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Abstract

In a linear stochastic forward-looking univariate model with predetermined variables, we
consider the possibility of heterogeneous equilibria with sunspots emerging endogenously
through adaptive learning and replicator dynamics. In particular, we investigate equilib-
ria where only a fraction of agents in the economy condition their forecasts on a sunspot,
and equilibria where di¤erent groups of agents use di¤erent sunspots. We �nd that, although
such heterogeneous equilibria exist and can be stable under adaptive learning, they do no
survive under endogenous replicator dynamics. Moreover, we show that even homogeneous
sunspot equilibria require some degree of coordinations among agents for them to emerge
in an economy. We conclude that heterogeneous equilibria with sunspots are fragile under
endogenous selection of predictors by agents, and that even the relevance of homogeneous
sunspot equilibria is questioned once agents are allowed to doubt about the importance of
sunspots in their forecasts.
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1 Introduction

Sunspot equilibria are an intriguing possibility, as they open the door to �uctuations in economic

activity driven purely by agents� expectations and disconnected from economic fundamentals.

From the seminal works of Azariadis (1981) and Cass and Shell (1983), the possibility of self-

ful�lling equilibria is well known among economists: because agents expect some particular state

of the system to get realized in the future, that very state emerges as an equilibrium outcome for

the economy.

While the early works considered the possibility of �nite state Markov sunspot equilibria, in

the business cycles literature a di¤erent class of sunspots is more frequently considered, one in

which the sunspot variable has an ARMA form. Examples are found in McCallum (1983) and

Farmer (1993).

As Evans and McGough (2011) recently remarked, the fact that sunspot equilibria are theoret-

ically possible in a model does not make them necessarily relevant from an economic perspective,

as it might not be possible for agents to coordinate on such equilibria. Because of this, a number

of authors have tried to understand the conditions under which sunspot equilibria are learnable.

Woodford (1990), Evans and Honkapohja (1994a) and Evans and Honkapohja (2003) analyze

learnability for �nite state Markov sunspot equilibria, while Evans and Honkapohja (1994b) and

Evans and McGough (2005a, 2005b) show that also sunspot solutions in ARMA form can be

learnable. Evans and McGough (2011) show in a purely forward looking model that when �nite

state Markov sunspots are stable under learning, all sunspot equilibria are, provided a common

factor representation is used.

All these works take a representative agent approach, and consider only the possibility of all

agents conditioning their expectations on an extraneous sunspot component. Heterogeneity in

expectations, though, has attracted increasing interest in the recent literature, as it is recognized

that it represents a real world feature that economists must take into account in their understanding

of expectations formation. In particular, the possibility of di¤erent predictors being endogenously

chosen on the basis of their relative performance has been investigated in di¤erent contexts. From

the seminal work of Brock and Hommes (1997), a number of works have analyzed the evolutionary

selection of forecasting rules and their impact on economic outcomes. Recent examples include

Branch and Evans (2006), Hommes (2009), Guse (2010) and Berardi (2011).

Much less investigated so far has been the link between heterogeneity and sunspot equilibria.

A notable exception is Berardi (2009), who shows the possibility of heterogeneous equilibria, where

only a fraction of agents use a sunspot variable in their forecasts, to emerge in a purely forward

looking model, but who also points out the fragility of such equilibria under predictor choice

dynamics. If agents are allowed to choose endogenously whether to include or not a sunspot in

their forecasting model, based on a mean squared error measure of performance, it does not exist

an equilibrium where only a fraction of agents uses the sunspot.

The aim of this work is to build on Berardi (2009) and extend the analysis to a more general
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framework that includes lagged endogenous variables. We investigate if the stable sunspot solutions

found by Evans and McGough (2005a) under adaptive learning are also stable under heterogeneity

and endogenous selection of forecasting models. An important result here will be that some degree

of coordination is required among agents in order for the sunspot solution to emerge. Moreover,

we analyze the possibility of having heterogeneous solutions where i) only a fraction of agents uses

a sunspot variable; and where ii) di¤erent groups of agents use di¤erent sunspots.

We will model the endogenous selection of forecasting rules by agents using replicator dynamics,

which represents the evolution of the fraction of agents using each of the possible predictors

available. The concept of replicator dynamics is popular in game theory and it is used to model

evolutionary dynamics of strategies in the population of players. While it is borrowed from biology,

where it was �rst introduced by Taylor and Jonker (1978) to formalize the notion of evolutionarily

stable strategy, Borgers and Sarin (1997) give it a learning interpretation at the individual level.

Fudenberg and Levine (1998) provide an extensive treatment in game theory, while Sethi and

Franke (1995), Branch and McGough (2008) and Guse (2010) have applied it to macroeconomic

settings.

As for the adaptive learning of parameters within each forecasting model, we follow a grow-

ing literature in macroeconomics and assume that agents act as econometrician and recurrently

estimate those parameters using techniques such as recursive least squares. We make use of the

E-stability principle (for a detailed treatment of the concepts and techniques used, see Evans and

Honkapohja, 2001) that links stability of an adaptive learning algorithm of this type to the concept

of E-stability, which depends on an associated system of di¤erential equations that are much easier

to analyze than the stochastic dynamics in real time of the adaptive algorithm. We will therefore

use the terms learnable and E-stable interchangeably in this work, where it is understood that the

conditions that make these two concepts equivalent are satis�ed.

The plan of the paper is as follows: in Section 2 we introduce the model; in Section 3 we analyze

the possibility of heterogeneous equilibria with only a fraction of agents using a sunspot in their

forecasts, and derive implications for the possibility of sunspot equilibria emerging endogenously in

an economy; in Section 4 we investigate the possibility of di¤erent groups of agents using di¤erent

sunspots, considering both the case of uncorrelated and correlated sunspots; Section 5 concludes.

