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Abstract

In a simple, forward looking linear stochastic model we investigate
the impact of heterogeneity in expectations formation on the speed of
convergence of the learning process of agents towards equilibrium. We
�nd that even when heterogeneity does not a¤ect learnability in term
of its asymptotic outcome, it can still have an important impact on the
learnability of an equilibrium in terms of the speed of convergence of
learning dynamics.
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1 Introduction

The literature on learning in macroeconomics proposes to step back from the

rational expectations assumption and to represent agents as adaptive learners

that update over time their beliefs about the economy using speci�c expectations

formation procedures. A typical way to model this feature is to endow agents

with a forecasting model and a least squares recursive learning algorithm, and

evaluate whether agents expectations converge over time to an equilibrium point.

See for example Marcet and Sargent (1989) and Evans and Honkapohja (2001).

The majority of this literature on learning in macroeconomics tends to focus

on asymptotic results of convergence. In particular, an equilibrium is said to

be E-stable (see Evans and Honkapohja, 2001) if it can represent the limiting

point of the learning dynamics of agents. Little emphasis, instead, is usually

put on the issue of how easy it is for agents to learn such an equilibrium. A

notable exception in this regard is represented by Ferrero (2007), who, building

on results from Marcet and Sargent (1995), considers the impact of monetary

policy on the speed of convergence of the learning process of agents in an IS/AS

economy. Berardi and Du¤y (2010) also consider the issue of convergence times

for di¤erent learning algorithms.

Recent literature has then focused on heterogeneity in learning and has tried

to understand how heterogeneity a¤ects the learnability of an equilibrium. See

for example Giannitsarou (2003), Guse (2005), Branch and Evans (2006), and

Berardi (2007). Also this literature, though, tends to focus on asymptotic results

of convergence and neglects the issue of how heterogeneity a¤ects the speed of

convergence of the economy towards equilibrium.

The purpose of this paper is �ll this gap and to assess the impact of het-

erogeneity on the speed of convergence of the learning dynamics of agents. We

think that, though largely neglected, the question of the speed of convergence

of an economy towards equilibrium is a very important one. It may help re-

searchers, for example, decide whether, in a particular model, focusing only on
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the limiting equilibrium point is a sensible thing to do, or if instead, due to

the low speed of convergence, the economy will spend most of its time out of

equilibrium and therefore transition dynamics should be considered carefully.

In a simple, forward looking linear stochastic model we thus investigate the

impact of heterogeneity in expectations formation on the speed of convergence

of the learning process of agents towards equilibrium. We do it using the Hetero-

geneous Expectations Equilibrium (HEE) concept developed in Berardi (2007),

where we showed how heterogeneity a¤ects learnability in terms of asymptotic

results.

The structure of the paper is as follows: Section 2 introduces the model;

Section 3 discusses E-stability and speed of convergence for the homogeneous

case; Section 4 introduces heterogeneity and assesses its impact on E-stability

and speed of convergence; Section 5 concludes.

2 The model

We borrow the model from Berardi (2007). The structural equations represent-

ing the dynamics for the economy are

xt = aE1t xt+1 + bE
2
t xt+1 + cxt�1 + dwt (1)

wt = �wt�1 + vt; (2)

where xt is an endogenous variable, wt is exogenous and observable at time t

and vt is an i.i.d. random disturbance. Ei indicates expectations of type i, not

necessarily rational. The autoregressive parameter � is assumed to be between

0 and 1.

In this model agents can hold one of two types of expectations. Parameters

a and b can be decomposed in two terms, one referring to the way in which

expectations feed through on the endogenous variable and the other representing

a weight on expectations that depends on the proportion of agents sharing the
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same beliefs. Thus we could write

a = �1� (3)

b = �2(1� �) (4)

where � is a measure of the relative size of the group of agents holding type 1

expectations. In particular, given a continuum of agents over the unit interval,

� of them are of type 1, and the remaining (1 � �) are of type 2. Structural

heterogeneity arises for �1 6= �2. With structural homogeneity, �1 = �2 =

�, and if also expectational homogeneity holds (i.e., E1 = E2 = EC), then

(aE1 + bE2) = �EC ; where EC stands for common expectation, and we have

the structural equation

xt = �E
C
t xt+1 + cxt�1 + dwt (5)

that substitutes (1).

