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Abstract

There is compelling evidence that many macroeconomic and financial vari-

ables are not generated by linear models. This evidence is based on testing lin-

earity against either smooth nonlinearity or piece-wise linearity, but there is no

framework that encompasses both. This paper provides an econometric frame-

work that allows for both breaks and smooth nonlinearity in-between breaks.

We estimate the unknown break-dates simultaneously with other parameters

via nonlinear least-squares. Using new central limit results for nonlinear pro-

cesses, we provide inference methods on break-dates and parameter estimates

and several instability tests. We illustrate our methods via simulated and em-

pirical smooth transition models with breaks.
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1 Introduction

There is widespread evidence that linear models are not able to capture business cy-

cle asymmetry and other salient features of many macroeconomic and financial time

series. Departures from linearity are often modeled via smooth nonlinear regressions

(smooth transition, other nonlinear autoregressive models) or piece-wise linear regres-

sions with parameter changes (breaks). For example, some authors find that the New

Keynesian Phillips curve exhibits breaks - see e.g. Alogoskoufis and Smith (1991),

Kang, Kim, and Morley (2009). On the other hand, some find that the nonlinearity

is of the smooth type - Cogley and Sargent (2001), Schaling (2004). Similar findings

show that the interest rate reaction function is either smoothly nonlinear or it con-

tains breaks - see e.g. Benati and Surico (2008), Zhang, Osborn, and Kim (2008).

These findings extend to exchange rate models - Meese and Rose (1991) and Rossi

(2006), asset pricing models - Scheinkman and LeBaron (1989) and Franses and van

Dijk (2000), and many more.

While it is possible to have a model with both breaks and otherwise smooth

nonlinearity, statistical theories for such models do not exist to our knowledge. As

a result, smooth nonlinearity and breaks are treated as competing ways of modeling

departures from constant parameter linear models. This is undesirable, as they are

not a special case of the other. Moreover, they have different policy implications.

For example, if interest rates vary smoothly but asymmetrically in expansions versus

recessions, it means that the response of the central bank is asymmetric, but in the

same way over each business cycle. However, if there is (also) a break, this indicates

that the response is different for the more recent business cycles, and that some part

of the sample may no longer be helpful for prediction.

In this paper, we provide a framework that allows for both multiple breaks and

smooth nonlinearity in-between these breaks. To that end, we consider a univariate
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parametric nonlinear model, whose parameters are allowed to change at multiple lo-

cations in the sample. The regression function we consider is very general, and as we

discuss in Section 2, our methods apply to a large class of nonlinear parametric mod-

els, including nonlinear autoregressive (NLAR) models, autoregressive conditional het-

eroskedasticity models (ARCH) and smooth transition autoregressive (STAR) models.

To our knowledge, the literature so far does not propose tests for more than one break

in nonlinear models - inter alia Anderson and Mizon (1983), Andrews and Fair (1988),

Ghysels and Hall (1990), Andrews (1993), Sowell (1996), Hall and Sen (1999) and An-

drews (2003), and no econometric results are derived for estimation and inference for

one or multiple break points in otherwise smooth nonlinear models.

We propose several tests for multiple breaks, along with several sequential meth-

ods to detect the number of breaks. We also propose nonlinear least-squares (NLS)

estimators for the breaks and the other parameters of interest, and provide a compre-

hensive treatment of their asymptotic properties. While our methods can be viewed

as the nonlinear counterparts of the methods in Bai and Perron (1998), Bai (1999)

and Perron and Qu (2006), our asymptotic analysis is very different. To facilitate

our analysis, we derive a new functional central limit result for nonlinear processes.

We believe the methods presented in this paper considerably broaden the scope for

empirical analysis of economic time series by, for example, allowing tests for instabil-

ity in the presence of certain asymmetric responses that linear models are unable to

capture. We illustrate this via simulations and an application using logistic smooth

transition models with potential breaks.

Smooth transition models have been influential in modeling asymmetric responses

over the business cycle for monetary policy, macroeconomic and financial variables,

since introduced in economics by Granger and Teräsvirta (1993) and Teräsvirta (1994).

Via simulations, we show that our methods for detecting breaks work well in smooth

transition models with small samples. We also show that both our partial and pure
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structural change tests do not confuse breaks with nonlinearity. We illustrate our

methods via a smooth transition model for the US interest rate reaction function, in

a similar spirit to Kesriyeli, Osborn, and Sensier (2006), but adding more recent data.

We find evidence for both breaks and nonlinearity. We show that the breaks are in

the phases, but not the transition function of the business cycle. This implies that,

for predictive purposes, the whole data set is useful.

The paper is organized as follows: Section 2 introduces the model and estimation

framework. Section 3 describes the assumptions. Section 4 gives several examples

of nonlinear models that satisfy these assumptions. The asymptotic properties of

estimators and tests are presented in Section 5. Section 5 also presents extensions to

partial structural change and different sequential testing strategies. Section 6 contains

simulations for smooth transition models and an application of these models to the

US interest rate reaction function. Section 7 concludes. Sketch proofs of Theorems 1,

2 are relegated to the Appendix, while the detailed proofs of all the Theorems can be

found in a Supplemental Appendix that is available from the authors upon request.

2 Model

In this section, we introduce a univariate nonlinear model with m unknown breaks:

yt = f(xt, θ
0
i ) + ut t ∈ I0i = [T 0

i−1 + 1, T 0
i ] i = 1, . . .m+ 1 (1)

where T 0
0 = 0 and T 0

m+1 = T by convention. Here yt is the dependent variable,

xt (q × 1) are the regressors, θ0i (p × 1) are parameters that change at dates T 0
i ,

f : Rq × Θ → R is a known measurable function on R for each θ ∈ Θ, and T is the

sample size. To begin, we consider m to be a known finite positive integer, but we

allow for the break dates to be unknown to the researcher; we consider the question

of how to estimate m in Section 5. For simplicity, let ft(θ) = f(xt, θ) and denote by
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T̄m ≡ (T0 = 0, T1, . . . , Tm, Tm+1 = T ) any m-partition of the sample interval.1 To

further simplify the notation, we will stack column vectors such as θ0i and θi into two

corresponding (m+1)p×1 vectors, θc0 and θ
c. For a given sample partition and given

parameter values θc, denote by ST (T̄
m, θc) the sum of squares.2

One of our main goals is to provide a method for estimating the unknown param-

eters and change points. As in Bai and Perron (1998), the estimation method we

propose is based on the least-squares principle3 and follows in two steps. First, we

obtain the sub-sample NLS estimators for each partition:

θ̂cT (T̄
m) = argmin

θc(T̄m)

ST ( T̄
m, θc(T̄m) ). (2)

Second, we search over all possible partitions to obtain the break-point estimates.

The estimates T̂ = (0, T̂1, . . . , T̂m, T ) for change-points and θ̂cT = (θ̂1, . . . , θ̂m+1) for

parameters are obtained as follows:

T̂ = argmin
T̄m

ST ( T̄m, θ̂cT (T̄
m) ) and θ̂cT = θ̂cT (T̂ ) (3)

The above is an NLS estimation with an appropriate modification to allow for multiple

break-points, and can be legitimately performed provided that E[utft(θ
0
i )] = 0 for each

t ∈ I0i (i = 1, . . .m+ 1).

1We use T0 = 0 rather than T0 = 1 for notational convenience, even though the sample interval
is [1, T ].

2We use superscript c to distinguish between (m + 1)p × 1 parameter vectors and the p × 1
parameter vectors at which ft(·) is evaluated.

