square

errors (MSE). In speci�c, we will use replicator dynamics to model the evolution of the fraction

of agents using each model.

The economy is still represented by (15). We assume there is a continuum of agents on the

unit interval, and in forming their expectations they can use one of two models or PLMs, one

sunspot-free (PLM1)

yt = a1 + b1yt�1 + c1vt (19)

and one that includes a sunspot (PLM2)

yt = a2 + b2yt�1 + c2vt + d2�t: (20)

5These restrictions are obtained by Evans and McGough (2005a) by simultaneously imposing conditions for
indeterminacy, E-stability and real solution. Conditions for E-stability alone would be � < 1=2 or � + � < 1.
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Parameters in each model will be derived by minimizing the expected mean squared errors of

forecasts, which is equivalent to saying that they are estimated using least-squares techniques.

We denote by � the fraction of agents using the sunspot-free model, and (1��) the remaining
agents using the model with sunspot. Aggregate expectations are therefore given by

E�t yt+1 = �E
1
t yt+1 + (1� �)E2t yt+1

where Eityt+1 are expectations formed using PLM
i, i 2 f1; 2g.

The parameter �, for the moment taken as given, will be regarded later on as endogenous, and

it will be determined by replicator dynamics based on the relative performance of the two models,

measured by the unconditional mean squared error.6

One important thing that must be noted is that the presence of heterogeneity changes the

resonant frequency condition for the sunspot, as already pointed out by Berardi (2009) in a purely

forward looking model. To see how this happens in the present context, and to �x ideas about

learning, consider agents using (19) and (20) to form expectations. We then have

E1t yt+1 = a1 (1 + b1) + b
2
1yt�1 + c1b1vt (21)

E2t yt+1 = a2 (1 + b2) + b
2
2yt�1 + c2b2vt + d2 (b2 + �) �t; (22)

where we have assumed that � is known to agents: otherwise, since the sunspot component is

exogenous and observable, this parameter could be consistently estimated using least-squares tech-

niques. Aggregating expectations and substituting into (15), we get the temporary equilibrium,

or ALM for the economy:

yt = � [�a1 (1 + b1) + (1� �) a2 (1 + b2)] +
�
�
�
�b21 + (1� �) b22

�
+ �
�
yt�1 +

+ [� (�c1b1 + (1� �) c2b2) + 1] vt + � [(1� �) d2 (b2 + �)] �t: (23)

Equilibrium value for parameters under learning are those that minimize the mean squared

errors of forecasts. While for PLM2 we can obtain such values by simply mapping one by one

parameters from PLM2 to ALM , this is not possible for PLM1. This last one is in fact under-

speci�ed with respect to the ALM , since it ignores the sunspot component that enters in the

ALM through the expectations of agents in group 2. Parameters from PLM1 can therefore not

be mapped directly into those of the ALM : the best thing agents can do is to optimize parameters

in their PLM1 in a statistical sense, by minimizing the expected mean squared errors, and to �nd

such values we must project the parameters of the ALM into the space of those in the PLM . We

thus obtain that parameters are de�ned by the maps (see Appendix 7.2):

6As Branch and Evans (2006) point out, the unconditional mean square error is more appropriate than a measure
of real time performance in a stochastic framework such as ours.
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a1 = A (24)

a2 = A (25)

b1 = B + F (26)

b2 = B (27)

c1 = C (28)

c2 = C (29)

d2 = D (30)

where

A = � [�a1 (1 + b1) + (1� �) a2 (1 + b2)]

B = �
�
�b21 + (1� �) b22

�
+ �

C = � [�c1b1 + (1� �) c2b2] + 1

D = � (1� �) (b2 + �) d2

F =
�D2

�
1�B2

�
�2�

(1� �B) (A2 + C2�2v) + (1 + �B)D2�2�
:

The key di¤erence between the two sets of belief parameters for the two groups comes from F :

for agents not using the sunspot, the coe¢ cient b1 on yt�1 must pick up the serial correlation that

comes from the sunspot. Note that if d2 = 0, �2� = 0 or � = 0, then F = 0 and b1 = b2. In the

�rst case, the sunspot e¤ectively does not enter into PLM2, and thus it does not a¤ect the ALM

and b1 does not need to adjust for it; in the second case, the sunspot is equal to zero at all times,

and therefore, again, it does not a¤ect the dynamics of yt; �nally, in the third case, the sunspot is

an i.i.d. process and therefore it does not induce any additional serial correlation in yt, so b1 does

not need to adjust to compensate for it.

