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Abstract

In this paper, we present a limiting distribution theory for the break point estimator in a linear

regression model with multiple structural breaks obtained by minimizing a Two Stage Least

Squares (2SLS) objective function. Our analysis covers both the case in which the reduced

form for the endogenous regressors is stable and the case in which it is unstable with multiple

structural breaks. For stable reduced forms, we present a limiting distribution theory under two

different scenarios: in the case where the parameter change is of fixed magnitude, it is shown that

the resulting distribution depends on the distribution of the data and is not of much practical

use for inference; in the case where the magnitude of the parameter change shrinks with the

sample size, it is shown that the resulting distribution can be used to construct approximate

large sample confidence intervals for the break points. For unstable reduced forms, we consider

the case where the magnitudes of the parameter changes in both the equation of interest and

the reduced forms shrink with the sample size at potentially different rates and not necessarily

the same locations in the sample. The resulting limiting distribution theory can be used to

construct approximate large sample confidence intervals for the break points. The finite sample

performance of these intervals are analyzed in a small simulation study and the intervals are

illustrated via an application to the New Keynesian Phillips curve.

JEL classification: C12, C13

Keywords: Structural Change, Multiple Break Points, Instrumental Variables Estimation.



1 Introduction

Econometric time series models are based on the assumption that the economic relationships,

or “structure”, in question are stable over time. However, with samples covering extended

periods, this assumption is always open to question and this has led to considerable interest

in the development of statistical methods for detecting structural instability.1 In designing

such methods, it is necessary to specify how the structure may change over time and a popular

specification is one in which the parameters of the model are subject to discrete shifts at unknown

points in the sample. This scenario can be motivated by the idea of policy regime changes.2

Within this type of setting, the main concern is to estimate economic relationships in the different

regimes and compare them. However, since not all policy changes may impact the economic

relationship of interest, an important precursor to this analysis is the identification of the points

in the sample, if any, at which the parameters change. This raises the issue of how to perform

inference about the location of the so-called “break points”, that is the points in the sample at

which the parameters change, and motivates the interest to obtain a limiting distribution theory

for break point estimators.3 It is the latter which is the focus of this paper.

There is a literature in time series on the limiting distribution of break point estimators for

estimation of changes in the mean of processes; see Hinckley (1970), Picard (1985), Bhattacharya

(1987), Yao (1987), Bai (1994, 1997a). A limiting distribution theory has also been presented in

the context of linear regression models estimated via Ordinary Least Squares (OLS). Bai (1997b)

considers the case in which there is only one break. He presents two alternative limit theories for

the break point estimator. One assumes the magnitude of change between the regimes is fixed;

the resulting distribution theory for the break-point turns out to depend on the distribution

of the data. The other assumes the magnitude of the parameter change is shrinking with the

sample size4: this approach leads to practical methods for inference about the location of the
1See inter alia Andrews and Fair (1988), Ghysels and Hall (1990a,b), Andrews (1993), Andrews and Ploberger

(1994), Sowell (1996), Hall and Sen (1999) as well as the other references below.
2For example, Bai (1997b) explores the impact of changes in monetary policy on the relationship between

the interest rate and the discount factor in the US, and Zhang, Osborn, and Kim (2008) explore the impact of

monetary policy changes on the Phillips curve.
3The term “change point” is also used in the literature to denote the points in the sample at which the

parameter values change.
4The assumption of shrinking breaks is a mathematical device designed to produce confidence intervals for the

break points whose asymptotic properties provide a reasonable approximation to finite sample behaviour when
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break point. Bai and Perron (1998) consider the case of multiple break points that are estimated

simultaneously. They present a limiting distribution theory for the break point estimators based

on the assumption that the parameter change is shrinking as the sample size increases; this can

be used by practitioners to perform inference about the location of the break points.

One maintained assumption in Bai’s (1997b) and Bai and Perron’s (1998) analyses is that the

regressors are uncorrelated with the errors so that OLS is an appropriate method of estimation.

This is a leading case, of course, but there are also many cases in econometrics where the

regressors are correlated with the errors and so OLS yields inconsistent estimators. Once OLS

is rejected as inappropriate, an alternative method of estimation must be chosen. As shown by

Hall, Han, and Boldea (2009), minimizing the sum of partial generalized method of moments

minimands over all partitions of the sample fails to yield consistent estimates of the break point

in leading cases of interest. We thus follow the approach of Hall, Han, and Boldea (2009)

and consider the case in which the estimation of the regression parameters and break points is

performed by minimizing a Two Stage Least Squares (2SLS) objective function.5 Hall, Han, and

Boldea (2009) establish the consistency of these 2SLS estimators, a limiting distribution theory

for the 2SLS estimators of the regression parameters, propose a number of tests for parameter

variation and a methodology for estimating the number of break points. However, they do not

consider the distribution of the break point estimators.

In this paper, we derive the distribution of the break point estimators based on minimization

of the 2SLS objective function. As in Hall, Han, and Boldea (2009), our analysis covers both

the case in which the reduced form for the endogenous regressors is stable and the case in which

it is unstable with multiple structural breaks.6

For stable reduced forms, we present a limiting distribution theory under two different sce-

narios regarding the magnitude of the parameter change between regimes. First, if the parameter

change is of fixed magnitude, the resulting distribution is shown to be the natural extension of

the breaks are of “moderate” size; see Bai and Perron (1998).
5There is a considerable literature on the use of Instrumental Variables (IV) and 2SLS in linear models with

endogenous regressors in econometrics; see Christ (1994) or Hall (2005)[Chapter 1] for a historical review and

examples in which such endogeneity arises.
6Note that all breaks in a structural system of equations are either reflected in the structural equation of

interest, or in the reduced forms, or both; thus it is important to distinguish between stable and unstable reduced

forms.
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Bai’s (1997b) result for OLS estimators and is consequently dependent on the distribution of

the data. Second, if the magnitude of the parameter change shrinks with the sample size, the

resulting distribution can be used to construct approximate large sample confidence intervals for

the break points. For unstable reduced forms, we consider the case where the magnitude of the

parameter changes in both the equation of interest and the reduced form shrink with the sample

size at potentially different rates and different locations for the structural equation and reduced

form. The resulting limiting distribution theory can be used to construct approximate large

sample confidence intervals for the break points. The finite sample performance of these inter-

vals is analyzed in a small simulation study and the intervals are illustrated via an application

to the New Keynesian Phillips curve.

An outline of the paper is as follows. Section 2 contains results for the stable reduced form

case. Section 3 presents the analysis for the unstable reduced form case and several break point

estimators obtained using the methodology described in Hall, Han, and Boldea (2009). Section

4 reports results from a small simulation study and also the empirical application. Section 5

offers some concluding remarks. The mathematical appendix contains proofs of the results in

the paper.

2 Stable reduced form case

In this section, we present a limiting distribution theory for the break point estimator based on

minimization of the 2SLS objective function in the case where the reduced form is stable. Section

2.1 describes the model and summarizes certain preliminary results. Section 2.2 presents the

limiting distribution of the break point estimators in both the fixed-break and shrinking-break

cases.

2.1 Preliminaries

Consider the case in which the equation of interest is a linear regression model with m breaks,

that is

yt = x′
tβ

0
x,i + z′1,tβ

0
z1,i + ut, i = 1, ..., m + 1, t = T 0

i−1 + 1, ..., T 0
i (1)
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where T 0
0 = 0 and T 0

m+1 = T . In this model, yt is the dependent variable, xt is a p1 × 1 vector

of explanatory variables, z1,t is a p2 × 1 vector of exogenous variables including the intercept,

and ut is a mean zero error. We define p = p1 + p2. Given that some regressors are endogenous,

it is plausible that (1) belongs to a system of structural equations and thus, for simplicity, we

refer to (1) as the “structural equation”. As is commonly assumed in the literature, we require

the break points to be asymptotically distinct.

Assumption 1 T 0
i = [Tλ0

i ], where 0 < λ0
1 < ... < λ0

m < 1.7

To implement 2SLS, it is necessary to specify the reduced form for xt. In this section, we

consider the case in which the reduced form is stable,

x′
t = z′t∆0 + v′t (2)

where zt = (zt,1, zt,2, ..., zt,q)′ is a q × 1 vector of instruments that is uncorrelated with both

ut and vt, ∆0 = (δ1,0, δ2,0, ..., δp1,0) with dimension q × p1 and each δj,0 for j = 1, ..., p1 has

dimension q × 1. We assume that zt contains z1,t.

Hall, Han, and Boldea (2009) (HHB hereafter) propose the following method for estimation

of the structural equation based on minimizing a 2SLS objective function. On the first stage,

the reduced form for xt is estimated via OLS using (2) and let x̂t denote the resulting predicted

value for xt, that is

x̂′
t = zt

′∆̂T = zt
′(

T∑

t=1

ztzt
′)−1

T∑

t=1

ztxt
′. (3)

In the second stage, the structural equation,

yt = x̂
′

tβ
∗
x,i + z′1,tβ

∗
z1,i + ũt, i = 1, ..., m + 1; t = Ti−1 + 1, ..., Ti, (4)

is estimated via OLS for each possible m-partition of the sample, denoted by {Tj}m
j=1 or

(T1, . . . , Tm). We assume:

Assumption 2 Equation (4) is estimated over all partitions (T1, ..., Tm) such that Ti − Ti−1 >

max{q − 1, εT} for some ε > 0 and ε < infi(λ0
i+1 − λ0

i ).

Assumption 2 requires that each segment considered in the minimization contains a positive

fraction of the sample asymptotically; in practice ε is chosen to be small in the hope that the

last part of the assumption is valid.
7[ · ] denotes the integer part of the quantity in the brackets.
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Letting β∗
i = (β∗

x,i
′, β∗

z1,i
′)′, for a given m-partition, the estimates of β∗ = (β∗

1
′, β∗

2
′, ..., β∗

m+1
′)′

are obtained by minimizing the sum of squared residuals

ST (T1, ..., Tm; β) =
m+1∑

i=1

Ti∑

t=Ti−1+1

(yt − x̂′
tβx,i − z′1,tβz1,i)2 (5)

with respect to β = (β1
′, β2

′, ..., βm+1
′)′. We denote these estimators by β̂({Ti}m

i=1). The

estimates of the break points, (T̂1, ..., T̂m), are defined as

(T̂1, ..., T̂m) = arg min
T1,...,Tm

ST

(
T1, ..., Tm; β̂({Ti}m

i=1)
)

(6)

where the minimization is taken over all possible partitions, (T1, ..., Tm). The 2SLS estimates

of the regression parameters, β̂ ≡ β̂({T̂i}m
i=1) = (β̂′

1, β̂
′
2, ..., β̂

′
m+1)′, are the regression parameter

estimates associated with the estimated partition, {T̂i}m
i=1.

HHB focus on inference about the parameters β0 = (β0
1
′
, ..., β0

m+1
′)
′
, where β0

i = (β0
x,i

′
, β0

z1,i
′)′.

Specifically, they derive the limiting distributions of both β̂ and also various tests for parameter

variation. However, to establish these results, they need to prove certain convergence results

regarding the break point estimators. These results are also relevant to our analysis of the limit-

ing distribution of the break point estimator in the fixed-break case, and so we summarize them

below in a lemma. To present these results, we must state certain additional assumptions.

Assumption 3 (i) ht = (ut, v
′
t)′ ⊗ zt is an array of real valued n × 1 random vectors (where

n = (p + 1)q) defined on the probability space (Ω,F , P ), VT = V ar[
∑T

t=1 ht] is such that

diag[γ−1
T,1, . . . , γ

−1
T,n] = Γ−1

T is O(T−1) where ΓT is the n×n diagonal matrix with the eigenvalues

(γT,1, . . . , γT,n) of VT along the diagonal; (ii) E[ht,i] = 0 and, for some d > 2, ‖ht,i‖d < κ < ∞

for t = 1, 2, . . . and i = 1, 2, . . .n where ht,i is the ith element of ht; (iii) {ht,i} is near epoch de-

pendent with respect to {gt} such that ‖ht−E[ht|Gt+m
t−m ]‖2 ≤ νm with νm = O(m−1/2) where Gt+m

t−m

is a sigma- algebra based on (gt−m, . . . , gt+m); (iv) {gt} is either φ-mixing of size m−d/(2(d−1))

or α-mixing of size m−d/(d−2).