3Note that an extension to more general settings such as generalized method of moments (GMM) is
non-trivial because minimizing a GMM criterion over all possible partitions does not yield consistent
estimates of the break-fractions indexing the break-points even for linear models and one break under
reasonable conditions, see Hall, Han, and Boldea (2012).
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3 Assumptions

To derive the statistical properties of our estimators, we establish a framework that

combines elements of asymptotic theory in stable nonlinear models and unstable lin-

ear models. As pointed out by Hansen (2000), the marginal distributions of regressors

and/or errors may change, possibly at different locations in the sample than the popu-

lation parameters of the equation of interest. Our framework is designed to achieve as

much generality as possible with respect to changes in marginal distributions,4 as well

as with respect to other non-stationarities induced by lagged dependent variables that

may enter the model concomitantly with parameter breaks. In dealing with nonlinear

asymptotics, besides Assumption 1 which is new, we impose usual smoothness and

boundedness assumptions. To deal with instability, we assume uniform convergence

of certain quantities, jointly in parameters and a partial sum index.

Assumption 1. Let vt = (x′t, ut)
′. Then:

(i) {vt} is a piece-wise geometrically ergodic process, i.e. for some finite m∗ > 0 and

each sub-sample [T ∗
j−1 + 1, T ∗

j ], where T
∗
j = [Tλ∗j ], j = 1, . . . , m∗ + 1, λ∗0 = 0 < λ∗1 <

. . . < λ∗m∗ < λ∗m∗+1 = 1, there exists a unique stationary distribution Qj such that:

sup
A

|P (A|B)−Qj(A)| ≤ gj(B)ρt

with 0 < ρ < 1, A ∈ FT ∗

j

T ∗

j−1
+t, B ∈ FT ∗

j−1

−∞ , F l
k is the σ-algebra generated by (vk, . . . , vl),

and gj(·) is a positive uniformly integrable function. If {xt} does not contain lagged

dependent variables, then (i) holds with {vt} augmented by yt.

(ii) {vt} is a β-mixing process with exponential decay, i.e. there exists N > 0 such

4Allowing for these types of changes is important in many settings. For example, when estimating
a possibly asymmetric (nonlinear) interest rate reaction function, regressors such as output gap or
inflation gap may exhibit changes in variance, due to a period of Great Moderation - see e.g. Stock
and Watson (2002) - and these changes may occur at different locations than those in the parameters
of the equation of interest.
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that for B ∈ Fa
−∞,

βt = sup
a
β(Fa

−∞,F∞
a+t) ≤ Nρt, with β(Fa

−∞,F∞
a+t) = sup

A∈F∞

a+t

E|P (A|B)− P (A)|

(iii) E[utft(θ)] = 0 for each θ ∈ Θ.

Assumption 2. The function ft(·) is a known measurable function, twice continu-

ously differentiable in θ for each t.

Assumption 3. Let Ft(θ) = ∂ft(θ)/∂θ, p × 1 vector and f
(2)
t (θ), a p × p matrix of

second derivatives, i.e. f
(2)
t (θ) = ∂2ft(θ)/(∂θ∂θ

′), with (i, j)th element f
(2)
t,i,j. Also

denote by ‖ · ‖ the Euclidean norm. Then (i) the common parameter space Θ is a

compact subset of Rp; for some s > 2, we have: (ii) supt,θ E|utft(θ)|2s < ∞; (iii)

supt,θ E‖utFt(θ)‖2s <∞; (iv) For i, j = 1, . . . p, supt,θ E|utf (2)
t,i,j(θ)|s <∞.

Assumption 4. (i) ST (θ
c) ≡ ST (T̄

m, θc) has a unique global minimum at θc0 and

(0, T 0
1 , . . . , T

0
m, T ); (ii) Let Ai,T (θ

0
i ) = Var T−1/2

∑

t∈I0i
utFt(θ

0
i ), for i = 1, . . . , m+1,

and AT (θ, r) = Var T−1/2
∑[Tr]

t=1 utFt(θ). Then Ai,T (θ
0
i )

p→ Ai(θ
0
i ), and AT (θ, r)

p→

A(θ, r), where the two limits are finite positive definite matrices not depending on T ,

and the latter convergence holds uniformly in θ × r ∈ Θ× [0, 1]. (iii) Let Di,T (θ
0
i ) =

T−1
∑

t∈I0i
Ft(θ

0
i )Ft(θ

0
i )

′ and DT (θ, r) = T−1
∑[Tr]

t=1 Ft(θ)Ft(θ)
′. ThenDi,T (θ

0
i )

p→ Di(θ
0
i )

and DT (θ, r)
p→ D(θ, r), where the two limits are finite positive definite (p.d.), and the

latter convergence holds uniformly in θ × r ∈ Θ × [0, 1]; (iv) E[ft(θ
0
i )] 6= E[ft(θ

0
i+1)],

for each i = 1, 2, . . . , m.

Assumption 5. T 0
i = [Tλ0i ], where 0 < λ01 < . . . < λ0m < 1.

Assumption 1(i) can be interpreted as asymptotic stationarity of {vt} within

regimes, and it allows for breaks in the marginal distribution of regressors and er-

rors.5 Additionally, it allows for ‘temporary’ nonstationary behavior, which is espe-

cially useful in the presence of lagged dependent variables in nonlinear models, in

5Note that m∗ as well as λ∗
j are taken as given and are not objects of inference here, unless
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which case (1) may induce recurring changes in their marginal distribution. In this

case, Assumption 1(i) ensures that even if the process yt starts in a certain regime at a

draw from the nonergodic distribution, it converges to the stable distribution of that

regime, so enough homogeneity in the process is preserved to ensure that a uniform

central limit theorem still holds in that particular regime.6

Assumption 1(ii) ensures that the dependence within and among sub-samples dies

out at the same rate as the ergodicity rate. If m∗ = 0, {vt} admits a Markov chain

representation and is geometrically ergodic as in Assumption 1(i), then {vt} is β-

mixing with exponential decay, subject to an absolute continuity condition on the

starting values - see e.g. Rosenblatt (1971), Mokkadem (1985) - and this connection

is often exploited in nonlinear ARCH and general ARCH (GARCH) models - see e.g.

Carrasco and Chen (2002). If {vt} is a Markov chain, but m∗ > 0, then piece-wise

geometric ergodicity only implies that the β-mixing coefficients on those sub-samples

(thus, for restricted σ-algebras) are exponentially decaying, and we could allow for

slower decay across sub-samples. For coherence purposes, we stick to Assumption 1.

Assumption 1(iii) ensures that the model can be estimated via NLS. Assumption 2

and 3 are typical smoothness and boundedness assumptions encountered in nonlinear

models. Assumption 4 (i) is the usual NLS identification assumption. Assumptions

4(ii)-(iii) allow substantial heterogeneity in the second moments of regressors and

errors. Assumption 4(iv) ensures that the parameter shifts across regimes can be

identified. Assumption 5 is a typical assumption for unstable models, allowing the

break-fractions to be fixed and hence the break-points to be asymptotically distinct.

all breaks in {vt} either are aligned or coincide with the breaks the parameters of (1), depending
on whether {xt} contains lagged dependent variables or not. When the breaks in {vt} are neither
aligned nor coincide with the parameter breaks, knowledge of λ∗

j is irrelevant as far as asymptotic
distribution results are concerned, but may be of course crucial for both getting consistent estimates
of certain asymptotic variances, as well as obtaining the null distribution of stability tests - see
Hansen (2000) and Section 5.