Fixed points of equations (24)-(30) are possible equilibria for the model: agents are doing

the best they can, given the model they are endowed with. Note that agent not conditioning

their forecasts on the sunspot have in fact a misspeci�ed model, and their parameter b1 needs

to pick up the correlation induced by the sunspot in order to minimize the mean squared errors.

Beliefs derived from PLM1 imply a restricted perceptions equilibrium (RPE) for those agents (see

Evans and Honkapohja, 2001, chap. 13): they represent a weaker requirement compared to what

is asked in a REE, since forecasts are assumed to be optimal only within a particular class of

(underparameterized) linear models.

We turn now to the map for d2. In order to have it satis�ed, and thus obtain an equilibrium

with sunspot, we must have

� (1� �) (b2 + �) = 1: (31)

This is the resonant condition in the heterogeneous setting, and it poses a restriction between �;

� and �, much in the same way as we found for the 2-SSE. Instead of the transition probabilities,

10
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the restriction now a¤ects the AR(1) coe¢ cient on the sunspot process.

De�nition 2 A heterogeneous sunspot equilibrium with AR(1) sunspot is an endogenous stochastic
process yt, a fundamental shock vt and an exogenous stochastic process �t, with population fraction
� 2 (0; 1) and a set of expectational parameters {a1; b1; c1; a2; b2; c2; d2} such that: i) yt solves (15)
for any t; ii) expectations are given by (??),(21) and (22); iii) expectational parameters are �xed
points of the maps (24)-(30); iv) condition (31) is satis�ed and d2 6= 0.

Note that we are requiring � 2 (0; 1), i.e., both PLMs must be used in a heterogeneous

equilibrium. If instead � 2 f0; 1g, we then have an homogeneous expectations equilibrium (with

or without sunspot, respectively).

The set of maps (24)-(29) plus the resonant fraction condition � [(1� �) (b2 + �)] = 1 de�ne

parameters fa1; b1; c1; a2; b2; c2g [ f�g, for given �, � and �, while d2 is free. Note that, for given
�, � and �, the resonant condition pins down �. Alternatively, for given �, � and �, it pins down

�.

The set of equations (24)-(29) can only be solved numerically. In particular, we can use a

multivariate Newton procedure starting from the known, closed form equilibrium of a system with

d2 = 0 (i.e., without sunspot): in this case in fact, the solution is given by (16), i.e.,

�a1 = �a2 = 0

�b1 = �b2 = �1

�c1 = �c2 =
1

1� ��1
:

Starting from such values, and using equations (24)-(29) plus (31) and their derivatives, we

can compute the values of coe¢ cients in the two PLMs. An example is given in the next Section.

3.1.1 A numerical example

In order to implement our numerical procedure to �nd an heterogeneous equilibrium, we need

to chose a set of parameters values. We will use in this example the following set of values:

� = �0:8; � = �0:3; � = �0:9; �2v = 1; �2� = :1; d2 = 1. Note that this parameterization satis�es
all the restrictions derived by Evans and McGough (2005a) to ensure E-stability.7 In fact, such

restrictions are quite demanding and only admit a small set of combinations of parameters.

Let�s de�ne fa�1; b�1; c�1; a�2; b�2; c�2g [ f��g as the solution vector, such that equations (24)-(29)
plus (31) are satis�ed. We then �nd

a�1 = 0:000000; a�2 = 0:000000

b�1 = �0:559538; b�2 = �0:521657

c�1 = 1:727071; c�2 = 1:727071

�� = 0:120744:

7Moreover, with this parameterization, the resonant condition implies an initial value for � equal to 0:107,
which satis�es the restriction 0 < � < 1.

11
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Note that the only di¤erence for the belief coe¢ cients in the two groups of agents (besides d2,

which is free) is in parameters b1 and b2, as expected from looking at equations (24)-(29).