2 The model

We consider the univariate forward looking model

yt = �E
�
t yt+1 + �yt�1 + vt; (1)

where the exogenous shock vt is white noise. Under rational expectations, with E� = E, the

expectational operator, the model has one unique non-explosive solution if 0 <j �1 j< 1 <j �2 j,
with �1 and �2 representing the two roots of the polynomial ��

2 � �+ �:

�1;2 =
1�

p
1� 4��
2�
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with �1 being the root obtained with the � sign. In this case the unique solution takes the form1

yt = �1yt�1 + (��2)
�1vt: (2)

We will be interested here instead in the case with 0 <j �1 j<j �2 j< 1, as in this case solutions
other than the minimum state variable (MSV) one exist,2 and sunspots can play a role in the

model. To �x ideas, consider the general solution to model (1), that can be written as

yt = �
�1yt�1 � ��1�yt�2 � ��1vt�1 + "t (3)

where

"t+1 = yt+1 � Etyt+1

is a martingale di¤erence sequence (mds). By de�ning

"t = (��i)
�1vt;

i 2 f1; 2g, we get the two MSV solutions, while if instead

"t = (��i)
�1vt + (1� �iL) �t;

we have a sunspot solution, where �t is the sunspot component.
3 This last equation imposes a

restriction on the sunspot, which must "resonate"4 with the structural parameters for the economy,

i.e., it must have an AR(1) form with coe¢ cient equal to �i.

Formally, for a given sunspot variable

�t = ��t�1 + "t

we must have that

� = �i

in order for the sunspot to enter into the solution of (1).

It is well known that, for a given solution, we can have alternative representations, as it has

been shown by Evans and McGough (2005a, 2005b). Only sunspot solutions with the so called

common factor (CF) representation, though, turn out to be learnable. We will thus focus on these

solutions in our analysis, and in particular on the only one being learnable:

yt = �1yt�1 + (��2)
�1vt + ��t; (4)

with

�t = �2�t�1 + "t:

1We will restrict our analysis to the case where these roots are real, which imposes the restriction �� < 1=4.
2The term "minimum state variables" was introduced by McCallum (1983) and refers to the solution with the

minimum possible number of state variables.
3For a derivation of the MSV and sunspot solutions from (3), see the Appendix.
4The terminology comes from Evans and McGough (2005a).
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Existence and E-stability of this solution requires � < �1=2; � + � < �1 and 4�� < 1.5 In this
case, moreover, the parameter � attached to the sunspot is free. Note that these conditions imply

�1;2 < 0.

An additional result from Evans and McGough (2005a) is that the sunspot-free MSV solution

is strongly E-stable when agents parameterized their forecasting model allowing for a sunspot if i)

� < 1=2 or � + � < 1 and (ii) �(�1 + �) < 1.

3 Heterogeneous expectations

Starting from the results of Evans and McGough (2005a), outlined in the previous section, we want

now to introduce heterogeneity of beliefs in this framework and investigate whether the sunspot

solutions that have been found to be learnable under adaptive learning dynamics are robust to

agents doubting about the relevance of the sunspot in their forecasting model. We therefore

allow agents to use one of two di¤erent models, one that includes and one that does not include

the sunspot component, and choose between the two on the basis of the relative performance

in forecasting, as expressed by the expected mean square errors (MSE). In speci�c, we will use

replicator dynamics to model the evolution of the fraction of agents using each model.

The economy is still represented by (1). There is a continuum of agents on the unit interval,

and in forming their expectations they can use one of two models or perceived laws of motion

(PLM), one sunspot-free (PLM1)

yt = a1 + b1yt�1 + c1vt (5)

and one that includes a sunspot (PLM2)

yt = a2 + b2yt�1 + c2vt + d2�t: (6)

We denote by � the fraction of agents using the sunspot-free model, and (1 � �) the remaining
agents using the model with sunspot. Aggregate expectations are therefore given by

E�t yt+1 = �E
1
t yt+1 + (1� �)E2t yt+1 (7)

where Eityt+1 are expectations formed using PLM
i, i 2 f1; 2g.

The parameter � will be regarded as endogenous, and it will be determined by replicator

dynamics based on the relative performance of the two models, measured by the unconditional

mean square error. Using this measure we will be able to derive analytical results throughout the

paper, while if we were instead to use a measure of real time performance we would have to resort

to numerical simulations. Moreover, as Branch and Evans (2006) point out, such a measure would

5These restrictions are obtained by Evans and McGough (2005a) by simultaneously imposing conditions for
indeterminacy, E-stability and real solution. Conditions for E-stability alone would be � < 1=2 or � + � < 1.
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not be appropriate in a stochastic framework such as ours. We will thus have

_� = �
�
�MSE1 �

�
�(�MSE1) + (1� �) (�MSE2)

�	
= � (1� �)� (8)

where � =MSE2 �MSE1 and

MSEi = E
�
yt � Eit�1yt

�2
:

Clearly, � = 0 implies _� = 0, as the two models deliver the same performance and there is no

incentive for agents to switch from one to the other. Moreover, also � = 0 and � = 1 are resting

points for the dynamics of �: once homogeneity is reached, the excluded model is no longer used.

We will be interested, in particular, to see whether an equilibrium for the dynamics of the two

groups of agents exists other than the two homogeneous ones, i.e., if there exists a situation where

_� = 0 but � =2 f0; 1g: this will require � = 0:

3.1 Stability under learning

First, we start by taking � as an exogenous and given parameter, and focus on the analysis of

learnability in presence of heterogeneity. In the next Section we will then bring back replicator

dynamics into the framework.

One important thing that must be noted is that the presence of heterogeneity changes the

resonant frequency condition for the sunspot, as already pointed out in Berardi (2009). To see

how this happens in the present context, and to �x ideas about learning, consider agents using (5)

and (6) to form expectations. We then have

E1t yt+1 = a1 (1 + b1) + b
2
1yt�1 + c1b1vt (9)

E2t yt+1 = a2 (1 + b2) + b
2
2yt�1 + c2b2vt + d2 (b2 + �) �t; (10)

where we have assumed that � is known to agents: otherwise, since the sunspot component is

exogenous and observable, this parameter could be consistently estimated using OLS techniques.

Aggregating expectations and substituting into (1), we get the temporary equilibrium, or actual

law of motion (ALM) for the economy:

yt = � [�a1 (1 + b1) + (1� �) a2 (1 + b2)] +
�
�
�
�b21 + (1� �) b22

�
+ �
�
yt�1 +

+ [� (�c1b1 + (1� �) c2b2) + 1] vt + � [(1� �) d2 (b2 + �)] �t: (11)

According to the E-stability principle (see Evans and Honkapohja, 2001), maps from parameters

of the PLM into those of the ALM provide the ordinary di¤erential equations (ODES) that govern
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the asymptotic behavior of adaptive learning dynamics:

_a1 = � [�a1 (1 + b1) + (1� �) a2 (1 + b2)]� a1 (12)

_a2 = � [�a1 (1 + b1) + (1� �) a2 (1 + b2)]� a2 (13)

_b1 = �
�
�b21 + (1� �) b22

�
+ � � b1 (14)

_b2 = �
�
�b21 + (1� �) b22

�
+ � � b2 (15)

_c1 = � [�c1b1 + (1� �) c2b2] + 1� c1 (16)

_c2 = � [�c1b1 + (1� �) c2b2] + 1� c2 (17)

_d2 = � (1� �) (b2 + �) d2 � d2: (18)

Fixed points of these ODEs are possible equilibria for the model.