Assumption 4 rank {Υ0} = p where Υ0 = [∆0, Π], Π′ = [Ip2 , 0p2×(q−p2)], Ia denotes the a×a

identity matrix and 0a×b is the a × b null matrix.8

8Note that this notation is convenient for calculations involving the augmented matrix of projected endogenous

regressors and observed exogenous regressors in the second stage.
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Assumption 5 There exists an l0 > 0 such that for all l > l0, the minimum eigenvalues of

Ail = (1/l)
∑T0

i +l

t=T0
i +1

ztzt
′ and of A∗

il = (1/l)
∑T0

i

t=T0
i −l

ztzt
′ are bounded away from zero for all

i = 1, ..., m + 1.

Assumption 6 T−1
∑[Tr]

t=1 ztz
′
t

p→ QZZ(r) uniformly in r ∈ [0, 1] where QZZ(r) is positive

definite (thereafter pd) for any r > 0 and strictly increasing in r.

Assumption 3 allows substantial dependence and heterogeneity in (ut, v
′
t)′⊗zt but at the same

time imposes sufficient restrictions to deduce a Central Limit Theorem for T−1/2
∑[Tr]

t=1 ht; see

Wooldridge and White (1988).9 This assumption also contains the restrictions that the implicit

population moment condition in 2SLS is valid - that is E[ztut] = 0 - and the conditional mean

of the reduced form is correctly specified. Assumption 4 implies the standard rank condition for

identification in IV estimation in the linear regression model10 because Assumptions 3(ii), 4 and

6 together imply that

T−1

[Tr]∑

t=1

zt[x′
t, z

′
1,t] ⇒ QZZ(r)Υ0 = QZ,[X,Z1 ](r) uniformly in r ∈ [0, 1] (7)

where QZ,[X,Z1](r) has rank equal to p for any r > 0. Assumption 5 requires that there be

enough observations near the true break points so that they can be identified and is analogous

to Bai and Perron’s (1998) Assumption A2.

Define the break fraction estimators to be λ̂i = T̂i/T , for i = 1, 2, . . .m. HHB[Theorems 1 &

2] establish the following properties of these 2SLS break fraction estimators.

Lemma 1 Let yt be generated by (1), xt be generated by (2), x̂t be generated by (3) and As-

sumptions 1-6 hold, then (i) λ̂i
p→ λ0

i , i = 1, 2, . . . , m; (ii) for every η > 0, there exists C such

that for all large T , P (T |λ̂i − λ0
i | > C) < η, i = 1, 2, . . . , m.

Therefore, the break fraction estimator deviates from the true break fractions by a term of

order in probability T−1. While HHB establish the rate of convergence of λ̂i, they do not present

a limiting distribution theory for these estimators.
9This rests on showing that under the stated conditions {ht,Gt

−∞} is a mixingale of size -1/2 with constants

cT,j = nξ
−1/2
T,j max(1,‖bt,j‖r); see Wooldridge and White (1988).

10See e.g. Hall (2005)[p.35].
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2.2 Limiting distribution of break point estimators

In this section, we present a limiting distribution for the break point estimators. We consider

two different scenarios for the parameter change across regimes: when it is fixed and when it

is shrinking with the sample size. Although the resulting distribution theory in each of these

scenarios turns out to be different, part of the derivations are common. It is therefore convenient

to present both scenarios within the following single assumption.

Assumption 7 Let β0
i+1 − β0

i = θ0
i,T = θ0

i sT where sT = T−α for some α ∈ [0, 1/2) and

i = 1, 2, . . .m.

Note that under this assumption, if α = 0 then we have the fixed break case but if α 6= 0 then

the parameter change is shrinking with the sample size but at a slower rate than T−1/2. It

should be noted that the assumption of shrinking breaks at this rate is used as a mathematical

device to develop a limiting distribution theory that is designed to provide an approximation to

finite sample behaviour in models with moderate-sized changes in the parameters. The simula-

tion results in Section 4.1 provide guidance on the accuracy of this approximation for different

magnitudes of parameter change.

The derivation of the limiting distribution theory below is premised on the consistency and

the known rate of convergence of the break fraction estimators. These are already presented in

Lemma 1 for the fixed-break case. The corresponding results for the shrinking-break case are

presented in the following proposition.

Proposition 1 Let yt be generated by (1), xt be generated by (2), x̂t be generated by (3) and

Assumptions 1-7 (α 6= 0) hold, then (i) λ̂i
p→ λ0

i , i = 1, 2, . . ., m; (ii) for every η > 0, there

exists C > 0 such that for all large T , P (T |λ̂i − λ0
i | > Cs−2

T ) < η, i = 1, 2, . . ., m.

Remark 1: Proposition 1(ii) states that the break point estimator converges to the true break

point at a rate equal to the inverse of the square of the rate at which the difference between

the regimes disappears. Note that this is the same rate of convergence as is exhibited by the

corresponding statistic in the case where xt and ut are uncorrelated and the model is estimated

by OLS; see Bai (1997b)[Proposition 1].
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We now turn to the issue of characterizing the limiting distribution of T̂i. To achieve this

end, we first present the statistic that determines the large sample behaviour of the break point

estimator; see Proposition 2 below. The form of this statistic is the same for both the fixed-break

and the shrinking-break cases, but its large sample behaviour is different across the two cases.

We therefore consider the form of the limiting distribution in the fixed-break and shrinking-break

cases in turn.

From Lemma 1(ii) and Proposition 1(ii), it follows that in considering the limiting behaviour

of {T̂i}m
i=1 we can confine attention to possible break points within the following set B = ∪m

i=1Bi

where Bi = {|Ti − T 0
i | ≤ Cis

−2
T }.11

Proposition 2 Let yt be generated by (1), xt be generated by (2), x̂t be generated by (3) and

Assumptions 1-7 hold then:

T̂i − T 0
i = argminTi∈Bi





ΨT (Ti), for Ti 6= T 0
i

0, for Ti = T 0
i

(8)

where

ΨT (Ti) = (−1)I[Ti<T0
i ]2θ0′

T,iΥ
′
0

Ti∨T0
i∑

t=(Ti∧T0
i )+1

zt

(
ut + v′tβ

0
x(t, T )

)

+ θ0′
T,iΥ

′
0

Ti∨T0
i∑

t=(Ti∧T0
i )+1

ztz
′
tΥ0θ

0
T,i + op(1), uniformly in Bi,

β0
x(t, T ) = β0

x,i for t = T 0
i−1 + 1, T 0

i−1 + 2, . . . , T 0
i and i = 1, 2, . . ., m + 1, a ∨ b = max{a, b},

a ∧ b = min{a, b}, and I[·] is an indicator variable that takes the value one if the event in the

square brackets occurs.

We now consider the implications of Proposition 2 for the limiting distribution of the break

point estimator in the two scenarios about the magnitude of the break.

(i) Fixed-break case:

If Assumption 7 holds with α = 0 then, without further restrictions, the limiting distribution of

the random variable on the right-hand side of (8) is intractable. A similar problem is encountered

11See Han (2006) or an earlier version of this paper Hall, Han, and Boldea (2007) for a formal proof of this

assertion.
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by Bai (1997b) in his analysis of the break points in models estimated by OLS. He circumvents

this problem by restricting attention to strictly stationary processes.12 We impose the same

restriction here.

Assumption 8 The process {zt, ut, vt}∞t=−∞ is strictly stationary.

To facilitate the presentation of the limiting distribution of T̂i, we introduce a stochastic process

R∗
i (s) on the set of integers that is defined as follows:

R∗
i (s) =





R
(i)
1 (s) : s < 0

0 : s = 0

R
(i)
2 (s) : s > 0

with

R
(i)
1 (s) = θ0′

i Υ′
0

0∑

t=s+1

ztz
′
tΥ0θ

0
i − 2θ0′

i Υ′
0

(
0∑

t=s+1

ztut +
0∑

t=s+1

ztv
′
tβ

0
x,i

)

for s = −1,−2, · · ·

R
(i)
2 (s) = θ0′

i Υ′
0

s∑

t=1

ztz
′
tΥ0θ

0
i + 2θ0′

i Υ′
0

(
s∑

t=1

ztut +
s∑

t=1

ztv
′
tβ

0
x,i+1

)

for s = 1, 2, · · ·

We note that if (zt, ut, vt) is independent over t then the process R∗
i (s) is a two-sided random

walk with stochastic drifts. It is necessary to impose a restriction on the random variables that

drive R∗
i (s).

Assumption 9 (z′tΥ0θ
0
i )2±2θ0′

i Υ′
0zt(ut+v′tβ

0
x,i) has a continuous distribution for i = 1, 2, . . .m,

and Assumption 3 (iii),(iv) holds with ht replaced by zt.

Assumption 3 (iii), (iv) for zt and ht together ensure that (z′tΥ0θ
0
i )2 ± 2θ0′

i Υ′
0zt(ut + v′tβ

0
x,i) is

also near-epoch dependent of the same size as ht, and also satisfies Assumption 3 (iii), (iv),

by Theorems 17.8 and 17.12 in Davidson (1994), pp. 267-269. We now present the limiting

distribution of the break points in the fixed break case.

Theorem 1 Let yt be generated by (1), xt be generated by (2), x̂t be generated by (3) and

Assumptions 1-6, 7 (with α = 0), 8 and 9 hold then:

T̂i − T 0
i

d→ arg min
s

R∗
i (s)

for i = 1, 2, . . . , m.
12This approach is also pursued by Bhattacharya (1987), Picard (1985) and Yao (1987).

9



Remark 2: To derive the probability function of the limiting distribution, it is necessary to

know both β0 and the distribution of (z′t, ut, v
′
t). However, under the assumptions of Theorem

1, there are cases in which the distribution of (z′tΥ0θ
0
i )2 ± 2θ0′

i Υ′
0zt(ut + v′tβ

0
x,i) can be described

through a moment generating function that is known in the literature. For example, if there

are no exogenous regressors in the structural equation (zt = z2,t), zt, ut, vt are all scalar random

variables, (zt, ut, vt) is independently distributed over t, zt ∼ N (0, σ2
z), zt ⊥ (ut, vt), (ut, vt) ∼

N (0, Ω), with Ω a 2 × 2 covariance matrix with Ω1,1 = σ2
u, Ω1,2 = σuv, Ω2,2 = σ2

v, then the

distributions of Ri
1(s) with i = 1, . . . , m+1, can be described by the following moment generating

function:

Mi
1(u) =

(
%0

i σzϑi

)|s| × [ai(u)]−|s|/2 × exp

{
|s|

(ρ2
1 − ρ2

2,i)u
2 + 2ρ1ρ2,iu

2ai(u)

}

where %0
i = θ0

i ∆0 6= 0, ρ1 = µz/σz; ϑi =
√

σ2
z(%0

i )2 + σ2
u + σ2

v(βi,0)2 + 2σuvβi,0; ρ2,i = µz%
0
i /ϑi;

ri = %0
i σz/ϑi and ai(u) = [1 − (1 + riu)] × [1 + (1 − ri)u].13 The distribution of Ri

2(s) can be

described by the same moment generating function above, but with βi,0 replaced with β0
i+1.

Remark 3: It is interesting to contrast our Proposition 2 with Bai’s (1997b)[Proposition 2] in

which the limiting distribution of T̂i is presented for the case in which m = 1, xt and ut are

uncorrelated and (1) is estimated via OLS. In the latter case, Bai (1997b) shows that T̂1−T 0
1 −→d

arg maxs W ∗(s) where W ∗(s) has the same structure as R∗
1(s) but its behaviour is driven by

b(xt, ut) = θ0
1
′
x′

txtθ
0
1 ± 2xtut.

In contrast, the limiting distribution in Theorem 1 is driven by b(z′tΥ0, ut+v′tβ
0
x,i). Therefore the

limiting distribution in Theorem 1 is the same as would be obtained from Bai’s (1997b)[Proposition

2] if yt is regressed on E[xt|zt] and z1,t using OLS.