3 Equilibrium, learnability and speed of conver-
gence: the homogeneous case

It is well known (see, e.g., Berardi (2007)) that equations (1)-(2), under ho-

mogeneity, admit a minimum state variables rational expectations equilibrium

(MSV REE) that, in its common factor representation (see Evans and McGough,

2005) takes the form1

xt = e1xt�1 +
d

1� �(e1 + �)
wt; (6)

where

e1 =
1�

p
1� 4�c
2�

(7)

is the smaller root of matrix

A =

�
1
� � c

�
1 0

�
1For semplicity we consider in this work only learning of the common factor representation

and leave for future work the analysis of learning and speed of convergence for the general
form representation.
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representing system (5) in �rst order form.2

If we then assume that agents do not have rational expectations from the

start, but need to form their forecasts much like an econometrician does, and

periodically update parameters in their forecasting model (or, in the learn-

ing literature terminology, their perceived law of motion - PLM) based on the

new information becoming available at each time, we can consider the question

whether (6) can represent the limiting point of an economy populated by such

learning agents. In particular, assume that agents use the PLM3

xt = �1xt�1 + �2wt (8)

and periodically update parameters �1 and �2 using recursive least squares tech-

niques. It can then be shown (Berardi, 2007) that equilibrium (6) is learnable

(E-stable) for

�� <
1 +

p
1� 4�c
2

: (9)

3.1 Speed of convergence

Convergence of the learning process is governed by a map from the PLM to the

temporary equilibrium (or actual law of motion - ALM) that is obtained by in-

serting the estimated model (8) projected forward one period into the structural

equation (5) in place of the expectations. In other words, when agents use a

forecasting model consistent with solution (6) and update its parameters over

time, at each point in time, for a given set of belief parameters, we have a tem-

porary equilibrium (ALM) that represents the dynamics of the economy under

a certain set of beliefs. A T-map can then be derived that maps parameters in

the PLM (the beliefs of agents) into parameters of the ALM (the law of motion

2Note that, for the equilibrium to be determinate (i.e., locally unique), matrix A must have
one stable and one unstable root. This happens for � < 1 � c: In the remaining part of the
paper, when the equilibrium is not determinate, we will focus on the MSV solution, which is
always unique by constaction (see McCallum, 1983).

3We assume here that agents know the long run mean of the endogenous variables (here
equal to zero), so they don�t have to include an intercept in the PLM.
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for the economy) as follows: starting from the forecasting model or PLM:

xt = �1xt�1 + �2wt

and inserting it into the structural model (5), we obtain the ALM:

xt = � (�1 (�1xt�1 + �2wt) + �2�wt)+cxt�1+dwt =
�
��21 + c

�
xt�1+(��2 (1 + �) + d)wt:

Mapping term by term the PLM to the corresponding parameter in the ALM,

we derive the T-maps:

�1 ! ��21 + c (10)

�2 ! ��2 (�1 + �) + d: (11)

The REE (6) is a �xed point (��1; ��2) of these T-maps, where

��1 = e1 (12)

��2 =
d

1� �(e1 + �)
: (13)

From T-maps (10)-(11), it is then possible to derive a system of ODEs that

govern E-stability (see Evans and Honkapohja (2001) for a detailed explanation

of the techniques):

_�1 = ��21 + c� �1 (14)

_�2 = ��2 (�1 + �) + d� �2: (15)

E-stability obtains if the system of ODEs is locally asymptotically stable at the

equilibrium point (��1; ��2), i.e., if the eigenvalues of the Jacobian of the system,

evaluated at (��1; ��2), have all negative real part.

The same ODEs can then be used to assess the speed of convergence of

the learning process when implemented through recursive least squares (RLS)

estimation. These ODEs in fact can be derived, using stochastic approximation

techniques, from the stochastic recursive algorithm representing RLS in real

time. Denoting by � = (�1; �2) the vector of parameters to be estimated and
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by z the vector of state variables, RLS is implemented by

�t = �t�1 + t
�1R�1t Q(�t�1; zt): (16)

If we then let

h(�) = E [Q(�; z)] ;

where the expectation is taken over the invariant distribution of z for given �, we

have that h (�) determines the T-maps from parameters in the PLM to those in

the ALM and thus governs both the speed of convergence (see Benveniste et al,

1990) and E-stability (Evans and Honkapohja, 2001). These T-maps determine

then the system of ODEs shown above.