De�nition 1 An heterogeneous expectations equilibrium with sunspot is an endogenous stochastic
process yt, a fundamental shock vt and an exogenous stochastic process �t, with population fraction
� 2 (0; 1) and a set of expectational parameters {a1; b1; c1; a2; b2; c2; d2} such that: i) yt solves (1)
for any t; ii) expectations are given by (7),(9) and (10); iii) expectational parameters are �xed
points of the maps (12)-(18).

Note that we are requiring � 2 (0; 1), i.e., both PLMs must be used in an heterogeneous

equilibrium. If instead � 2 f0; 1g, we then have an homogeneous expectations equilibrium (with

or without sunspot, respectively).

Looking at the set of ODEs (12)-(18), we can see that there is only a symmetric solution where

ai, bi and ci take the same value for both groups of agents, and speci�cally

�a : = �a1 = �a2 = 0

�b : = �b1 = �b2 = �1;2

�c : = �c1 = �c2 =
1

1� ��b

while d2 can either take the value of zero, or be free in case �
�
(1� �)

�
�b+ �

��
= 1. As pointed out

before, in the homogeneous case only the solution obtained with �b = �1 can be learnable, and this

requires � < �1=2; � + � < �1 and 4�� < 1. It turns out that the same conditions are required
for learnability in the heterogeneous case here analyzed and the new parameter � (for the moment

taken as given) that arises under heterogeneity does not a¤ect these conditions. Consider in fact

the system of ODEs for b1 and b2: the Jacobian governing stability of this system is given by

Jb =

"
2��b1 � 1 2� (1� �) b2
2��b1 2� (1� �) b2 � 1

#

and it has eigenvalues equal to�1 and 2��b1+2� (1� �) b2�1. These, evaluated at the equilibrium
points �b = �1;2 show that the solution for �1 is always stable, while that for �2 never is.

Turning now to the ODEs for a1 and a2, we get that the Jacobian for this system is given by

Ja =

"
�� (1 + b1)� 1 � (1� �) (1 + b2)
�� (1 + b1) � (1� �) (1 + b2)� 1

#
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whose eigenvalues, evaluated at �b = �1; show that again stability requires either � < 1=2 or

� + � < 1.

From the ODEs for c1 and c2 then we obtain the Jacobian

Jc =

"
��b1 � 1 � (1� �) b2
��b1 � (1� �) b2 � 1

#

whose eigenvalues reveal again that the solution obtained with �1 is stable. We therefore have

that, at this point, once we add conditions for indeterminacy and real solution to the conditions for

E-stability required for parameters a1 and a2, we obtain the same region for stability of equilibrium

as in the homogeneous case.

We turn now to the dynamics for d2. The corresponding ODE gives the additional condition

for learnability:

� (1� �) (�1 + �) < 1: (19)

Before discussing this condition, we must consider the resonant frequency condition, and see how

it is modi�ed by the presence of heterogeneity. Considering the learnable solution, with �b = �1,

parameter d2 is now free for � (1� �) (�1 + �) = 1, which requires

� = ~� :=
1

� (1� �) � �1 (20)

or equivalently, expressed as a resonant fraction6 condition

� = ~� := 1� 1

� (�1 + �)
: (21)

We see that heterogeneity modi�es the condition required for the sunspot to resonate with the

economy, and it is no longer the case that the AR(1) coe¢ cient of the sunspot must be the same

as �2, as it was previously the case. Only if � = 0, i.e., all agents in the economy use the sunspot

model, this condition is restored.

The resonant condition under heterogeneity can be interpreted in two ways: for a given fraction

of agents using a sunspot variable in their forecasts (i.e., for a given �), the AR(1) coe¢ cient for

the sunspot must be as de�ned by ~� in (20) in order to resonate with the economy and generate

a sunspot equilibrium; alternatively, for a given exogenous AR(1) stochastic process (i.e., for a

given �), there is a fraction of agents ~�, as de�ned in (21), that resonates with the economy and

gives rise to a sunspot equilibrium.

Going back to condition (19) for learnability, note that the resonant frequency/fraction restric-

tion implies that the l.h.s. of condition (19) is equal to one. Following the argument exposed

in Evans and Honkapohja (1992) and used also in Evans and McGough (2005a), since b2 ! �1

we have that d2 converges to a �nite value, and therefore no additional stability conditions are

required.

Since the belief parameter d is free in equilibrium, there is in fact a continuum of solutions.

6This terminology was �rst used in Berardi (2009).
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In this case, since the rest point of the system of ODEs governing E-stability is not an isolated

point, the notion of E-stability has to be rede�ned as in Evans and McGough (2005a) in order to

allow for the fact that it must refer to a set of �xed points instead of an isolated one. Moreover,

the E-stability principle, which links E-stability and adaptive learning, formally applies only to

the case where the system of ODEs has an isolated rest point. Evidence, though, suggests that

such a link still holds in this class of models, as pointed out in Evans and McGough (2005a) and

Evans and Honkapohja (2001, p. 192). We therefore follow these works and continue to use it as

a device to study learnability.

Proposition 2 Under heterogeneous learning dynamics, there exists an heterogeneous expecta-
tions equilibrium with sunspot given by �a = 0;�b = �1; �c =

1
1���1

; and �d free provided � =
1

�(1��) � �1, which is E-stable for � < �1=2; � + � < �1 and 4�� < 1.

3.2 Replicator dynamics

We turn allow the relative fraction of agents using each model (�) to be determined endogenously

through replicator dynamics, as speci�ed by equation (8). We start by de�ning the unconditional

expected MSE for the two models as:

MSE1 = E (yt � �1zt)2

MSE2 = E (yt � �2zt)2

where

�1 = [a1 b1 c1 0]

�2 = [a2 b2 c2 d2]

and

zt = [1 yt�1 vt �t]
0:

Using equilibrium values for belief parameters [ai; bi; ci], and for generic d2, we have

MSE1 = [� (1� �) (�1 + �) d2]
2
�2�

MSE2 = [(� (1� �) (�1 + �)� 1) d2]
2
�2� :

This means that the replicator dynamics equation (8) can be written as

_� = � (1� �) [1� 2� (1� �) (�1 + �)] d22�2� : (22)

In order to have _� = 0 we need � = 0, which, for generic d2 6= 0, requires � = �̂ , where

�̂ = 1� 1

2� (�1 + �)
: (23)

If instead � > �̂, this implies � > 0 (and vice-versa).
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De�nition 3 An endogenous heterogeneous expectations equilibrium with sunspot is an heteroge-
neous expectations equilibrium as de�ned in De�nition (1), but where the population fraction � is
endogenously determined by (22).

