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Abstract

We provide a critical review on the methods previously adopted into the literature of learning and

expectations in macroeconomics in order to initialize its underlying learning algorithms either for

simulation or empirical purposes. We find that none of these methods is able to pass the sieve of both

criteria of coherence to the algorithm long run behavior and of feasibility within the data availability

restrictions for macroeconomics. We then propose a smoothing-based initialization routine, and show

through simulations that our method meets both those criteria in exchange for a higher computational

cost. A simple empirical application is also presented to demonstrate the relevance of initialization

for beginning-of-sample inferences.

Keywords: adaptive learning, algorithms, initialization, smoothing.

JEL codes: C63, D84, E37.

1 Introduction

Adaptive learning algorithms have been proposed to provide a procedural rationality view on agents

process of expectations formation. Reopening a long standing debate on how should expectations be

modeled in macroeconomic models, the heuristics provided by learning algorithms come at the cost of

introducing new degrees of freedom into the analysis. One open node relates to how these recursive

mechanisms should be initialized in order to be representative of agents’ learning-to-forecast behavior.

In this paper we investigate this issue with particular attention at the applied literature in macroeco-

nomics. Here applied is taken to encompass both theoretical simulations as well as exercises of empirical

∗Corresponding author. E-mail: jaqueson.galimberti@postgrad.manchester.ac.uk.
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estimation and calibration. Examples can be found in Sargent (1999); Marcet and Nicolini (2003), or

more recently in Eusepi and Preston (2011); Milani (2011), between many others cited throughout the

paper. The main distinctive feature of these works consists in the replacement of unrealistic assumptions

implying an instantaneous adjustment of agents expectations, inherent in the rational expectations hy-

pothesis, with a characterization of agents as adaptive learners of their own environment. More generally,

our study will be relevant for scholars interested in the actual implementation of the learning algorithms

here considered.

We start by reviewing the literature in order to pool together the initialization methods previously

adopted into an archetypal classification. In spite of the obvious relevance of such issue, surprisingly, we

did not find many other attempts to systematically assess these methods. In economics, one exception

is provided by Carceles-Poveda and Giannitsarou (2007), although their contribution is to a great extent

restricted to theoretical applications. With the freedom to develop our own assessment framework, we

compare initialization methods on the basis of two main criteria. First, we argue that a good initialization

should provide estimates coherent to the long run behavior of the algorithm; second, achieving this

coherence must be feasible within the usual data availability restrictions in macroeconomics. Our review

indicates that none of the initialization methods found in the literature is able to satisfy both these

criteria.

Motivated by this critical finding, we propose a new method of initialization based on smoothing

within a sample of training data. Our point of departure is a unified framework under which the main

learning algorithms considered in the literature, namely the Least Squares (LS) and the Stochastic

Gradient (SG) ones, are obtained as special cases of the Kalman filter associated to a time-varying

parameters model of the economy (Ljung and Soderstrom, 1983; Sargent, 1999; Evans et al., 2010).

More specifically, Berardi and Galimberti (2012) have recently shown how to extend the asymptotic

correspondences between these algorithms to hold exactly in transient phases too, hence allowing for

a unified approach to initiliazations. From these correspondences, long standing Kalman smoothing

results can be readily translated into smoothing routines for the estimates obtained from each of the

above learning algorithms, and we develop our routine using these premises.

We then evaluate our procedure in comparison with two of the reviewed alternative methods with

respect to their convergence performance in a simulation exercise. We show that our approach is able

to deal with the conflict between coherence and feasibility, present in the other methods, at the same

time that it has the advantage of being implementable in any algorithm that can be encompassed into

the Kalman unifying framework. This solution, however, comes at the cost of an increased computa-

tional burden. To further enhance our understanding on the relevance of these different initialization

methods for applied macroeconomics, we also present an empirical exercise of learning-to-forecast. Using

US inflation and growth data, results are again found to favour our new smoothing routine. An ulti-
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mate judgement on the relevance of these results, however, would require going beyond our simplified

application, and we leave this issue open for future research.

The remainder of this paper proceeds as follows. In section §2 we establish the estimation framework

and the specific recursions assumed by the algorithms whose initialization we are interested in analyzing.

There, we also present a discussion on what is required from an initial estimate for these algorithms, so as

to provide the criteria through which we can critically evaluate the methods we review from the literature.

This review is presented in section §3, where we also describe our own proposal of a new smoothing-based

routine. We then proceed to present a simulation exercise, in section §4, and an empirical application,

in section §5, both aiming at a comparative analysis between different methods of initialization. Finally,

we conclude this paper with some remarks in section §6.

2 Adaptive Learning Algorithms

2.1 The algorithms

Consider an estimation context faced by a real-time agent wishing to obtain inferences about the law

of motion of a variable of interest, say yt. From an economic perspective, these inferences can be

thought of as the middle step agents undertake in a process of learning-to-forecast in order to form their

expectations.

To narrow down our focus, we assume this agent attempts to construct such inferences assuming

that yt is statistically related to other observed variables, say a vector of (pre-determined) variables

xt = (x1,t, . . . , xK,t)
′
, through a linear regression of the form1

yt = x′tθt + εt, (2.1)

where θt = (θ1,t, . . . , θK,t)
′

stands for a vector of (possibly time-varying) coefficients, and εt denotes a

(Gaussian2) white noise disturbance with variance given by σ2
t . Both coefficients and disturbances are

assumed not to be directly observable by the agent. Under this context, a technique for estimation of θt

is required to allow the agent to construct inferences for yt on the basis of (2.1).

In the literature of learning and expectations in macroeconomics (see Evans and Honkapohja, 2001)

recursive algorithms have been proposed for this task. Two of the main forms adopted are the LS and

the SG specifications.

1Our simulation and empirical applications presented later in this paper will focus on (vector) autoregression specifica-
tions that can be straightforwardly translated into the form of (2.1).

2Distributional assumptions such as Gaussianity are not strictly necessary for our purposes, but are required to guarantee
the optimality of the Kalman filter estimator associated to this non-stationary context. This latter is the basis under which
a unifying smoother is derived later for the initialization of different learning algorithms.
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Algorithm 1 (LS). Under the estimation context of (2.1), the LS algorithm assumes the form of

θ̂
LS

t = θ̂
LS

t−1 + γtR
−1
t xt

(
yt − x′tθ̂

LS

t−1

)
, (2.2)

Rt = Rt−1 + γt (xtx
′
t −Rt−1) , (2.3)

where γt is a learning gain parameter, and Rt stands for an estimate of regressors matrix of second

moments.

Algorithm 2 (SG). Under the estimation context of (2.1), the SG algorithm is given by

θ̂
SG

t = θ̂
SG

t−1 + µtxt

(
yt − x′tθ̂

SG

t−1

)
, (2.4)

with µt standing for the learning gain parameter.

Since the seminal works of (Bray, 1982; Marcet and Sargent, 1989) the LS algorithm has been taken

as the natural choice to represent agents mechanism of adaptive learning. This was due to its widespread

popularity between econometricians. The SG algorithm, on the other hand, provides a computationally

simpler alternative, a feature clearly apparent in (2.4) for the absence of the LS “normalization” step

given by the inverse of the matrix of second moments. For this reason some authors have advocated for

its use as a more plausible learning device from a bounded rationality standpoint (Barucci and Landi,

1997; Evans and Honkapohja, 1998).

Both the LS and the SG algorithms require the specification of a sequence of learning gains. The

learning gain stands for a parameter determining how quickly a given information is incorporated into

the algorithm’s coefficients estimates. Three of the main alternatives for the specification of this learning

gain are those of a time-decreasing, a time-constant, and a time-varying (not restricted to be decreasing)

sequence of values. Our focus in this study will be on the constant gain specification, which has been

in the spotlight of most applied research since Sargent (1999). Such a choice naturally sprouts from

the tracking capabilities associated to the constant gain specification and its suitability for time-varying

environments.