Using theoretical results from Benveniste et al (1990), Theorem 3, p. 110, it

is possible to show that root-t convergence of estimated parameters � obtains

if the eigenvalues of the Jacobian of the system, evaluated at �� = (��1;
��2),

all have real part smaller than �1=2.4 The set of parameters for which root-

t convergence obtains is therefore a subset of the set of parameters for which

E-stability obtains.

In our case, square root-t convergence obtains for �c < 3=16 and �2�2+�c <

1=4,5 where � is the parameter on the forward looking term and c the parameter

on the backward looking term in the structural model (5), while � represents

the degree of persistence of the exogenous driving variable wt.

Proposition 1 Parameters �1 and �2 in (8), when updated in real time by

agents through the RLS algorithm (16), converge respectively to their equilibrium

values ��1 and ��2 in (12) and (13) at root-t speed if �c < 3=16 and �
2�2+�c <

1=4:

For di¤erent values of �, c and �, we show the region where E-stability

obtains (brown region in Fig. 1) and root-t convergence obtains (brown region

4Equivalently, the slope of the T-map has to be < 1/2.
5Moreover, to get a real solution, the following condition must be satis�ed: �c < 1=4. It

can be easily veri�ed that this condition is always satis�ed if root-t convergence obtains.

6



in Fig 2): as expected from theoretical results, the region of root-t convergence

is a subregion of the one of E-stability.
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Figure 1: E-stability (brown region).
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Figure 2: Root-t convergence (brown region).

Therefore, just as E-stability does, the requirement of root-t convergence

poses a restriction on the structural parameters of the model: only if this re-

striction is satis�ed the learning process of agents converges to its limiting equi-

librium point at the speed at which, in classical econometrics, the mean of the

distribution of the least squares estimates converges to the true value of the
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estimated parameters.

By looking at the regions where root-t convergence obtains in Fig. 2, we can

see that as � increases this region shrinks down, and the same happens as � and

c increase. In general, therefore, the speed of convergence is higher the lower

is the degree of persistence of the exogenous shock, the lower is the impact

of expectations on current outcomes and the lower is the degree of intrinsic

persistence in the endogenous variables. In other words, convergence is faster

when there is little correlation across time in the structure of the economy.

4 Equilibrium, learnability and speed of conver-
gence: the heterogeneous case

In the heterogeneous setting, we assume that there are two classes of agents, of

size � and (1� �), that form expectations using respectively the model PLM1

xt = �1xt�1 + �2wt (17)

and PLM2

xt = �wt: (18)

While the �rst model is consistent with the MSV REE, the second one is

underparameterized, as it misses the lagged endogenous variable on the r.h.s..

The T-maps from PLM to ALM for the two groups of agents in this case are

�1 ! a�21 + c (19)

�2 ! a�2 (�1 + �) + b�� + d (20)

� ! a�2 (�1 + �) + b�� + d

1� �
�
a�21 + c

� (21)

where the second is obtained by projecting the ALM onto the restricted space of

variables in the PLM2 (see Berardi (2007) for the derivation of these T-maps).

Fixed point of these T-maps are the possible equilibria of this system. Berardi

(2007) shows that an heterogeneous expectations equilibrium (HEE) loosely

8



de�ned as a triple (��1; ��2; ��) that represents a �xed point for the system (19)-

(21)6 exists. In particular, ��1 is as in (12), while (��2; ��) are obtained numerically

by solving the system (20)-(21) for a �xed point. Again, the slope of these T-

maps at the HEE (��1; ��2; ��) governs both E-stability of the equilibrium and the

speed of convergence of the learning process of agents.

The equilibrium turns out to be learnable (E-stable) if all the eigenvalues of

matrix

� =

0@ 1�
p
1�4ac
2 + a�� 1 b�
1�

p
1�4ac
2 +a�

1��( 1�
p
1�4ac
2a )

b�

1��( 1�
p
1�4ac
2a )

� 1

1A (22)

have negative real part, which reduces to

1�
p
1� 4ac
2

+ a�+
b�

1� �( 1�
p
1�4ac
2a )

< 1: (23)

Figure 3 shows the E-stability region for di¤erent values of � (we assume for

simplicity �1 = �2 = �), c and �:
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Figure 3: E-stability of HEE (brown region).

4.1 Speed of convergence

As pointed out above, and shown in detail in Berardi (2007), the fraction of

agents (�) using each of the two forecasting models available a¤ects the learn-

6For a formal de�nition of the concept of HEE, we refer the reader to Berardi (2007).
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ability (E-stability) properties of the heterogeneous equilibrium. The question

we want to address here is how the same fraction of agents using each model

a¤ects the speed of convergence of the learning process, once learnability is es-

tablished. In other words, we want to re�ne results from Berardi (2007) in order

to understand the whole impact of heterogeneity on learning dynamics.