Remark 4: The form of the limiting distribution of T̂i is governed by R∗
i (.). Given the assump-

tions of Theorem 1, the form of R∗
i (.) only depends on i through θ0

i and β0
x,i. In fact, the generic

nature of this form follows from Assumptions 1, 3 and 9, implying that T̂i and T̂j are asymptot-

ically independent for i 6= j.
13This result, along with details about the distribution functions and their numerical computation, can be found

in Craig (1936). If we further assume that, for some regime, %0
i = 1 and zt, respectively (ut + vtβ0

i ) are standard

normal variables, then in that regime, z2
t − zt(ut + vtβ0

x,i) is the sum of a χ2
1 variable and an independently

distributed random variable with distribution function K0(u)/π, where K0(·) is the Bessel function of the second

kind of a purely imaginary argument of order zero - see e.g. Craig (1936), pp. 1. Thus, the moment generating

function of Ri
1(s) simplifies to Mi

1(u) = [
√

2ai(u)]−|s|/2, with ri = 1/
√

2.
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In view of Remark 2, without further assumptions, the limiting distribution in Theorem 1 is not

useful for inference in general because of its dependence on unknowns. Therefore, we now turn

to an alternative framework that does yield practical methods of inference about the break points.

(ii) Shrinking-break case:

Impose Assumption 7 with α 6= 0, as well as:

Assumption 10 T−1
∑T0

i−1+[rT ]

t=T0
i−1+1

p→ rQi, uniformly in r ∈ (0, λ0
i − λ0

i−1], where Qi is a pd

matrix of constants.

Assumption 11 For regime i, i = 1, 2, . . .m, the errors {ut, vt} satisfy

V ar







ut

vt


 |zt


 = Ωi =




σ2
i γ′

i

γi Σi




where Ωi is a constant, pd matrix, σ2
i is a scalar and Σi is p1 × p1 matrix.

Assumption 10 allows the behaviour of the instrument cross product matrix to vary across

regimes, but it is more restrictive than Assumption 6. Assumption 11 restricts the error processes

to have constant conditional second moments within regime but allows these moments to vary

across regimes.

To present the limiting distribution, it is also useful to define Ω1/2
i and Q

1/2
i to be the

symmetric matrices satisfying Ωi = Ω1/2
i Ω1/2

i and Qi = Q
1/2
i Q

1/2
i . Notice that Ω1/2

i can be

decomposed as Ω1/2
i = [N i

1, N
i
2] where N i

1 is a (p1 + 1)× 1 vector and N i
2 is (p1 + 1)× p1 so that

N i′
1 N i

1 = σ2
i , N i′

1 N i
2 = γi, N i′

2 N i
2 = Σi.

Theorem 2 Under Assumptions 1-5, 7 (with α 6= 0), 10 and 11, we have:

(θ0′
i,T Υ′

0QiΥ0θ
0
i,T )2

θ0′
i,T Υ′

0ΦiΥ0θ0
i,T

(T̂i − T 0
i ) d→ arg min

c
Zi(c)

for i = 1, 2, . . . , m, where

ξi =
θ0′
i Υ′

0Qi+1Υ0θ
0
i

θ0′
i Υ′

0QiΥ0θ
0
i

φi =
θ0′
i Υ′

0Φi+1Υ0θ
0
i

θ0′
i Υ′

0ΦiΥ0θ
0
i

Φi = [(N i
1 + N i

2β
0
x)′ ⊗ Q

1/2
i ][(N i

1 + N i
2β

0
x)′ ⊗ Q

1/2
i ]′, for i = 1, 2, . . .m + 1

Zi(c) =





|c|/2 − W
(i)
1 (−c) : c ≤ 0

ξic/2 −
√

φiW
(i)
2 (c) : c > 0

,

11



β0
x is the limiting common value of {β0

x,i} under Assumption 7 and W
(i)
j (c), j = 1, 2, for each

i, are two independent Brownian motion processes defined on [0,∞), starting at the origin when

c = 0, and {W (i)
j (c)}2

j=1 is independent of {W (k)
j (c)}2

j=1 for all k 6= i.

Remark 5: It is interesting to compare Theorem 2 with Bai’s (1997b) Proposition 3, in which the

corresponding distribution is presented for m = 1 in the case where xt and ut are uncorrelated and

the model is estimated by OLS. The two limiting distributions have the same generic structure

but the definitions of ξ1, φ1, and Φ1 are different as is the scaling factor of k̂ − k0. Inspection

reveals that the result in Theorem 2 is equivalent to what would be obtained from applying Bai’s

(1997b) result to the case in which yt is regressed on E[xt|zt] and z1,t with error ut + v′tβ
0
x,i.

Remark 6: The density of arg minc Z(c) is characterized by Bai (1997b) and he notes it is

symmetric only if ξi = 1 and φi = 1. It is possible to identify in our setting one special case in

which ξi = φi = 1, that is where Ωi+1 = Ω1 = Ω, Qi+1 = Qi = Q.

The distributional result in Theorem 2 can be used to construct confidence intervals for T 0
i .

To this end, denote: θ̂i = β̂i+1 − β̂i, Q̂i = (T̂i − T̂i−1)−1
∑

i ztz
′
t, where

∑
i denotes sum over

t = T̂i−1 + 1, . . . , T̂i, Ω̂i = (T̂i − T̂i−1)−1
∑

i b̂tb̂
′
t, b̂t = [ût, v̂

′
t]′, wt = [x̂′

t, z
′
1,t]′, ût = yt − w′

tβ̂i, for

t = T̂i−1 + 1, . . . , T̂i, i = 1, 2, . . .m, v̂t = (xt − ∆̂′
T zt), Ω̂1/2

i is the symmetric matrix such that

Ω̂i = Ω̂1/2
i Ω̂1/2

i , Ω̂1/2
i = [N̂ i

1, N̂
i
2] is partitioned conformably with Ω1/2

i ,

ξ̂i =
θ̂′iΥ̂

′
T Q̂i+1Υ̂T θ̂i

θ̂′iΥ̂
′
T Q̂iΥ̂T θ̂i

, φ̂i =
θ̂′iΥ̂

′
T Φ̂i+1Υ̂T θ̂i

θ̂′iΥ̂
′
T Φ̂iΥ̂T θ̂i

,

Φ̂i = [(N̂ i
1 + N̂ i

2β̂x,i)′ ⊗ Q̂
1/2
i ][(N̂ i

1 + N̂ i
2β̂x,i)′ ⊗ Q̂

1/2
i ]′,

and Υ̂T = [∆̂T , Π]. It then follows that

(
T̂i −

[
a2

Ĥi

]
− 1, T̂i −

[
a1

Ĥi

]
+ 1

)
(9)

is a 100(1−α) percent confidence interval for T 0
i where [ · ] denotes the integer part of the term

in the brackets,

Ĥi =
(θ̂′iΥ̂′

T Q̂iΥ̂T θ̂i)2

θ̂′iΥ̂′
T Φ̂iΥ̂T θ̂i

and a1 and a2 are respectively the α/2th and (1−α/2)th quantiles for arg mins Z(s) which can be

calculated using equations (B.2) and (B.3) in Bai (1997b). It is worth noting that even though

the asymptotic distribution is symmetric, in general its finite sample approximation is not; this

is due to the fact that for each i, one estimates β0
x by β̂x,i.

12



3 Unstable reduced form case

In this section, we present a limiting distribution theory for the break point estimator based on

minimization of the 2SLS objective function in the case where the reduced form is unstable. To

motivate the results presented, it is necessary to briefly summarize certain results in HHB.

For the unstable reduced form case, HHB propose a methodology for estimation of the break

points in which the break points are identified in the reduced form first and then, conditional on

these, the structural equation is estimated via 2SLS and analyzed for the presence of breaks using

a strategy based on partitioning the sample into sub-samples within which the reduced form is

stable.14 The basic idea is to divide the break points in the structural equation into two types:

(i) breaks that occur in the structural equation but not in the reduced form; (ii) breaks that

occur simultaneously in both the structural equation and reduced form. HHB’s methodology

estimates the number and location of the breaks in (i) and (ii) separately in the following two

steps.

• Step 1: for each sub-sample, the number of breaks in the structural equation are estimated

and their locations determined using 2SLS-based methods that assume a stable reduced

form.

• Step 2: for each break point in the reduced form in turn, a Wald statistic is used to test

if this break point is also present in the structural equation. If the evidence suggests the

break point is common then the location of the break point in question can be re-estimated

from the structural equation.15

The number and location of the breaks in the structural equation is then deduced by combining

the results from Steps 1 and 2. Within this methodology, two scenarios naturally arise for break

point estimators.

• Scenario 1: Step 1 involves a scenario in which break point estimators that only pertain to

the structural equation are obtained by minimizing a 2SLS criterion that assumes a stable

reduced form over sub-samples with potentially random end-points.
14This partitioning is crucial for obtaining pivotal statistics and confidence intervals for the break estimators

in the structural equation of interest.
15There are two options at this point. In addition to the option given in the text, inference about the break

point can be based on the reduced form estimation.
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• Scenario 2: Step 2 involves a scenario in which a single break point is estimated by min-

imizing a 2SLS criterion that assumes an unstable reduced form over sub-samples with

potentially random end-points and with the break points in the reduced form estimated

(consistently) a priori and imposed in the construction of x̂t.

In this section, we present a distribution theory for both scenarios. To that end, note that

HHB develop their analysis under the assumption that the breaks in the reduced form are

fixed and π̂ = π0 + Op(T−1). As part of this analysis, they establish that the consistency

and convergence rate results in Lemma 1 extend to the unstable reduced form case. However,

the previous section demonstrates that a shrinking-break framework is more fruitful for the

development of practical methods of inference. Therefore, we adopt the same framework here

and so assume shrinking-breaks in both the structural equation and the reduced form. As part of

our analysis, we establish the consistency and rate of convergence for the break point estimator

within this framework.

Section 3.1 describes the model and summarizes certain preliminary results. Section 3.2

presents the limiting distribution of the break point estimators.

3.1 Preliminaries

We now consider the case in which the reduced form for xt is:

x
′

t = z
′

t∆
(i)
0 + v

′

t, i = 1, 2, . . . , h + 1, t = T ∗
i−1 + 1, . . . , T ∗

i (10)

where T ∗
0 = 0 and T ∗

h+1 = T . The points {T ∗
i } are assumed to be generated as follows.

Assumption 12 T ∗
i = [Tπ0

i ], where 0 < π0
1 < . . . < π0

h < 1.

Thus, as with the structural equation, the breaks in the reduced form are assumed to be asymp-

totically distinct. Note that the break fractions {π0
i } may or may not coincide with {λ0

i}. Let

π0 = [π0
1, π

0
2, . . . , π

0
h]′. Also note that (10) can be re-written as follows

x
′

t = z̃t(π0)
′
Θ0 + v

′

t, t = 1, 2, . . . , T (11)

where Θ0 = [∆(1)′

0 , ∆(2)′

0 , . . . , ∆(h+1)′

0 ]
′
, z̃t(π0) = ι(t, T ) ⊗ zt, ι(t, T ) is a (h + 1) × 1 vector with

first element I{t/T ∈ (0, π0
1]}, h+1th element I{t/T ∈ (π0

h, 1]}, kth element I{t/T ∈ (π0
k−1, π

0
k]}
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for k = 1, 2, . . . , h and I{·} is an indicator variable that takes the value one if the event in the

curly brackets occurs.

Within our analysis, it is assumed that π0 is estimated prior to estimation of the structural

equation in (1). For our analysis to go through, the estimated break fractions in the reduced

form must satisfy certain conditions that are detailed below. Once the instability of the reduced

form is incorporated into x̂t, the 2SLS estimation is implemented in the fashion described in the

preamble to Section 3. However, the presence of this additional source of instability means that

it is also necessary to modify Assumption 2.

Assumption 13 The minimization in (6) is over all partitions (T1, ..., Tm) such that Ti−Ti−1 >

max{q − 1, εT} for some ε > 0 and ε < infi(λ0
i+1 − λ0

i ) and ε < infj(π0
j+1 − π0

j ).

As noted in the preamble, our analysis is premised on shrinking breaks. Thus, in addition to

Assumption 7 with α 6= 0, we impose the following.

Assumption 14 ∆(i+1)
0 − ∆(i)

0 = δ0
i,T = δ0

i s∗T where s∗T = T−ρ, ρ ∈ (0, 0.5).

Note that like Asssumption 7, Assumption 14 implies the breaks are shrinking at a rate slower

than T−1/2. It is also worth pointing out that our analysis does not require any relationship

between α and ρ.