Comparing condition (23) with the resonant fraction condition (21) that ensures the existence

of the sunspot solution, we can see that the two di¤er. This means that when the sunspot solution

exists (i.e., the resonant fraction condition is satis�ed and � = ~�), the condition for � = 0, which

would give _� = 0, can not be satis�ed. In particular, the resonant fraction condition implies _� < 0

(since in that caseMSE2 = 0), which means that the fraction of agents using the sunspot variable

increases at ~�.

On the other hand, for a given sunspot process, if the resonant frequency condition is not

satis�ed (� 6= ~�), could � adjust so that ~� = � (note that for a given stochastic process that could
represent a sunspot, � is given and exogenous, so it is ~� that has to adjust, i.e., �! ~�). In other

words, is it possible that any exogenous variable becomes a sunspot for the model, as � adjusts

and the resonant frequency condition emerges endogenously? To answer this question, we need

to check whether ~� is an equilibrium under replicator dynamics: since we know that ~� < �̂, we

have that _� is negative at ~�, and this means that ~� can not be an equilibrium for the replicator

dynamics. The resonant fraction condition, therefore, can not emerge spontaneously.

Proposition 4 The resonant fraction condition � = ~� required to have an heterogeneous equilib-
rium under learning dynamics can not emerge endogenously under replicator dynamics.

We want now to check for stability under replicator dynamics of the two homogeneous solutions,

� = 0 and � = 1. Note that both imply _� = 0, so they are resting points of the population

dynamics, but are they locally stable? To answer this question we must check the sign of d _�=d� at

each of these two points. It turns out that d _�=d�, evaluated at � = 0, is negative for � (�1 + �) >
1
2 ,

which substituting for the equilibrium value of �1 means that under replicator dynamics � = 0

is stable for 2�� >
p
1� 4��: in this case the equilibrium with all agents using the sunspot is

robust to small deviations. Using the resonant frequency condition when � = 0, i.e., � = �2, this

means that replicator dynamics at � = 0 are always stable when the sunspot solution exists.

What about � = 1: is the sunspot-free equilibrium stable under a small deviation in the

population, or is it enough that few people start using the sunspot for the economy to move away

from it? Since the sign of d _�=d� at � = 1 is negative, it turns out that � = 1 is also always locally

stable: if only few people deviate from the fundamental equilibrium and start using the sunspot,

they are quickly swept away and the sunspot becomes again irrelevant for the economy.

Proposition 5 The homogeneous equilibrium with � = 1 is always stable under replicator dynam-
ics. The homogeneous equilibrium with � = 0 is also stable under replicator dynamics, provided
the sunspot solution exists (i.e., the resonant frequency condition is satis�ed).

In addition to the two homogeneous equilibria, we have seen that there is an additional resting

point for the replicator dynamics, which obtains for � = �̂: in this case in fact � = 0 and

therefore _� = 0. We have seen above, though, that in this case the resonant fraction condition is

not satis�ed, so this solution is not an equilibrium in terms of agents�expectations, as their beliefs

9
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would be constantly falsi�ed by data. But even so, would it be stable under replicator dynamics?

It is possible to show that d _�=d > 0 at � = �̂, so the answer is no.

Proposition 6 The heterogeneous solution with � = �̂ is not stable under replicator dynamics.

The �ndings about the two homogeneous solutions lead to a new question: what is the minimum

number of people needed to make the sunspot matter in the economy? The answer, it turns out,

depends on �̂. When both � = 0 and � = 1 are locally stable, in fact, there must be a threshold

in between that separates the two basins of attraction for these equilibria: this threshold is given

by �̂.

In Figure 1 we plot an instance of the behavior of _� that clari�es this point, obtained setting

� (�1 + �) = 1 (which is implied by � = �2) and d
2
2�

2
� = 1 (the value of d

2
2�

2
� is irrelevant for the

sign of the derivative, as it is always positive):

0.2 0.4 0.6 0.8 1.0

0.10

0.05

0.05

0.10

d

d

In the picture, given the chosen parameters, �̂ = 0:5. As � (�1 + �) decreases, �̂ decreases and

ultimately disappears for � (�1 + �) � :5: note, though, that when the resonant frequency/fraction
condition is satis�ed for the heterogeneous case, � (�1 + �) > 1 and therefore �̂ > 0:5.

What follows is a detailed explanation of the behavior of the system at the three resting points.

At � = 0 , since d _�=d� < 0, the equilibrium with sunspot is stable. Denoting " a small fraction of

agents deviating from the equilibrium, this means that:

i) at � = 0� ", _� > 0, so � " 0 (though this case is of no practical relevance, as � 2 [0; 1]);
ii) at � = 0 + ", _� < 0, so � # 0: the equilibrium with sunspot is robust to a small fraction of

agents switching model and stopping using the sunspot.

At � = 1 , since d _�=d� < 0, also the sunspot-free equilibrium is stable. This means that

i) at � = 1 � ", _� > 0, so � " 1: the sunspot-free equilibrium is robust to a small fraction of

agents starting using the sunspot in their forecasts;

ii) at � = 1 + ", _� < 0, so � # 0 (though this case is of no practical relevance, as � 2 [0; 1]).
At � = �̂, since d _�=d� > 0, the heterogeneous equilibrium is not stable:

i) at � = �̂� ", _� < 0, so � # 0: a small number of additional agents starting using the sunspot
is enough to trigger the economy towards the homogeneous sunspot equilibrium where everybody

uses the sunspot;

10
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ii) at � = �̂ + ", _� > 0, so � " 1: a small number of agents stopping using the sunspot is
enough to trigger the economy towards the sunspot free equilibrium, where nobody conditions

their forecasts on the sunspot.

