
 

 

 

 
Discussion Paper Series 

 
A note on exact correspondences between adaptive 

learning algorithms and the Kalman filter 
By 

 
Michele Berardi and Jaqueson K. Galimberti 

 

Centre for Growth and Business Cycle Research, Economic Studies, 
University of Manchester, Manchester, M13 9PL, UK 

 
June 2012 

Number 170 
 

 

Download paper from: 

http://www.socialsciences.manchester.ac.uk/cgbcr/discussionpape
rs/index.html 

 

 



A note on exact correspondences between adaptive learning

algorithms and the Kalman filter

Michele Berardi

The University of Manchester

Jaqueson K. Galimberti∗

The University of Manchester and The Capes Foundation

June 20, 2012

Abstract

Digressing into the origins of the two main algorithms considered in the literature of adaptive

learning, namely Least Squares (LS) and Stochastic Gradient (SG), we found a connection between

their non-recursive forms and their interpretation within a state-space unifying framework. Based

on such connection, we extend the correspondence between the LS and the Kalman filter recursions

to a formulation with time-varying gains of the former, and also present a similar correspondence

for the case of the SG. Our correspondences hold exactly, in a computational implementation sense,

and we discuss how they relate to previous approximate correspondences found in the literature.
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1 Introduction

Adaptive learning algorithms have been proposed to provide the heuristics through which agents can be

assumed to form their expectations, in order to pragmatically validate whether the consistency require-

ments inherent to rational expectations (RE) can be satisfied by boundedly rational agents (see Evans

and Honkapohja, 2001). Going beyond the RE paradigm, however, comes at the cost of introducing

another degree of freedom into the analysis, as one (or more) learning algorithm(s) must be specified

to represent the evolution of agents beliefs. Two algorithms have received most of the attention in the

literature, namely, Least Squares (LS) and Stochastic Gradient (SG), and the different formulations from

which these algorithms can be obtained as estimators is the subject of this note.

∗Corresponding author. E-mail: jaqueson.galimberti@postgrad.manchester.ac.uk.
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Since the seminal works in the subject of learning and expectations in macroeconomics (Bray, 1982;

Marcet and Sargent, 1989) the LS algorithm has been taken as the natural choice to represent agents

mechanism of adaptive learning. This choice is in general attributed to the widespread knowledge of its

ordinary counterpart, the so-called Ordinary Least Squares (OLS) estimator, between econometricians.

The SG algorithm, on the other hand, provides a computationally simpler alternative, leading some

authors to advocate for its use as a more plausible learning device from a bounded rationality standpoint

(Barucci and Landi, 1997; Evans and Honkapohja, 1998).

Although the LS and the SG algorithms share a similar recursive formulation, which makes them

suitable for mimicking agents adjusting their forecasts as new data becomes available over time, their

recursions can be clearly distinguished for the application, or not, respectively, of a “normalization”

step during the updating process. It is also for the absence of this specific mechanism that the SG is

characterized by a lower computational complexity as compared to the LS. Apart from this computational

difference, for each of these algorithms one can also adopt distinctive formulations with respect to their

learning gain, which is a parameter determining how quickly a given information is incorporated into the

algorithm’s coefficients estimates. Three of the main alternatives for the specification of this learning

gain are those of a time-decreasing, a time-constant, and a time-varying (not restricted to be decreasing)

sequence of values, and their suitability depends on the time-varying nature of the environment.

A decreasing-gain LS was the seminal choice in the learning literature, so as to match the recursive

form of the OLS estimator. For the case of linear models with time-invariant parameters, this estimator is

known to possess some well desired properties, such as consistency and efficiency, though these properties

do not extend to a time-varying context. This latter fact implies the intriguing observation that a

decreasing-gain LS learning meachanism is appropriate only along the time-invariant path of a RE

equilibrium, where learning itself is indeed pointless (Bray and Savin, 1986).

Extensive evidence (see Stock and Watson, 2003; Cogley and Sargent, 2005; Sims and Zha, 2006;

Sargent et al., 2006) favoring time-varying parameter models of the economy has, nevertheless, chal-

lenged this paradigm, and the departure from the parameter constancy assumption (see Margaritis,

1990; Bullard, 1992; McGough, 2003) has naturally led to the requirement of adjustments to the learning

rules as well. These adjustments came first into the form of constant-gain learning (Sargent, 1999), and

later into the more general form of time-varying sequences of learning gains (Marcet and Nicolini, 2003).