6In the absence of lagged dependent variables, we need piece-wise ergodicity of ft(θ), which we
ensure by augmenting {vt} with yt. Alternatively, one could verify piece-wise ergodicity of yt on a
case by case basis by specifying a functional form for ft(θ); we do so in Section 4.
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4 Examples

Since Assumptions 2-4 are standard for nonlinear regression functions that are smooth

on I0i , for i = 1, . . . , m+1, and Assumption 5 is usual for break-point models, we give

examples of processes that satisfy Assumption 1. Assumption 1(i)-(ii) implies that

in-between the breaks in the regressors T ∗
j , the model is geometrically ergodic and

β-mixing with exponential decay. For simplicity, we restrict our attention to Markov

chains, where geometric ergodicity implies β-mixing with exponential decay, subject

to an absolute continuity condition on the first observation. Thus, for the examples

below, it suffices to provide conditions for geometric ergodicity on I∗j = [T ∗
j−1+1, T ∗

j ],

with j = 1, . . . , m∗. We give such conditions for several nonlinear models below.

4.1 NLAR Models

Let the model in (1) be an NLAR(p)-model:

yt = f(yt−1, . . . , yt−p, θ
0
i ) + ut, t ∈ I0i i = 1, . . .m+ 1.

Note that the lagged regressors have asymptotically the same break-points as yt, so

geometric ergodicity needs to be verified on I0i only. If ut ∼ i.i.d, the model has

a Markov-chain representation. Via the usual drift criterion in Meyn and Tweedie

(1993), An and Huang (1996) show that yt is geometrically ergodic, if for some p× 1

vector x, sup‖x‖≤K f(x, θ) < ∞ for any K, and lim‖x‖→∞
f(x,θ)−α′x

‖x‖ = 0, where α′ =

(α1, . . . , αp) are such that up − α1u
p−1 − . . .− αp−1u− αp 6= 0 for all |u| ≥ 1. These

conditions are satisfied, for example, if f(·, ·) is uniformly bounded or an exponential

autoregressive function. For more details and examples, see An and Huang (1996).
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4.2 Nonlinear ARCH Models

Consider the following nonlinear ARCH (p) model:

yt = h
1/2
t (θ0i )ǫt, ht(θ

0
i ) = g(Y 2

t−1, θ
0
i ), t ∈ I0i , i = 1, . . .m+ 1

with ǫt ∼ i.i.d.(0, 1), and Y 2
t−1 = (y2t−1, . . . , y

2
t−p)

′. Note that y2t = ht(θ
0
i )ǫ

2
t , and

y2t = ht(θ
0
i )+ut, where ut = (ǫ2t −1)ht(θ

0
i ). The latter can be estimated by NLS when

supθ,tE[h
2
t (θ)] < ∞, because then E[utht(θ)] = E[ǫ2t − 1]E[ht(θ

0
i )ht(θ)] = 0.7 As

above, it is sufficient to verify geometric ergodicity on I0i . Because ǫt ∼ i.i.d, (Y 2
t , ut)

is geometrically ergodic on I0i if ht(θ) is geometrically ergodic; the conditions are as

for the NLAR(p) model above, with f(·, ·) replaced by h(·, ·). Moment conditions

that ensure geometric ergodicity can be found in e.g. Pantula (1988).

4.3 STAR Models

Let the model of interest be a smooth transition model of order p:

yt = x′tβi [1−G(qt, γi, ci)] + x′tβ
∗
i [G(qt, γi, ci)] + ut (4)

G(qt, γi, ci) =
exp(γi(qt − ci))

1 + exp(γi(qt − ci))
,

for t ∈ I0i , (i=1, . . . , m+1), with qt ⊥ yt or qt = yt−1, x
′
t = (1, yt−1, . . . , yt−p) and

βi, β
∗
i , γi > 0, ci the unknown parameters. Sufficient conditions for geometric ergodic-

ity can be found in Chan and Tong (1986), Davidson (2002), and require in general

that, for all i = 1, . . . , m + 1, sup0≤θ≤1

(

∑p+1
j=2 |βi,j + θβ∗

i,j|
)

< 1, where βi,j, β
∗
i,j are

the jth elements of βi, respectively β∗
i . If p = 1, then Chan and Tong (1986) show

that is sufficient that βi,2 < 1, βi,2 + β∗
i,2 < 1 and βi,2(βi,2 + β∗

i,2) < 1.

7Note that in general, ARCH and GARCH models only satisfy our framework if the optimization
function can be written as a sum of squares, because the proof heavily relies on the properties of
least-squares-type criteria.
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5 Asymptotics of Nonlinear Models with Breaks

5.1 Estimation

The following theorem states the consistency and rate of convergence of break-fraction

estimates for nonlinear models.

Theorem 1. Under Assumptions 1-5, (i) for each i = 1, . . . , m, let λ̂i be the smallest

number such that T̂i = [T λ̂i]. Then λ̂i
p−→ λ0i ; (ii) for every η > 0, there exists a finite

C > 0 such that for all large T , we have P (| T (λ̂k − λ0k) |> C) < η, (k = 1, . . . , m).

To see why this theorem requires a new uniform central limit result for nonlinear

processes, define ût = yt − ft(θ̂k), for t ∈ Îk and dt = ût − ut = ft(θ
0
j ) − ft(θ̂k),

for t ∈ I0j ∩ Îk, with Îk = [T̂k−1 + 1, T̂k] and k, j = 1, . . . , m + 1. Also, denote

ψt(θ) = utft(θ). Then:

T−1
T
∑

t=1

utdt = T−1
m+1
∑

i=1

∑

I0i

ψt(θ
0
i )− T−1

m+1
∑

i=1

∑

Îi

ψt(θ̂i) = I + II.

The proof of consistency crucially rests on showing that I + II is op(1). While

I = op(1) by a simple law of large numbers for nonlinear models, the analysis of

II is more complicated as it contains not only sums with random endpoints but

summands that depend on the parameter estimators, which in turn depend on the

random endpoints. In showing II, we need to derive the following uniform central

limit result for nonlinear models.

Lemma 1. Under Assumptions 1-2 and 3(i)-(ii), QT (θ, r) = T−1/2
∑[Tr]

t=1 ψt(θ) =

Op(1) uniformly in θ × r ∈ Θ× [0, 1].

Lemma 1 was shown by Caner (2007) under the assumption that {ψt(θ)} is a

strictly stationary process. In this paper, we relax strict stationarity to piece-wise

ergodicity, to make our approach suitable for nonlinear models that contain both
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lagged dependent variables and breaks. Even when m∗ = 0, to our knowledge, no

such uniform functional central limit theorem was proven before for a general f(·, ·)

under geometric ergodicity. From the proof of Lemma 1, it follows that the limiting

distribution of QT (θ, r) is for m
∗ = 0 - as in Caner (2007) - a Kiefer process in (θ, r).

When m∗ 6= 0, Lemma 1 indicates that even though QT (θ, r) may not have a unique

limit for all r, it is uniformly bounded. As our examples illustrate in Section 4, there

are many processes that satisfy this Lemma.

Given the rate of convergence for the break-fraction estimators in Theorem 1, λ̂i

can be treated as known in the analysis of θ̂i, for i = 1, . . . , m + 1. The asymptotic

properties of θ̂i are given below.