2.2 Learning and statistical rationales

Once a learning mechanism is specified, one of the main issues in the theoretical literature on adaptive

learning has been to single out the conditions under which this learning process converges towards a

target equilibrium (see Marcet and Sargent, 1988, for an earlier overview). This equilibrium is often

well defined by the Rational Expectations (RE) hypothesis and it is represented by a fixed-point in the

dynamics of a self-referential structural model, where agents expectations play a role in determining the

economy’s outcomes. The key feature of such analyses lies on the use of a stochastic approximation
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approach in order to assess the asymptotic dynamics of the stochastic system through a deterministic

differential equation (see Evans and Honkapohja, 2009, for a recent account).

Different questions have emerged from the applied side of this literature, where people have tried to

understand how much of macroeconomic persistence can actually be attributed to learning (Orphanides

and Williams, 2005b; Milani, 2007),and what part of business cycle fluctuations can be explained by a

model with learning and expectational shocks (Eusepi and Preston, 2011; Milani, 2011). In contrast to

the theoretical literature, where the interest is on stability and the eventual convergence of the learning

algorithm to a given (equilibrium) target, here the key feature is represented by the actual behavior of

the learning algorithms in finite samples. Such shift in interest motivates a statistical analysis of these

estimators.

Recursive estimation algorithms are statistically characterized by undergoing through two main dis-

tinct phases: a transient and a steady state one. In defining the criteria we use to assess initializations,

further below, we suggest that the purpose of an initialization method, from an empirical perspective,

is to provide estimates as close as possible to the algorithm’s steady state operation, since such beliefs

should reflect the continuation of an estimation process that was already running prior to the sample

beginning.

The separating frontier between the transient and the steady state phases, nevertheless, is not clear-

cut. To obtain an assessment, it is common practice (see Haykin, 2001, p. 266) to focus on a statistical

measure of interest and construct the algorithm’s learning curves, which represent how that measure

evolves through time. Roughly, one can then visually lay up bare these phases by identifying the steady

state when the statistic settles down. One measure of interest is the Mean-Square Deviation (msd).

Definition 1 (msd). The msd between the actual vector of coefficients in (2.1), θt, and the algorithms

estimates, θ̂t, is given by

Dt = E
[
∆2
t

]
, (2.5)

where ∆t =
∥∥∥θt − θ̂t∥∥∥ stands for the Euclidean norm of the vector of coefficients deviations.

The msd is intended to capture the (average) accuracy of the algorithm’s estimates. Its evolution

through time is also associated with the speed at which the algorithm is able to adjust its estimates to

the time-varying system. Optimization of tracking performance is mainly done through control of the

gain parameter, giving rise to a well known trade-off between the tracking speed and the accuracy of

estimates (see Benveniste et al., 1990, Part I, Chapters 1 and 4).

We shall observe such a trade-off in the msd learning curves that we compute for various gain

calibrations, but notice that these are steady state features, while our main interest lies on the transient

behavior that follows the algorithms’ initializations3. In our context, hence, the msd measure serves to

3Also notice that the msd is a second moment measure, such that its convergence to different levels for different gains
is not in conflict with the algorithm’s convergence in distribution to estimates around the true coefficients’ values.
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the purpose of defining a metric that will be the basis of our main evaluation criterion of initializations.

Definition 2 (misalignment). The misalignment of an algorithm estimates at period t, with respect

to its msd, can be measured by

Mt =

∣∣Dt −Dt∣∣
D̂t

, (2.6)

where Dt = limt→∞Dt stands for the steady state level of the algorithm’s msd, and D̂t =

√
E
[
(∆2

t −Dt)
2
]

stands for its standard deviation.

Clearly, our measure of misalignment has the appealing interpretation of representing the distance

between the algorithm’s current MSD and its steady state level in terms of standard deviations. For

simulational purposes, (2.5) and (2.6) can be readily evaluated by computing their sample counterparts.

2.3 Requirements on initializations

From the recursive form of both learning algorithms, the initializations clearly take the form of estimates

for θ̂0 and R0, although the latter is dispensed with in the SG case. To keep up with the generality of

our analysis here we focus solely on the initialization of the coefficients estimates, θ̂0, common to both

algorithms4.

Within the context of learning and expectations, the estimates provided by the learning algorithms

are taken to represent agent’s beliefs about the economy. With this in mind, inquiring about the values

to assign to θ̂0 should lead to the question: (i) what were agent’s beliefs at the beginning of our sample

of data? It is to answer to this question that an initialization method is purposefully designed. But from

a statistical point of view, whatever the initial estimate we assume, it would be just a matter of time

until the algorithm achieves convergence. Then the relevant question becomes: (ii) how long will it take

for the algorithm to converge to an appropriate estimate of agent’s beliefs?

In the assessment that follows, we associate two evaluation criteria to the above questions in order

to qualify the initialization methods previously adopted in the literature. The first is the coherence

of initial estimates relative to the steady state behavior associated with the gain used to calibrate the

algorithm. As we have argued, however, at an applied level it becomes difficult to distinguish between

transient and steady state dynamics. Our assessment on this criterion, therefore, is restricted to a relative

scaling of how the different methods perform in terms of their misalignment.

Criterion 1 (coherence). An initialization method is said to provide more coherent initial estimates

than another method if the misalignment of the former initial estimates, as measured by (2.6), is

smaller than the misalignment of the latter.

4Moustakides (1997) provides a study on how to optimally initialize R0 in the LS algorithm, proposing a simple rule
based on the data signal-to-noise ratio. When it comes to our applied exercises we shall be precise about this rule and how
we use it.
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The second criterion is the feasibility of the initialization method in the context of macroeconomic

data. Even though in this case we could provide a definition in absolute terms, such as establishing

a limit on the amount of data required by a feasible method, we opt for another relative form that is

suitable for our later comparative exercises.

Criterion 2 (feasibility). An initialization method is said to be more feasible than another method

if the amount of data required by the former to obtain the aimed initial estimates is smaller than the

amount of data required by the latter to achieve the same purpose.

3 Initialization Methods

A summary of how different initialization methods compare with each other is proposed in table 1

and a discussion is provided in the following section. In order to address the shortcomings we find in

the methods traditionally used in the literature, we then propose a new initialization routine based on

smoothing within a training sample of data.

3.1 A review of previous methods

From an applied perspective, initialization methods can be classified between two extreme ends depend-

ing on their suitability for simulation or empirical purposes. Their distinction in that respect reflects

the amount of information available about the system to which the algorithms are applied. While in

simulation studies the true system is known by the researcher, in empirical applications most knowledge

incorporated into an initialization represents the assumptions that qualify the study in its own.

Starting from the theory-guided methods, one first way to initialize learning algorithms for simulation

studies is that obtained from the use of full knowledge about the law of motions generating the data.

This method is referred as Exact in table 1, and it first5 appeared into the seminal applied contribution of

Sargent (1999). Its usage has since been prominent in studies that replace the assumption of frictionless

REE with the sticky process of expectations formation through adaptive learning. For lack of a better

guess, this method proposes to take the coefficient values corresponding to the REE as initial estimates

for the algorithm’s recursion.

Clearly, the main benefits of the Exact method of initialization relates to its theoretical support, as

well as its exemption from pre-forecasting data requirements. These advantages, however, come at the

cost of its unsuitability for empirical applications, where the information about the true system under

analysis is often the object of study.

One closer alternative is provided by the method we denote as the Ad-hoc initialization in table 1,

where the initials are hand-picked by the researcher. When taking the Exact initials as reference, this

5Earlier simulation works, such as Bray and Savin (1986), also followed a similar approach, but in the context of a
decreasing-gain LS algorithm.
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method provides a way to validate the sensitivity of results obtained under the former. It lacks, however,

the objectivity of the previous method given that there is usually no guidance on the magnitude of

variations on the initials, and the researcher’s degrees of freedom increase rapidly with the system’s

dimension. Both the Exact and the Ad-hoc methods may, furthermore, lead to initials still incoherent to

agents’ beliefs in terms of the underlying algorithm and its calibration, given that both provide initials

incorporating information from the system, but not from the learning algorithm itself.