4 Evolutionary dynamics

We consider now how a sunspot equilibrium could emerge from a process of evolution and adap-

tation on agents�beliefs. We therefore look at the possibility of a transition from a fundamental

equilibrium to a sunspot one. This is equivalent, in our heterogeneous setting, to going from � = 1

to � = 0. Unless the whole population switches simultaneously and instantly agrees to coordinate

on a sunspot, this transition will need to happen gradually, through some process of progressive

adoption of the sunspot in the population. We will consider how this can be achieved through

evolutionary dynamics.

A note here must be made about the nature of time in our model. Though time in equations (1)

and (15) is discrete, adaptive learning dynamics can be studied (asymptotically) by analyzing the

behavior of ordinary di¤erential equations that represent approximations to the original stochastic

recursive algorithm (see Evans and Honkapohja, 2001), and we have exploited this fact in order to

derive the equilibrium values of parameters in the PLMs. In order to gain analytical tractability,

we will also model replicator dynamics in continuous time. The choice of continuous time replicator

dynamics in a discrete time model can be justi�ed by noting that such continuous time dynamics

are the approximation of the discrete time replicator dynamics as the interval of time is decreased

towards zero (see Vega-Redondo 2008, chapter 3). In particular, the continuous time replicator

equation can be interpreted as an approximation to a discrete time system where the magnitude

of di¤erential �tness per period between types is very small: having the time interval become

in�nitesimal in the replicator dynamics equation is one way of achieving such approximation. In

a later Section, we will consider predictor choice dynamics in discrete time, and show that results

do not change.

Under replicator dynamics, the fraction of agents using each model (�) evolves according to

their relative performance. Using the (unconditional) mean squared error (MSE) as a measure of

performance, we thus have

_� = �
�
�MSE1 �

�
�(�MSE1) + (1� �) (�MSE2)

�	
= � (1� �)� (32)

where � =MSE2�MSE1. MSEs will be de�ned below for each model and setting speci�cation.
Clearly, � = 0 implies _� = 0, as the two models deliver the same performance and there

is no incentive for agents to switch from one to the other. Moreover, also � = 0 and � = 1 are

resting points for the dynamics of �: once homogeneity is reached, the excluded model is no longer

used. We will check below whether these equilibrium points are stable under replicator dynamics.

Results will depend on the sign of the derivative @ _�
@� at the two resting points: for � = 0,

@ _�
@� = �,

while for � = 1, @ _�@� = ��.
We will also be interested, in particular, to see whether an equilibrium for the dynamics of the

12
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two groups of agents exists other than the two homogeneous ones, i.e., if there exists a situation

where _� = 0 but � =2 f0; 1g: this will require � = 0:

De�nition 3 An endogenous heterogeneous expectations equilibrium with sunspot, either in 2-
state Markov or AR(1) from, is a heterogeneous expectations equilibrium as de�ned in De�nition
(1) or in De�nition (2), but where the population fraction � 2 (0; 1) is endogenously determined
by (32).

4.1 Replicator dynamics in 2-SSE

In order to have the relative fraction of agents using each model (�) determined endogenously

through replicator dynamics, as speci�ed by equation (32), we need to derive the unconditional

expected MSE for the two models:

MSE1 = E
�
yt � yf

�2
MSE2 = E (yt � �y1)2 if st = s1
MSE2 = E (yt � �y2)2 if st = s2:

Substituting the ALM into these expressions, we get:

MSE1 = E
�
��yf + � (1� �) [�11�y1 + �22�y2]� yf

�2
if st = s1; s2

and

MSE2 = E
�
��yf + � (1� �) [�11�y1 + �22�y2]� �y1

�2
if st = s1

MSE2 = E
�
��yf + � (1� �) [�11�y1 + �22�y2]� �y2

�2
if st = s2:

Looking at the maps from PLMs to ALM , it is clear thatMSE2 = 0 at all times, whileMSE1 >

0.