Let Θ̂T be the OLS estimator of Θ0 from the model

x′
t = z̃t(π̂)′Θ0 + error t = 1, 2, · · · , T (12)

where z̃t(π̂) is defined analogously to z̃t(π0), and now define x̂t to be

x̂′
t = z̃t(π̂)′Θ̂T = z̃t(π̂)′{

T∑

t=1

z̃t(π̂)z̃t(π̂)′}−1
T∑

t=1

z̃t(π̂)x′
t (13)

In our analysis we maintain Assumptions 3, 5 and 6 but need to replace the identification

condition in Assumption 4 by the following condition.

Assumption 15 rank{Υ0
j} = p where Υ0

j =
[
∆(j)

0 , Π
]
, for j = 1, 2, · · · , h + 1 for Π defined in

Assumption 4.

Using a similar manipulation to (7), it can be shown that Assumption 15 implies that β0
i is

identified.
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3.2 Limiting distribution theory for break point estimators

Scenario 1:

Consider the case in which the j + 1th regime for the reduced form coincides with ` + 1 regimes

for the structural equation that is,

Assumption 16 π0
j < λ0

k < λ0
k+1 < . . . < λ0

k+` < π0
j+1, for some k and ` such that k + ` ≤ m.

Notice that Assumption 16 does not preclude the possibility that either λ0
k−1 = π0

j and/or

λ0
k+`+1 = π0

j+1, but refers to λ0
k, . . . , λ0

k+` as indexing breaks that only pertain to the structural

equation of interest.

Let π̂j and π̂j+1 be the estimators of the π0
j and π0

j+1. We consider the estimators of {λ0
i }

k+`
i=k

based on the sub-sample t = [T π̂j] + 1, . . . , [T π̂j+1] that is, λ̂i = T̂i/T where

(T̂k, ..., T̂k+`) = arg min
Tk,...,Tk+`

S
(j)
T

(
Tk, ..., Tk+`; β̂({Ti}k+`

i=k)
)

(14)

and

S
(j)
T (Tk, ..., Tk+`; β) =

Tk∑

t=[Tπ̂j ]+1

(yt − x̂′
tβx,k − z′1,tβz1,k)2

+
k+∑̀

i=k+1

Ti∑

t=Ti−1+1

(yt − x̂′
tβx,i − z′1,tβz1,i)2

+
[Tπ̂j+1 ]∑

t=Tk+`+1

(yt − x̂′
tβx,k+`+1 − z′1,tβz1,k+`+1)2 (15)

where β̂({Ti}k+`
i=k) denote the 2SLS estimators obtained by minimizing S

(j)
T for the corresponding

partition of t = [T π̂j] + 1, . . . , [T π̂j+1].

The following proposition establishes the consistency and convergence rate of λ̂i, for i =

k, k + 1, . . .k + `.

Proposition 3 Let yt be generated by (1), xt be generated by (2), x̂t be generated by (13) and

λ̂i = T̂i/T with T̂i defined in (14). If Assumptions 1-5, 7 (with α 6= 0), 10, 12-16 hold, then for

i = k, k + 1, . . .k + ` we have: (i) λ̂i
p→ λ0

i ; (ii) for every η > 0, there exists C > 0 such that for

all large T , P (T |λ̂i − λ0
i | > Cs−2

T ) < η.

Remark 7: A comparison of Propositions 1 and 3 indicates that consistency and the rate of

convergence are the same irrespective of whether the sample end-points are fixed or estimated

breaks from the reduced forms.
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Remark 8: While Proposition 3 holds irrespective of whether λ0
k−1 = π0

j and/or λ0
k+`+1 = π0

j+1,

we note that if either of these conditions holds then it does impact on the limiting behaviour of

certain statistics considered in the proof of the proposition.16

Theorem 3 Let yt be generated by (1), xt be generated by (2), x̂t be generated by (13) and

λ̂i = T̂i/T with T̂i defined in (14). If Assumptions 1-5, 7 (with α 6= 0), 10, 12-16 hold, then for

i = k, k + 1, . . .k + ` we have:

(θ0′
i,T Υ′

0 QiΥ0θ
0
i,T )2

θ0′
i,T Υ′

0 ΦiΥ0θ
0
i,T

(T̂i − T 0
i ) d→ arg min

c
Zi(c)

where

ξi =
θ0′
i Υ′

0Qi+1Υ0θ
0
i

θ0′
i Υ′

0QiΥ0θ
0
i

, φi =
θ0′
i Υ′

0 Φi+1Υ0θ
0
i

θ0′
i Υ′

0ΦiΥ0θ
0
i

,

Υ0 is the common limiting value of {Υ0
j} under Assumption 14, Φi is defined as in Theorem 2

and Zi(c) is defined as in Theorem 2 but with the ξi and φi stated here.

Remark 9: A comparison of the limiting distributions in Theorems 2 and 3 reveals that they

are qualitatively the same. Thus, under the assumptions stated, the random end-points of the

estimation sub-sample do not impact on the limiting distribution of the break point estimator.

The distributional result in Theorem 3 can be used to construct confidence intervals for T 0
i . To

this end, we introduce the following definitions: θ̂i = β̂i+1−β̂i, Q̂i = (T̂i−T̂i−1)−1
∑

i ztz
′
t, where

∑
k denotes sum over t = [π̂jT ] + 1, [π̂jT ] + 2, . . . , T̂k,

∑
i denotes sum over t = T̂i−1 + 1, T̂i−1 +

2, . . . , T̂i, for i=k + 1, . . .k + `,
∑

k+`+1 denotes sum over t = T̂k+` + 1, T̂k+` + 2, . . . , [π̂j+1T ],

Ω̂i = (T̂i − T̂i−1)−1
∑

i b̂tb̂
′
t, b̂t = [ût, v̂

′
t]
′, wt = [x̂′

t, z
′
1,t]

′, ût = yt − w′
tβ̂k, for t = [π̂jT ] +

1, [π̂jT ] + 2, . . . , T̂k+1, ût = yt − w′
tβ̂i for t = T̂i−1 + 1, T̂i−1 + 2, . . . , T̂i and i = k + 1, . . .k + `,

ût = yt −w′
tβ̂k+`+1 for t = T̂k+` + 1, T̂k+` + 2, . . . , [π̂j+1T ], v̂t = (xt − ∆̂′

jzt), ∆̂j is the estimator

of ∆(j)
0 from (13), Ω̂1/2

i is the symmetric matrix such that Ω̂i = Ω̂1/2
i Ω̂1/2

i , Ω̂1/2
i = [N̂ i

1, N̂
i
2] is

partitioned conformably with Ω1/2
i ,

ξ̂i =
θ̂′iΥ̂

′
j+1Q̂i+1Υ̂j+1θ̂i

θ̂′iΥ̂
′
j+1Q̂iΥ̂j+1θ̂i

, φ̂i =
θ̂′iΥ̂

′
j+1Φ̂i+1Υ̂j+1θ̂i

θ̂′iΥ̂
′
j+1Φ̂iΥ̂j+1θ̂i

,

Φ̂i = [(N̂ i
1 + N̂ i

2β̂x,i)′ ⊗ Q̂
1/2
i ][(N̂ i

1 + N̂ i
2β̂x,i)′ ⊗ Q̂

1/2
i ]′,

16For brevity, we only present in the appendix a proof for the case in which λ0
k−1 6= π0

j and λ0
k+`+1 6= π0

j+1 .

A supplemental appendix (available from the authors upon request) contains the proof for the case in which

λ0
k−1 = π0

j and/or λ0
k+`+1 = π0

j+1 .
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and Υ̂j+1 = [∆̂j+1, Π]. It then follows that
(

T̂i −
[

a2

Ĥi

]
− 1, T̂i −

[
a1

Ĥi

]
+ 1

)
(16)

is a 100(1−α) percent confidence interval for T 0
i where [ · ] denotes the integer part of the term

in the brackets,

Ĥi =
(θ̂′iΥ̂

′
j+1Q̂iΥ̂j+1θ̂i)2

θ̂′iΥ̂
′
j+1Φ̂iΥ̂j+1θ̂i

and a1 and a2 are defined as in (9).

Scenario 2:

Consider the case in which

Assumption 17 π0
j−1 ≤ λ0

k−1 < π0
j = λ0

k < λ0
k+1 ≤ π0

j+1 for some j and k.17

Let π̂j be the estimator of π0
j obtained from the reduced form, and λ̂k−1, λ̂k+1 be estimators

of λ0
k−1, λ0

k+1 obtained via the method described in Scenario 1 above.

We consider the estimators of λ0
k based on the sub-sample t = [T λ̂k−1] + 1, . . . , [T λ̂k+1] that

is, λ̂k = T̂k/T where

(T̂k) = arg min
Tk

S
(∗k)
T (Tk; β̂(Tk)) (17)

and

S
(∗k)
T (Tk; β) =

Tk∑

t=[Tλ̂k−1]+1

(yt− x̂′
tβx,k−z′1,tβz1,k)2 +

[Tλ̂k+1 ]∑

t=Tk+1

(yt− x̂′
tβx,k+1−z′1,tβz1,k+1)2, (18)

where β̂(Tk) denote the 2SLS obtained by minimizing S
(∗k)
T for the given partition of t =

[T λ̂k−1] + 1, . . . , [T λ̂k+1].

Proposition 4 Let yt be generated by (1), xt be generated by (2), x̂t be generated by (13) and

λ̂k = T̂k/T with T̂k defined in (17). If Assumptions 1-5, 7 (with α 6= 0), 10, 12-17 hold, then

we have: (i) λ̂k
p→ λ0

k; (ii) for every η > 0, there exists C > 0 such that for all large T ,

P (T |λ̂k − λ0
k| > Cs−2

T ) < η.

Remark 10: A comparison of Propositions 1, 3 and 4 indicates that consistency and the rate of

convergence properties are the same in all three cases covered.
17Note that this case can be extended to multiple common break points in the same fashion as in Section 3.2,

Scenario 1.
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Theorem 4 Let yt be generated by (1), xt be generated by (2), x̂t be generated by (13) and

λ̂k = T̂k/T with T̂k defined in (17). If Assumptions 1-5, 7 (with α 6= 0), 10, 12-17 hold, then we

have:
(θ0′

k,T Υ′
0 QkΥ0θ

0
k,T )2

θ0′
k,T Υ′

0 ΦkΥ0θ0
k,T

(T̂k − T 0
k ) d→ arg min

c
Zk(c)

where Zk(c), Υ0, ξk, and φk are defined as in Theorem 2.

Remark 11: A comparison of the distributions in Theorems 2, 3 and 4 reveals that the limiting

distributions are qualitatively the same.

The distributional result in Theorem 4 can be used to construct a confidence interval for T 0
k .

The form of this interval is essentially the same as implied by (16) but with Υ̂i+1 replaced by

Υ̂i in the denominators of ξ̂i and φ̂i, where i = k here.

4 Simulation study and empirical application

4.1 Simulations

Here, we report results of a small simulation study designed to gain insight into the accuracy of

the limiting distribution approximation in both the stable and the unstable reduced form cases.

The data generation process for the structural equation is taken as:

yt = [1, xt]′β0
i + ut, for t = [Tλ0

i−1] + 1, . . . , [Tλ0
i ]

where i = 1, . . . , m + 1, λ0
0 = 0, λ0

m+1 = T by convention.

(i) Cases I-II: Stable reduced form

In the stable reduced form setting, we consider: Case I: m = 1, λ0
1 = 0.5 and Case II: m = 2,

λ0
1 = 1/2; λ0

2 = 2/3, with scalar reduced form:

xt = [1, zt]′δ + vt, for t = 1, . . . , T (19)

when reduced form is stable, and δ is q × 1. The errors are generated as follows: (ut, vt)
′ ∼

IN (02×1, Ω) where the diagonal elements of Ω are equal to one and the off-diagonal elements

are equal to 0.5. The instrumental variables, zt are generated via: zt ∼ i.i.d N (0(q−1)×1, Iq−1),

19



and we set T = 60, 120, 240,480; (β0
1 , β0

2)=([c, 0.1]′, [−c,−0.1]′ ), for c = 0.3, 0.5, 1; q− 1 = 2, 4, 8

and δ to yield the population R2 = 0.5 for the regression in (19).18 For each configuration, 1000

simulations are performed.

Table 1 reports the empirical coverage of the 90%, 95% and 99% confidence intervals based on

(9), for Case I, and reveals that the magnitude of c impacts on the quality of the approximation.