One way to deepen our understanding of these learning rules has been through the establishment of

correspondences between them and the Kalman filter (as done in Ljung and Soderstrom, 1983; Ljung

and Gunnarsson, 1990; Sargent, 1999; Sargent and Williams, 2005; Branch and Evans, 2006; Evans

et al., 2010), for which optimality properties are known from a long standing literature (see Anderson

and Moore, 1979). Previous studies, however, have focused mainly on the analysis of the LS algorithm

(Sargent, 1999; Branch and Evans, 2006), while correspondence results for the SG case have been found
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to hold only approximately in a long-run sense, where any transient phase affecting the algorithm’s

estimates has already died out (Sargent and Williams, 2005; Evans et al., 2010). Furthermore, these

correspondences have been separately drawn for the specific cases of predefined decreasing and constant

sequences of gains.

It is the purpose of this note to extend the exact correspondence results for the LS algorithm both to

the case of the SG algorithm, as well as to the more general case of an unrestricted time-varying sequence

of learning gains. We do that by providing a renewed interpretation of how these correspondences can

be drawn with respect to the non-recursive forms of the LS and the SG algorithms, presented in Section

2, where the non-recursive form for the latter algorithm is also an original feature of this note. As we

adopt an exact approach in drawing our correspondences, instead of the above mentioned approximated

sense, we argue that our results favor both the computational implementation of these algorithms, as

well as their employment over out-of-equilibrium paths. We present our exact correspondences in Section

3, while a discussion about how they relate to previous approximate correspondences is postponed to

Section 4. Section 5 then concludes.

2 Digression into algorithms origins

2.1 Preliminaries

To understand the differences between the LS and the SG origins lets first establish a common context

of estimation. Our focus here is on linear regressions of the form1

yt = x′tθt + εt, (1)

where yt is assumed to be related to a vector of (pre-determined) variables xt = (x1,t, . . . , xK,t)
′

through

the vector of (possibly time-varying) coefficients θt = (θ1,t, . . . , θK,t)
′
, and εt denotes a (Gaussian) white

noise disturbance with variance given by σ2
t = E

[
ε2t
]
. Interest is on the estimation of θt with given

observations of yt and xt, but not of εt.

Under this context, the LS algorithm we are interested in assumes the form of

θ̂
LS

t = θ̂
LS

t−1 + γtR
−1
t xt

(
yt − x′tθ̂

LS

t−1

)
, (2)

Rt = Rt−1 + γt (xtx
′
t −Rt−1) , (3)

where γt is a learning gain parameter, and Rt stands for an estimate of regressors’ matrix of second

1Our results can be straightforwardly extended to a multivariate regressions context, an autoregressive context, or yet
in both dimensions to a VAR specification.
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moments, E [xtx
′
t]. Under the same context, the SG algorithm is given by

θ̂
SG

t = θ̂
SG

t−1 + µtxt

(
yt − x′tθ̂

SG

t−1

)
, (4)

with µt standing for the learning gain parameter in this case. The hat in θ̂
LS

t and θ̂
SG

t indicates that

they stand for estimates of θt in (1), based on period t information.

The main difference between the LS and the SG origins resides in how the estimation problem was

first formulated, either into a non-recursive (block) minimization problem or into a recursive (filtering)

form, respectively. In spite of this distinction, each algorithm can be interpreted under both formulations.

2.2 Non-recursive forms

The LS is originally derived from a non-recursive estimation problem (see Ljung and Soderstrom, 1983,

pp. 57-61), namely the minimization of the sum of weighted error squares as given by

θ̂
LS

t = arg min

t∑
i=1

β (t, i)
(
yi − x′iθ̂

LS

t

)2
, (5)

where

β (t, i) =


αi

t∏
k=i+1

λk for i < t,

αi for i = t,

(6)

indicates how past observations are discounted, and thus, it is typically increasing in i for a given t.