Theorem 2. Under Assumptions 1-5, θ̂i and θ̂j are asymptotically independent and

T 1/2(θ̂i − θ0i )
d→ N (0,Φi(θ

0
i )), where Φi(θ

0
i ) = [Di(θ

0
i )]

−1Ai(θ
0
i )[Di(θ

0
i )]

−1 for i, j =

1, . . . , m+ 1, i 6= j.8

To derive the asymptotic distribution of the break-fractions, we need the following

assumption:

Assumption 6. (i) Assumption 1 holds with m = m∗, T ∗
i = T 0

i , (i = 1, . . . , m)

if {vt} does not contain any lagged dependent variables. If vt contains lags of yt,

then Assumption 1 holds with m∗ = m with T ∗
i = T 0

i , but for v∗t = {yt, x∗t} in-

stead of {vt}, with x∗t being all regressors besides the lagged dependent variables;

E[ut|xt] = 0 and E[utus|xkxl] = 0 for all t 6= s and all k, l; (ii) Let DT,i(θ, r) =

T−1
∑T 0

i−1
+[Tr]

t=T 0
i−1

+1
Ft(θ)Ft(θ)

′. Then DT,i(θ, r)
p→ rDi(θ), uniformly in θ × r ∈ Θ ×

[0, λ0i − λ0i−1], where Di(θ) is a p.d. matrix; (iii) Let AT,i(θ, r) = Var T−1
∑T 0

i−1
+[Tr]

t=T 0
i−1

+1

ut(θ)Ft(θ). Then AT,i(θ, r)
p→ rAi(θ), uniformly in θ × r ∈ Θ× [0, λ0i − λ0i−1], where

Ai(θ) is a p.d. matrix not depending on T , with Ai(θ) not necessarily the same for all

i.

8Details on how to construct confidence intervals in different cases can be found in an earlier
version of the paper, Boldea and Hall (2010).
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This is needed to ensure a non-data dependent asymptotic distribution. For the

same purposes, one usually considers parameter shifts that shrink with the sample size

- see Bai (1994), Bai (1995) and Bai (1997). Shrinking parameter shifts give rise to

an asymptotic approximation to the break-fraction distribution; this approximation

is valid in practice for small breaks, that are still large enough to be detectable in the

limit. Thus, assume:

Assumption 7. For i = 1, . . . , m, θ0i+1,T −θ0i,T = δiwT , where δi are fixed p×1 vectors

and {wT} is a scalar series such that wT → 0 and T 1/2w2
T → ∞ as T → ∞.

Similar assumptions are inter alia T 1/2wT → ∞, in Bai and Perron (1998) and

T 1/2wT/(logT )
2 → ∞ in Qu and Perron (2007). Our assumption allows only shifts

of order T−1/4 or larger; this assumption cannot be easily relaxed unless the rate in

Lemma 1 can be improved upon, and we are not aware of such a result since Lemma

1 itself is new. In practice, our assumption implies that the asymptotic distribution

we derive is a reasonable approximation for slightly larger shifts compared to the ones

for linear models. Given this assumption, we have:

Theorem 3. Let φ = δ′1A2(θ
0
1)δ1/[δ

′
1A1(θ

0
1)δ1] and ξ = δ′1D2(θ

0
1)δ1/[δ

′
1D1(θ

0
1) δ1]. Un-

der Assumptions 2-7, for m = 1,

[δ′1D1(θ
0
1)δ1]

2

δ′1A1(θ01)δ1
w2

T [k̂ − k0] ⇒ argmax
v

Z(v)

where Z(v) = J1(−v) − 0.5|v|, v ≤ 0, Z(v) =
√
φJ2(v) − 0.5ξ|v|, v > 0, J1(v), J2(v)

are two independent standard scalar Gaussian processes defined on [0,∞], and ‘⇒’

denotes weak convergence in Skorohod metric.

The density of argmaxv Z(v) along with details can be found in Bai (1997). Given

this density, a confidence interval can be constructed as follows. Let ω̂1,i = (θ̂2 −

θ̂1)
′Âi(θ̂1)(θ̂2 − θ̂1), ω̂2,i = (θ̂2 − θ̂1)

′D̂i(θ̂1)(θ̂2 − θ̂1), D̂i(θ) = (T̂i − T̂i−1)
−1

∑T̂i

t=T̂i−1+1
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Ft(θ)Ft(θ)
′; Âi(θ) a HAC estimator of the long-run variance Ai(θ), and Ĥ = ω̂2

2,1/ω̂1,1.

Also, let ξ̂ = ω̂2,2/ω̂2,1 and φ̂ = ω̂1,2/ω̂1,1. Then, a 100(1−α)% confidence interval for

k̂ is ( k̂ − [c1/Ĥ]− 1, k̂ + [c2/Ĥ] + 1 ), where c1 and c2 are respectively the (α/2)th

and (1 − α/2)th quantiles for argmaxv Z(v) which can be calculated using equations

(B.2) and (B.3) in Bai (1997).9

5.2 Tests for Multiple Breaks

This section is concerned with finding the number of breaks m, so far treated as

known. To that end, we propose nonlinear equivalents to the tests in Bai and Perron

(1998), Perron and Qu (2006) and Bai (1999). Given the results in Theorem 1-3,

we show that their limiting distributions carry over from linear settings. The critical

values are tabulated in Bai and Perron (1998), Bai and Perron (2006), or can be

calculated along with their respective p-values from Bai (1999) and Hall and Sakkas

(2012), respectively.

To build sequential strategies for estimating the number of breaks m, we provide

three types of tests: for zero against k breaks, for zero against an unknown number

of breaks, and for an additional break. The first test is for the hypotheses: H0 : m =

0 vs. HA : m = k, where k > 0 is a fixed finite integer. For this purpose, consider a

partition T̄k of the sample interval such that Ti = [Tλi], for i = 1, . . . , k. We also need

to restrict each change point to be asymptotically distinct and bounded away from the

end-points of the sample. To this end, define Λǫ,k = {λ̄k ≡ (λ1, . . . , λk) : |λi+1 − λi| ≥

ǫ, λ1 ≥ ǫ, λk ≤ 1 − ǫ}, where ǫ is a small number, in practice ranging from 0.05 to

0.20. Then the test is sup F (0 : k) = supλ̄k∈Λǫ,k
[T − (k + 1)p](SSR0/SSRk − 1)/kp,

where SSR0 and SSRk are the sums of squared residuals under the null, respectively

9Theorem 3 can be extended to yield confidence intervals for the multiple break model, because
given Assumption 1, the sample segments are asymptotically independent, allowing for the analysis
of the limiting distribution to be carried out as in the one break case. Details on constructing these
are available upon request.
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under the alternative hypothesis. For this and other tests, we need to assume (within-

regime) conditional homoskedasticity.10

Assumption 8. (i) E[u2t | xt] =
∑m+1

i=1 σ2
i 1{t ∈ I0i } for all t; (ii) Part (i) holds with

σi = σ for all i = 1, . . . , m+ 1.

To test for an unknown number of breaks, i.e. H0 : m = 0 vs. HA : m ≤ M , for

a fixed M , define the test D max(0 : M) = max1≤m≤M amsup F (0 : m). Details on

picking am can be found in Bai and Perron (1998). In the simulations, we set am = 1,

in which case this test is denoted UDmax(0 :M).

The third hypothesis of interest is H0 : m = ℓ vs. HA : m = ℓ + 1, and can be

tested in two ways. The first strategy we propose is as in Bai and Perron (1998),

to estimate ℓ breaks, impose them under H0 and HA, and for HA, to estimate an

additional break. The test statistic is:

seq FI(ℓ : ℓ+ 1) = max
1≤i≤ℓ+1

1

σ̂2
i

{

ST (T̂1, . . . , T̂ℓ)− inf
τ∈∆i,ℓ

ST (T̂1, . . . , T̂i−1, τ, T̂i, . . . , T̂ℓ)

}

where ST (T1, . . . , Tm) = ST (T̄
m, θ̂c(T̄m)), ∆i, ℓ = {τ : T̂i−1 + (T̂i − T̂i−1)η ≤ τ ≤

T̂i− (T̂i− T̂i−1)η} and σ̂2
i

p→ σ2
i . An alternative strategy is to estimate ℓ breaks under

H0, and re-estimate ℓ+1 breaks under HA. The resulting test statistic is the nonlinear

counterpart of the test in Bai (1999), seq FII(ℓ : ℓ+1) = [T−(ℓ+2)p](SSRℓ/SSRℓ+1−

1), where SSRℓ = ST (T̂1, . . . , T̂ℓ) and SSRℓ+1 = ST (T̂1, . . . , T̂ℓ, T̂ℓ+1) are the estimated

sum of squared residuals for ℓ, respectively ℓ + 1 breaks, in Λǫ,ℓ, respectively Λǫ,ℓ+1.