Speci�cally, we have that if st = s1

� =MSE2 �MSE1 = �MSE1 = �E
�
(��� 1) yf + [� (1� �)�11 � 1] �y1 + � (1� �)�22�y2

�2
and if st = s2

� =MSE2 �MSE1 = �MSE1 = �E
�
(��� 1) yf + � (1� �)�11�y1 + (� (1� �)�22 � 1) �y2

�2
:

Since in both cases MSE1 > 0, we will have � = MSE2 �MSE1 < 0 and � ! 0 over time.

It follows that under replicator dynamics there can be no equilibrium where � 2 (0; 1).

Proposition 4 An endogenous heterogeneous expectations equilibrium with 2-state Markov sunspot
does not exist.

Consider the problem of stability under evolutionary dynamics now: of the two homogeneous

equilibria represented by � = f0; 1g, only the �rst one is stable, since at � = 0 we have � < 0

and thus @ _�
@� = � < 0. The second one is instead unstable, since at � = 1, � < 0, and thus

13
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@ _�
@� = �� > 0: a small deviation from the homogeneous fundamental equilibrium is enough to

drive the economy away from that equilibrium.

Proposition 5 The homogeneous equilibrium with � = 0 (i.e., the sunspot equilibrium) is always
stable under replicator dynamics. The homogeneous equilibrium with � = 1 (i.e., the fundamental
equilibrium) is never stable under replicator dynamics.

Our results above seem to suggest that, starting from a homogeneous fundamental equilibrium,

the economy would move towards a homogeneous sunspot equilibrium as soon as a fraction of

agents start using the sunspot for their forecasts. But for this to be true, the resonant condition

should hold at all times over the path of the evolutionary dynamics if the two PLMs are to

represent an equilibrium for agents�beliefs. Since the replicator dynamics equation _� = � (1� �)�
implies that � changes for any � 6= 0 (in particular, � < 0), condition (14) should then adjust

accordingly.

Consider the transition probabilities de�ning the sunspot, �11 and �22. We have seen that they

are pinned down by � and � through the resonant condition. But under evolutionary dynamics, �

changes according to (32). Since � is a deep parameter unlikely to adjust as � moves under evo-

lutionary dynamics, the (exogenous) transition probabilities should adjust to ensure the resonant

condition is satis�ed and the sunspot equilibrium exists all along the evolutionary trajectories.

This is clearly not possible, since the sunspot is an exogenous process and there is no reason it

should evolve in line with �.

There is of course another possibility, that is, as � evolves under replicator dynamics, agents

could continuously change the sunspot variable they are conditioning on, in order to ensure that the

resonant condition remains satis�ed at all times. This would require the existence of a continuum

of sunspots with the right statistical properties, and agents knowingly moving from one to another

as population dynamics evolve: something that seems quite farfetched to assume.

Proposition 6 No exogenous two state Markov process can represent a sunspot variable along
evolutionary trajectories, as the resonant condition (14) will be continually violated due to the
dynamics in �.

What would happen when, along evolutionary trajectories, the resonant condition is violated?

Matrix H from (13) would not be singular, and the only solution for the system (12) would be�
yf ; �y1; �y2

�
= [0; 0; 0]: the fundamental equilibrium. It follows that we can not obtain a Markov

sunspot equilibrium through a process of learning and evolution on agents�beliefs.

4.2 Replicator dynamics in AR(1) sunspot equilibrium

We turn now to the case with AR(1) sunspot and allow the relative fraction of agents using each

model (�) to be determined endogenously through replicator dynamics, as speci�ed by equation

(32). We start by de�ning the unconditional expected MSE for the two PLMs in this setting as:

MSE1 = E (yt � �1zt)2

MSE2 = E (yt � �2zt)2
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where

�1 = [a�1 b
�
1 c

�
1 0]

�2 = [a�2 b
�
2 c

�
2 d

�
2]

and

zt = [1 yt�1 vt �t]
0:

Remember that in order to have _� = 0, we need either � 2 f0; 1g, or � = 0.
Using the maps from PLMs to ALM, we obtain

MSE1 = E (A� a1 + (B � b1) yt�1 + (C � c1) vt +D�t)
2
= (�Hyt�1 +D�t)

2
> 0

MSE2 = E (A� a2 + (B � b2) yt�1 + (C � c2) vt + (D � d2) �t)
2
= 0

and therefore

� =MSE2 �MSE1 = � (�Hyt�1 +D�t)
2
< 0

This result shows that the requirement for a heterogeneous equilibrium where � =2 f0; 1g can
not be met, as agents using the sunspot will always outperform the others in terms of MSEs.