The structure in the weighting scheme imposed by (6), though not required, provides an exponential

forgetting profile in the criterion (5) when λk ≤ 1. In this sense, λk stands for the stream of forgetting

factors and αi regulates the ceiling to the weights these factors attach to observations. The solution to

(5), which is quadratic in θ̂
LS

t , results in the non-recursive LS estimator,

θ̂
LS

t =

[
t∑
i=1

β (t, i) xix
′
i

]−1 t∑
i=1

β (t, i) xiyi. (7)

Letting

λk =
γk−1
γk

(1− γk) and αi = 1, (8)

we obtain

β (t, i) =


γi
γt

t∏
k=i+1

(1− γk) for i < t,

1 for i = t,

(9)

which indicates how the gains sequence in (2)-(3) gets translated into the weights put into past obser-

vations. It is particularly interesting to note that: (i) when γi = 1/i, β (t, i) = 1 and (7) reduces to the
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OLS estimator; and, (ii) with a constant gain, γi = γ̄, past observations receive geometrically decay-

ing weights, i.e., β (t, i) = (1− γ̄)
t−i

. Furthermore, it requires just a few derivations to show that the

recursive form in (2)-(3) corresponds to the non-recursive solution in (7) with the weights given by (9)2.

The SG algorithm can also be put into a similar non-recursive form. Using the notation of (6), the

non-recursive SG is given by3

θ̂
SG

t =

t∑
i=1

β (t, i) xiyi, (10)

λk = (I− µkxkx′k) and αi = µi, (11)

where we can see that compared to the LS non-recursive form, in (7), the SG does not have the “nor-

malization” term given by the inverse of the regressors (sample) matrix of moments. On the other hand,

the way the SG discounts past observations is not fully determined by the choice of the gains sequence

as it happens for the LS, but it also depends on the data. This is clearly reflected into the definition of

the forgetting factor in (11), which under a multivariate context turns itself, and the weighting factor

in (10), into a matrix form. We take this latter difference as an explanation for the finding that the SG

estimates are sensitive to data scales (Evans et al., 2010).

2.3 Filtering origins

The SG, in turn, is recursive from its origins (see Widrow, 1971): it stands as a stochastic approximation

to the iterative method of Steepest Descent (SD) used to achieve the optimal solution to a linear filtering

problem. Within the context of model (1) the filtering problem is to find a vector of coefficients θ̂t such

that the variance of the squared estimation error associated to these estimates is minimal, i.e.,

θ̂t = arg min
1

2
E
[
yt − x′tθ̂t

]2
, (12)

the gradient of which leads to the first order condition

−E
[
xt

(
yt − x′tθ̂t

)]
= 0, (13)

which is famously known as the orthogonality condition, given that it states that optimality of θ̂t requires

that the estimation errors must be orthogonal to each regressor variable. Solving (13) for the coefficients

vector we get to the optimal solution to the linear filtering problem,

E [xtx
′
t] θ̂t = E [xtyt] , (14)

θ̂t = E [xtx
′
t]
−1
E [xtyt] , (15)

2See A.1.
3See A.2.

5



also known as the Wiener-Hopf equation. Notice that from a deterministic viewpoint, the use of aver-

aged sample counterparts of the expectational operators in (15) would lead to a least squares solution

resembling to (7).

From the stochastic viewpoint, if the covariance matrix of the regressors (E [xtx
′
t]) and the cross-

covariances between the regressors and the endogenous variable (E [xtyt]) are known, the optimal solution

can be readily computed from (15). Such a task, however, may become computationally cumbersome

as the number of regressors increases. Furthermore, under the time-varying context of (1), these (cross-

)covariances would be time-varying as well, and thus a new computation of (15) would be required for

each new observation. A simpler alternative is to use a numerical optimization method in order to

iteratively navigate along the error-performance surface, which is given by the objective function in the

minimization of (12), until the optimal vector of coefficients is found. One such a method is the SD,

which is developed to apply successive corrections to the coefficients estimates in the direction opposite

to the gradient vector, (13), i.e.,

θ̂
SD

i = θ̂
SD

i−1 + κi

(
E [xtyt]− E [xtx

′
t] θ̂

SD

i−1

)
, (16)

where its is important to note that the coefficients estimates are not (necessarily) indexed by time, in

the sense that the recursion can be applied more than once within the same set of information, and the

parameter κi controls the size of the correction from one iteration to the next.