These �ndings imply that we need at least a fraction (1 � �̂ � ") of people using the sunspot
for them to take over (and � # 0). This means that, especially if (1� �̂) is large, in order for the
sunspot solution to emerge there must be a lot of coordination among people, as a large fraction

of them needs to start using the sunspot variable at the same time.

Proposition 7 In order for the homogeneous sunspot equilibrium (� = 0) to emerge, there must
be in the economy at least a fraction (1� �̂� ") of people that start using the sunspot at the same
time.

This is an important results, as it shows that there must be some degree of coordination

among agents for a sunspot to become relevant in an economy. It is not enough, in fact, that a

marginal fraction of the population starts using the sunspot for the economy to move to a sunspot

equilibrium: this move requires that a signi�cant number of people (up to 50% of the population)

simultaneously switch to the sunspot model for their forecasts. The question of how such initial

coordination can be reached remains open.

3.3 Adaptive learning and replicator dynamics

We consider now in this section joint learning and replicator dynamics. This means that we

need to consider at the same time the ODEs for belief parameters (ai; bi; ci; d2) that come from

adaptive learning and the ODE for population fraction � given by replicator dynamics. The aim

is to understand whether it is possible to have �xed points of the joint dynamics, i.e., to �nd an

equilibrium for the learning and replicator dynamics as they happen simultaneously.

First, we must derive the replicator dynamics equation with out of equilibrium (from a learning

perspective) belief parameters. Assuming that both groups of agents start with the same initial

beliefs about common parameters (ai; bi; ci), and given that they use the same learning algorithm,

we have that even during the learning process, a1 = a2, b1 = b2 and c1 = c2. It follows that � is

given by

� = [1� 2� (1� �) (b2 + �)] d22�2� :

Substituting it into the ODE (8) for _�, we can see that the only belief parameters that a¤ect the

evolution of � are b2 and d2. We can therefore consider the subsystem composed of _�, _b2, _d2 (plus

the E-stability conditions already found for ai, b1 and ci, i.e., � < 1=2 or �+ � < 1). This is given

by

_� = � (1� �) [1� 2� (1� �) (b2 + �)] d22�2�
_b2 = �b22 + � � b2
_d2 = � (1� �) (b2 + �) d2 � d2:

11
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Its stability is governed by the Jacobian

J =

264
� _�
��

� _�
�b2

� _�
�d2

� _b2
��

� _b2
�b2

� _b2
�d2

� _d2
��

� _d2
�b2

� _d2
�d2

375 (24)

with

� _�

��
= (1� 2�)� +

�
2�
�
�� �2

�
(b2 + �)

�
d22�

2
� ;
� _�

�b2
= �2�� (1� �)2 d22�2� ;

� _�

�d2
= 2� (1� �) [1� 2� (1� �) (b2 + �)] d2�2� ;

� _b2
��

= 0;
� _b2
�b2

= 2�b2 � 1;
� _b2
�d2

= 0;

� _d2
��

= �� (b2 + �) d2;
� _d2
�b2

= � (1� �) d2;
� _d2
�d2

= � (1� �) (b2 + �)� 1;

to be evaluated at � = f1; 0; 1� 1
2�(�1+�)

g, b2 = �1, d2 = free. The three values for � correspond
respectively to the homogeneous equilibrium with no sunspots, the homogeneous equilibrium where

all agents use the sunspot, and the heterogeneous equilibrium where only a fraction (�̂) of agents

uses the sunspot.

For the system to be stable, we need the eigenvalues of this matrix to have all negative real

part. Eigenvalues ei are:

e1 =
� _b2
�b2
;

e2;3 =
1

2

0B@� _�
��
+
� _d2
�d2

�

vuut�� _�
��

�2
+

 
� _d2
�d2

!2
� 2� _�

��

� _d2
�d2

+ 4
� _�

�d2

� _d2
��

1CA :
It is easy to see that e1 = �

p
1� 4�� < 0: As for the other two, let�s �rst look at the equilibrium

characterized by � = 1: in this case the remaining two eigenvalues are equal to �1 and �d22�2� : it
follows that matrix J is stable and conditions for existence and stability of equilibrium under joint

learning and replicator dynamics reduce to those already found before, i.e., � < �1=2; �+ � < �1
and 4�� < 1.

Proposition 8 Under joint learning and replicator dynamics, the homogeneous sunspot-free equi-
librium is locally stable for � < �1=2; � + � < �1 and 4�� < 1.

Let�s consider now the equilibrium with � = 0, where all agents use the sunspot variable. In

this case the two remaining eigenvalues e2;3 of matrix J are [1� 2�(�1 + �)] d22�2� and �(�1+�)�1.
Using the resonant frequency condition for the homogeneous case, � = �2, it is easy to verify that

the two eigenvalues are equal to �d22�2� and 0, this last one pertaining to the dynamics of d2. Again,
recalling conditions for indeterminacy, existence of real solution and E-stability for parameters ai
and ci, we therefore �nd that stability of equilibrium under joint replicator and learning dynamics

require � < �1=2; � + � < �1 and 4�� < 1, the same conditions found by Evans and McGough

12
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(2005a) for adaptive learning alone.

Proposition 9 Under joint learning and replicator dynamics, the homogeneous sunspot equilib-
rium is locally stable for � < �1=2; � + � < �1 and 4�� < 1:

It remains to be considered the heterogeneous sunspot equilibrium with � = �̂. Using results

from the previous sections, we know that existence of such an equilibrium under adaptive learning

requires � = ~�, but this relative composition of agents is not an equilibrium for the replicator

dynamics, since �̂ 6= ~�. It follows that it does not exist an heterogeneous sunspot equilibrium

under joint learning and replicator dynamics.

Proposition 10 Under joint learning and replicator dynamics, it does not exist an heterogeneous
equilibrium with only a fraction of agents using the sunspot variable.

4 Heterogeneous sunspots equilibria

We have seen that under learning and replicator dynamics, it does not exist an heterogeneous

equilibrium where only a fraction of agents uses the sunspot: either everyone uses it, or no one

does. We want to investigate now the possibility of having an equilibrium where di¤erent agents

use di¤erent sunspot variables: would it be possible for the economy to be a¤ected by more than

one sunspot if di¤erent agents were to use them in their forecasts? In particular, we consider two

possibilities: �rst, the case where these di¤erent sunspots are independent from each other; and

then we introduce a correlation structure between the two variables.