Shifting now our focus to approaches less theoretically-grounded, but which in contrast are favored

for their empirical suitability, there are two main methods adopted in the literature to initialize the

estimates of recursive learning algorithms. In the engineering literature (see Ljung and Soderstrom,

1983, pp. 299-303, e.g.), it is often suggested that the coefficients should be initialized with the value of

zero (known as a diffuse prior) and an initial sample should be left aside to let the algorithm adjust its

estimates according to the underlying calibration. This is especially recommended for the cases where

there is not enough previous knowledge about the system under estimation so as to allow an educated

guess. It is referred in table 1 as the Diffuse-track method.

Clearly, under the Diffuse-track method of initialization the criterion of coherence is satisfied. As

long as the algorithm and its calibration are appropriate for the application, it can be expected that

convergence will eventually take place, and, therefore, estimates representing the steady state behavior

of the algorithm can be obtained as initials. However, two problems arise with this method. First,

it is up to the researcher’s wisdom to recognize how many observations are needed to get past of the

initial transient phase, an aspect that increases the method’s subjectivity. The second problem with

the Diffuse-track method relates to its feasibility, which may become critical in the macroeconomic

context where availability of data is usually restricted as compared to the engineering context under

which this method was originally proposed. This last drawback is of special relevance for the case of

learning gains calibrated to small values, as usual in economic applications, where the algorithms tend to

show rather slow rates of convergence. We shall return to this point later in our simulation experiments,

but notice that for simulation purposes, as in Huang et al. (2009); Eusepi and Preston (2011), this point

is not restrictive as long as enough observations are generated for the algorithm to achieve convergence

within the pre-forecasting initialization sample.

A second empirically-grounded method of initialization involves the use of the decreasing gain LS

block estimation counterpart, namely the OLS estimator, within a pre-specified initial sample of data.

Essentially, this method corresponds to an initialization of the coefficients from zero, and then updating

the estimates within an initial sample using the LS estimator with decreasing gains given by6 γt = 1/t.

It therefore represents an hybrid of the Diffuse-track method, implemented with the LS algorithm under

a decreasing gain. This method also seems to be the quite popular in empirical studies on learning in

6To prevent instabilities into the first estimates we set the decreasing gains as γt = γ̄/t. See also the discussion on the
design of our simulation experiments.
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macroeconomics, perhaps due to the prominence of the LS algorithm and its popularity between applied

researchers. In table 1 we denote it by the Diffuse-ordinary method.

As with the previous method, the Diffuse-ordinary initialization suffers from the same lack of objec-

tivity regarding the determination of how much of the available sample of data should be set aside for

the initialization routine. Nevertheless, the fact that a relatively higher gain value is used in the first

iterations of the initialization tends to improve the convergence speed considerably, and so favoring the

feasibility of this method7. The Diffuse-ordinary initialization can, therefore, be expected to require

a lower number of initial observations to achieve convergence in relation to the Diffuse-track method.

The most important drawback of the Diffuse-ordinary initialization method, however, is its lack

of coherence with respect to the algorithm’s gain calibration, especially in the primitive sense that

this parameter stands for learning. Different gain values engender different steady state behaviors of

the algorithm’s estimates. So, if the initialization for a given gain calibration is obtained by using a

different gain value, this initial estimate will tend to be biased in relation to the algorithm’s steady state

estimates. By using a decreasing gain the Diffuse-ordinary method provides the same initial estimate

irrespective of the gain calibration for which this is required. Thus, even though it tends to attain a

quicker convergence, the estimates to which this initialization method converges may be incoherent with

the subsequent performance of the algorithm, a fact that ends up requiring further adaptations of the

algorithm outside of the initialization sample in order to get to its steady state.

3.2 A new method based on smoothing

The main difficulty that the initialization methods reviewed above face for their use in empirical appli-

cations relates to the trade-off between their feasibility and the coherence they can achieve. These

criteria can be seen to represent antagonistic requirements due to the effects that the size of the training

sample of data has over them. Namely, while devoting additional data to the initialization procedure

tends to favour coherence, by expanding the room for the algorithm’s convergence to play, the method’s

feasibility becomes impaired.

We now propose a new method aimed at mitigating this trade-off through an increase in the com-

putational burden required for the initialization. The main idea draws upon the use of a smoothing

procedure within a training sample of data.

In order to understand the concept of smoothing, it is important to first define the concept of

filtering, from which the former departs. In our context, filtered estimates are those obtained from the

(forward) recursions associated to the learning algorithms in (2.2)-(2.3) and (2.4). For clarity, we add

another subscript to our previous notation: θ̂t|k, where t indicates the period the estimate stand for

and k indicates the information period on which the estimate is based. Then, the filtered estimates are

7Also notice that this method can be adjusted to use the SG algorithm with a decreasing gain.
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given by θ̂t|t ≡ θ̂t. The smoothed estimates, on the other hand, stand for (backward-looking) updated

inferences on the filtered estimates, i.e., θ̂t|k with k ≥ t. Clearly, while the filtered estimates stand for the

inferences made on the basis of information available at the period the estimates stand for, the smoothed

estimates are inferences obtained as new information about the system becomes available (see Anderson

and Moore, 1979).

Due to the use of more information, one can expect the smoothed estimates to be more accurate than

the filtered ones, and this is the reason we propose their usage for the initialization of learning algorithms.

This gain in accuracy, however, comes at the cost of more computations and a delay incurred by waiting

for the arrival of new observations. Such a delay, obviously, prevents the use of the smoothed estimates

for learning-to-forecast applications, given that these estimates make use of information not available

to real-time learning agents. Therefore, a sample of initial data, say of N observations, is required to

be set aside for the smoothing initialization procedure, just as it is required by the diffuse initialization

methods.

Within this initial sample of data, then, one can start the computation of the learning algorithms

from a diffuse prior, such as θ̂0 = 0, and obtain not only the algorithm’s filtered estimates up to θ̂N ,

but also its smoothed8 estimates of θ̂0|N . With these latter at hand, then, one re-starts the estimation

process, within the same sample of data, but now assigning the initial in accordance to the smoothed

estimate, i.e., θ̂0 = θ̂0|N . A new sequence of filtered and smoothed estimates is in this way obtained,

and this process can be repeated a few more times until a given convergence criterion is met. For this

latter, here we adopted an ε-convergence9 criterion based on the Euclidean distance between filtered and

smoothed estimates, under which the above process is repeated until
∥∥∥θ̂0 − θ̂0|N∥∥∥ < ε.

It is important to note that these repetitions are not worthless with respect to their computational

cost. Even though the same set of data is supplied to the algorithms throughout these repetitions

of filtering/smoothing estimations, the information provided is not the same. Namely, by changing

the initial estimates, θ̂0, the whole stream of subsequent filtered estimates is affected, and so is the

information on the system dynamics that is incorporated into the smoothed estimates.

To obtain the smoothed estimates associated to the learning algorithms in (2.2)-(2.3) and (2.4), we

follow the literature (Ljung and Soderstrom, 1983; Sargent, 1999; Evans et al., 2010; Berardi and Galim-

berti, 2012) drawing a parallel between these algorithms and the Kalman filter applied to the estimation

of a time-varying parameters models. More specifically, we start from the exact correspondences drawn

in Berardi and Galimberti (2012) for both the LS and the SG algorithms under an unifying state-space

8Smoothing is usually carried out into one of three forms: (i) as fixed-point, fix t, and update the estimates of θ̂t̄|k as

k increases; (ii) as fixed-lag, set k = t+ l, with l fixed, and obtain θ̂t|t+l as t increases; and, (iii) as fixed-interval, fix the

information set k, and obtain θ̂t|k̄ for t ≤ k̄. For our purposes only (i) and (iii) are sensible, but given that our interest
rests solely on an initial estimate we adopt the former, avoiding the need of a “backward pass” as in the latter.