The following results are proven in the Supplemental Appendix:

Theorem 4. Under Assumptions 2-6 and 8(i), the null asymptotic distributions for

the tests are: (i) for sup F (0 : k), as in Bai and Perron (1998), Proposition 6; (ii) for

D max(0 :M) as in Bai and Perron (1998), Section 4.2; (iii) for seq FI(ℓ : ℓ+1), as

10 Extensions to sup Wald tests without this assumption can be found in a previous version of the
paper, Boldea and Hall (2010).
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in Bai and Perron (1998), Proposition 7; (iv) for seqFII (ℓ : ℓ+1) - with Assumption

8(ii) replacing 8(i)- as in Bai (1999), Theorem 1 and Corollary 1.

5.3 Sequential Estimation of the Number of Breaks

Using the test statistics above, we suggest four simple sequential methods for obtaining

an estimator, m̂T say, of the number of breaks.

Specifically, in the first step of the sequential estimation, use either supF (0 : 1) or

UDmaxF (0 : M), to test H0 : m = 0. If this null is not rejected , then m̂T = 0; else

proceed to the next step. On the second step, use seq FI(1 : 2) or seqF II(1 : 2) to

test H0 : m = 1 vs. Ha : m = 2. If seqFI(1 : 2) or seqFII(1 : 2) does not reject, then

m̂T = 1; else proceed to the next step. On the ℓth step, by means of seq FI(ℓ : ℓ+ 1)

or seqF II(ℓ : ℓ + 1), test H0 : m = ℓ vs. HA : m = ℓ + 1 and if H0 is not rejected,

then m̂T = ℓ; else proceed to the next step. This sequential procedure stops when M ,

the ceiling on the number of breaks, is reached. If all statistics in the sequence are

significant then m̂T ≥ M . Thus, we have four strategies: (1) sup F (0 : 1) first, then

seq FI; (2) sup F (0 : 1) first, then seq FII; (3) UDmaxF (0 : M) first, then seq FI,

and (4) UDmaxF (0 :M) first, then seq FII.11

5.4 Extension to Partial Structural Change

In this section, we provide a test for partial structural change, that is, for breaks in

only a subset of parameters. For simplicity, we only consider the test for one break,

but the results can be extended to multiple breaks in a similar fashion as for pure

structural change. Let θ0i = (β0
i , γ

0
i ), i = 1, 2, where β0

1 = β0
2 , and γ

0
i are p1 × 1, with

p1 < p. The null and alternative hypothesis are: H0 : γ
0
1 = γ02 vs. HA : γ01 6= γ02 , and

11The finite sample properties of strategy (1) and (3) have been investigated for linear models by
Bai and Perron (2006), and found to work well in the absence of serial correlation in the errors. In
the presence of serial correlation, similar strategies as the ones described in Boldea and Hall (2010),
Section 5.3, have also been studied in Bai and Perron (2006) for linear models and found to work
well in finite samples.
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the test statistic is sup FR(0 : 1) = supλ1∈Λǫ,1
[T − p](SSR0/SSR

R
1 (λ1)− 1)/p1, where

SSRR
1 (λ1) is obtained as SSR1 for candidate break-point [Tλ1], but with imposing

the restriction β1 = β2.
12

Theorem 5. Under Assumptions 2-6 and 8(i), the null asymptotic distribution of

sup FR(0 : 1) is as in Perron and Qu (2006), equation (7).

6 STAR Models with Breaks

In this section, we analyze the small sample performance and the practical implications

of a STAR model with potential breaks. STAR models have been defined in economics

by Granger and Teräsvirta (1993), and widely used for modeling asymmetric behavior

of many macroeconomic variables, such as exchange rates, interest rates, asset prices,

unemployment. To discuss the implications of such models in the presence of breaks,

consider the simple STAR model with one break in (4), for m = 1, and x′t = (1, yt−1).

The parameters of interest are θ0i = (βi, β
∗
i , γi, ci), along with the unknown break T 0

1 .

For each sub-sample I0i , yt transits in a smooth fashion between two linear regimes:

x′tβi and x
′
tβ

∗
i , and the transition is characterized here by the logistic function G(·, ·, ·),

taking values in (0,1). The variable qt is the state variable that governs the transition.

The smoothness parameter γi governs the smoothness of transition: the larger it is,

the faster the transition. The so called “threshold” value ci governs each observation

tending to one regime or the other depending on the value of qt.

If qt is a business cycle proxy, we can interpret the parameters βi and β∗
i as

governing the “phase” of the business cycle (expansion or recession), and parameters

γi, ci govern the transition between phases. If θ01 6= θ02, we have a break at T 0
1 , and it

can be interpreted as a change in the data generating process for yt with recent business

12The extension to allowing the rest of the p− p1 parameters to change under the null and alter-
native, at the same break-point that the other p− p1 parameters, requires using the break-point as
a pre-estimate. This may make the distribution of such a test complicated to derive, and we leave
this to future research.
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cycles, after T 0
1 . There is considerable evidence that this is the case for example, for

interest rates, see Alogoskoufis and Smith (1991), Kang, Kim, and Morley (2009). On

the other hand, there is considerable evidence that the interest rate reaction function

is smoothly asymmetric over each business cycle - see e.g. Schaling (2004), Dolado,

Maŕıa-Dolores, and Ruge-Murcia (2004), Kim, Osborn, and Sensier (2005), Kesriyeli,

Osborn, and Sensier (2006). In our framework, we can allow for both features jointly.

We provide both simulations for a simple STAR model, and an application to the

Federal funds interest rates. We allow for both pure and partial structural change.

The distinction is important in practice; for example, if the linear parameters βi, β
∗
i

change, for interest rates this can be interpreted as monetary policy changes in the

expansion/recession phases. If γi, ci change, the transition of monetary policy within

the business cycle is different than it used to be. Moreover, unlike pure structural

change, partial structural change implies that the whole dataset needs to be used for

prediction.

6.1 Simulations

All of our simulations, unless mentioned otherwise, are done in the context the one-

transition STAR model in (4), similar to the models in Franses and van Dijk (2000).

Even without breaks, STAR models are computationally challenging for two reasons.

First, because they require large samples to ensure enough variation in the transition

function to identify the linear parameters. Second, because the parameter estimates

are usually computed in two steps: an inner loop where the concentrated nonlinear

objective function is maximized and the nonlinear parameters conditional on the lin-

ear ones are obtained, and another step where a back-and-forth iteration between

nonlinear and linear parameter optimization is performed. The first step is computa-

tionally challenging as the concentrated nonlinear objective function is usually flat in

small samples.
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Although for linear models, Bai and Perron (2003) show that one need not per-

form more than T (T + 1)/2 operations to find the estimated partition, for nonlinear

models, each of this operation requires a new nonlinear optimization with two steps.13

To make sure that the computational errors in each step are small, we use a KNITRO

optimization function written for MATLAB, that is specifically designed to concomi-

tantly monitor the relative size of the computation and optimization errors in different

steps.14 Despite computational complexity, we are able to show that, even for small

sample sizes, our method is accurate in detecting reasonably large breaks.