Formally, agents now can use either PLM1, represented by forecasting model (6), reproduced

here for simplicity7

yt = a1 + b1yt�1 + c1vt + d1�1;t (25)

or the alternative model (PLM2)

yt = a2 + b2yt�1 + c2vt + d2�2;t (26)

with correlation structure between the two sunspots being represented by the symmetric matrix

F =

"
�2�1 �2�1�2
�2�1�2 �2�2

#
;

where �2�1�2 � 0 if the two sunspots are taken to be independent (section 4.1 below) and �
2
�1�2

6= 0
otherwise (section 4.2 below). Moreover, the two processes take the form

�1;t = �1�1;t�1 + "1;t (27)

�2;t = �2�2;t�1 + "2;t: (28)

We are therefore looking for heterogeneous equilibria where both PLMs are used by agents in the

economy. We introduce �rst some de�nitions to formally capture this idea.

7The only di¤erence is the subscript for parameters in the model, which is now 1 becasue it refers to the �rst
model available to agents. We will use subscript 2 for parameters in the alternative PLM.
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De�nition 11 An heterogeneous sunspots equilibrium is an endogenous stochastic process yt, a
fundamental shock vt and exogenous stochastic processes �1;t and �2;t, with population fraction
� 2 (0; 1) and a set of expectational parameters {a1; b1; c1; d1;a2; b2; c2; d2} such that: i) yt solves
(1) for any t; ii) expectations are given by (7) using models (25) and (26); iii) expectational
parameters are �xed points of the ODEs derived from the learning algorithms.

De�nition 12 An endogenous heterogeneous sunspots equilibrium is an heterogeneous sunspots
equilibrium, as de�ned in De�nition (11), but where the population fraction � is endogenously
determined by the replicator dynamics equation (8).

Again, the population fraction must be 2 (0; 1) for an heterogeneous equilibrium to exists. If

instead � 2 f0; 1g, we have an homogeneous sunspot equilibrium where all agents use the same

sunspot component. If this is obtained through replicator dynamics, we call it an endogenous

homogeneous sunspot equilibrium.

4.1 Uncorrelated sunspots

We consider �rst the case of uncorrelated sunspots, i.e., the case where the o¤ diagonal elements

of F are equal to zero. Assume a fraction � of agents use model (25), and the remaining faction

(1��) uses model (26). The relevant sets of equations for stability of adaptive learning (in addition
to those for ai, bi and ci, which remain as before) are then the ODEs

_d1 = �� (b1 + �1) d1 � d1 (29)

_d2 = � (1� �) (b2 + �2) d2 � d2: (30)

Equilibrium points are di = 0 or di free if the appropriate resonant frequency/fraction conditions

are satis�ed. It is evident that we have now two resonant fraction (frequency) conditions, one for

each sunspot:

~�1 =
1

��
� �1

~�2 =
1

� (1� �) � �1

or

~� =
1

� (�1 + �1)
(31)

(1� ~�) =
1

� (�1 + �2)
: (32)

The last two conditions combined imply the restriction

1

(�1 + �1)
+

1

(�1 + �2)
= �: (33)

Note that, given the two resonant fraction/frequency conditions, � _d1=�d1 = � _d2=�d2 = 0, and

therefore, using the same argument as before, learning dynamics for these parameters converge.

Adaptive learning in this case requires therefore the same conditions we have seen before, those
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coming from the ODEs for ai, bi and ci, with no additional requirements introduced by the

heterogeneity of sunspots used.

Proposition 13 For a given �, an heterogeneous sunspots equilibrium with uncorrelated sunspots
exists provided conditions (31) and (32) are satis�ed. Such an equilibrium is learnable for � <
�1=2; � + � < �1 and 4�� < 1.

In terms of replicator dynamics, we must �rst derive the MSEs for the two models. Using

equilibrium values for all belief parameters, we have that the MSEs for the two groups of agents

are now

MSE1 = [� (1� �) d2 (�1 + �2)]
2
�2�2

MSE2 = [��d1 (�1 + �1)]
2
�2�1 :

The replicator dynamics are therefore governed by equation (8), where now

� =MSE2 �MSE1 = [��d1 (�1 + �1)]
2
�2�1 � [� (1� �) d2 (�1 + �2)]

2
�2�2 :

There are two homogeneous equilibria, � = 0 and � = 1. The �rst implies MSE2 = 0, while

the second implies MSE1 = 0. Moreover, since d _�=d� is negative in both case, both equilibria

are stable.

In addition to the two homogeneous equilibria, there could be heterogeneous equilibria where

both sunspots are used by some agents. This would require _� = 0 for � =2 f0; 1g. The condition
required is therefore � = 0, or MSE1 =MSE2. For given parameters {�; �; �1; �2; ��1 ; ��2} and

�xed {d1; d2}, this obtains when

� = �̂ :=
d2 (�1 + �2)��2

d1 (�1 + �1)��1 + d2 (�1 + �2)��2
: (34)

Combining this condition with conditions (31)-(32) required to have a sunspot solution under

learning, we can derive the restriction
d1
d2

��1
��2

= 1; (35)

which is required for having �̂ = ~�, i.e., an heterogeneous sunspot equilibrium under learning

and replicator dynamics. Note that before, with only one group of agents using the sunspot

variable in their forecasting model, it was not possible to have an heterogeneous equilibrium that

contemporaneously satis�ed both conditions for learning and replicator dynamics. We have just

proved instead that an heterogeneous equilibrium, under both learning and replicator dynamics,

is possible when di¤erent groups of agents use di¤erent sunspots.

Proposition 14 With uncorrelated sunspots, an heterogeneous sunspots equilibrium under adap-
tive learning and replicator dynamics exists provided d1

d2

��1
��2

= 1:

We have just shown that an heterogeneous sunspots equilibrium exists. Moreover, from the

previous analysis, we know that this equilibrium is stable under adaptive learning dynamics. But is

it also stable under replicator dynamics? In order to answer this question, we need to consider the
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sign of d _�d� evaluated at � = �̂: it turns out that this derivative is always positive, for any value of the

parameters, and therefore the heterogeneous equilibrium with � = �̂ is not stable under replicator

dynamics. This means that, in this model, heterogeneous sunspot equilibria where di¤erent agents

use di¤erent sunspots in their forecasts can not emerge spontaneously under replicator dynamics.

Moreover, the fact that the two homogeneous sunspots equilibria are stable while the hetero-

geneous one is not, and that � > �̂) _� > 0 and � < �̂) _� < 0, imply that the two homogeneous

solutions are the only possible limiting points for this model, and the two basins of attractions of

these points are divided by the heterogeneous solution �̂. Replicator dynamics will always drive

the economy towards an equilibrium where all agents use the same sunspot.