9To avoid halting the computations for longer than necessary, we also imposed a stopping limit to the number of these
repetitions.
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framework10. Then, we obtain the smoother associated to each of these algorithms by direct substitution

of their correspondences with the Kalman filter into the Kalman fixed-point smoother of Anderson and

Moore (1979, pp. 170-6). Essentially, these authors have shown how the fixed-point smoothing prob-

lem can be solved through the application of the standard Kalman filtering expressions to the original

state space model augmented with a state appropriately initialized to represent the fixed-point smoothed

estimates11.

4 Comparative Simulation Analysis

In this section we present simulation evidence comparing two of the initialization methods reviewed

above, namely the diffuse-track and the diffuse-ordinary, to our own new method based on smoothing.

The comparison is made with respect to their initial transient behavior in estimating the parameters of

a given (known) non-stationary environment.

4.1 Setup

Our purpose here is to construct the (averaged) learning curves of the algorithms during their initial

transient phase and evaluate how their statistical properties are affected by the initializations adopted.

Consistent to our discussion in section 2.2, our focus in on the msd mesure of the algorithms’ performance,

as given by (2.5). Given the stochastic environment under which these algorithms operate, in simulation

studies these curves are computed as an average over repeated samples of generated data.

The artificial data is generated according to a linear (1st order) autoregression of the form

yt = θtyt−1 + εt, (4.1)

where the autoregressive parameter evolves according to

(
θt+1 − θ̄

)
= β

(
θt − θ̄

)
+ ωt+1, (4.2)

and the random disturbances εt and ωt+1 are zero mean mutually independent distributed as Gaussian12

with variances given by σ2
ε and σ2

ω, respectively. Note that, in spite of simplifying our analysis by focusing

into a one-parameter specification, we are adopting a time-varying model similar to that of Doan et al.

(1984) and Hamilton (1994, pp. 400-3). In particular, notice that if |β| < 1, then θ̄ may be viewed as the

steady-state value of the autoregressive coefficient in (4.1). Yet, in order to avoid too quick variations in

the statistical properties of the data, the value of β is usually assumed to be very close to unity. In spite

10For convenience, we reproduce these correspondences in Appendix A.1.
11Key steps in this derivation are also reproduced for convenience in Appendix A.2.
12See footnote 2.
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of resembling a random walk, this assumption prevents the dynamics of the autoregressive coefficient to

be dominated by the noise variations in its stochastic disturbances.

For the calibration of σ2
ε , σ2

ω, θ̄, and β, we take the recommendations of Hamilton (1994, pp. 401-3)

as a reference, though adjusting them to our context. One of these adjustments refers to the use of a

higher σ2
ω in order to accentuate the variations in the estimation environment, and further justify the

use of constant-gain algorithms. We also carry out a sensitivity analysis over the values assumed for σ2
ε

and θ̄. Our focus on these parameters, obviously, stems from their role in determining the most notable

statistical features distinguishing macroeconomic series of data, such as their variance and dynamic

persistence. To be consistent with our later empirical application, our interest in the generation of

artificial series is to mimic these properties for data on inflation and output growth. Using standard

econometric tools, then, we fitted a univariate fixed-coefficient AR(1) process to each of these series (the

data shall be described in the next section), and obtained calibrations for them as σ2
ε = 0.9σ̂2 and θ̄ = θ̂,

where σ̂2 stands for the above estimation residuals variance for each variable, and θ̂ is the associated

autoregressive coefficient estimate. All these calibrations are summarized in Table 2.

For these given calibrations, we drew 1,000 different samples of the random disturbances and used

them with the DGP given by (4.1)-(4.2) for the generation of artificial series with a time dimension of

1,250 observations. We discarded the first 250 of these observations for each sample to avoid sensitivity

to the series initializations, for which we used y0 = 0 and θ1 = θ̄. Examples of such artificially generated

series of data, one for each calibration considered in table 2, are presented in figure 1. Remarkably, the

inflation and growth-like characterization of these series is clear from the higher degree of persistence in

the former, and the higher degree of volatility in the latter.

Apart from these calibrations for the artificial series, we also need to specify how we calibrated the

algorithms’ learning gains. Here we first define a set of different values for the LS, which is not sensitive

to the scale of the data, and then adjust these gains for the SG case. In order to do this conversion,

we need to compute estimates for the upper bounds on the gain calibrations that still ensure stability

for each algorithm. The main issue here lies on the determination of this upper bound for the SG

algorithm, which is known to be sensitive to the scale of the data (see Evans et al., 2010). Without

extending any longer on this issue here, we follow the recommendations of Haykin (2001, pp. 258-74)

and compute the SG upper bound as µmax = 2/λmax, where λmax stand for the maximum eigenvalue

of the regressors covariance matrix, which for the case of (4.1) is simply given by the variance of yt.

The LS gain calibrations specified in table 2 by γ̄i, for i = 1, . . . , 4, are then converted to the SG as

µ̄i = µmax
(
γ̄i/σ

2
y

)
, where the variance of yt is approximated taking the autoregressive coefficient as fixed

to its long run value, θt = θ̄.

For the case of the LS algorithm, it also remains to specify how we proceed to initialize the matrix
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of moments associated to (2.3). We follow Moustakides (1997) rule, under which

R0 = γα0 Θ2
x, (4.3)

where Θ2
x is the variance (matrix) of the regressors in (2.1) and α is a parameter to be calibrated

according to the signal-to-noise ratio of (2.1). For our purposes we simply set α = 1, and compute Θ2
x

on the basis of (2.1) as an autoregression with θt fixed to its (expected) long run value.

The set of generated series, totalizing 2 × 1, 000, were then supplied to different combinations of

algorithm/gain/initialization to obtain the associated θ̂t estimates. These latter were then used for the

computation of the msd learning curves, following (2.5), averaged over the one thousand replications of

data samples.

4.2 Simulation Results

The msd learning curves obtained from the application of the LS and the SG algorithms to inflation

and growth-like data are presented in figures 2 and 3, respectively for these series. For each of the

methods considered, we have fixed the number of observations taken for training to the first 75, which are

highlighted in the figures by shaded areas. Most importantly, the criterion under which each initialization

is evaluated is the misalignment of the initial estimates from their corresponding algorithm/gain long

run behavior, as defined in (2.6). Here, firstly, we evaluate this criterion visually leaving its quantification

to the end.

The initial misalignment incurred by each initialization method depends on the gain calibration.

This is evident in figures 2 and 3 by the jumps undertaken by the msd estimates from their after-

initialization level to their stable long run level. These jumps are more remarkable for the diffuse-ordinary

initializations. This observation corroborates our previous point that the diffuse-ordinary method tends

to violate the requirement on the initials’ coherence.

The diffuse-track also seems to perform poorly with respect to that coherence criterion, but this

is more clearly evident from its application to the SG algorithm. The lack of a normalization step in

the operation of this algorithm seems to be reflected into its slowly rate of convergence to steady state.

The number of observations left aside for the diffuse-track initialization of the SG algorithm is clearly

too small to permit convergence of the smaller gain calibrations, corroborating our statement that this

method lacks on feasibility.

The only method that seems to be performing consistently for all the above criteria and throughout the

different algorithms and gain calibrations is our own smoothing procedure. In any of the cases considered

in figures 2 and 3, this method tended to provide initial estimates that were closer to the algorithm/gain

steady state behavior compared to those provided by the other two methods. The smoothing procedure
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has, in special, presented a better performance for the cases where the other methods have failed, namely:

(i) for higher gain calibrations in the LS, where resulting estimates were less accurate; and (ii) for lower

gain calibrations in the SG, where the rate of convergence tended to be slower.

Such failures of the methods previously used in the literature may, nevertheless, be questioned for

their relevance in economic applications. This might especially be the case for the LS algorithm, which is

predominant in this literature, given that this algorithm is usually calibrated to small values of learning

gain parameters. To enhance our understanding under these circumstances we also present a comparison

of msd learning curves obtained from different initialization methods for a given gain calibration, labeled

in table 2 as “usual” for its proximity to values used into the literature. This is presented in figure 4.