Analyzing the slope of the T-maps (19)-(21), it is easy to verify that root-t

convergence obtains if ac < 3=16 and all eigenvalues of matrix � have real part

< �1=2. The �rst condition implies that, as � increases, roo-t convergence is

less likely to obtain.

Proposition 2 Parameters �1, �2 and � in (17) and (18), when updated in real

time by agents through a RLS algorithm equivalent to (16), converge respectively

to their equilibrium values ��1, ��2, and �� at root-t speed if ac < 3=16 and all

eigenvalues of matrix � in (22) have real part smaller than �1=2:

Figure 4 shows the region where root-t convergence obtains (brown area) for

di¤erent values of � (we assume for simplicity �1 = �2 = �), c and �:7

mu = .1

Alpha

c

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
mu = .3

Alpha

c

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

mu = .5

Alpha

c

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
mu = .9

Alpha

c

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Figure 4: Root-t convergence for HEE (brown region).

Comparing Fig. 3 and Fig. 4, we can see that there are regions of the
7Here � is set to 0.5.
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parameter space where convergence obtains (all eigenvalues �i of matrix � have

negative real part), but such convergence is slower than root-t convergence (i.e.,

9�i : �1=2 < re(�i) < 0).

The main result here is that, as � increases, even when the HEE remains

E-stable the region for which root-t convergence obtains shrinks. This can also

be seen by comparing Fig. 4 with Fig. 2 and noting that the third quadrant of

Fig. 2 represents the limit point of the HEE represented in Fig. 4 as � ! 1:

a higher fraction of agents in the economy using the forecasting model PLM1

slows down convergence of the learning process.

In order to assess the speed of convergence of learning when slower than root-

t, we follow Marcet and Sargent (1995) who propose a numerical procedure to

estimate the rate of convergence when E-stability obtains (i.e., the procedure

assumes that the learning process converges at a certain speed, and estimates

such a speed).

In particular, we de�ne the rate of convergence � as

t�(�t � ��)
d! F (24)

where �t is the estimated parameter, �� is its equilibrium value and F is a non

degenerate distribution with mean zero and variance �2F . We can then obtain a

numerical approximation of � for large t: since (24) implies

lim
t!1

E
�
t�(�t � ��)

�2
= �2F

we have
E
�
t�(�t � ��)

�2
E
h
(tk)

�
(�t � ��)

i2 ! 1

and therefore
E(�t � ��)2
E(�tk � ��)2

! k2� as t!1:

This implies that we can estimate � with

� =
2

2 log(k)
log

�
E(�t � ��)2
E(�tk � ��)2

�
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for large t. This can be done practically by choosing t and k and approximate

the expectational terms by Monte Carlo integration, i.e., by simulating a large

number of series of length t and tk and calculating the mean square error across

realizations.

We thus compute numerically � by computing the mean square error across

1000 realizations for t = 3000 and tk = 15:000. We set our baseline parameter-

ization as follows: �1 = �2 = c = d = � = :5.8 Numerical results are reported

in Table 1.

��1 ��2 ��
� = :1 .5164 .4564 .4820
� = :5 .5212 .4145 .4900
� = :9 .3018 .2652 .3634

Table 1: Speed of convergence for parameters in PLMs: baseline parameteriza-
tion

By looking at Fig. 4, we would expect, for � = :1 and :5, � ' :5, while for

� = :9, we should observe � < :5. In fact, we can see a sharp drop in the speed of

convergence as we move from the second to the third raw in Table 1. We must

also remember though that, as noted by Marcet and Sargent (1992), only for

rather large t and tk the asymptotic results of the theorem by Benveniste et al.

hold, while for smaller samples numerical results can deviate largely from the

theoretical ones. In particular, in our case, we observe that the learning speed

of parameter �2 in PLM
1 is constantly below root-t for �nite sample sizes.

Our simulations also con�rm that, as � increases, the speed of convergence

decreases below root-t. These results mean that even when heterogeneity does

not a¤ect E-stability (in all cases reported in Table 1, the HEE is E-stable), it

still a¤ects the speed of convergence. Interestingly, the higher is the fraction of

agents using the simpler, underparameterized, model, the faster is convergence.