For the data generating process (DGP), unless mentioned otherwise, we use the

STAR as in (4), with x′t = (1, yt−1), ci = 0, and m breaks, rewritten as:

yt = x′tβ
1
i + x′tβ

2
i G(qt, γi, ci) + ut for t ∈ I0i (5)

where β1
i = βi and β2

i = β∗
i − βi in (4). Let ut ⊥ qt, ut ∼ i.i.d. N(0, 0.052), and

qt ∼ i.i.d. N(1, 1). We initialize the time series y at 0, and apply a burn-in of 100

observations before considering our sample T . Let θi′ = (β1′
i , β

2′
i , γ

′
i) and the cut-off

ǫ = 0.15. All results are for 1000 simulations.

We first analyze the small sample properties of our testing procedures for pure

structural change. Consider the following DGPs: (A I) T = 100, m = 0, θ′1 =

(0, 0.5, 0,−0.5, 0.5); (A II) T = 100, m = 1, T 0
1 = 50, θ′1 = (0, 0.5, 0,−0.5, 0.5),

θ′2 = (−0.5,−0.5, 0.5, 0.5, 1); (A III) T = 150, m = 2, T 0
1 = 50, T 0

2 = 100, θ′1 = θ′3 =

(0, 0.5, 0,−0.5, 0.5), θ′2 = (−0.5,−0.5, 0.5, 0.5, 1).

The results for sup F , seq FI(ℓ : ℓ + 1) , seq FII(ℓ : ℓ + 1) and UDmaxF (0 : 2)

are presented in Table 1. The critical values for UDmaxF (0 : 2) were not available in

13Note that unlike for linear models, for nonlinear models there is no exact updating formula for
the sum of squared residuals, and it is not clear whether approximate updating rules such as the
“unscented” Kalman filter work in the presence of breaks.

14For STAR estimation, our starting point is the code in McAleer and Medeiros (2008) that is
available online at https://sites.google.com/site/marcelocmedeiros/Home/codes.
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the literature and are computed via additional simulations.15. The critical values for

seq FII(ℓ : ℓ+1) are computed from Bai (1999), following his suggestion by assuming

that the second order term of the cdf on pp. 305 is negligible; the rest are available

from Bai and Perron (2003). Table 1 reports the rejection frequency of all these tests

at different nominal levels. The tests sizes are close to nominal for one and two breaks.

All tests have large power, and this is expected for large enough breaks; see Table 4 for

smaller breaks. Although it is known that parameter estimates have a large in-sample

bias for most STAR models in small samples,16 we show that despite this bias, the

tests have reasonable size and power even for samples sizes of T = 100, respectively

T = 150. The tests for A I are undersized, likely related to the true DGP having no

intercept - Table 3 for DGP B I shows improvement.

Table 2 reports the empirical distribution of m̂T for A I - A III defined above,

detected via the four sequential strategies described in Section 5.3, at the 5% level.

All strategies seem to perform well; the ones based on seqFI(ℓ : ℓ + 1) work slightly

better. If the number of breaks is detected accurately, we find that the estimated

breaks for DGPs A II and A III are either equal or one observation away from the

true break. This implies that the empirical coverage of the break-point confidence

intervals is 100% at any significance level; this is expected because the break-point

estimation seems to be very accurate for large enough breaks.

Next, we compare tests for pure and partial structural change. We consider partial

structural changes where either γi or β
′
i = (β1′

i , β
2′
i ) change. These tests are useful to

identify whether the break-point is in the transition function (γi changes across i) or

the linear regimes (βi changes across i).

For partial structural change, one needs an initial estimate for the break - see

Perron and Qu (2006), pp. 10, followed by iterations to obtain the (implicitly defined

15We thank Nikolaos Sakkas for his help.
16To save space, parameter estimates simulations are not provided, but they are available upon

request.
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in the tests) break-point estimate of the restricted structural change models. As

suggested in Perron and Qu (2006), we use a pure structural change break-point

estimate to initialize the iterations. Table 3 reports the size and power of both pure

and partial structural change for one break, T = 100, under the following DGPs: (B

I - no change) m = 0, θ′1 = (−0.5,−0.5, 0.5, 0.5, 1); (B II - change in βi only): m = 1,

β ′
1 = (0, 0.5, 0,−0.5), β ′

2 = (−0.5,−0.5, 0.5, 0.5), γ1 = γ2 = 1; (B III - change in γi

only): m = 1, β ′
1 = β ′

2 = (0, 0.5, 0,−0.5), γ1 = 0.1, γ2 = 1; (B IV - m = 0) but the

DGP is:

yt = x′tβ
1 + x′tβ

2G(qt, γ1, 0) + x′tβ
3G(qt, γ2, 0) + ut

with β1 = (0, 0.5)′, β2 = (0,−0.5)′, β3 = (0.5, 0.5)′, γ1 = 0.1, γ2 = 1. The latter is a

two-transition model with no breaks, which we use to check whether our tests reject

in the presence of misspecified nonlinearity. Table 3 indicates that all tests have 100%

power. The test for changes in βi only seems oversized. This is expected since the

parameters β2
i are estimated less accurately when the variation in G(qt, γi) is small.

Thus, we believe that this is not a problem of our test, and may rather be related

to poor identification of STAR models in small samples. This problem is less evident

for the last DGP. The results for the DGP B IV suggest that all structural change

tests, pure or partial, designed for structural change specifically, don’t have power

against additional nonlinearity. This is reassuring as it indicates that our tests will

not confuse breaks with nonlinearity.

Finally, we present simulations with smaller breaks. We pick in our view the worst

case scenario DGP, in (5) but with only the nonlinear parameters changing. Thus,

β ′
1 = β ′

2 = (−0.5,−0.5, 0.5, 0.5), and γ2 = 1, c∗ ≡ 1−γ1 is the magnitude of parameter

change, and c∗ takes the values in Table 4. We see that both the pure and the partial

structural change tests have power 1 for c∗ = 0.9, and still quite large power for

medium breaks c∗ = 0.5. It seems that we need c∗ = 0.3 or lower for the power of

the tests to dramatically deteriorate. We also see that, as expected, the power of the
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pure structural change tests in the presence of partial structural change deteriorates

faster as the breaks get smaller.

6.2 Application to the US Interest Rate Reaction Function

As previously discussed, there is considerable evidence of either parameter change or

smooth nonlinearity in the US interest rate function, but not both.17

For example, Kesriyeli, Osborn, and Sensier (2006) find that the US interest rate

reaction function between 1984-2005 exhibits smooth transition in two state variables:

a quarterly lagged difference in the interest rates and time. They find a large smooth-

ness parameter (1082) for the time transition function, which may be indicative of a

break, but because of the absence of an econometric framework, they cannot test for

breaks explicitly.18

Our framework can be used to test for breaks in the presence of smooth nonlin-

earity. To that end, we consider a simplified version of the US interest rate reac-

tion in Kesriyeli, Osborn, and Sensier (2006), with m potential breaks, that is, for

i = 1, . . . , m+ 1,

rt = x′tβi[1−G(∆3rt−1; γi, ci)] + x′tβ
∗
i G(∆3rt−1; γi, ci) + ut, t ∈ I0i

Here, rt is the federal funds rate, ∆3rt−1 = rt−1 − rt−4 is the same transition variable

as in Kesriyeli, Osborn, and Sensier (2006), and x′t = (1, rt−1, rt−2, yt−1, πt−1), where

yt and πt are the output and inflation gap, respectively. Our data comprises US

monthly observations from 1984:1-2010:6; the federal funds rate and CPI inflation

17Note that most of the literature - with the exception of a few studies, see e.g. Bec, Salem,
and Collard (2002) - does not model Federal funds interest rates via threshold or Markov switching
models, because while the Fed may change interest rate reactions infrequently (in the form of breaks),
it is unlikely that it would drastically changes interest rates frequently (as thresholds and switching
models would imply) so as not to generate large volatility in the markets.