Results in figure 4 indicate that for a “usual”, economically meaningful, calibration of the LS al-

gorithm, the three methods of initialization here evaluated tend to lead to similar results in terms of

initial misalignments to its steady state behavior. This is remarkably true for the diffuse-track and

the smoothing methods, while for the diffuse-ordinary one there is some evidence indicating a higher

degree of misalignment for the case of the inflation-like series in panel (a) of figure 4. Notice, however,

that the use of less than 75 observations for the initialization of this algorithm/calibration would un-

equivocally drive the initial estimates obtained from the diffuse-track and the diffuse-ordinary methods

into incoherent estimates. Hence, the feasibility of these methods may still be impaired under cases

of tight data availability.

Pictures similar to those we found previously emerge for the SG cases depicted in panels (b) and

(d) of figure 4. In both cases, for inflation and growth-like artificial data, results point out that only

the smoothing initialization method achieves coherence of initial estimates, while the diffuse-ordinary

method is again performing poorly. Notice, also, that it takes about 200 observations for the diffuse-track

and the diffuse-ordinary methods to achieve a level of coherence close to that attained by the smoothing

method within the training sample of only 75 observations.

To add precision to the observations made above, we complement the visual analysis with a look over

the associated statistics. For this purpose we present in tables 3-6 average msd statistics, with the first

two focusing on inflation-like data, and the remaining on growth-like data. For each of these tables, the

averaged statistics are segmented in several subsamples after the initializations, in an attempt to obtain

short run measures corresponding to the transient phase undertaken by the algorithms after the initials.

Focusing first on the results for inflation-like data, we can see that our main observations from the

visual inspection are here corroborated: (i) the diffuse-ordinary method is overall outperformed by the

others, being the only method for which the magnitude of initial misalignments persist to affect the

first short run measures, for each algorithm and gain calibration; (ii) the SG rate of convergence is slower

than the one attained by the LS, and the smoothing method is the only one providing initializations closer

to the algorithm/calibrations steady states. These observations are also corroborated for the growth-like
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data, although with some deterioration of the short run msd measures.

5 Empirical Application

In this section we attempt to check the evidence about different initialization methods that was derived

in the previous section from simulations, by means of an empirical application with US macroeconomic

data on inflation and growth. It is not our purpose to be exhaustive in this application, but only to

provide an assessment of how these initialization methods perform, comparatively, under a simplistic

context of applied macroeconomics. Before going through the results, we begin with a brief description

of the data and model specification to be used in conjunction to the LS and the SG algorithms to assess

the effects that three different initial estimates have over the properties of the forecasts for inflation and

growth. For consistency, we evaluate the same methods of initialization, namely, the diffuse-track, the

diffuse-ordinary, and the smoothing methods.

5.1 Data, model, and algorithms’ calibrations

We use quarterly data on the US real GDP and its price index from 1947q1 to 2011q4. Our data on

this series comes from the Philadelphia’s Fed Real-Time Data Research Center13 from which we used

the series observed at the vintage of 2012q1. For simplicity, we are neglecting real-time data issues by

focusing on a unique snapshot of the realization of these series. As our interest is in modeling inflation

and output growth, we construct these rates from the above data on levels computing their associated

annual growth rates by compounding their simple quarterly growth factors. This gives us a total of 259

observations for each variable, which from now on we denote by πt and ẏt, for inflation and growth,

respectively.

We then use a simple unrestricted VAR(1) specification to model these series, where coefficients are

updated recursively for each new observation made available through time. These estimates are obtained

separately for each algorithm, i.e., the LS and the SG, and also for each different initialization method.

The model specification we are using can then be expressed as

πt
ẏt

 =

θ̂π,t θ̂ẏ,t

φ̂π,t φ̂ẏ,t


πt−1
ẏt−1

+

eπ,t
eẏ,t

 , (5.1)

where θ̂ and φ̂ stand for the coefficients’ estimates associated to the equations having inflation and

growth as endogenous, respectively, and their subscripts indicate the explanatory variable to which they

are attached and the period from which their estimates are made. The residual terms eπ,t and eẏ,t stand

for estimation errors.

13See http://www.philadelphiafed.org/research-and-data/real-time-center/.
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The initializations are computed on the basis of a training sample of 75 initial observations, as we

did in our simulation exercise. In terms of the time span of our sample, this means we left aside data

from 1947q2 to 1965q4, which is (approximately) in line with the previous applied literature on adaptive

learning in macroeconomics. Orphanides and Williams (2005a), for example, use data up to 1965q4

to initialize the learning algorithms, while Branch and Evans (2006) and Milani (2011) expand this

information set with a few more observations, using data up to 1969q4 and 1968q4, respectively.

It remains to specify how we calibrate the learning gain of the LS and the SG estimation algorithms.

In the spirit of the calibration we used for the simulation exercises, we adopt three alternative values of

gain for each algorithm, where we first define the gains for the LS and adjust these for the data-dependent

context of gain calibration for the SG algorithm.

To be consistent with the previous literature, however, the reference calibrations we adopt for the LS

are less dispersed than those we used for the simulation exercise, and will be referred with alphabetic

subscripts for clarity. Specifically, we adopt the following values for the LS gains: γ̄a = 0.01, γ̄b = 0.025,

and γ̄c = 0.05. For the SG algorithm, we use expressions similar to those we adopted for the simulation

exercises, though with the regressors covariance matrix being estimated using the initialization data14.

Doing that we obtain the following calibrations for the SG gains: µ̄a = 0.0018, µ̄b = 0.0046, and

µ̄c = 0.0092.

5.2 Empirical Results

Our analysis is based on statistics of 1-period ahead forecasts that can be straightforwardly computed

from the VAR specification in (5.1) for inflation and growth, together with coefficients estimates ob-

tained from each combination of algorithm, gain calibration, and initialization. Our focus on forecasts

is naturally due to the learning-to-forecast rationale we are adopting. Also, our lack of knowledge about

the true system coefficients prevents us from evaluating msd measures directly.

It is instructive to have a look over the coefficient estimates that each algorithm provides for the two-

variables VAR(1) model of (5.1), and how these estimates are affected by the method used to initialize the

algorithms’ operations. These estimates are presented in figures 5 and 6, for the coefficients associated

to the inflation and the growth equations, respectively.

One first observation is that the differences between the initial estimates presented by each method of

initialization are more remarkable for the coefficient associated to the inflation variable. Corroborating

our simulation findings, these differences are also more pronounced for the diffuse-ordinary method. As

expected, these initial differences tend to die out as observations accumulate over time, with only small

14Other than for the calibration of the SG gains, we also used the covariance matrix estimated on the basis of initialization
data for the initialization of R0 in the LS algorithm. See equation (4.3). Our use of only initialization data is an attempt
to prevent any form of “cheating in forecasting” by the learning algorithms in what they stand as representative of agents’
expectations.
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differences remaining after say observation 150, which in our sample stands for 1984q215.

A deeper understanding of these differences in estimates can be obtained through statistics com-

puted over the forecasts associated to them. Here our focus goes to their variances and mean squared

errors (MSE), presented in tables 7 and 8. While the MSE stands for a useful measure of performance

comparisons, it is mainly in the forecasts’ variance that lies our interest. Learning-to-forecast behavior

provides the channel through which shocks may persist over time, rather than perishing instantaneously

as implied by RE. Recent studies have found support to this view by incorporating forecasts generated

through learning algorithms as an additional explanatory variable in business cycle modeling (see, e.g.,

Orphanides and Williams, 2005a; Milani, 2011, between others cited above). Hence, it is important to

assess whether a given initialization method is distorting the variance of the forecasts associated to each

learning algorithm in relation to its long run behavior.

In accordance with the previous applied literature we can further narrow our focus to the LS case,

presented in table 7. Focusing on the first subsamples we see that, for both inflation and growth, the

diffuse-ordinary method rendered forecasts with lower variances than the other methods. Compared to

the smoothing method, e.g., the forecasts obtained departing from the diffuse-ordinary initials presented

variances around16 20% lower for both inflation and growth during the first subsample (1966q1-1971q4),

and 5% and 16% lower for inflation and growth, respectively, during the second subsample (1972q1-

1984q2). It should be emphasized that the result that the diffuse-ordinary method delivers forecasts

with a lower variance than the others does not constitute a point in favour of this method, and neither,

necessarily, against it. Bear in mind that we are interested in assessing the initials coherence to the

algorithm’s long run behavior, rather than in a minimization of forecasts variance or their associated

errors17.