Proposition 15 With uncorrelated sunspots, there exist two endogenous homogeneous sunspot
equilibria where all agents use either one of the two sunspots. These equilibria are stable under
replicator dynamics. There exists also an endogenous heterogeneous sunspots equilibrium, where
agents use di¤erent sunspots, but such equilibrium is not stable under replicator dynamics.

4.2 Correlated sunspots

We turn now to consider the case of correlated sunspots. In this case agents use di¤erent variables

as sunspots, but these variables are correlated among them: this means that the o¤ diagonal

elements of matrix F are di¤erent from zero. In particular, we assume that the two sunspots

originate from an imperfectly observable common variable, so that

�1;t = �t + u1;t (36)

�2;t = �t + u2;t (37)

with u1;t and u2;t being two i.i.d. observational noise components and

�t = ��t�1 + vt: (38)

In terms of equations (27)-(28), we therefore have that �1 = �2 = �,

"1;t = vt + u1;t � �u1;t�1
"2;t = vt + u2;t � �u2;t�1

and the variance covariance matrix F is composed by

�2�1 = �2� + �
2
u1 (39)

�2�2 = �2� + �
2
u2 (40)

�2�1�2 = �2�: (41)

With this structure in mind, we can consider now the problem of existence and stability of an

heterogeneous sunspots equilibrium where agents use di¤erent but correlated sunspots.

Since now the two sunspots are correlated, it is not possible to generate the ODEs governing the

learning dynamics for parameters di by simply mapping each individual PLM into the ALM, and

we need instead to project the ALM onto each PLM separately. Using stochastic approximation
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techniques, the di¤erential equations governing the evolution of d1 and d2 are thus given by

_d1 = [�� (�1 + �1)� 1] d1 + � (1� �) (�1 + �2)
�2�

�2� + �
2
u1

d2 (42)

_d2 = �� (�1 + �1)
�2�

�2� + �
2
u2

d1 + [� (1� �) (�1 + �2)� 1] d2; (43)

where now it results clear that the correlation among sunspots enriches the dynamics for the belief

parameters. This system of ODEs admits the sunspot free solution d1 = d2 = 0 or alternately a

sunspot solution with d1 or d2 free provided matrix (A� I) is singular, with I the identity matrix
and

A =

24 �� (�1 + �1) � (1� �) (�1 + �2)
�2�

�2�+�
2
u1

�� (�1 + �1)
�2�

�2�+�
2
u2

� (1� �) (�1 + �2)

35 :
The singularity condition requires (using the fact that �1 = �2 = �)

� (1� �) = � (�1 + �)� 1
�2 (�1 + �)

2

�
�2� + �

2
u1

� �
�2� + �

2
u2

�
�2��

2
u1 + �

2
��

2
u2 + �

2
u1�

2
u2

: (44)

It can be seen that in this case, contrary to the case with uncorrelated sunspots, d1 and d2 are

related, i.e., there is only one degree of freedom in their choice. In other words, once one of the

two is (freely) chosen, the other one is pinned down.8 This means that introducing a correlation

structure in the sunspots restricts the choice of belief parameters across agents. Note in fact that

before, with uncorrelated sunspots, no cross restriction between belief parameters was required by

adaptive learning, though cross restriction (35) was necessary in order to have an heterogeneous

equilibrium under replicator dynamics.

De�ning the r.h.s. of (44) by 
, it can be seen that there can now be two distinct values of � for

which the resonant fraction condition is satis�ed and that ensure the existence of an heterogeneous

sunspots equilibrium under adaptive learning. These values are

~�1;2 =
1

2
� 1
2

p
1� 4
; (45)

which require 0 < 1 � 4
 < 1. If this restriction is not satis�ed, instead, there can be no

heterogeneous sunspots equilibria.

Provided condition (45) is satis�ed, we ask then if these two heterogeneous sunspots equilibria

are stable under learning, i.e., if the system of ODEs (42)-(43) is stable. Stability is governed by

the eigenvalues of the Jacobian

J =

"
� _d1
�d1

� _d1
�d2

� _d2
�d1

� _d2
�d2

#
;

8 In principle, there is a second possibility: if all elements of (A� I) were equal to zero, then we would have
both d1 and d2 free, i.e., we would have two degrees of freedom in their choice. But such a possibility can never
arise with correlated sunspots (i.e., with �2�1�2 6= 0), as it can be seen by looking at the elements on the minor
diagonal of A.
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with

� _d1
�d1

= �� (�1 + �)� 1

� _d1
�d2

= � (1� �) (�1 + �)
�2�

�2� + �
2
u1

� _d2
�d1

= �� (�1 + �)
�2�

�2� + �
2
u2

� _d2
�d2

= � (1� �) (�1 + �)� 1:

In order to have both eigenvalues negative, we need the trace of J to be negative and the

determinant to be positive. This is obtained for

0 <
3

2
+
1

2

p
1� 4�� � �� and (46)

0 < 1� � (�1 + �) + �2� (1� �) (�1 + �)
2

"
1�

�
�2�
�2�

�2�
�2
+ �2��

2
u1 + �

2
��

2
u2 + �

2
u1�

2
u2

#
: (47)

Note that (44) implies that the second condition holds with equality, i.e., the determinant of

J is zero and therefore one eigenvalue of J is equal to zero. This �nding is analogous to the fact

that, with only one sunspot, the resonant fraction/frequency condition implies that the dynamics

of the ODE for the belief parameter attached to the sunspot are governed by a zero eigenvalue.

Again, using the same argument as before, this does not create any problems, as long as condition

(46) is satis�ed. We therefore have the additional condition for learnability

2�� < 3 +
p
1� 4��: (48)

Proposition 16 An heterogeneous sunspots equilibrium with correlated sunspots exists provided
either � = ~�1 or � = ~�2, where ~�1;2 are de�ned by (45). Such equilibria are learnable if i)
� < �1=2; � + � < �1 and 4�� < 1; and ii) condition (48) is satis�ed.

Turning now to analyze replicator dynamics, we want to understand i) conditions for stability

of the two homogeneous sunspot equilibria (� = 1 and � = 0), and ii) the possibility of having

an endogenous heterogeneous sunspots equilibrium. In particular, we want to check whether

the resonant fraction conditions required for learnability, i.e., � = ~�1;2, can also generate an

heterogeneous sunspots equilibrium under replicator dynamics.