The similarity between the recursions adopted by the method of SD and the SG are not just a

coincidence. As a matter of fact, the SG algorithm of (4) comes from a stochastic approximation

rationale to the SD for the case where the relevant (cross-)covariances are not known. The idea is simply

to replace the (theoretical) gradient in (16) by an estimate computed from the latest squared estimation

error, i.e., the gradient of 1
2

(
yt − x′tθ̂i−1

)2
with respect to θ̂i−1. Doing that, one readily obtains the SG

recursion of (4) from the stochastic approximation based on the SD of (16), noticing that the subscript

indexes of the latter are converted to period (t) subscripts, and the step size parameter is converted to

the learning gain parameter in the SG formulation.

A stochastic interpretation can also be given to the LS algorithm under the same filtering context that

gives rise to the SG algorithm (Ljung and Soderstrom, 1983, pp. 46-8). Such a rationale is obtained by

employing a method of iterative solution to (15) more sophisticated than the SD, namely the Newton’s

method. Although the same recursive structure of (16) is maintained, the difference is that under

Newton’s method the gradient is computed up to a second order expansion by multiplying the gradient

derivative by the inverse of its associated Hessian matrix. Under (12) the Newton’s method would be

translated as

θ̂
Nw

i = θ̂
Nw

i−1 + ηiE [xtx
′
t]
−1
(
E [xtyt]− E [xtx

′
t] θ̂

Nw

i−1

)
. (17)
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Again, a recursive estimate for the Hessian matrix E [xtx
′
t] can be constructed by noting that under the

target optimal solution, the Hessian matrix is the solution R to E [xtx
′
t −R] = 0. Applying the above

iterative method to solve for this condition one obtains

Ri = Ri−1 + ηi (E [xtx
′
t]−Ri−1) , (18)

which after substitution of E [xtx
′
t] by its observed counterpart, xtx

′
t, and adjusting the subscripts

and the gain, leads to the same recursion for the estimate of the matrix of second moments in the LS

algorithm, (3). Substituting this estimate for the Hessian matrix in (17), and proceeding with the same

approximations for the first order gradient as we did for the SD, one also finds that the stochastic version

to the Newton’s method in (17) resembles exactly the coefficients recursion of the LS in (2).

3 State-space unifying framework

3.1 State-space representation

Having established how the LS and the SG algorithms compare in terms of their original formulations,

we now show how they both can be obtained as special cases of the Kalman filter when applied to the

estimation of the time-varying parameters of the linear relationship assumed in (1). For that purpose

we further assume these parameters follow a random walk model as

θt = θt−1 + ωt, (19)

where ωt is assumed to be (Gaussian) white noise with variances (and covariances) given by Ωt =

E [ωtω
′
t]. The random sequences εt and ωt are also assumed to be mutually independent. Notice that

the Gaussianity assumptions on the distribution of these disturbances are required for the mean squares

optimality of the Kalman filter.

Equations (1) and (19) are recognizably in a state-space form for a regression with time-varying

coefficients, where the former is treated as the observation equation and the latter as the state equation

(see Hamilton, 1994, pp. 372-408). The main advantage of such a state-space form is that it serves as a

framework for the derivation of the Kalman filter used to obtain recursive estimates of the states based

on the observed signals.

7



3.2 Kalman filter

Adapted to our context, the Kalman filtering recursion is given by4

θ̂t = θ̂t−1 + Kt

(
yt − x′tθ̂t−1

)
, (20)

Kt =
Pt−1xt

x′tPt−1xt + σ2
t

, (21)

Pt =

(
I− Pt−1xtx

′
t

x′tPt−1xt + σ2
t

)
Pt−1 + Ωt, (22)

where Kt is known as the Kalman gain vector and Pt stands for the covariance matrix of the coefficients

estimates, i.e., Pt = E

[(
θt − θ̂t

)(
θt − θ̂t

)′]
.

Other than for its optimality properties, the Kalman filter also turns out to be useful for providing an

unifying framework for the adaptive learning algorithms we are interested in. This is done by imposing

restrictions on the dynamics of the second moments of the disturbances affecting the motion of the

assumed state-space model, i.e., σ2
t and Ωt (see Ljung and Soderstrom, 1983; Ljung and Gunnarsson,

1990).