If c = 0.3 then the confidence intervals are mostly undersized, although the empirical coverage is

close to the nominal level at the largest sample for which T = 480; if c = 0.5 then the confidence

intervals are undersized for T = 60, 120 but close to nominal level for T = 240, 480; if c = 1

then the empirical coverage exceeds the nominal level for the 90% and 95% nominal intervals

for T ≥ 60. For c = 1, closer inspection of the empirical distribution of the break point reveals

that most of its probability mass is either at the true break point or one observation off (only

very rarely two or three data points off). Since, by construction, the break point confidence

intervals contain at least three points, if the break point estimator is one data point off its true

value, the confidence interval will necessarily contain the true value. Hence, over-coverage is

unavoidable. Finally we note that the number of instruments has no discernable impact on the

empirical coverage.

For the two-break case, Case II, the results are presented in Table 2 and exhibit similar pat-

terns to the single break case, although it is important to remember when making a comparison

between the two models that in the two-break model the sub-samples are inevitably smaller.

Thus, coverage for c = 0.3 is inevitably smaller even though it improves with sample size, and

for c = 1 we observe again patterns of over-coverage for the same reason stated for Case I.

(ii) Case III: Unstable reduced form with distinct breaks

This case pertains to Scenario 1 of Section 3.2. All aspects of the design are the same as for

the stable reduced form with m = 1, except that λ0
1 = 0.6, and the scalar reduced form is:

xt = [1, zt]′δi + vt, for t = [Tπ0
i−1], . . . , [Tπ0

i ] (20)

with i = 1, 2, π0
0 = 1, π0

2 = T by convention, and π0
1 = 0.5. Thus, we have a reduced form with a

break that occurs earlier than the break in the structural equation. Table 3 reports the results

18For this model, {δ}j = (q − 1)−1
√

R2/(1− R2), with {δ}j denoting the jth element of δ, j = 1, . . . , q; see

Hahn and Inoue (2002).
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from estimating the break in the structural equation from a sub-sample [k̂rf
1 + 1, T ], where k̂rf

1

is the OLS break point estimator of [Tπ0
1] from the reduced form. The results are reported

only for samples T = 120, 240, 480, to avoid small-sample issues related to not having enough

observations between [Tπ0
1] and [Tλ0

1]. All patterns are similar to Case I.

(iii) Case IV: Unstable reduced form with one common break

This case pertains to Scenario 2 of Section 3.2, where the stable reduced form is as in Case

III but the structural equation has two breaks: m = 2, with λ0
1 = 0.5, a break common to

the reduced form, and λ0
2 = 0.6, a break pertaining only to the structural equation. We apply

the same principle as in Case III to estimate λ0
2 by λ̂2, then, as described in Section 3.2, we

estimate λ0
1 in interval [1, [T λ̂2]] but with the reduced form calculated using the break estimate

from the reduced form, π̂1. From Table 4, it is evident that using random end-points as well as

pre-imposing π̂1 in the reduced form before estimation of the break in the structural equation

does not affect the empirical coverage. In fact, it is interesting to note that most coverage levels

are higher than in Case III.

Overall, the results suggest that the limiting distribution theory based on shrinking shifts can

provide a reasonable approximation in the types of sample sizes encountered with macroeconomic

data for which the amount of change is moderate but not too small. It would be interesting to

develop a better understanding of the scenarios for which these intervals are appropriate but

this is left to future research.

4.2 Application to the New Keynesian Phillips curve

In this sub-section, we assess the stability of the New Keynesian Phillips curve (NKPC), as

formulated in Zhang, Osborn, and Kim (2008). This version of the NKPC is a linear model

with regressors, some of which are anticipated to be correlated with the error. One contribution

of their study is to raise the question of whether monetary policy changes have caused changes

in the parameters in the NKPC. To investigate this issue, Zhang, Osborn, and Kim (2008)

estimate the NKPC via Instrumental Variables and use informal methods to assess whether the

parameters have exhibited discrete changes at any points in the sample. However, they provide

no theoretical justification for their methods. As can be recognized from the description, the
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scenario above fits our framework, and in the sub-section we re-investigate the stability of the

NKPC using the methods in HHB. Our resuts indicate that there is instability in the NKPC,

and we use the theory developed in Section 3 to provide confidence intervals for the break point.

The data is quarterly from the US, spanning 1969.1-2005.4. The definitions of the variables

are the same as theirs: inft is the annualized quarterly growth rate of the GDP deflator, ogt

is obtained from the estimates of potential GDP published by the Congressional Budget Office,

and infe
t+1|t is taken from the Michigan inflation expectations survey.19 With this notation, the

structural equation of interest is:

inft = c0 + αf infe
t+1|t + αbinft−1 + αogogt +

3∑

i=1

αi∆inft−i + ut (21)

where inft is inflation in (time) period t, infe
t+1|t denotes expected inflation in period t+1 given

information available in period t, ogt is the output gap in period t, ut is an unobserved error

term and θ = (c0, αf , αb, αog, α1, α2, α3)′ are unknown parameters. The variables infe
t+1|t and

ogt are anticipated to be correlated with the error ut, and so (21) is commonly estimated via

IV; e.g. see Zhang, Osborn, and Kim (2008) and the references therein.

Suitable instruments must be both uncorrelated with ut and correlated with infe
t+1|t and ogt.

In this context, the instrument vector zt commonly includes such variables as lagged values of

expected inflation, the output gap, the short-term interest rate, unemployment, money growth

rate and inflation.20 Hence, the reduced forms are:

infe
t+1|t = z′tδ1 + v1,t (22)

ogt = z′tδ2 + v2,t (23)

where:

z′t = [1, inft−1, ∆inft−1, ∆inft−2, ∆inft−3, infe
t|t−1, ogt−1, rt−1, µt−1, ut−1]

with µt, rt and ut denoting respectively the M2 growth rate, the three-month Treasury Bill rate

and the unemployment rate at time t.

Our sample comprises T = 148 observations. Consistent with the methodology proposed

in HHB, we first need to account for any instability in the reduced forms. Using equation by
19While Zhang, Osborn, and Kim (2008) consider inflation expectations from different surveys as well, we focus

for brevity on the Michigan survey only.
20See Zhang, Osborn, and Kim (2008) for evidence that such instruments are not weak in our context.
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equation the methods proposed in Bai and Perron’s (1998), we find two breaks in the reduced

form for infe
t+1|t, with estimated locations 1975:2 and 1980:4, and one break in the reduced

form for ogt, with estimated location 1975:1; the corresponding 95% confidence intervals are

[1974 : 4, 1975 : 3], [1980 : 3, 1981 : 4], and [1974 : 4, 1976 : 1] respectively.21

Following Hall, Han, and Boldea (2009), we first test for additional breaks over the sub-

sample [1981 : 1, 2005 : 4] for which the reduced form is estimated to be stable. Table 5 reports

both sup-F and sup-Wald-type instability tests, with a cut-off of ε = 0.1522; all results provide

evidence for no additional breaks. Next, as proposed in Hall, Han, and Boldea (2009), we use

Wald tests to test the structural equation over [1969:1,1980:4] for a known break at 1975 : 1,

1975 : 2, and over [1975:2,2005:4] for a known break at 1980 : 4. The Wald tests have p-values

0.0389, 0.0014, and 0.9184 respectively, indicating that only the first (true) break is common

to the structural equation and the reduced forms, and that the NKPC has a break toward the

end of 1974 or early 1975 but its precise location is unclear. Therefore, we re-estimate the

NKPC allowing for a single unknown break in the structural equation, imposing the breaks in

the reduced forms.23 The proposed methodology in Section 3.2 indicates the break to be at

1974 : 4, with corresponding parameter estimates:

for 1969:1-1974:4

inft = −4.75
(1.77)

+ 0.39
(0.22)

infe
t+1|t + 1.58

(0.47)
inft−1 + 0.32

(0.21)
ogt − 1.48

(0.56)
∆inft−1 − 1.16

(0.46)
∆inft−2

− 0.42
(0.25)

∆inft−3

for 1975:1-2005:4

inft = −0.84
(0.27)

+ 0.51
(0.10)

infe
t+1|t + 0.55

(0.08)
inft−1 + 0.06

(0.05)
ogt − 0.33

(0.07)
∆inft−1 − 0.25

(0.08)
∆inft−2

− 0.29
(0.09)

∆inft−3

21Estimating the reduced forms jointly via the methods in Qu and Perron (2007) is not required in our frame-

work, but may be desirable for increasing the efficiency of the break point estimates from the reduced forms and

also for testing whether the reduced forms for ogt and infe
t+1|t share a common break. This was not possible

due to the fact that while a 20% cut-off is computationally necessary for the method in Qu and Perron (2007) to

deliver sensible results for our data, the same 20% cut-off leads to excluding both break candidates 1975:1 and

1975:2.
22Smaller cut-offs yield similar results, indicating that the tests most likely do not suffer from end-of-sample

problems.
23According to HHB, we should also test in [1969:1,1975:1] and [1975:2,1980:4] for an unknown break, but both

the samples are too small for obtaining meaningful results.
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The coefficient on output gap is insignificant, a common finding in the literature, see e.g.

Gali and Gertler (1999)24. As Zhang, Osborn, and Kim (2008), we find that the forward looking

component of inflation has become more important in recent years.25

Based on the result in Theorem 4, the 99%, 95% and 90% confidence intervals are all estimated

to be [1974 : 3, 1975 : 1].26 It is interesting to compare our results on the breaks with those

obtained in Zhang, Osborn, and Kim (2008). They report evidence of a break in the NKPC in

1974-1975 and also find evidence of break in 1980 : 4. However, their methods make no attempt

to distinguish breaks in a structural equation of interest from those coming from other parts

of the system that cause breaks in at least one reduced form. In contrast, our analysis does

distinguish between these two types of breaks and we find evidence of a break in NKPC only at

the end of 1974 with the break in 1980 being present only in one of the reduced forms. Thus

our results refute evidence for 1980 : 4 as a break in the NKPC beyond the implied change it

induces in the conditional mean of the expected inflation.

5 Concluding remarks

In this paper, we present a limiting distribution theory for the break point estimators in a linear

regression model with multiple breaks, estimated via Two Stage Least Squares under two different

scenarios: stable and unstable reduced forms. For stable reduced forms, we consider first the

case where the parameter change is of fixed magnitude; in this case the resulting distribution

depends on the distribution of the data and is not of much practical use for inference. Secondly,

we consider the case where the magnitude of the parameter change shrinks with the sample

size; in this case, the resulting distribution can be used to construct approximate large sample

confidence intervals for the break point.

Due to the failure of the fixed-shifts framework to deliver pivotal statistics that can be used
24While measures of real marginal cost instead of output gap, as advocated by Gali and Gertler (1999), are

not explored here, partly due to the still ongoing debate whether real marginal cost is accurately measured by

proxies such as average unit labor cost - see Rudd and Whelan (2005), such proxies are only bound to strengthen

our results.
25Note that the backward looking coefficient estimate is not 0.55, but 0.55-0.33=0.22, thus much smaller than

the forward looking component.
26Note that the confidence intervals do not coincide before employing the integer part operator as in equation

(9).
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for the construction of approximate confidence intervals, in the unstable reduced form scenario

we focus on shrinking shifts. As pointed out in Hall, Han, and Boldea (2009), handling break

point estimators for the structural equation requires pre-estimating the breaks in the reduced

form. In this paper, we show that pre-partitioning the sample with break points estimated from

the reduced form instead of the true ones does not impact the limiting distribution of the break

points that are specific to the structural equation only. Using the latter break point estimators to

re-partition the sample into regions of only common breaks, we derive the limiting distribution of

a newly proposed estimator for the common break point. Both scenarios allow for the magnitude

of the breaks to differ across equations.

The finite sample performance of the proposed confidence intervals are illustrated via simu-

lations and an application to the New Keynesian Phillips curve.

Our results add to the literature on break point distributions. Previous contributions have

concentrated on level shifts in univariate time series models or on parameter shifts in linear

regression models estimated via OLS in which the regressors are uncorrelated with the errors.

Within our framework, the regressors of the linear regression model are allowed to be correlated

with the error and the shifts are allowed to be nearly weakly identified at different rates across

equations, encompassing a large number of applications in macroeconomics.
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Mathematical Appendix

The proof of Proposition 1 rests on certain results that are presented together in Lemma A.1.