Under replicator dynamics, there does not exist an equilibrium where both types of agents coexist.

Proposition 7 An endogenous heterogeneous expectations equilibrium with AR(1) sunspot does
not exist.

We want now to check for stability under replicator dynamics of the two homogeneous solutions,

� = 0 and � = 1. Note that both imply _� = 0, so they are resting points of the population

dynamics, but are they locally stable? To answer this question we can simply observe that � < 0,

for any � 2 (0; 1), which implies that _� < 0: so while � = 1 is unstable under replicator dynamics,
� = 0 is stable. Even if a small fraction of agents starts using the sunspot, evolutionary dynamics

ensure that all the population gradually switches to the sunspot. Another way of looking at it

is to check for the sign of the derivative @ _�
@� at the two resting points: we have that for � = 0,

@ _�
@� = � < 0, while for � = 1,

@ _�
@� = �� > 0: the �rst point is therefore stable, while the second is

not.

Proposition 8 The homogeneous equilibrium with � = 0 (i.e., the sunspot equilibrium) is always
stable under replicator dynamics. The homogeneous equilibrium with � = 1 (i.e., the fundamental
equilibrium) is never stable under replicator dynamics.

This result would seem to support the view that, starting from a homogeneous fundamental

equilibrium, we could move to a homogeneous sunspot equilibrium: it only takes a small fractions

of agents to use the sunspot for starting the evolutionary dynamics that ultimately lead all agents

adopting the sunspot in their forecasts. But the above propositions only considers replicator

dynamics, and we have seen that in order to have a sunspot equilibrium with (boundedly8) rational

8We qualify the word rational with boundedly here becasue agents that do not condition their forecast are using
a mispeci�ed model. But given that model, they are doing the best they can, i.e., their model is optimal in terms
of delivering the minimal mean squared error possible.
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agents, a resonant condition must be satis�ed.

This condition, for given �, � and �, pins down a speci�c value for �. For any other value of �,

the only equilibrium value for d2 from (30) would be zero, thus e¤ectively eliminating the impact

of the sunspot in the economy. This means that as � changes under evolutionary dynamics, the

resonant condition will be violated and the sunspot equilibrium disappear.

Alternatively, for given �, � and �, the resonant condition imposes a restriction on �. For

example, for � = 0, the resonant condition requires � [(b2 + �)] = 1, i.e.,

� = ��1 � b2:

If an exogenous stochastic process with such AR(1) coe¢ cient exists, it could be the basis for a

sunspot equilibrium where all agents condition they forecasts on it. In a heterogeneous setting

with only a fraction � 2 (0; 1) of agents using the sunspot, the resonant condition is instead

� (1� �) (b2 + �) = 1

or

� = [� (1� �)]�1 � b2

where b2 is pinned down by the optimality condition on belief parameters, and it depends on �,

� and �. Therefore, since � and � are taken to be structural and �xed parameters, as � changes

under evolutionary dynamics, � would need to change too in order for the restriction to remain

true and the sunspot equilibrium to exist. This means that along evolutionary trajectories, in

order for the resonant condition to remain satis�ed and the sunspot equilibrium to exist, either

the sunspot endogenously modi�es its (exogenous) statistical properties, or agents continuously

change the sunspot variable on which they condition their forecasts. Either case implies that

a given exogenous stochastic process can not represent a sunspot variable when evolutionary

dynamics on predictor selection are at play.

Proposition 9 No exogenous AR(1) stochastic process can represent a sunspot variable along
evolutionary trajectories, as the resonant condition (31) will be continually violated due to the
dynamics in �.