Our contribution here is to show that the specifications of σ2
t and Ωt that establish the LS and the

SG algorithms as special cases of the Kalman filter can be connected to the definitions of the terms

λt and αt that we used in (8) to draw the correspondence between the recursive and the non-recursive

forms of these algorithms. Namely, the general basis of the correspondences we are drawing here starts

by assigning

σ2
t = λtα

−1
t , (23)

and then proceeding with a derivation of Ωt that would turn the Kalman filter recursions, (20)-(22), into

the specific cases of the LS and of the SG algorithms, (2)-(3) and (4), respectively.

3.3 Least Squares

The LS algorithm can be obtained as the special case of the Kalman filter by setting

σ2
t =

γt−1
γt

(1− γt) , (24)

Ωt =

(
γt

γt−1 (1− γt)
− 1

)(
I− Pt−1xtx

′
t

x′tPt−1xt + σ2
t

)
Pt−1. (25)

4See A.3.
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Substituting these quantities into (21) and (22), and adding a superscript to distinguish the resulting

algorithm from the general Kalman filter, it is straightforward to find

KLS
t =

PLS
t−1xt

x′tP
LS
t−1xt + γt−1

γt
(1− γt)

, (26)

PLS
t =

γt
γt−1 (1− γt)

(
I−KLS

t x′t
)
PLS
t−1, (27)

which has the same form as the LS algorithm in (2)-(3) with the inversion of the matrix of second

moments replaced by γ−1t PLS
t using the matrix inversion lemma5.

The above correspondence generalizes those of Ljung and Gunnarsson (1990, p. 10) and Sargent

(1999, pp. 115-8) to the case of a time-varying gain.

3.4 Stochastic Gradient

The SG algorithm can be found as the special case of the Kalman filter when we set

σ2
t = µ−1t − x′txt, (28)

Ωt = I−
(

I− Pt−1xtx
′
t

x′tPt−1xt + σ2
t

)
Pt−1. (29)

Substituting these into (21) and (22) we find that6

KSG
t = µtxt, (30)

PSG
t = I. (31)

Although this correspondence has been mentioned in Ljung and Gunnarsson (1990, p. 11), to the

authors’ knowledge its derivation from specific expressions for σ2
t and Ωt has never been made explicit

in a reasonable sense into the previous literature. The only explicit derivation we have found so far

was given by Karjalainen (1996, p. 34), which obtained this correspondence for the constant-gain SG.

Although Karjalainen’s derivation can be extended to the time-varying gain case, it suffers with two

important drawbacks: (i) it requires a specific initialization of P0; and (ii) the computation of PSG
t ,

though not required for the computation of the SG coefficient estimates, is dependent on t+1 regressors’

information, which is at odds with the main idea of recursive estimation.

5See A.4.
6See A.5.
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4 Discussion

Our approach follows that of Ljung and Soderstrom (1983); Ljung and Gunnarsson (1990); Sargent

(1999) where specific parametrizations of σ2
t and Ωt are hand-picked in order to make the algorithms

match exactly the more general Kalman estimator applied to a state-space unifying framework that

has been extensively explored in the empirical macroeconometrics literature (see Stock and Watson,

1996, and references therein). Following Benveniste et al. (1990), similar correspondences to the ones we

obtain here have been drawn by Sargent and Williams (2005) and Evans et al. (2010). However, instead of

holding exactly, their correspondences hold only in an approximated sense, when the algorithms transient

phases have already died out.

From an applied standpoint, the main drawback of the approximate approach is that the accuracy

of this approximation depends on how closer the initialization of the algorithm is to its steady state

estimates. From the learning and expectations standpoint, the fact that the approximation holds only

asymptotically makes it hard to use the resulting framework for a unifying analysis of both learning

convergence and out-of-equilibrium dynamics. Our choice for exact correspondences, therefore, favors

both the empirical applicability of the adaptive learning algorithms as well as their interpretation as

learning devices operating, not necessarily but often, off the long run steady state path of inferences.