Before drawing a conclusion on this point, one additional observation is useful. A smaller difference

is observed between the variances of the forecasts obtained from the diffuse-track and the smoothing

methods, although this depends on the variable forecasted. For inflation, the forecasts’ variance from

the former initialization procedure was found to be around 8% and 15% higher than that from the

latter, during, respectively, the first and the second subsamples. For growth, in contrast, the forecasts

associated to the diffuse-track method mostly presented a lower variance than those for the smoothing

method, though this difference here amounted to only around 3% .

In contrast to our previous simulation exercise, though, our knowledge about the true nature of the

series under estimation is restricted at the empirical level. This prevents us from obtaining a clear-cut

answer to which of the initialization methods provides a higher degree of coherence between the initial

15Another observation is that the SG estimates appear to be more volatile than those of the LS, which could well be
explained either as a difference between the algorithms behavior, as well as a gain calibration feature. As their comparison
is not our main purpose here, we leave this open for future research.

16These are averages over the three gain calibrations presented.
17In that respect, notice that the diffuse-ordinary presented slightly higher MSEs than the other methods during the

first two subsamples for inflation, and the second subsample for growth.
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estimate and the algorithm’s long run behavior. Nonetheless, our simulation results suggested that the

diffuse-ordinary method tends to be more distortionary than the other methods. Together with the

empirical results found here, then, our study indicates that in order to initialize learning algorithms: (i)

there is not much difference between using the diffuse-tracking or the smoothing methods to initialize

learning algorithms, although the latter has the advantage of being robust to changes in algorithms/gain

calibrations; (ii) using the diffuse-ordinary method results in initial forecasts with a lower variance than

those obtained from the other methods, and our simulations indicate that this difference represents a

distortion in relation to the algorithm’s long run operation.

6 Concluding Remarks

In this paper we provided a critical review on the several methods previously proposed in the literature

of learning and expectations in macroeconomics in order to initialize its learning algorithms either for

simulation or for empirical purposes. Most importantly, we have also provided one of the first attempts

in the literature to evaluate how these methods compare to each other, and how their performance may

be evaluated with respect to their learning and expectations rationale. To delineate the scope of our

analysis, we focused on two of the main algorithms found in this literature, namely, the Least Squares

(LS) and the Stochastic Gradient (SG) algorithms.

Before pooling the initialization methods in a classification exercise, we provided a discussion on

what it is required from them, arguing for the use of two main criteria. First, an initialization should

provide initial estimates coherent to the algorithm’s long run behavior. Second, such a coherence must

be feasible within the data availability restrictions of usual macroeconomic applications. Our finding is

that none of the previous methods reviewed is able to pass the sieve of both criteria, and this motivated

us to propose a new method.

Departing from exact correspondences between the learning algorithms and the Kalman filter asso-

ciated to a time-varying hypermodel, as recently drawn by Berardi and Galimberti (2012), we proposed

the use of a smoothing routine to obtain the initial estimates for each algorithm. This routine makes

use of a sample of initial training data, and it is designed to satisfy the above requirements of coherence

and feasibility in exchange for additional computational costs. In order to evaluate its success, we un-

dertake both a simulation exercise and an empirical application, comparing our new smoothing-based

initialization to two of the methods found in the previous applied literature.

From the simulation exercise, the main conclusion we can draw is that our method is successful in

satisfying what we required from an initialization while the previous ones achieved only partial success

in that respect. Namely, our smoothing-based routine was the only method performing consistently

throughout the various applications we have explored, under different algorithms, calibrations and sta-
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tistical environments. We interpret this finding as a natural result from the unified design we adopted

for the derivation of our smoothing initialization method.

A different question, however, is how much the differences we found across methods are relevant for

actual applications of these algorithms into macroeconomic contexts. To shed some light on this issue,

we compared the initialization methods in a simplified empirical application of learning-to-forecast US

data on inflation and output growth. Using a sample of quarterly data from 1947 to 2011, where data

up to 1965 is left aside for the initialization of the algorithms, our results indicate that the effects of

the different initialization methods last no longer than mid-1980s. For the preceding sample periods,

nonetheless, our results indicate that the initialization method can distort the variances of the forecasts

constructed using the learning algorithms. Even though we have quantified these effects for our simplified

application, their actual relevance will depend on the issue under scrutiny.
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A Detailed derivations

A.1 Correspondences between learning algorithms and Kalman filter

To establish the state-space framework assume, in addition to the linear model in (2.1), that the coeffi-

cients vector evolves according to

θt = θt−1 + ωt, (A.1)

where ωt is assumed to be (Gaussian) white noise with variances (and covariances) given by Ωt =

E [ωtω
′
t]. The Kalman filter recursion for estimation of θ̂t ≡ θ̂t+1|t then is given by

θ̂t = θ̂t−1 + Kt

(
yt − x′tθ̂t−1

)
, (A.2)

Kt =
Pt−1xt

x′tPt−1xt + σ2
t

, (A.3)

Pt =

(
I− Pt−1xtx

′
t

x′tPt−1xt + σ2
t

)
Pt−1 + Ωt, (A.4)

where Pt stands for the conditional covariance matrix of the coefficients estimates errors, i.e., Pt =

E

[(
θt − θ̂t

)(
θt − θ̂t

)′]
. Following Berardi and Galimberti (2012), the LS and the SG learning algo-

rithms, as given by (2.2)-(2.3) and (2.4), respectively, can be obtained as special cases of the Kalman

filter when

σ2
t =

γt−1
γt

(1− γt) , (A.5)

Ωt =

(
1− σ2

t

σ2
t

)(
I− Pt−1xtx

′
t

x′tPt−1xt + σ2
t

)
Pt−1, (A.6)

and

σ2
t = µ−1t − x′txt, (A.7)

Ωt = I−
(

I− Pt−1xtx
′
t

x′tPt−1xt + σ2
t

)
Pt−1, (A.8)

respectively.
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A.2 Kalman fixed-point smoother

Following Anderson and Moore (1979, pp. 170-6), consider replacing the state-space framework of (2.1)

and (A.1) by

yt =

[
x′t 0

]θt
θat

+ εt, (A.9)

θt
θat

 =

I 0

0 I


θt−1
θat−1

+

I

0

ωt, (A.10)

with the state vector at a fixed t = j satisfying

[
θ′j θa

′

j

]
=

[
θ′j θ′j

]
. Thus, we are essentially

augmenting the former system with an additional state vector which, due to the assumed “initialization”

at period j, will satisfy θat = θj , ∀t ≥ j. It follows from this latter observation and the definition of

conditional estimates that θ̂
a

t|t−1 = θ̂j|t−1, θ̂
a

t+1|t = θ̂j|t, and so on. The coefficients in the right hand side

of these equalities are clearly in accordance to what we have defined as fixed-point smoothed estimates

in the main text (see footnote 8), i.e., keeping j fixed we evaluate how the coefficients estimates get

updated as time goes on and new observations become available. Furthermore, the state-space system

in (A.9)-(A.10) is conformable to the application of the Kalman filter, where the updating recursions for

θ̂t ≡ θ̂t+1|t will still be given by (A.2)-(A.4), and those for θ̂
a

t ≡ θ̂
a

t+1|t will represent the fixed-point

smoothing recursions of θ̂j|t. These latter are found, from Anderson and Moore (1979), to be given by

θ̂j|t = θ̂j|t−1 + Ka
t

(
yt − x′tθ̂t−1

)
, (A.11)

Ka
t =

Σt−1xt
x′tPt−1xt + σ2

t

, (A.12)

Σt = Σt−1 (I−Ktx
′
t)
′
, (A.13)

Pj|t = Pj|t−1 −Σt−1xtK
a′

t , (A.14)

where Σj = Pj , and the conditional covariance matrix of the coefficients smoothed estimates errors is

here given by (A.14), i.e., Pj|t = E

[(
θj − θ̂j|t

)(
θj − θ̂j|t

)′]
. It is also important to note the use of

terms from the filtering recursions, Kt and Pt−1. The smoother associated to each learning algorithm,

thence, follows automatically from what the different assumptions on (A.5)-(A.6) and (A.7)-(A.8) imply

for these recursions.
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B Tables

Table 2: Calibration of parameters for simulation.