5 Alternative predictor choice dynamics

We have used replicator dynamics to model the evolution of predictor choices over time in the

population. Our main argument against the likelihood of sunspot equilibria to emerge from evo-

lutionary dynamics, though, can be made with any evolutionary model of belief dynamics. As

an example, we consider here the discrete-time predictor choice dynamics proposed by Brock and

Hommes (1997). Brock and Hommes (1997) propose to model the evolution of predictor choices

in the population according to a discrete logit model based on relative performance. Using again

the unconditional mean squared errors, we have

�t+1 =
expf��MSE2t g

expf��MSE1t g+ expf��MSE1t g
(33)
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or equivalently

�t+1 =
1

2

�
tanh

�
�

2
(MSE2t �MSE1t )

�
+ 1

�
; (34)

where � is the "intensity of choice" parameter, a measure of agents�"rationality": with � !1, all
agents switch immediately to the predictor that delivers the lowestMSE, while for �nite values of

�, some agents adopt the sub-optimal predictor. We have added the time t subscript to MSEs to

make it explicit that they depend on time t parameters (and in particular on �t). Both replicator

dynamics and the Brock and Hommes dynamics with � !1 ensure that no agent will use strictly

dominated predictors in equilibrium.

We can see that, since we have � =MSE2�MSE1 < 0, in the limiting case � !1 all agents

will ultimately adopt the predictor that includes the sunspot and �! 0, both for the sunspots in

�nite state Markov form and in AR(1) form. Moreover, and crucially for our argument, also in this

case the changing fraction of agents using the sunspot requires a time-varying resonant condition

(in discrete steps now instead of continuously), thus again calling into question the possibility of

a sunspot equilibrium to emerge through evolutionary dynamics in the population.

6 Conclusions

There are two main sources of belief dynamics in our setting: optimization of parameters within

each model through learning, and evolutionary dynamics on the selection of the forecasting model.

It has been shown in the literature (in homogeneous settings) that, depending on the parame-

terization of the model, sunspot equilibria may or may not be learnable: that is, if all agents use

the same sunspot in their forecasting model, they may converge to a sunspot equilibrium, or learn

to discard the sunspot variable and converge to the fundamental equilibrium.

We have shown here instead that evolutionary dynamics always favour the model with the

sunspot, as it always delivers a better performance in the mean squared error sense compared to

a model without the sunspot.

While learning dynamics are driven by the di¤erence (in terms of forecasting error) between

the ALM and each PLM , evolutionary dynamics are driven by the di¤erence between the (two)

competing PLMs. In the �rst case, if the impact of the sunspot variable on the endogenous

variable in the ALM is less than what predicted from the PLM (because it enters into the law of

motion only indirectly, though expectations, and not directly through the structural model as the

fundamental variables), agents can learn to discard the sunspot. In the second case, instead, since

the PLM that disregards the sunspot is, e¤ectively, mispeci�ed as long as there is a fraction of

agents conditioning on the sunspot, this "fundamental" PLM is bound to deliver higher MSEs,

and it will vanish from population over time.

As we have seen, though, evolutionary dynamics clash with the resonant condition necessary for

the existence of a sunspot equilibrium: as agents progressively switch from one model to the other,

the statistical properties of the sunspot (it�s transition probabilities, in case of a 2-state Markov

process, or it�s serial correlation in case of an AR(1) process) need to adapt endogenously for the

sunspot equilibrium to survive. As this can not happen with exogenous stochastic processes, the
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sunspot will not resonate with the structure of the economy, and agents will stop using it in their

forecasts.

The key point in this result is that, in a heterogeneous setting, the ALM for the economy de-

pends on the fraction of agents using the sunspot, �. The resonant condition that makes the PLMs

consistent with the ALM and allows for a sunspot equilibrium depends therefore, among other

things, on � and it imposes a restriction on the relation between such parameter and the statistical

properties of the sunspot (� or �). Under evolutionary dynamics on predictor selection, � changes

endogenously over time: if the equilibrium is to exist at all times over the evolutionary dynamics

path, the properties of the sunspot (� or �) must evolve together with population dynamics. This

e¤ectively means that either the changing fraction of population must continuously coordinate on

a di¤erent sunspot, or the stochastic properties of the (exogenous) sunspot must evolve together

with population dynamics. Either case implies that a (given and exogenous) stochastic process

cannot represent a sunspot variable over paths de�ned by evolutionary dynamics and we therefore

conclude that sunspot equilibria can not emerge endogenously through a process of learning and

adaptation on beliefs. For a sunspot equilibrium to emerge, all agents, simultaneously, must start

using the right (i.e., one that has the required statistical properties) sunspot variable.