An understanding of the interplay between these features is taken as the main issue of Sargent and

Williams (2005), which uses the above approximate framework to formalize the idea of agents learning

priors about drifting coefficients. The asymptotic complementarity between convergence and escapes

allowed these authors to isolate the influence of the priors over the occurrence of those distinct dynamical

features, though these priors were taken as pre-determined. By generalizing the correspondences of the

LS and SG learning algorithms with the Kalman filter, and further allowing for unrestricted time-varying

gains, our results can be taken as providing a framework of analysis for a case under which agents are

allowed to adapt their priors in accordance to their experience.

5 Conclusions

In this note we provided a renewed view on how the LS and the SG algorithms can be connected to

the Kalman filter estimator under a context of regressions with time-varying parameters. Our approach

innovates for being based on the use of similar non-recursive forms for these adaptive learning algorithms,

from which we were able to derive their correspondences to the Kalman recursions under the general case

of unrestricted time-varying learning gains. One special feature of our correspondences is that they hold

exactly, instead of approximately in a long-run sense, and we argue that such feature favors both the

computational implementation of these algorithms, as well as their interpretation as learning mechanisms

operating off equilibrium paths.
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A Detailed derivations of correspondences

A.1 Correspondence between non-recursive and recursive LS

First let

Rt = γt

t∑
i=1

β (t, i) xix
′
i. (32)

from which we find that

Rt = γt

t−1∑
i=1

β (t, i) xix
′
i + γtxtx

′
t, (33)

= (1− γt) γt−1
t−1∑
i=1

β (t− 1, i) xix
′
i + γtxtx

′
t, (34)

= (1− γt) Rt−1 + γtxtx
′
t, (35)

Rt = Rt−1 + γt (xtx
′
t −Rt−1) , (36)
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where in the second step we used

β (t, i) =
γt−1
γt

(1− γt)β (t− 1, i) , (37)

which comes directly from (9).

For the vector of coefficients, note that using (32) in (7) we have that

θ̂
LS

t = γtR
−1
t

t∑
i=1

β (t, i) xiyi, (38)

= γtR
−1
t

[
xtyt +

t−1∑
i=1

β (t, i) xiyi

]
, (39)

= γtR
−1
t

[
xtyt +

γt−1
γt

(1− γt)
t−1∑
i=1

β (t− 1, i) xiyi

]
, (40)

θ̂
LS

t = γtR
−1
t xtyt + (1− γt) γt−1R−1t

t−1∑
i=1

β (t− 1, i) xiyi, (41)

where in the third step we have again made use of (37). Now, note that lagging (38) one period and

pre-multiplying it by R−1t Rt−1 we have that

R−1t Rt−1θ̂
LS

t−1 = γt−1R
−1
t

t−1∑
i=1

β (t− 1, i) xiyi,

which can then be substituted into (41) leading us to

θ̂
LS

t = γtR
−1
t xtyt + (1− γt) R−1t Rt−1θ̂

LS

t−1, (42)

= γtR
−1
t xtyt + (1− γt) R−1t

[
Rt (1− γt)−1 − γt (1− γt)−1 xtx

′
t

]
θ̂
LS

t−1, (43)

= γtR
−1
t xtyt + θ̂

LS

t−1 − γtR−1t xtx
′
tθ̂
LS

t−1, (44)

θ̂
LS

t = θ̂
LS

t−1 + γtR
−1
t xt

(
yt − x′tθ̂

LS

t−1

)
, (45)

where in the second step we made use of the expression preceding (36) above. Note that (36) and (45)

assume exactly the same form as of (3) and (2), respectively, thus establishing the correspondence at

scrutiny.

A.2 Correspondence between non-recursive and recursive SG

Lets first take out the last term of the summation in (10) resulting in

θ̂
SG

t = µtxtyt +

t−1∑
i=1

β (t, i) xiyi. (46)
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Now, notice that from (6) and (11) we have that

β (t, i) = µi

t∏
k=i+1

(I− µkxkx′k) , (47)

= (I− µtxtx′t)µi
t−1∏
k=i+1

(I− µkxkx′k) , (48)

β (t, i) = (I− µtxtx′t)β (t− 1, i) . (49)

Substituting (49) into (46) we then have

θ̂
SG

t = µtxtyt + (I− µtxtx′t)
t−1∑
i=1

β (t− 1, i) xiyi, (50)

= µtxtyt + (I− µtxtx′t) θ̂
SG

t−1, (51)

θ̂
SG

t = θ̂
SG

t−1 + µtxt

(
yt − x′tθ̂

SG

t−1

)
, (52)

which has exactly the same form as of (4), thus establishing the correspondence at scrutiny.