18The tests they use, based on Eitrheim and Teräsvirta (1996), have some power against breaks,
but they are not designed against breaks explicitly.
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rates are computed from the dataset FRED2, and the output (real GDP) at monthly

frequency is the Stock-Watson proxy. From output and inflation, we construct gap

data using the Hodrick-Prescott filter with constant equal to 126400, as usual for data

at monthly frequency.

The instability tests19 reported for a cut-off ǫ = 0.20, are in Table 1.

For all strategies 1-4 described in Section 5.3, we find evidence of one break, at

1990:9, with 95% confidence interval [1990:8, 1990:10]. This implies that post-1990,

the interest rate reaction function has changed. Indeed, after 1990, the interest rates

were raised more often than before, implying that the Fed reacted more drastically in

expansions (phases of the business cycle). The tests for partial structural change in

βi = (β ′
i, β

∗′
i )

′ and in γi are 74.06, and 0.93 respectively, with p-values 0.00 and 1.00.

Thus, the change is in the phases of the business cycle, rather than in the transition

between phases.

The parameter estimates in Table 6 indicate that the interest rate reacts more to

the inflation gap compared to the output gap changes, it is asymmetric over the busi-

ness cycle, and has changed in recent periods. Because of partial structural change,

our results imply that the whole data should be used for prediction.

7 Conclusions

In this paper, using new empirical process results, we develop a framework for esti-

mating and testing in NLS models with multiple breaks. By construction, our method

nests nonlinearities and breaks, and is useful in practice for jointly modeling breaks

and nonlinearity, without considering them as competing alternatives.

Our method can be a powerful tool for empirical macroeconomic and financial

modeling. For example, we show that the interest rate reaction function has both

19Since we have p = 12 parameters, for which critical values are not available, we use the methods
in Hall and Sakkas (2012) to compute p-values for our tests.
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smooth asymmetric behavior, and it varies with more recent data. Our method can

also be applied to many macroeconomic variables for which there is evidence of either

breaks or nonlinearity, but the econometric analysis so far has not allowed for both.

A number of interesting questions remain, such as the extension of our methods

to (i) multivariate models; (ii) more general forms of nonlinearity including threshold

models and Markov switching models which our assumptions do not cover; (iii) time

series that are not necessarily piece-wise geometrically ergodic. We leave these issues

to future research.

8 Appendix

This Appendix only contains sketch proofs of Lemma 1 and Theorems 1,2. The full

proofs along with the ones for Theorems 3-5 are relegated to a Supplemental Appendix,

available from the authors upon request. Regarding notation, we use ‖ · ‖ for both

the Euclidean and the matrix norm ‖A‖ = [tr(A′A)]1/2, and let ψt(θ) ≡ utft(θ),

Ψt(θ) ≡ utFt(θ).

Proof of Lemma 1.

Consider the cases m∗ = 0 and m∗ = 1; the extension to m∗ > 1 is immediate and

omitted for simplicity.

Case m∗ = 0. In this case, we need to show that for any ǫ > 0, there exists a ηǫ > 0

and a Tǫ > 0 such that for any T ≥ Tǫ, P
(

supθ×r |QT (θ, r)| > ηǫ
)

< ǫ.

This was shown under Assumptions 1,2,3(i)-(ii) by Caner (2007) for strictly sta-

tionary processes; here we show that the difference between the distribution function

of QT (θ, r) started at ψ0(θ) and the distribution function of same process started at

its stationary distribution, say Q(·), is o(1) uniformly in θ × r. To that end, define

a sequence {bT} of positive integers such that bT → ∞ and bT /
√
T → 0, and let
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D(i, j, θ) = |T−1/2
∑j

t=i ψt(θ)|. Then P (supθ×rDT (θ, r) > ηǫ) is less than:

P (sup
θ
D(1, bT , θ) > ηǫ/2) +Q(sup

θ×r
D(bT + 1, [Tr], θ) > ηǫ/2)

+ {|P (sup
θ×r

D(bT + 1, [Tr], θ) > ηǫ/2)−Q(sup
θ×r

D(bT + 1, [Tr], θ) > ηǫ/2)|}

= I + II + {III}.

Note that I ≤ P (supθ,t
bT√
T
|ψt(θ)| > ηǫ

2
) = o(1), uniformly in θ × r, by Assumption

3(ii). By Caner (2007), Lemma 1, pp. 37, II = o(1) + ǫ, for any ǫ > 0 and T ≥ Tǫ,

with the o(1) term uniform in θ × r (u.θ.r.). It remains to show that III = o(1)

u.θ.r. To that end, in Assumption 1(i), let µ(A) = |P (A|B) − Q(A)|. Since P

and Q are probability measures, P − Q is a signed measure µ∗, and by the Hahn-

Jordan decomposition, there exist two positive measures µ+
∗ and µ−

∗ such that µ∗ =

µ+
∗ − µ−

∗ . Hence, µ = |µ∗| = µ+
∗ + µ−

∗ . Since µ(∅) = 0 it follows that µ is a

measure, therefore sub-additivity holds. Let E1 = [supθ×rD(bT + 1, [Tr], θ) > ηǫ/2],

E2 = [supr

∑[Tr]
t=bT+1 supθ|ψt(θ)| > ηǫ

√
T/2], E3 = [

∑T
t=bT+1 supθ|ψt(θ)| > ηǫ

√
T/2]

and E4 = ∪T
t=bT+1[supθ|ψt(θ)| > ηǫ

√
T/[2(T − bT )]]. Letting the superscript c denote

the complement of a set, we have E1 ⊆ E2 ⊆ E3 = (E3∩E4)∪(E3∩Ec
4) = E3∩E4 ⊆ E4.

Using sub-additivity of µ, and noting that At = [supθ|ψt(θ)| > ηǫ
√
T

2(T−bT )
] ∈ F∞

t is an

event started at B ∈ F0
−∞, one can show that III = µ(E1) ≤ µ(E4) = o(1), u.θ.r.

Case m∗ = 1. Similarly to m∗ = 0, P (supθ×rD(1, [Tr], θ) > ηǫ) is less than:

P ( sup
θ×(0≤r≤λ∗

1
)

D(bT + 1, [Tr], θ) > ηǫ/2) + P ( sup
θ×(λ∗

1
<r≤1)

D(bT + 1, [Tr], θ) > ηǫ/2)

+ o(1) = IV + V + o(1), u.θ.r.

Let Bi = Qi

(

supθ×(0≤r≤λ∗

1
)DT (θ, r) > ηǫ/8

)

. Then IV ≤ o(1) +B1, and V ≤ o(1) +

B1 +B2, u.θ.r, for T ≥ Tǫ; this implies the desired result for m∗ = 1.
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Proof of Theorem 1.

Part (i). From Lemma 1, T−1
∑T

t=1 utdt = op(1) uniformly in θ × r. Also via Lemma

1, if one break-fraction does not converge to its true value, then one can show that

T−1
∑T

t=1 d
2
t > C with probability > ǫ for large T uniformly in θ, which cannot hold

by the definition of sum of squared residuals (SSR) given that T−1
∑T

t=1 utdt = op(1).

By contradiction, λ̂i
p→ λ0i .

Part (ii). As in Bai and Perron (1998), without loss of generality, assume only three

breaks, and prove Theorem 1 (ii) for λ̂2 and T̂2 < T 0
2 . For any ǫ > 0, define Vǫ

= {(T1, T2, T3) : | Ti − T 0
i |≤ ǫT (i = 1, 2, 3)}. Since λ̂i

p→ λ0i , limP{(T̂1, T̂2, T̂3) ∈

Vǫ} = 1. Hence, we need only examine the behavior of break-points contained in Vǫ.

For C > 0, define: Vǫ(C) = {(T1, T2, T3) : | Ti − T 0
i |≤ ǫT (i = 1, 2, 3); T 0

2 − T2 > C},

and show that the probability that the break-points are contained in Vǫ(C) is small.