7 Appendix

7.1 Rational expectations solutions for (15)

We brie�y show here how to derive the MSV and sunspot solutions for model (15). Starting from

the general form (17), reproduced here for simplicity

yt = �
�1yt�1 � ��1�yt�2 � ��1vt�1 + "t (35)

di¤erent solutions can be obtained by appropriately rede�ning the error term

"t+1 = yt+1 � Etyt+1:

1. MSV solutions. By de�ning

"t = (��i)
�1vt;

i 2 f1; 2g, and deleting the common factor (1� �iL), we get the two MSV solutions

yt = �jyt�1 + (��i)
�1vt (36)

where i; j 2 f1; 2g and j 6= i. Depending on the case, these two solutions can be both stable,
one stable and one not, or both unstable.

2. Sunspot solutions. By de�ning

"t = (��i)
�1vt + (1� �iL) �t;
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and again deleting the common factor (1� �iL), we have the sunspot solutions

yt = �jyt�1 + (��i)
�1vt + �t; (37)

where �t is the sunspot component and again i; j 2 f1; 2g, j 6= i. Note that in order to have
a stable solution for yt, it must be that 0 <j �1 j<j �2 j< 1, as this requires that both �i
and �j are less than one in absolute value: the �rst is needed to ensure that the sunspot is a

stable process (if not, it would make unstable also yt), and the second is required to satisfy

the usual stability restriction for the AR(1) coe¢ cient on yt in (37).

Solution representations (36) and (37) are called "common factor representation", as they are

obtained from the general solution (35) by deleting a common factor component.

7.2 Derivation of optimal values for belief parameters

We derive here the value of belief parameters in PLMs that minimize the mean squared errors. We

will follow the learning literature and use stochastic approximation to project the ALM onto the

space of the PLM for each agent. For agents with a correctly speci�ed model, this is equivalent to

map, one by one, parameters from the PLM into the corresponding ones in the ALM . For agents

having a misspeci�ed (underparameterized) model, the derivation of the map is more involved and

is shown here.

For agents in group 2 (those using the sunspot), the one-to-one map from PLM to ALM leads

to equations (25),(27),(29),(30).

For agents in group 1, instead, we must project the ALM onto the space of parameters in the

PLM , in order to �nd their optimal values. We follow the adaptive learning literature here and

assume agents recurrently estimate their PLM over time using a recursive least-squares algorithm

of the form

�t = �t�1 + t
�1R�1t xt�1

�
yt � �0t�1xt�1

�
Rt = Rt�1 + t

�1 �xt�1x0t�1 �Rt�1�
where �0t = [a1; b1; c1] and x

0
t�1 = [1; yt�1; vt].

The E-stability principle allows us to study the asymptotic behavior of this algorithm by looking

at the associated ODE arising from stochastic approximation of the discrete time algorithm

d�

d�
= lim

t!1
ER�1t xt�1

�
yt � �0t�1xt�1

�
where the expectation is taken over the invariant distribution of x for �xed �.

Since limt!1Rt = Exx := R, where

R =

2641 0 0

0 �2y 0

0 0 �2v

375 ;
with �2y � Ey2t and �2v � Ev2t , we then have
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d�

d�
= RR�1

264A� a1B � b1
C � c1

375+R�1DE�t
0B@ 1

yt�1

vt

1CA
d�

d�
=

264A� a1B � b1
C � c1

375+R�1D
264 0

E�tyt�1

0

375 :
and since E�t = 0 and E (�tvt) = 0 we get

d�

d�
=

2664
A� a1

B � b1 +DE�tyt�1
�2y

C � c1

3775
with

�2y =
�
1�B2

��1 �
A2 + 2BD

�
�2�y + C

2�2v +D
2�2�

�2�y � E�tyt�1 =
D�

1�B��
2
� ;

which lead to equations (24),(26),(28).
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