Remark 3 An increase in �, by increasing a, moves the system towards a

8We conducted extensive robustness checks for di¤erent parameterizations and the main
results reported here hold throughout.
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region where convergence of the learning process of agents is slower than root-t.

Remark 4 When E-stability prevails but convegence is slower than root-t, an

increase in � decreases the speed of convergence for the learning process of

agents.

Table 2 reports results for two alternative parameterizations for � and c

(while all other parameters have been kept �xed). In this case root-t convergence

obtains for all cases reported, and we can see that in fact � does not a¤ect much

the estimated speed of convergence.

��1 ��2 ��
� = :5; c = :1
� = :1 .5008 .4730 .4704
� = :5 .5161 .5031 .5092
� = :9 .5003 .4790 .4794
� = :1; c = :5
� = :1 .5175 .4880 .4924
� = :5 .5088 .5189 .5073
� = :9 .4829 .4794 .5005

Table 2: Speed of convergence for parameters in PLMs: robustness ckeck

Note that � is the fraction of agents using a correctly speci�ed forecasting

model. For � = 1, the economy is back in the homogeneous case of section

3, where in fact we saw that, for the baseline parameterization, convergence is

slower than root-t. For � = 0, instead, all agents use a misspeci�ed model and

the economy can only converge to a restricted perceptions equilibrium (RPE).9

This RPE turns out to be E-stable for

b�

1� �c < 1 (25)

and the learning process of agents converges to this RPE at root-t for

b�

1� �c <
1

2
: (26)

9For a formal de�nition of a RPE, see Evans and Honkapohja (2001).
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In the case of our baseline parameterization, with �2 = � = c = :5, this condition

is in fact satis�ed (the l.h.s. of (26) is equal to 1/3), and the learning process

of agents in group 2 converges at root-t speed.

In other words, if our economy is populated only by agents using a correctly

speci�ed forecasting model, it will converge towards the REE, but at a speed

slower than root-t, while if our economy is populated only by agents using

a misspeci�ed (underparameterized) model, it will converge towards a RPE

equilibrium, but at the faster, root-t speed.

There seems to be therefore a trade-o¤ between speed of convergence and

quality of forecasts in equilibrium: the larger is the fraction of agents using

the correctly speci�ed model, the slower is convergence, but the closer is the

equilibrium thus emerging to the REE.10 On the other end, when a high fraction

of agents uses an underparameterized model, convergence is faster, but towards

an equilibrium that resembles more and more a RPE. In a RPE agents, though

forming their expectations e¢ ciently given their misspeci�ed model, are not

rational, and have larger forecast errors.

It is also interesting to compare the speed of convergence of the learning

process across the two groups of agents. While agents in group 1 have to learn

two parameters, one for the lagged endogenous variable xt�1 and one for the

exogenous driving process wt, agents in group 2 only learn one parameter, for

the exogenous variable. By comparing the speed of convergence for the learning

processes of the two groups for wt, we can see that while when root-t convergence

obtains the learning speed for the two groups of agents is similar, when root-t

convergence does not obtains the learning for agents in group 2 is always faster

to converge: this means that neglecting the lagged endogenous variable in the

algorithm speeds up the learning process for the parameter on the (only) other

variable.

Remark 5 When the learning process of agents converges at a rate slower than
10By "closer" here we mean that there is a higher fraction of agents having expectations

that can be considered rational.
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root-t, agents using an underparameterized PLM learn the equilibrium value for

the parameters in their model more quickly than agents using a correctly speci�ed

model.

5 Conclusions

We have presented in this work a simple model of heterogeneous expectations

and learning, where agents use di¤erent models to form their expectations, and

we have analyzed the impact of the degree of heterogeneity on the speed of

convergence for the learning process. We have found that the proportion of

agents using each forecasting model a¤ects the speed of convergence, and that

the larger is the number of agents using the simpler, but misspeci�ed, model,

the faster is convergence towards equilibrium. There seems to be a trade-o¤,

therefore, between the accuracy of the expectations in the population and the

speed by which agents can learn the equilibrium. Moreover, agents with a

misspeci�ed (underparameterized) model learn faster the equilibrium value for

their beliefs.

We think these results are important and require attention from scholars

interested in using learning as a coordination device that can lead the economy

towards an equilibrium: as shown here, the speed of convergence of the learning

activity is in general dependent on the various parameters of the model, a crucial

one being the degree of heterogeneity in the economy.
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