To that end, denote by ST (T1, T2, T3) the minimized SSR for a given 3-break-partition

(0, T1, T2, T3, T ). By definition, ST (T̂1, T̂2, T̂3) ≤ ST (T̂1, T
0
2 , T̂3). Let ∆2 = T2 − T 0

2 .

We will show that for any η > 0, we can pick ǫ and C such that on Vǫ(C), we have:

P

{

min
Vǫ(C)

(∆2)
−1[ST (T1, T2, T3)− ST (T1, T

0
2 , T3)] < 0

}

< η, for T ≥ T (η). (6)

Equation (6) implies that for large T , with probability ≥ 1 − η, ST (T̂1, T̂2, T̂3) >

ST (T̂1, T
0
2 , T̂3), contradicting the sum of squares minimization definition; thus, T̂2 6∈

Vǫ(C), completing the proof. We prove (6) by locating the dominating terms in

(∆2)
−1[ST (T1, T2, T3) − ST (T1, T

0
2 , T3)] and showing that they are positive on Vǫ(C)

with large probability for large T ; to that end, we make extensive use of Lemma 1 -

see Supplemental Appendix for details.

Proof of Theorem 2.

As usual, we need to show uniform convergence of the minimand, and use uniqueness

to establish consistency of parameter estimates. Let some partition of the sample
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interval be (0, T1, . . . , Tm, T ). Let ST,Îi
(θ) = T−1

∑Ti

t=Ti−1
u2t (θ) be the partial sum of

squares in interval Îi = [T̂i−1 + 1, T̂i]. Moreover, let Îi ∇ I0i = (Îi \ I0i ) ∪ (I0i \ Îi), and

define as indicator function ιi : Îi ∇ I0i → {−1, 1}, where ιi(t) = ιi,t = 1, if t ∈ Îi \ I0i ,

and ιi,t = −1, if t ∈ I0i \ Îi. Then ST,Îi
(θ)− ST,I0i

(θ) is equal to
∑

Îi ∇ I0i
ιi,t [T

−1u2t ] +

∑

Îi ∇ I0i
ιi,t [T

−1d2t (θ, θ
0
i )] +

∑

Îi ∇ I0i
ιi,t [T

−12ut dt(θ, θ
0
i )]. By Theorem 1, there are ≤

2C integers in Îi ∇ I0i . By Lemma 1, ST,Îi
(θ) − ST,I0

i
(θ) = op(1); then standard

NLS asymptotics yields, under Assumptions 1-4, θ̂i
p→ θ0i . Since also mean value

expansions T 1/2 ∂ST,Îi
/∂θ around θ0i are uniformly within op(1) of those using the

true break-points, θ̂i have the distribution in Theorem 2. Asymptotic independence

of θ̂i and θ̂j for i 6= j follows from Assumption 1.

Proof of Theorems 3-5. See Supplemental Appendix.
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Dolado, J., Maŕıa-Dolores, R., and Ruge-Murcia, M. (2004). ‘Nonlinear Monetary

Policy Rules: Some New Evidence from US’, Studies in Nonlinear Dynamics and

Econometrics, 8, Issue 3, Art. 2.
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godicité Geometrique’, Comptes Rendus de l’Académie des Sciences. Série I.
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Table 1: Relative rejection frequencies of F-statistics for pure structural change

supF seq FI seq F II UDmaxF

DGP α
0:1 0:2 1:2 1:2

A I .10 0 .04 .02 .03 .01
.05 0 .02 .01 0 0

.025 0 .01 0 0 0
.01 0 0 0 0 0

A II .10 1 1 .06 .07 1
.05 1 1 .04 .04 1

.025 1 1 .024 .021 1
.01 1 1 .01 .01 1

A III .10 1 1 .85 .83 1
.05 1 1 .89 .88 1

.025 1 1 .925 .915 1
.01 1 1 .95 .94 1

Here, α is the nominal significance level, and the columns denote the empirical rejection frequency at level α.

Table 2: Empirical distribution of the estimated number of breaks at 5%

DGP Strategy m̂T = 0 m̂T = 1 m̂T = 2 Strategy m̂T = 0 m̂T = 1 m̂T = 2

A I (m = 0) 1 1 0 0 3 .99 .01 0
2 1 0 0 4 .99 .01 0

A II (m = 1) 1 0 .94 .06 3 0 .94 .06
2 0 .93 .07 4 0 .93 .07

A III (m = 2) 1 0 .11 .89 3 0 .11 .89
2 0 .12 .88 4 0 .12 .88

The rows indicate the empirical frequency of a certain estimate m̂T in 1000 simulations.

Table 3: Rejection Frequency of Tests for Pure and Partial Structural Change

DGP sup F-test Significance level
Break In βi or γi 0:1 .10 .05 .025 .01

B I NO - βi and γi .05 .02 .017 .01
βi .13 .07 .037 .02
γi .06 .02 .007 0

B II YES βi βi and γi 1 1 1 1
βi 1 1 1 1

B III YES γi βi and γi 1 1 1 1
γi 1 1 1 1

B IV NO - βi and γi .05 .02 .017 .01
βi .05 .02 .007 0
γi .05 .02 .014 .01
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Table 4: Power of the tests for small, medium and large breaks

DGP supF (0 : 1) supFR(0 : 1)
10% 5% 2.5% 1% 10% 5% 2.5% 1%

c∗=.9 1 1 1 1 1 1 1 1
c∗=.5 .89 .96 .97 .99 .94 .98 .99 1
c∗=.3 .33 .59 .63 .82 .49 .70 .73 .88

Here, the supFR(0 : 1) test is for H0 : γ1 = γ2.

Table 5: Stability Tests and P-Values

supF (0 : k) UDmaxF seq FI seq F II
0:1 0:2 0:3 0:3 1:2 2:3 1:2 2:3

test 68.44 29.99 34.79 68.44 18.19 13.61 20.09 14.41
p-value 0.00 0.00 0.00 0.00 0.86 1.00 0.15 1.00

Table 6: Estimates for one break, with pure and partial structural change

Pure structural change Partial structural change
1984:5-1990:9 1990:10-2010:06 1984:5-1990:9 1990:10-2010:06

β̂1 β̂2 β̂1 β̂2

[1−Gt] 1.723∗∗∗ -0.092∗ 0.139 -0.037
rt−1 [1−Gt] 1.088∗∗∗ 1.356∗∗ 1.000 0.9628
rt−2 [1−Gt] -0.313∗∗∗ -0.363∗∗∗ -0.050 -0.044
πt−1 [1−Gt] 0.256∗∗ -0.097∗∗ -0.303 0.023
yt−1 [1−Gt] 0.000 0.000 0.001 -0.001

β̂∗

1
β̂∗

2
β̂∗

1
β̂∗

2

[Gt] -0.362∗∗∗ 0.327∗∗∗ 1.018 0.066
rt−1 [Gt] 0.920 0.748∗∗ 1.362∗∗∗ 1.962∗∗∗

rt−2 [Gt] 0.127∗∗ 0.223∗∗ -0.338∗∗ -0.969∗∗

πt−1 [Gt] 0.183 -0.005 0.1383 -0.111
yt−1 [Gt] 0.002 0.001∗∗ 0.001 0.001

γ̂i 17.123 4.421∗∗ 1.268 1.268
ĉi 0.507∗∗∗ 0.208 -0.839 -0.839

Here, Gt ≡ G(xt, γ̂i, ĉi), the first column stands for the regressors to which the parameter estimates correspond, and
∗, ∗∗ and ∗∗∗ indicate significance of parameter estimates at 10%, 5% and 1% respectively.
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