A.3 Correspondence with general Kalman filter

Following Hamilton (1994, pp. 399-400) notation, we consider a general state-space model with stochas-

tically varying coefficients given by

ξt+1 = F (xt) ξt + vt+1, (53)

yt = a (xt) + [H (xt)]
′
ξt + wt, (54)

where ξt is a vector of unobserved coefficients (states), yt is a vector of observable variables, xt is a

vector of exogenous or predetermined variables, F (xt) and H (xt) are matrix-valued functions of xt,

and a (xt) is a vector-valued function xt, all with conformable dimensions. The vectors of noises vt+1

and w′t are assumed to be mutually independent and distributed according to a Gaussian distribution,

conditionally on It = (xt,xt−1, . . . ,x1,yt−1, . . . ,y1), with mean zero and variances given by Q (xt) and

R (xt), respectively. Assuming further that the initial state ξ1 ∼ N
(
ξ̂1|0,P1|0

)
, the optimal estimates

14



of states ξt are obtained through the Kalman filter equations given by

ξ̂t|t = ξ̂t|t−1 + Kt

[
yt − a (xt)− [H (xt)]

′
ξ̂t|t−1

]
, (55)

Pt|t =
[
I−Kt [H (xt)]

′]
Pt|t−1, (56)

Kt = Pt|t−1H (xt)
[
[H (xt)]

′
Pt|t−1H (xt) + R (xt)

]−1
, (57)

ξ̂t+1|t = F (xt) ξ̂t|t, (58)

Pt+1|t = F (xt) Pt|t [F (xt)]
′
+ Q (xt) . (59)

where the subscripts indicate the timing of information associated to each estimate, e.g., t + 1|t means

the inference standing for period t + 1 of the associated variable is made on the basis of data observed

through period t.

To show that (20)-(22) represents the Kalman solution to the estimation of the time-varying coef-

ficients of the model in (1) and (19), first let ξt ≡ θj,t, F (xt) ≡ I, vt ≡ ωj,t, yt ≡ yj,t, a (xt) ≡ 0,

H (xt) ≡ xt, wt ≡ εj,t, Q (xt) ≡ Ωj,t, and R (xt) ≡ σ2
j,t. Substituting these in (55)-(59) we get

θ̂j,t|t = θ̂j,t|t−1 + Kj,t

[
yj,t − x′tθ̂j,t|t−1

]
, (60)

Pj,t|t = [I−Kj,tx
′
t] Pj,t|t−1, (61)

Kj,t = Pj,t|t−1xt
[
x′tPj,t|t−1xt + σ2

j,t

]−1
, (62)

θ̂j,t+1|t = θ̂j,t|t, (63)

Pj,t+1|t = Pj,t|t + Ωj,t. (64)

Substituting (60) and (61) into (63) and (64) we get

θ̂j,t+1|t = θ̂j,t|t−1 + Kj,t

[
yj,t − x′tθ̂j,t|t−1

]
, (65)

Pj,t+1|t = [I−Kj,tx
′
t] Pj,t|t−1 + Ωj,t, (66)

which is evidently equivalent to the recursions in (20)-(22) with θ̂j,t ≡ θ̂j,t+1|t and Pj,t ≡ Pj,t+1|t.

A.4 Correspondence between Kalman-based LS and ad hoc LS

Lets begin by rearranging terms in (3) and using the matrix inversion lemma,

(A + UCV)
−1

= A−1 −A−1U
(
C−1 + VA−1U

)−1
VA−1, (67)
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to find that

γ−1j,t Rj,t = γ−1j,t (1− γj,t) Rj,t−1︸ ︷︷ ︸
A

+ xt︸︷︷︸
U

C︷︸︸︷
1 x′t︸︷︷︸

V

, (68)

γj,tR
−1
j,t =

γj,t
1− γj,t

R−1j,t−1 −
γj,t

1− γj,t
R−1j,t−1xt

(
1 + x′t

γj,t
1− γj,t

R−1j,t−1xt

)−1
x′t

γj,t
1− γj,t

R−1j,t−1,(69)