First, we must derive the MSEs for the two groups of agents:

MSE1 =

"
�� (�1 + �1)

�2�
�2� + �

2
u2

d1 + [� (1� �) (�1 + �2)] d2

#2
�2�2

MSE2 =

"
�� (�1 + �1) d1 + � (1� �) (�1 + �2)

�2�
�2� + �

2
u1

d2

#2
�2�1 :

Stability of the two homogeneous sunspot solutions (� = 1 and � = 0) require d _�=d�, evaluated
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at the two equilibria, to be negative. We have

� _�

��
= (1� 2�)� +

�
�� �2

� ��
��

which, evaluated at � = 1, gives

� _�

��
j�=1= [� (�1 + �1) d1]

2

 
�2�1 �

�2�1�2
�2�2

!
;

and, evaluated at � = 0, gives

� _�

��
j�=0= [� (�1 + �2) d2]

2

 
�2�2 �

�2�1�2
�2�1

!
:

It can easily be seen that both derivatives are negative if and only if�
�2�1�2

�2
< �2�1�

2
�2
:

The Cauchy-Schwarz inequality implies that, for generic random variables X and Y,

[cov(X;Y )]
2 � var(x)var(Y )

with equality holding only in case of X and Y being linearly related. It follows from (36)-(37) that

in our case the inequality holds strictly, and the two homogeneous sunspot equilibria are both

stable.

In terms of our point ii), an heterogeneous sunspots equilibrium under replicator dynamics

would require MSE1 = MSE2. Using the expressions for the mean squared errors presented

above, we have the result

� = 0, � = �̂ :=
d2 (�1 + �2)

�
��2 + �

2
�1�2

=��1

�
d1 (�1 + �1)

�
��1 � �2�1�2=��2

�
+ d2 (�1 + �2)

�
��2 � �2�1�2=��1

� : (49)

Note that with no correlation among sunspots, this condition reduces to (34). Moreover, since

we have that �1 = �2 = �, we can rewrite (49) as

�̂ :=
d2

�
��2 + �

2
�1�2

=��1

�
d1

�
��1 � �2�1�2=��2

�
+ d2

�
��2 � �2�1�2=��1

� : (50)

From (45) and (50), it is possible to derive restrictions necessary to have �̂ = ~�1;2: though

the analytical conditions are cumbersome and not very revealing, they impose a cross restric-

tion between belief parameters d1 and d2, the variance covariance structure of the economy and

fundamental parameters �, � and �.

Proposition 17 An endogenous heterogeneous sunspots equilibrium with correlated sunspots ex-
ists provided �̂ = ~�1;2.

Would this equilibrium be stable under replicator dynamics? The answer depends on the sign
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of
� _�

��
= (1� 2�)� +

�
�� �2

� ��
��

evaluated at �̂. Since at � = �̂ we have � = 0, the sign of this derivative depends only on the sign

of ���� , evaluated at �̂. It can be shown that

��

��
j�=�̂> 0, �̂d21

�
�2�1 �

�
�2�1�2

�2
=�2�2

�
+ (1� �̂) d22

�
�2�2 �

�
�2�1�2

�2
=�2�1

�
> 0;

and again, using the Cauchy-Schwarz inequality, it follows that this condition is always satis�ed

and therefore the equilibrium with � = �̂ is always unstable under replicator dynamics.

Proposition 18 With correlated sunspots, the two endogenous homogeneous sunspot equilibria
are stable under replicator while the endogenous heterogeneous sunspots equilibrium is not.

5 Conclusions

In this paper we have analyzed the possibility of heterogeneous equilibria with sunspots to arise

in a simple univariate forward looking model with predetermined variables under learning and

predictor choice dynamics.

In particular, we have shown the existence, under adaptive learning, of heterogeneous equilibria

where only a fraction of agents uses a sunspot in their forecasts, and heterogeneous equilibria where

di¤erent groups of agents use di¤erent sunspots. These equilibria, in order to exist, need to satisfy a

resonant fraction/frequency condition that relates the autoregressive parameter of the sunspot(s)

to the fraction of agents using the sunspot(s). Both the homogeneous and the heterogeneous

equilibria can be learnable by agents if speci�c restrictions on parameters are satis�ed.

But heterogeneous equilibria with sunspots turn out to be fragile once agents are allowed to

doubt the relevance of the sunspot components and to choose whether or not to include them

in their forecasting model on the basis of forecasting performance. While homogeneous sunspot

equilibria are in fact stable under replicator dynamics, heterogeneous equilibria where only a

fraction of agents uses the sunspot, or where di¤erent groups of agents use di¤erent sunspots, are

not. These results, therefore, cast some shadows on the relevance of heterogeneous equilibria with

sunspots in real life, as such equilibria require agents never to doubt about the importance of the

sunspot components for their forecasts.

Moreover, we have shown that there is a minimum fraction of the population that must start

using a sunspot variable for the homogeneous sunspot equilibrium to come about under replicator

dynamics. This important result casts some shadows also on the relevance of homogeneous sunspot

equilibria, as it shows that there must be an initial degree of coordination among agents in order

for a sunspot equilibrium to emerge.

We hope that the �ndings of this paper will help economists better understand the set of

conditions under which homogeneous and heterogeneous equilibria with sunspots can emerge in

their models, and therefore better understand the possible relevance of such equilibria in actual

economies.
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6 Appendix

We brie�y show here how to derive the MSV and sunspot solutions for model (1). Starting from

the general form (3), reproduced here for simplicity

yt = �
�1yt�1 � ��1�yt�2 � ��1vt�1 + "t (51)

di¤erent solutions can be obtained by appropriately rede�ning the error term

"t+1 = yt+1 � Etyt+1:

1. MSV solutions. By de�ning

"t = (��i)
�1vt;

i 2 f1; 2g, and deleting the common factor (1� �iL), we get the two MSV solutions

yt = �jyt�1 + (��i)
�1vt (52)

where i; j 2 f1; 2g and j 6= i.

2. Sunspot solutions. By de�ning

"t = (��i)
�1vt + (1� �iL) �t;

and again deleting the common factor (1� �iL), we have the sunspot solutions

yt = �jyt�1 + (��i)
�1vt + �t; (53)

where �t is the sunspot component and again i; j 2 f1; 2g, j 6= i.

Solution representations (52) and (53) are called "common factor representation", as they are

obtained from the general solution (51) by deleting a common factor component.
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