(a) Statement and proof of Lemma A.1:

Lemma A.1 If Assumptions 1-7 hold then for wt = [x̂′
t, z

′
1,t]

′ we have: (i)
∑[Tr]

t=1 wtũt = Op(T 1/2)

uniformly in r ∈ [0, 1]; (ii)
∑[Tr]

t=1 wtw
′
t = Op(T ) uniformly in r ∈ [0, 1].

Proof of (i): First note that: ũt = ut + (xt − x̂t)′β0
x(t, T ), where β0

x(t, T ) ≡ β0
x,i for t ∈ [T 0

i−1 +

1, . . . , T 0
i ], i = 1, 2, . . . , m; (xt − x̂t)′ = v′t − z′t(Z

′Z)−1Z′V where Z is the T × q matrix with tth

row z′t and V is the T × p1 matrix with tth row v′t; wt = Υ̂′
T zt where Υ̂T = [∆̂T , Π]. Using these

identities, it follows that

[Tr]∑

t=1

wtũt = Υ̂′
T

[Tr]∑

t=1

zt[ut + v′tβ
0
x(t, T )]

− Υ̂′
T


T−1

[Tr]∑

t=1

ztz
′
t



(

T−1
T∑

t=1

ztz
′
t

)−1 T∑

t=1

ztv
′
tβ

0
x(t, T ). (24)

Assumption 7 states that β0
x(t, T ) = β0

1 + O(sT ). Using this result along with Assumption 6, it

follows from (24) that

T−1/2

[Tr]∑

t=1

wtũt = Υ′
0



T−1/2

[Tr]∑

t=1

ztut + (Iq − A)T−1/2

[Tr]∑

t=1

ztv
′
tβ

0
1 − AT−1/2

T∑

t=[Tr]+1

ztv
′
tβ

0
1

+ (Iq − A)T−1/2

[Tr]∑

t=1

ztv
′
tO(sT ) − AT−1/2

T∑

t=[Tr]+1

ztv
′
tO(sT )





+ op(1) (25)

where A = QZZ(r)QZZ(1)−1. Under Assumption 3, it follows from Wooldridge and White

(1988)[Theorem 2.11] that: T−1/2
∑[Tr]

t=1 ztut = Op(1) uniformly in r, and T−1/2
∑[Tr]

t=1 ztv
′
t =

Op(1) uniformly in r. Therefore it follows from (25) that under our assumptions part (i) holds.

Proof of (ii): We have

‖T−1

[Tr]∑

t=1

wtw
′
t ‖ = ‖ Υ̂′

T T−1

[Tr]∑

t=1

ztz
′
tΥ̂T‖ = ‖Υ′

0QZZ(r)Υ0 + op(1) ‖

≤ ‖Υ′
0QZZ(r)Υ0 ‖ + op(1)

= Op(1), uniformly in r

where the last equality follows from Assumption 6. �
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(b) Proof of Proposition 1:

Part (i): The basic proof strategy is the same as that for Lemma 1 (see HHB for details) and

builds from the following two properties of the error sum of squares on the second stage of the

2SLS estimation: first, since the 2SLS estimators minimize the error sum of squares in (5), it

follows that

(1/T )
T∑

t=1

û2
t ≤ (1/T )

T∑

t=1

ũ2
t (26)

where ût = yt − x̂
′

tβ̂x,j − z′1,tβ̂z1,j denotes the estimated residuals for t ∈ [T̂j−1 + 1, T̂j] in the

second stage regression of 2SLS estimation procedure and ũt = yt − x̂
′

tβ
0
x,i − z′1,tβ

0
z1,i denotes the

corresponding residuals evaluated at the true parameter value for t ∈ [T 0
i−1 + 1, T 0

i ]; and second,

using dt = ũt − ût = x̂
′

t(β̂x,j − β0
x,i)− z

′

1,t(β̂z1,j − β0
z1,i) over t ∈ [T̂j−1 + 1, T̂j]∩ [T 0

i−1 + 1, T 0
i ], it

follows that

T−1
T∑

t=1

û2
t = T−1

T∑

t=1

ũ2
t + T−1

T∑

t=1

dt
2 − 2T−1

T∑

t=1

ũtdt. (27)

Consistency is established by proving that if at least one of the estimated break fractions does

not converge in probability to a true break fraction then the results in (26)-(27) contradict each

other.

From Hall, Han, and Boldea (2009) equation (60) it follows that

T∑

t=1

ũtdt = Ũ ′PW̄∗ (W̄ ∗ − W̄ 0)β0 + Ũ ′PW̄∗ Ũ − Ũ ′(W̄ ∗ − W̄ 0)β0 (28)

where PS denotes the projection matrix of S, i.e. PS = S(S′S)−1S′ for any matrix S, W̄ ∗ is the

diagonal partition of W at [T̂1, T̂2, . . . , T̂m], W is the T × p matrix with tth row w′
t = [x̂′

t, z
′
1,t],

W̄ 0 is the diagonal partition of W at [T 0
1 , T 0

2 , . . . , T 0
m], Ũ = [ũ1, ũ2, . . . , ũT ].

For ease of presentation, we assume m = 2 but the proof generalizes in a straightforward

manner. Using Lemma A.1 and Assumption 7, it follows that27

‖W̄ ∗′
(W̄ ∗ − W̄ 0)β0‖ ≤ ‖

T̂1∨T0
1∑

t=(T̂1∧T0
1 )+1

wtw
′
t(β

0
2 − β0

1 )‖ + ‖
T̂2∨T0

2∑

t=(T̂2∧T0
2 )+1

wtw
′
t(β

0
3 − β0

2)‖

= Op(TsT ), (29)

‖Ũ ′(W̄ ∗ − W̄ 0)β0‖ ≤ ‖
T̂1∨T0

1∑

t=(T̂1∧T0
1 )+1

ũtw
′
t(β

0
2 − β0

1)‖ + ‖
T̂2∨T0

2∑

t=(T̂2∧T0
2 )+1

ũtw
′
t(β

0
3 − β0

2 )‖

= Op(T 1/2sT ). (30)

27The symbols ∨ and ∧ are defined in Proposition 2.
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From (28)-(30), it follows that
∑T

t=1 ũtdt = Op(T 1/2sT ); notice that this holds irrespective of

the relationship between {T̂i} and {T 0
i }.

Now consider
∑T

t=1 d2
t . Repeating the steps in the proof of HHB[Lemma1(ii)], it follows that

under the assumptions here, if one of the break fraction estimators does not converge to the true

value then
∑T

t=1 d2
t = Op(TsT ). Thus if one of the break fraction estimators does not converge

to the true value then
∑T

t=1 d2
t >>

∑T
t=1 ũtdt

28 which implies (26) and (27) contradict. This

establishes the desired result.

Part (ii): Without loss of generality, we assume m = 2 and focus on T̂2. Using a similar logic

to HHB’s proof of their Theorem 2, it follows that the desired result is established if it can be

shown that for each η > 0, there exists C > 0 and ε > 0 such that for large T ,

P
(
min{[ST (T1, T2) − ST (T1, T

0
2 )]/(T 0

2 − T2)} < 0
)

< η (31)

where the minimum is taken over Vε(C) = {|T 0
i − Ti| ≤ εT, i = 1, 2; T 0

2 − T2 > Cs−2
T } and

we have suppressed the dependence of the residual sum of squares on the regression parameter

estimators for ease of presentation. Again by similar logic to HHB, it can be shown that

ST (T1, T2) − ST (T1, T
0
2 )

T 0
2 − T2

≥ N1 − N2 − N3 (32)

where

N1 = (β̂∗
3 − β̂∆)′

(
W ′

∆W∆

T 0
2 − T2

)
(β̂∗

3 − β̂∆)

N2 = (β̂∗
3 − β̂∆)′

(
W ′

∆W̄

T 0
2 − T2

)(
W̄ ′W̄

T

)−1(
W̄ ′W∆

T

)
(β̂∗

3 − β̂∆)

N3 = (β̂∗
2 − β̂∆)′

(
W ′

∆W∆

T 0
2 − T2

)
(β̂∗

2 − β̂∆)

where β̂∗
2 is the 2SLS estimator of the regression parameter based on t = T1+1, . . . , T2, β̂∆ is the

2SLS estimator of the regression parameter based on t = T2+1, . . . , T 0
2 , β̂∗

3 is the 2SLS estimator

of the regression parameter based on t = T 0
2 +1, . . . , T , W∆ = [0p×T2, wT2+1, . . . , wT0

2
, 0p×(T−T0

2 )]′

and W̄ is the diagonal partition of W at [T1, T2].

Since (T 0
2 − T2)−1W ′

∆W̄ = Op(1) for large enough C and T−1W̄ ′W̄ = Op(1) from Lemma

A.1(ii), it follows that
∥∥∥∥

W ′
∆W̄

T

∥∥∥∥ =
∥∥∥∥

T 0
2 − T2

T

(
W ′

∆W̄

T 0
2 − T2

)∥∥∥∥ ≤ ε

∥∥∥∥
W ′

∆W̄

T 0
2 − T2

∥∥∥∥ = εOp(1)

28Here, the symbol ‘>>’ denotes ‘of a larger order in probability’.
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and so N1 dominates N2 for large T , small ε. To show that N1 also dominates N3, we must

consider the behaviour of β̂∗
2 , β̂∆ and β̂∗

3 . It can be shown that β̂∆ = β0
2 + Op(T−1/2) for large

C, and β̂∗
3 = β0

3 + Op(T−1/2). For β̂∗
2 , we note that

β̂∗
2 = β0

2 +

(
T2∑

t=T1+1

wtw
′
t

)−1 T2∑

t=T1+1

wtũt +

(
T2∑

t=T1+1

wtw
′
t

)−1 T1∨T0
1∑

t=(T1∧T0
1 )+1

wtw
′
t (β0

1 −β0
2 ) I[T1 < T 0

1 ]

where I[·] is an indicator variable that takes the value one if the event in the bracket occurs.

Therefore, using Lemma A.1 and Assumption 7, we have β̂∗
2 = β0

2 +Op(T−1/2)+εOp(sT ) = β0
2 +

εOp(sT ). Combining these results, we have β̂∗
3 − β̂∆ = θ0

T,2 +Op(T−1/2) and β̂∗
2 − β̂∆ = εOp(sT ).

Therefore, it follows that

N1 = θ0′
T,2

(
W ′

∆W∆

T 0
2 − T2

)
θ0
T,2 + op(1) = Op(s2

T )

N3 = εOp(sT )
(

W ′
∆W∆

T 0
2 − T2

)
εOp(sT ) = ε2Op(s2

T )

and so N1 >> N3 for small enough ε. Furthermore, we note that

W ′
∆W∆

T 0
2 − T2

= Υ̂′
T



∑T0

2
t=T2+1 ztz

′
t

T 0
2 − T2


 Υ̂T

has eigenvalues that are non-negative by construction and, by Assumptions 3 - 5, bounded away

from zero for large C with large probability. This implies that for small ε and large C and large

T , (31) holds. �

Proof of Proposition 2

For ease of presentation we focus on the case with two breaks; the proof generalizes in a straight-

forward fashion to m > 2.

We can equivalently define the break point estimators via

(T̂1, T̂2) = argmin(T1,T2)∈B [SSR(T1, T2) − SSR(T 0
1 , T 0

2 )] (33)

where SSR(T1, T2) denotes the residual sum of squares from the second-step regression in 2SLS

of the structural equation assuming breaks at (T1, T2).