Parameters Description
Calibrations values

Inflation-like Growth-like

(a) For artificial series:

σ2
ε Variance of εt in (4.1). 2.25 13.00

σ2
ω Variance of ωt+1 in (4.2). 7× 10−5 7× 10−5

θ̄ Steady-state value of θt. 0.80 0.40

β Persistence of deviations from θ̄. 0.999 0.999

(b) For algorithms:

γ̄1 LS “low” constant learning gains. 0.01 0.01

γ̄2 LS “usual” constant learning gains. 0.02 0.02

γ̄3 LS “median” constant learning gains. 0.10 0.10

γ̄4 LS “high” constant learning gains. 0.40 0.40

µ̄1 SG “low” constant learning gain. 0.05× 10−2 0.08× 10−3

µ̄2 SG “usual” constant learning gain. 0.10× 10−2 0.17× 10−3

µ̄3 SG “median” constant learning gain. 0.51× 10−2 0.83× 10−3

µ̄4 SG “high” constant learning gain. 2.05× 10−2 3.34× 10−3

(c) For initialization methods:

N Size of initial sample of training data. 75 75

ε Convergence tolerance for smoothed initials. 0.01 0.01

S̄ Maximum number of smoothing repetitions. 100 100

The calibrations for the artificial series follow those recommended by Doan et al. (1984) and Hamilton (1994, pp. 400-3),

(roughly) adjusted to the variables of interest. The learning gain calibrations are first set for the LS, and then adjusted for

the SG according to µ̄i = 2γ̄i/
(
σ2
ε/1−θ̄2

)2
in order to account for the scale dependency of this latter to the data variance.
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Table 3: Average msds after initializations - Least Squares on inflation-like data.

Gains Initializations
Average msds after initializations - samples Average long run msds

76-100 101-150 151-200 201-250 251-300 750-1000

γ̄1 Diffuse-track 0.0051 0.0043 0.0040 0.0040 0.0043 0.0042
[4.9] [0.7] [-1.1] [-0.9] [0.4] (0.0002)

Diffuse-ordinary 0.0060 0.0048 0.0041 0.0041 0.0043 0.0042
[10.1] [3.6] [-0.2] [-0.3] [0.7] (0.0002)

Smoothing 0.0052 0.0046 0.0042 0.0042 0.0044 0.0042
[5.6] [2.3] [-0.0] [0.3] [1.2] (0.0002)

γ̄3 Diffuse-track 0.0175 0.0175 0.0183 0.0184 0.0188 0.0190
[-1.3] [-1.4] [-0.6] [-0.6] [-0.2] (0.0011)

Diffuse-ordinary 0.0064 0.0139 0.0182 0.0183 0.0188 0.0190
[-11.5] [-4.7] [-0.7] [-0.6] [-0.2] (0.0011)

Smoothing 0.0174 0.0174 0.0183 0.0183 0.0187 0.0189
[-1.3] [-1.4] [-0.6] [-0.6] [-0.2] (0.0011)

γ̄4 Diffuse-track 0.1011 0.0990 0.1030 0.1024 0.1009 0.1037
[-0.3] [-0.6] [-0.1] [-0.2] [-0.3] (0.0084)

Diffuse-ordinary 0.0603 0.0999 0.1038 0.1032 0.1020 0.1049
[-5.3] [-0.6] [-0.1] [-0.2] [-0.3] (0.0084)

Smoothing 0.0891 0.0865 0.0900 0.0891 0.0876 0.0897
[-0.1] [-0.4] [0.0] [-0.1] [-0.3] (0.0081)

The average statistics refer to the mean-square deviation of coefficient estimates from their true counterparts, as defined in

(2.5). The second line of headers indicate the samples of observations used to compute the average statistics. The values

in round brackets, (...), are standard deviations of the statistic from the corresponding long run average. The values in

square brackets, [...], refer to the number of (long run) standard deviations by which the corresponding short run average

deviates from the long run average. Emphasis is given in bold to those short run averages that deviate by more than two

standard deviations from the corresponding long run average. Gain calibrations follow from specifications in table 2.

Table 4: Average msds after initializations - Stochastic Gradient on inflation-like data.

Gains Initializations
Average msds after initializations - samples Average long run msds

76-100 101-150 151-200 201-250 251-300 750-1000

µ̄1 Diffuse-track 0.2280 0.1802 0.1307 0.0976 0.0737 0.0102
[333.1] [259.9] [184.2] [133.5] [97.0] (0.0007)

Diffuse-ordinary 0.0843 0.0690 0.0513 0.0393 0.0306 0.0081
[292.4] [233.6] [165.7] [119.7] [86.4] (0.0003)

Smoothing 0.0085 0.0085 0.0079 0.0077 0.0076 0.0067
[5.8] [5.5] [3.6] [3.1] [2.6] (0.0003)

µ̄3 Diffuse-track 0.0157 0.0088 0.0062 0.0056 0.0057 0.0058
[20.9] [6.4] [0.9] [-0.4] [-0.3] (0.0005)

Diffuse-ordinary 0.0551 0.0191 0.0080 0.0060 0.0058 0.0058
[104.2] [28.2] [4.8] [0.5] [-0.0] (0.0005)

Smoothing 0.0058 0.0056 0.0055 0.0054 0.0056 0.0058
[-0.0] [-0.4] [-0.6] [-0.9] [-0.4] (0.0005)

µ̄4 Diffuse-track 0.0224 0.0223 0.0279 0.0210 0.0238 0.0226
[-0.1] [-0.1] [1.5] [-0.5] [0.3] (0.0034)

Diffuse-ordinary 0.0481 0.0240 0.0303 0.0213 0.0242 0.0228
[7.4] [0.3] [2.2] [-0.5] [0.4] (0.0034)

Smoothing 0.0180 0.0193 0.0247 0.0179 0.0208 0.0197
[-0.5] [-0.1] [1.5] [-0.5] [0.3] (0.0034)

See notes to table 3.
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Table 5: Average msds after initializations - Least Squares on growth-like data.

Gains Initializations
Average msds after initializations - samples Average long run msds

76-100 101-150 151-200 201-250 251-300 750-1000

γ̄1 Diffuse-track 0.0122 0.0098 0.0087 0.0079 0.0076 0.0071
[25.3] [13.2] [7.5] [3.7] [2.4] (0.0002)

Diffuse-ordinary 0.0128 0.0099 0.0085 0.0078 0.0076 0.0071
[28.1] [13.9] [6.5] [3.1] [2.0] (0.0002)

Smoothing 0.0127 0.0103 0.0088 0.0079 0.0076 0.0071
[27.6] [15.5] [8.0] [4.0] [2.1] (0.0002)

γ̄3 Diffuse-track 0.0387 0.0390 0.0407 0.0399 0.0401 0.0390
[-0.2] [0.0] [1.0] [0.5] [0.6] (0.0018)

Diffuse-ordinary 0.0145 0.0328 0.0407 0.0399 0.0401 0.0390
[-13.4] [-3.4] [0.9] [0.5] [0.6] (0.0018)

Smoothing 0.0385 0.0389 0.0407 0.0398 0.0400 0.0389
[-0.2] [0.0] [1.0] [0.5] [0.6] (0.0019)

γ̄4 Diffuse-track 0.2080 0.2069 0.2109 0.2112 0.2069 0.2077
[0.0] [-0.1] [0.2] [0.3] [-0.1] (0.0133)

Diffuse-ordinary 0.1314 0.2069 0.2109 0.2112 0.2069 0.2077
[-5.7] [-0.1] [0.2] [0.3] [-0.1] (0.0133)

Smoothing 0.1895 0.1873 0.1920 0.1911 0.1883 0.1881
[0.1] [-0.1] [0.3] [0.2] [0.0] (0.0123)

See notes to table 3.