γj,t
γj,t−1

R−1j,t =
γj,t

γj,t−1 (1− γj,t)

(
I−

R−1j,t−1xtx
′
t

1−γj,t
γj,t

+ x′tR
−1
j,t−1xt

)
R−1j,t−1, (70)

PLS
j,t =

γj,t
γj,t−1 (1− γj,t)

(
I−

PLS
j,t−1xtx

′
t

x′tP
LS
j,t−1xt +

γj,t−1

γj,t
(1− γj,t)

)
PLS
j,t−1, (71)

where in the last line we let PLS
j,t ≡ γj,tR

−1
j,t ⇒ PLS

j,t−1 = γj,t−1R
−1
j,t−1.

For the coefficients estimates recursion in (2), let KLS
j,t ≡ γjR

−1
j,t xt = PLS

j,t xt to then obtain

KLS
j,t =

γj,t
γj,t−1 (1− γj,t)

(
I−

PLS
j,t−1xtx

′
t

x′tP
LS
j,t−1xt +

γj,t−1

γj,t
(1− γj,t)

)
PLS
j,t−1xt, (72)

=
γj,t

γj,t−1 (1− γj,t)
PLS
j,t−1xt

(
1−

x′tP
LS
j,t−1xt

x′tP
LS
j,t−1xt +

γj,t−1

γj,t
(1− γj,t)

)
, (73)

=
γj,t

γj,t−1 (1− γj,t)
PLS
j,t−1xt

( γj,t−1

γj,t
(1− γj,t)

x′tP
LS
j,t−1xt +

γj,t−1

γj,t
(1− γj,t)

)
, (74)

KLS
j,t =

PLS
j,t−1xt

x′tP
LS
j,t−1xt +

γj,t−1

γj,t
(1− γj,t)

. (75)

Note that (75) and (71) assume exactly the same form as of (26) and (27), respectively, thus establishing

the correspondence at scrutiny.

A.5 Correspondence between Kalman filter and SG

First, lets show how (28) is obtained from substitution of (11) into (23). To see that, first notice that

an scalar λt equivalent to λt in (11) can be obtained by solving the eigenvalue problem

(I− µtxtx′t) z = λtz, (76)

for an arbitrary K × 1 vector z. As usual, this problem can be solved by finding the λt that makes the

following determinant to be equal to zero,

det [(1− λt) I− µtxtx′t] = 0. (77)

Making use of the matrix determinant lemma, i.e.,

det [A + uv′] = det [A]
(
1 + v′A−1u

)
, (78)
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we then find that

det

(1− λt) I︸ ︷︷ ︸
A

−µtxt︸ ︷︷ ︸
u

x′t︸︷︷︸
v′

 = (1− λt)K
(

1− x′t (1− λt)−1 Iµtxt

)
, (79)

= (1− λt)K − (1− λt)K−1 µtx′txt. (80)

Equating this last expression to zero and solving then we find that

λt = 1− µtx′txt, (81)

which is the scalar version of λt in (11) that we were looking for substitution into (23), together with αt

from (11) as well. This results in

σ2
j,t = (1− µtx′txt)µ−1t , (82)

= µ−1t − x′txt, (83)

which is recognizably equal to (28) as we wanted to show.

Now, to show the correspondence between the Kalman filter and the SG algorithm, start by substi-

tuting (28) into the Kalman gain formulae, (21), to find that

Kj,t =
Pj,t−1xt

x′tPj,t−1xt + µ−1t − x′txt
, (84)

=
µtPj,t−1xt

µtx′tPj,t−1xt − µtx′txt + 1
, (85)

where clearly we need Pj,t−1 = I in order to (30) hold true. To achieve this, we can use (29) into (22)

to find that

Pj,t =

(
I− Pj,t−1xtx

′
t

x′tPj,t−1xt + σ2
j,t

)
Pj,t−1 + I−

(
I− Pj,t−1xtx

′
t

x′tPj,t−1xt + σ2
j,t

)
Pj,t−1, (86)

PSG
j,t = I. (87)

Substituting this result into the previous formulae for the Kalman gain specialized to the SG case we

find

KSG
j,t = µtxt, (88)

thus confirming the correspondence between the Kalman filter and the SG algorithm under the assump-

tions of (28) and (29).
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