Clearly the case of Ti = T 0
i , i = 1, 2 is trivial and so we concentrate on Ti 6= T 0

i for at

least one i = 1, 2. Define β̂i = β̂i(T1, T2) and β̃i = β̂i(T 0
1 , T 0

2 ), for i = 1, 2.29 We first show

29This involves an abuse of notation with respect to the definition of β̂i in Section 2.1 but the interpretation is

clear from the context.
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that T 1/2(β̂i − β̃i) = op(1), for i = 1, 2, 3, u.B. where u.B stands for “uniformly in B”. We

concentrate on the case for i = 1; the proof is easily extended to the other two cases. We have

T 1/2(β̂1 − β0
1 ) =

(
T−1

T1∑

t=1

wtw
′
t

)−1(
T−1/2

T1∑

t=1

wtũt

)
+

(
T−1

T1∑

t=1

wtw
′
t

)−1

×


T−1/2

T1∨T0
1∑

t=(T1∧T0
1 )+1

wtw
′
t


 (β0

2 − β0
1)I[T1 > T 0

1 ], (34)

and

T 1/2(β̃1 − β0
1) =


T−1

T0
1∑

t=1

wtw
′
t




−1
T−1/2

T0
1∑

t=1

wtũt


 (35)

To analyze T 1/2(β̂1 − β̃1), note that:30

(
T−1

T1∑

t=1

wtw
′
t

)−1

=


T−1

T0
1∑

t=1

wtw
′
t




−1

+


T−1

T0
1∑

t=1

wtw
′
t




−1
T−1

T1∨T0
1∑

t=(T1∧T0
1 )+1

wtw
′
t(−1)I[T1<T0

1 ]



(

T−1
T1∑

t=1

wtw
′
t

)−1

=


T−1

T0
1∑

t=1

wtw
′
t




−1

+ Op(T−1s−2
T ), (36)

and

T−1/2

T1∨T0
1∑

t=(T1∧T0
1 )+1

wtũt = Υ′
T


T−1/2

T1∨T0
1∑

t=(T1∧T0
1 )+1

zt[ut + v′tβ
0
x(t, T )]

+ T−1/2

T1∨T0
1∑

t=(T1∧T0
1 )+1

ztz
′
t(∆0 − ∆̂)β0

x(t, T )




= Op(T−1/2s−1
T ) + Op(T−1s−2

T ) = Op(T−1/2s−1
T ). (37)

From (34)-(37), it follows that T 1/2(β̂1−β̃1) = Op(T−1/2s−1
T ). Similar arguments yield T 1/2(β̂i−

β̃i) = Op(T−1/2s−1
T ) for i = 2, 3.

Now consider SSR(T1 , T2) − SSR(T 0
1 , T 0

2 ). Using ût(β) = ũt + w′
t[β0(t, T ) − β], we have

ût(β)2 = ũt + 2[β0(t, T ) − β]′wtũt + [β0(t, T ) − β]′wtw
′
t[β

0(t, T ) − β]

and so

SSR(T1, T2) − SSR(T 0
1 , T 0

2 ) =
T∑

t=1

at + 2
T∑

t=1

ct = A + 2C, say, (38)

30The first identity uses A−1 = B−1 + B−1(B − A)A−1 .
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where

at = [β̃(t, T ) − β̂(t, T )]′wtw
′
t{[β0(t, T ) − β̃(t, T )] + [β0(t, T ) − β̂(t, T )]}, (39)

ct = [β̃(t, T ) − β̂(t, T )]′wtũt, (40)

β̂(t, T ) = β̂i, for t ∈ [Ti−1 + 1, . . . , Ti], i = 1, 2, 3, T0 = 1, T3 = T,

β̃(t, T ) = β̃i, for t ∈ [T 0
i−1 + 1, . . . , T 0

i ], i = 1, 2, 3, T 0
0 = 1, T 0

3 = T.

Define Bc ≡ [1, T ] \ (B1 ∪ B2). Then

A =
∑

B1

at +
∑

B2

at +
∑

Bc

at (41)

where
∑

Bi
denotes sum over t ∈ Bi and

∑
Bc denotes sum over t ∈ Bc. On Bc, we have

T 1/2[β̃(t, T ) − β̂(t, T )] = T 1/2[β̃i − β̂i] = Op(T−1/2s−1
T ) = op(1). On B1, we have

T 1/2[β̃(t, T ) − β̂(t, T )] = T 1/2(β̃1 − β̂2) I[T1 < T 0
1 ] + T 1/2(β̃2 − β̂1) I[T1 > T 0

1 ]

= {T 1/2(β̃1 − β0
1) − T 1/2(β̂2 − β0

2) + T 1/2(β0
1 − β0

2)} I[T1 < T 0
1 ]

+{T 1/2(β̃2 − β0
2 ) − T 1/2(β̂1 − β0

1) + T 1/2(β0
2 − β0

1 )}I[T1 > T 0
1 ]

= (−1)I[T1<T0
1 ]T 1/2θ0

T,1 + Op(1),

where the last identity uses (35) to deduce T 1/2(β̃i − β0
i ) = Op(1) and then the latter result

in conjunction with T 1/2(β̂i − β̃i) = op(1) (shown above) to deduce T 1/2(β̂i − β0
i ) = Op(1).

Similarly, we have on B2: T 1/2[β̃(t, T ) − β̂(t, T )] = (−1)I[T2<T0
2 ]T 1/2θ0

T,2 + Op(1). Therefore,

we have for i = 1, 2,

∑

Bi

at = [T 1/2θ0
T,i + Op(1)]′T−1

Ti∨T0
i∑

t=(Ti∧T0
i )+1

wtw
′
t[T

1/2θ0
T,i + Op(1)]

= θ0′
T,iΥ

′
0

Ti∨T0
i∑

t=(Ti∧T0
i )+1

ztz
′
tθ

0
T,i + op(1), u.B (42)

In contrast, we have:

∑

Bc

at = Op(T−1s−1
T )Op(T )Op(T−1/2) = op(1), u.B (43)

From (42)-(43), it follows that

A =
2∑

i=1



 θ0′

T,iΥ
′
0

Ti∨T0
i∑

t=(Ti∧T0
i )+1

ztz
′
tΥ0θ

0
T,i



 + op(1), u.B (44)
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By similar arguments, we have for:

C =
∑

B1

ct +
∑

B2

ct +
∑

Bc

ct, (45)

where

∑

Bc

ct = T 1/2[β̃(t, T ) − β̂(t, T )]

(
T−1/2

∑

Bc

wtũt

)
= Op(T−1/2s−1

T )Op(1) = op(1), u.B

∑

Bi

ct = (−1)I[Ti<T0
i ]θ0′

T,i(
∑

Bi

wtũt)

From (37), we have for i = 1, 231

∑

Bi

wtũt = Υ′
0

Ti∨T0
i∑

t=(Ti∧T0
i )+1

zt[ut + v′tβ
0
x(t, T )] + op(1), u.B.

Substituting these results into (45), we obtain

C =
2∑

i=1



 (−1)I[Ti<T0

i ]θ0′
T,iΥ

′
0

Ti∨T0
i∑

t=(Ti∧T0
i )+1

zt[ut + v′tβ
0
x(t, T )]



 + op(1), u.B. (46)

The proof is completed by combining (38), (41), (44) and (46), and noting that by Assumption 3,

the segments [(T1∧T 0
1 )+1, T1 ∨T 0

1 ] and [(T2 ∧T 0
2 )+1, T2 ∨T 0

2 ] are asymptotically independent.

�

Proof of Theorem 1

From Assumption 8 it follows that {zt, ut, vt}k0
t=k+1 and {zt, ut, vt}0

t=k−k0+1 have the same joint

distribution, and so ΨT (Ti) has the same distribution as ΨT (Ti − T 0
i ) = R∗

i (s). The result then

follows from Proposition 2. �

Proof of Theorem 2:

Define the rescaled Brownian motions W
(i)
j (c) with c ∈ [0,∞], j = 1, 2, as in Theorem 2. As the

generic form of the limiting distribution is the same for each i, we prove the limiting distribution

has this form for m = 1.32 Since m = 1, we simplify the notation by setting k̂ = T̂1, k0 = T 0
1 ,

θ0
T = θ0

1,T , θ0
1 = θ0, Wj = W

(1)
j , for j = 1, 2.

From Proposition 1(ii), it follows that in considering the limiting behaviour of k̂ we can confine

attention to possible break points within the following set B = {|k − k0| ≤ Cs−2
T }. Therefore,

it suffices to consider the behaviour of ΨT (k) ≡ ΨT (T1) for k = k0 + [cs−2
T ] and c ∈ [−C, C].

31We can repeat the steps preceeding (37) to deduce the analagous result for
∑T2∨T0

2
t=(T2∧T0

2 )+1
wtũt.

32The result generalizes straightforwardly to m > 1.

32



We first consider c ≤ 0 (that is k ≤ k0). We have

s2
T

k0∑

t=k+1

ztz
′
t =⇒ |c|Q1 (47)

sT

k0∑

t=k+1

zt(ut + v′tβ
0
x,1) =⇒

[
(N1

1 + N1
2 β0

x,1)
′ ⊗ Q

1/2
1

]
W1(−c) (48)

It follows from (47)-(48) that, for c ≤ 0,

ΨT (k) ⇒ |c|θ0′Υ′
0Q1Υ0θ

0 − 2(θ0′Υ′
0Φ1Υ0θ0)1/2W1(−c) (49)

Similarly, for c > 0, we have33

ΨT (k) ⇒ |c|θ0′Υ′
0Q2Υ0θ

0 − 2(θ0′Υ′
0Φ2Υ0θ

0)1/2W2(c) (50)

where W2(·) is another Brownian motion process on [0,∞). The two processes W1 and W2

are independent because they are the limiting processes corresponding to the asymptotically

independent regimes.

Thus, we have from the Continuous Mapping Theorem that

s2
T (k̂ − k0)

d→ arg min
c

G(c) (51)

where

G(c) ≡





|c|θ0′Υ′
0Q1Υ0θ

0 − 2(θ0′Υ′
0Φ1Υ0θ

0)1/2W1(−c) : c ≤ 0

|c|θ0′Υ′
0Q2Υ0θ

0 − 2(θ0′Υ′
0Φ2Υ0θ

0)1/2W2(c) : c > 0

We now show that (51) implies the desired result. By a change of variable c = bυ with

b =
θ0′Υ′

0Φ1Υ0θ
0

(θ0′Υ′
0Q1Υ0θ0)2

it can be shown that

arg min
c

G(c) = b · arg min
υ

Z(υ). (52)

We now establish (52).

33Note we use W2(c)
d
= −W2(c).
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For c ≤ 0

G(c) = |c|θ0′Υ′
0Q1Υ0θ

0 − 2(θ0′Υ′
0Φ1Υ0θ

0)1/2W1(−c)

= |bυ| · θ0′Υ′
0Q1Υ0θ

0 − 2(θ0′Υ′
0Φ1Υ0θ

0)1/2W1(−bυ)

= |υ|b · θ0′Υ′
0Q1Υ0θ0 − 2(θ0′Υ′

0Φ1Υ0θ
0)1/2

√
b · W1(−υ)

= |υ| θ0′Υ′
0Φ1Υ0θ

0

(θ0′Υ′
0Q1Υ0θ0)2

· θ0′Υ′
0Q1Υ0θ

0 − 2(θ0′Υ′
0Φ1Υ0θ

0)1/2 (θ0′Υ′
0Φ1Υ0θ0)1/2

θ0′Υ′
0Q1Υ0θ0

W1(−υ)

= |υ| θ
0′Υ′

0Φ1Υ0θ
0

θ0′Υ′
0Q1Υ0θ0

− 2
θ0′Υ′

0Φ1Υ0θ
0

θ0′Υ′
0Q1Υ0θ0

W1(−υ)

Thus, it follows that

arg min
c

G(c) = arg min
υ

{
|υ|
[

θ0′Υ′
0Φ1Υ0θ

0

θ0′Υ′
0Q1Υ0θ0

]
− 2

[
θ0′Υ′

0Φ1Υ0θ
0

θ0′Υ′
0Q1Υ0θ0

]
W1(−υ)

}

= arg min
υ

{
|υ|
2

− W1(−υ)
}

θ0′Υ0Φ1Υ0θ
0

θ0′Υ′
0Q1Υ0θ0

= arg min
υ

{
|υ|
2

− W1(−υ)
}

Similarly, for c > 0, we have that

G(c) = υ
θ0′Υ′

0Φ1Υ0θ
0

(θ0′Υ′
0Q1Υ0θ0)2

θ0′Υ′
0Q2Υ0θ0 − 2(θ0′

Υ′
0Φ2Υ0θ

0)1/2 (θ0′Υ′
0Φ1Υ0θ

0)1/2

θ0′Υ′
0Q1Υ0θ0

W2(υ)

=
θ0′Υ′

0Φ1Υ0θ
0

θ0′Υ′
0Q1Υ0θ0

[
θ0′Υ′

0Q2Υ0θ
0

θ0′Υ′
0Q1Υ0θ0

υ − 2
(

θ0′Υ′
0Φ2Υ0θ

0

θ0′Υ′
0Φ1Υ0θ0

)1/2

W2(υ)

]

=
θ0′Υ′

0Φ1Υ0θ
0

θ0′Υ′
0Q1Υ0θ0

[
ξυ − 2

√
φW2(υ)

]