Table 6: Average msds after initializations - Stochastic Gradient on growth-like data.

Gains Initializations
Average msds after initializations - samples Average long run msds

76-100 101-150 151-200 201-250 251-300 750-1000

µ̄1 Diffuse-track 0.1404 0.1289 0.1116 0.0969 0.0844 0.0242
[55.5] [50.0] [41.8] [34.7] [28.8] (0.0021)

Diffuse-ordinary 0.0819 0.0763 0.0669 0.0589 0.0523 0.0194
[57.9] [52.7] [44.0] [36.6] [30.5] (0.0011)

Smoothing 0.0242 0.0244 0.0236 0.0227 0.0220 0.0163
[16.0] [16.4] [14.7] [13.0] [11.6] (0.0005)

µ̄3 Diffuse-track 0.0260 0.0158 0.0108 0.0088 0.0082 0.0076
[75.6] [33.7] [13.0] [4.9] [2.3] (0.0002)

Diffuse-ordinary 0.0630 0.0308 0.0151 0.0102 0.0086 0.0076
[228.0] [95.4] [31.0] [10.5] [4.2] (0.0002)

Smoothing 0.0121 0.0096 0.0085 0.0079 0.0078 0.0076
[18.7] [8.3] [4.0] [1.4] [0.9] (0.0002)

µ̄4 Diffuse-track 0.0214 0.0215 0.0226 0.0214 0.0220 0.0221
[-0.7] [-0.7] [0.6] [-0.8] [-0.1] (0.0009)

Diffuse-ordinary 0.0482 0.0249 0.0228 0.0214 0.0220 0.0221
[28.5] [3.0] [0.8] [-0.8] [-0.1] (0.0009)

Smoothing 0.0192 0.0194 0.0204 0.0193 0.0201 0.0201
[-1.1] [-0.9] [0.3] [-0.9] [-0.0] (0.0009)

See notes to table 3.
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Table 7: Variances and mean squared errors of forecasts - Least Squares on US data.

Gains Initializations
Statistics for inflation - samples Statistics for growth - samples

76-100 101-150 151-200 201-250 76-100 101-150 151-200 201-250

γ̄a Diffuse-track 0.73 4.29 0.60 0.83 1.94 3.06 0.44 1.31
(2.14) (2.87) (0.62) (0.90) (15.49) (20.82) (3.71) (7.88)

Diffuse-ordinary 0.64 3.16 0.50 0.73 1.76 2.77 0.45 1.31
(2.23) (3.50) (0.61) (0.87) (14.88) (21.11) (3.72) (7.74)

Smoothing 0.72 3.37 0.51 0.75 2.03 3.32 0.48 1.36
(2.21) (3.26) (0.61) (0.87) (15.45) (20.74) (3.71) (7.79)

γ̄b Diffuse-track 0.82 5.51 0.65 0.90 1.73 2.78 0.45 2.59
(2.09) (2.69) (0.64) (0.93 (15.63) (21.20) (3.73) (7.50)

Diffuse-ordinary 0.61 4.66 0.62 0.88 1.47 2.27 0.44 2.55
(2.17) (2.78) (0.64) (0.92) (14.72) (21.46) (3.73) (7.49)

Smoothing 0.74 4.79 0.62 0.89 1.82 2.82 0.46 2.58
(2.14) (2.78) (0.64) (0.92) (15.48) (21.11) (3.73) (7.49)

γ̄c Diffuse-track 0.94 6.67 0.63 0.90 1.58 2.93 0.61 5.19
(2.04) (2.80) (0.65) (0.93) (16.10) (21.95) (3.82) (7.51)

Diffuse-ordinary 0.59 6.15 0.63 0.90 1.15 2.55 0.61 5.19
(2.09) (2.83) (0.65) (0.93) (14.69) (22.10) (3.82) (7.51)

Smoothing 0.85 6.55 0.63 0.90 1.57 2.91 0.61 5.19
(2.03) (2.79) (0.65) (0.93) (15.98) (21.93) (3.82) (7.51)

The statistics presented here refer to variances of forecasts (first row for each gain/initial) and mean squared forecast error

(in round brackets at second row for each gain/initial). The second line of headers indicates the samples of observations

used to compute these statistics. Gain calibrations follow from specifications in the text.

Table 8: Variances and mean squared errors of forecasts - Stochastic Gradient on US data.

Gains Initializations
Statistics for inflation - samples Statistics for growth - samples

76-100 101-150 151-200 201-250 76-100 101-150 151-200 201-250

µ̄a Diffuse-track 0.31 3.91 0.54 0.76 1.44 1.89 0.53 1.58
(1.90) (3.87) (0.63) (0.92) (15.02) (21.31) (3.74) (7.93)

Diffuse-ordinary 0.34 3.95 0.55 0.77 1.36 1.86 0.53 1.58
(1.90) (3.72) (0.63) (0.92) (14.94) (21.30) (3.74) (7.93)

Smoothing 0.57 4.43 0.57 0.80 1.46 1.92 0.53 1.58
(1.92) (3.10) (0.63) (0.91) (15.10) (21.26) (3.74) (7.94)

µ̄b Diffuse-track 0.62 5.87 0.49 0.83 1.50 2.60 0.95 3.00
(1.93) (2.99) (0.62) (0.96) (15.67) (22.60) (3.93) (7.86)

Diffuse-ordinary 0.35 5.66 0.49 0.83 0.94 2.53 0.95 3.00
(1.94) (3.28) (0.62) (0.96) (14.73) (22.88) (3.92) (7.86)

Smoothing 0.68 5.92 0.49 0.83 1.50 2.60 0.95 3.00
(1.95) (2.93) (0.62) (0.96) (15.64) (22.62) (3.93) (7.86)

µ̄c Diffuse-track 0.83 7.16 0.35 0.95 2.72 5.69 1.45 4.84
(2.05) (2.82) (0.64) (1.24) (17.22) (25.69) (4.32) (7.58)

Diffuse-ordinary 0.41 7.01 0.35 0.95 1.26 5.75 1.45 4.84
(2.05) (3.01) (0.64) (1.24) (15.24) (26.02) (4.32) (7.58)

Smoothing 0.83 6.49 0.35 0.95 2.01 5.09 0.59 4.65
(2.05) (2.76) (0.64) (1.24) (16.40) (26.02) (3.91) (7.57)

See notes to table 7.
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C Figures

Figure 1: Example of artificially generated series.

The dashed lines in the top panels represent the coefficients’ steady-state values, θ̄, according to table 2. The dashed

lines in the bottom panels represent ±2 standard deviations bands around zero, as computed from (4.1) assuming

θt = θ̄, and the calibrations in table 2.
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Figure 2: msd learning curves for inflation-like artificial data.

The shaded areas indicate the portion of observation left aside for use by the initialization methods. D̂t stands for

the sample correspondent to the mean-square deviation (msd) as defined in (2.5). Notice that all the vertical axes

are on the same logarithmic scale for comparative purposes. See the text for further details on how these curves were

computed.
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Figure 3: msd learning curves for growth-like artificial data.

See notes to figure 2.
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Figure 4: msd learning curves by initialization for a given gain.

The plotted learning curves refer to a unique learning gain for each algorithm, namely γ̄2 and µ̄2, as specified in

table 2. See also the notes to figure 2.
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Figure 5: Coefficients estimates from empirical application with US data - equation on inflation.

The plotted estimates refer to those obtained with a unique learning gain for each algorithm, namely γ̄b and µ̄b,

as specified in the text. The shaded areas indicate the portion of observation left aside for use by the initialization

methods. Notice that the vertical axes of each row of plots are on the same scale to facilitate comparisons between

algorithms’ estimates for the same parameter.
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Figure 6: Coefficients estimates from empirical application with US data - equation on growth.

See notes to figure 5.
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