Thus, we have

arg min
c

G(c) = arg min
υ

{
−ξυ

2
+
√

φW2(υ)
}

θ0′Υ′
0Φ1Υ0θ

0

θ0′Υ′
0Q1Υ0θ0

= arg min
υ

{
−ξυ

2
+
√

φW2(υ)
}

Finally, the statement in Theorem 2 can be established in the following way. Since ΨT (k) ⇒ G(s)

and arg minc G(c) = b·arg minυ Z(υ), we have b−1υ2
T (k̂−k0)

d→ arg minυ Z(υ). Using Assumption

7, we have b−1υ2
T = (θ0′

T Υ′
0Q1Υ0θ

0
T )2/(θ0′

T Υ′
0Φ1Υ0θ

0
T ) and thus, the desired result follows. �

Proof of Proposition 3:
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For ease of presentation, we focus on the following model with m = h = 1,34

yt =





(x′
t, z

′
1,t)β0

1 + ut, t ≤ T 0
1

(x′
t, z

′
1,t)β

0
2 + ut, t > T 0

1

(53)

x′
t =





z′t∆0
1 + vt, t ≤ T ∗

1

z′t∆
0
2 + vt, t > T ∗

1

(54)

with π0
1 < λ0

1. For ease of notation, we set k1 = [Tπ1], k0
1 = [Tπ0

1], k2 = [Tλ1], k0
2 = [Tλ0

1]. Also

let k̂rf
1 denote the estimator of k0

1 based on estimation of (54) that is, k̂rf
i = [T π̂1]. From Bai

(1997b) or Bai and Perron (1998), it follows that in the shrinking-break case we have k̂rf
1 ∈ B∗ =

{k1 : |k1 − k0
1| ≤ C∗(s∗T )−2} for some C∗ > 0. We now consider the properties of k̂2 = [T λ̂1]

where λ̂1 is obtained by minimizing the 2SLS objective function for (53) using the sub-sample

[k̂rf
1 + 1, T ].

Proof of Part (i): The basic proof strategy is the same as that Proposition 1 (i). For ease of

notation, set k̂1 = k̂rf
1 . By similar arguments to (28), we have

T∑

t=k̂1

ũtdt = Ũ ′PW̄∗ (W̄ ∗ − W̄ 0)β0 + Ũ ′PW̄∗ Ũ − Ũ ′(W̄ ∗ − W̄ 0)β0 (55)

where W̄ ∗ is now a diagonal partition of W at k̂2, W = [wk̂1+1, wk̂1+2, . . . , wT ]′, W̄ 0 is now the

diagonal partition of W at k0
2, Ũ = [ũk̂1+1, ũk̂1+2, . . . , ũT ].

We consider the terms in (55) in turn. First consider W̄ ∗′W̄ ∗. To this end, define δ̂(t, T ) =

∆0(t, T ) − ∆̂(t, T ), where ∆0(t, T ) = ∆0
1 I{t ≤ k0

1} + ∆0
2 I{t > k0

1}, ∆̂(t, T ) = ∆̂1 I{t ≤

k̂1} + ∆̂2I{t > k̂1}, and hence, for t ∈ [k̂1 + 1, T ]:

δ̂(t, T ) = ∆0
2 − ∆̂2 + (∆0

1 − ∆0
2)I{k̂1 ≤ k0

1, t ≤ k0
1} (56)

Since k̂1 ∈ B∗, it follows by standard arguments that ∆̂2 = ∆0
2 + Op(T−1/2) and this property

combined with Assumption 14 yields

δ̂(t, T ) = Op(T−1/2) + O(s∗T )I{k̂1 ≤ k0
1, t ≤ k0

1} (57)

It therefore follows that

W̄ ∗′W̄ ∗ =
T∑

t=k̂1+1

wtw
′
t = Υ̂′

2

T∑

t=k̂1+1

ztz
′
tΥ̂2 = Op(1)Op(T )Op(1) = Op(T ) (58)

34It is apparent from the proofs that the results extend to both end-points of the sample being random and

the multiple break models under Assumption 3. See the Supplementary Appendix for the proof in which there is

also a break in the structural equation at k0
1 .
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where Υ̂2 = [∆̂2, Π].

Now consider W̄ ∗′Ũ . Since ũt = ut + v′tβ
0
x(t, T ) + z′tδ̂(t, T )β0

x(t, T ), it follows that

W̄ ∗′Ũ = Υ̂′
2

T∑

t=k̂1+1

zt[ut + v′tβ
0
x(t, T )] + Υ̂′

2

T∑

t=k̂1+1

ztz
′
tδ̂(t, T )β0

x(t, T ) (59)

Now, we have

T∑

t=k̂1+1

zt[ut + v′tβ
0
x(t, T )] =

k0
2∑

t=k0
1+1

zt[ut + v′tβ
0
x,1] +

T∑

t=k0
2+1

zt[ut + v′tβ
0
x,2]

+ (−1)I{k̂1>k0
1}

k̂1∨k0
1∑

t=(k̂1∧k0
1)+1

zt[ut + v′tβ
0
x,1]

= Op(T 1/2) + (−1)I{k̂1>k0
1}
∑

B∗

zt[ut + v′tβ
0
x,1]

= Op(T 1/2) + Op([s∗T ]−1) = Op(T 1/2). (60)

In addition, we have

T∑

t=k̂1+1

ztz
′
tδ̂(t, T )β0

x(t, T ) =
T∑

t=k̂1+1

ztz
′
t(∆

0
2 − ∆̂2)β0

x(t, T ) +
T∑

t=k̂1+1

ztz
′
t(∆

0
1 − ∆0

2)I{k̂1 ≤ k0
1, t ≤ k0

1}β0
x(t, T )

= Op(T 1/2) + Op([s∗T ]−1) = Op(T 1/2). (61)

Combining (59)-(61), we have that

W̄ ∗′Ũ = Op(T 1/2). (62)

For W̄ ∗′(W̄ ∗ − W̄ 0)β0, we have

∥∥W̄ ∗′(W̄ ∗ − W̄ 0)β0
∥∥ =

∥∥∥∥∥∥

k2∨k0
2∑

t=(k2∧k0
2)+1

wtw
′
t(β

0
2 − β0

1)

∥∥∥∥∥∥
= Op(TsT ) (63)

For Ũ ′(W̄ ∗ − W̄ 0)β0, we have

∥∥∥Ũ ′(W̄ ∗ − W̄ 0)β0
∥∥∥ =

∥∥∥∥∥∥

k2∨k0
2∑

t=(k2∧k0
2)+1

ũtw
′
t(β

0
2 − β0

1)

∥∥∥∥∥∥
(64)

and

k2∨k0
2∑

t=(k2∧k0
2)+1

wtũt = Υ̂′
2

k2∨k0
2∑

t=(k2∧k0
2)+1

zt[ut + v′tβ
0
x(t, T )] + Υ̂′

2

k2∨k0
2∑

t=(k2∧k0
2)+1

ztz
′
tδ̂(t, T )β0

x(t, T )

= Op(T 1/2) (65)
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Combining (64)-(65), we obtain

∥∥∥Ũ ′(W̄ ∗ − W̄ 0)β0
∥∥∥ = Op(T 1/2sT ) (66)

From (55), (58), (62), (63), (66), it follows that
∑T

t=k̂1+1 ũtdt = Op(T 1/2sT ). Using similar

arguments, it can be shown that
∑T

t=k̂1+1 d2
t = Op(TsT ). The result then follows by similar

arguments to the proof of Proposition 1 (i).

Proof of Part (ii): The general proof strategy is similar to Proposition 1 (ii). Define Vε(C) =

{k2 : |k2 − k0
2| < εT, k0

2 − k2 > Cs−2
T }, SSR1 to be the residual sum of squares from 2SLS

estimation of the structural equation based on sample [k̂1 + 1, T ] with a break at k2, SSR2 to

be the residual sum of squares from 2SLS estimation of the structural equation based on sample

[k̂1 + 1, T ] with a break at k0
2, SSR3 to be the residual sum of squares from 2SLS estimation

of the structural equation based on sample [k̂1 + 1, T ] with breaks at k2 and k0
2. By similar

arguments to the proof of Proposition 1 (ii), we have

SSR1 − SSR2

k0
2 − k2

≥ N1 − N2 − N3 (67)

where

N1 = (β̂∗
2 − β̂∆)′

(
W ′

∆W∆

k0
2 − k2

)
(β̂∗

2 − β̂∆)

N2 = (β̂∗
2 − β̂∆)′

(
W ′

∆W̄

k0
2 − k2

)(
W̄ ′W̄

T

)−1(
W̄ ′W∆

T

)
(β̂∗

2 − β̂∆)

N3 = (β̂∗
1 − β̂∆)′

(
W ′

∆W∆

k0
2 − k2

)
(β̂∗

1 − β̂∆)

where β̂∗
1 is the 2SLS estimator of the regression parameter based on t = k̂1+1, . . . , k2, β̂∆ is the

2SLS estimator of the regression parameter based on t = k2+1, . . . , k0
2, β̂∗

2 is the 2SLS estimator of

the regression parameter based on t = k0
2+1, . . . , T , W∆ = [0p×(k2−k̂1)

, wk2+1, . . . , wk0
2
, 0p×(T−k0

2)
]′

and W̄ is the diagonal partition of W at k2.

It is straightforward to show that N1 dominates N2 for small ε. Therefore, we focus on

showing that N1 dominates N3 for small ε, large C and N1 is positive with large probability. To

this end, we start by considering the properties of the parameter estimators in N1 and N3. For

large C, we have β̂∆ = β0
1 + Op(T−1/2) because it is based on a large sub-sample for which β0

1

is the true parameter in the structural equation. Also we have β̂∗
2 = β0

2 + Op(T−1/2) as it is an
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estimator of β0
2 obtained from a model with the correct break imposed. Now consider β̂∗

1 . By

definition

β̂∗
1 = β0

1 +




k2∑

t=k̂1+1

wtw
′
t




−1
k2∑

t=k̂1+1

wtũt (68)

From Assumption 10, it follows that
∑k2

t=k̂1+1
wtw

′
t = Op(T ) uniformly in Vε(C). Now consider

∑k2

t=k̂1+1
wtũt. We have

k2∑

t=k̂1+1

wtũt = Υ̂′
2

k2∑

t=k̂1+1

zt(ut + v′tβ
0
x,1) + Υ̂′

2

k2∑

t=k̂1+1

ztz
′
t(∆

0
2 − ∆̂2)β0

x,1

+ Υ̂′
2

k2∑

t=k̂1+1

ztz
′
t I{k̂1 ≤ k0

1, t ≤ k0
1} (∆0

1 − ∆0
2)β

0
x,1.

Examining each term in turn, we have

k2∑

t=k̂1+1

zt(ut + v′tβ
0
x,1) = Op([s∗T ]−1) I{k2 ≤ k0

1, k̂1 ≤ k0
1} + Op(T 1/2) (1 − I{k2 ≤ k0

1, k̂1 ≤ k0
1})

= Op(T 1/2),
k2∑

t=k̂1+1

ztz
′
t(∆

0
2 − ∆̂2)β0

x,1 = Op(T−1/2[s∗T ]−2) I{k2 ≤ k0
1, k̂1 ≤ k0

1} + Op(T 1/2) (1 − I{k2 ≤ k0
1, k̂1 ≤ k0

1})

= Op(T 1/2)

and

Υ̂′
2

k2∑

t=k̂1+1

ztz
′
t I{k̂1 ≤ k0

1, t ≤ k0
1}(∆0

1 − ∆0
2)β

0
x,1 = Op([s∗T ]−1).

Therefore it follows that β̂∗
1 = β0

1 + Op(T−1/2). Using the derived properties of the estimators,

it follows that β̂1 − β̂∆ = Op(T−1/2) and β̂2 − β̂∆ = β0
2 − β0

1 + Op(T−1/2) = Op(sT ). Using these

results in the formulae for N1 and N3, it is clear that N1 dominates N3. Furthermore,

N1 = (β0
2 − β0

1)′
1

k0
2 − k2

k0
2∑

t=k2+1

wtw
′
t(β

0
2 − β0

1) + op(1)

= (β0
2 − β0

1)′Υ0′
2 Q2Υ0

2(β
0
2 − β0

1) + op(1)

for large C and large T . Since Q2 is pd and β0
2 − β0

1 6= 0 for large but finite T , the required

result then follows by similar arguments to the proof of Proposition 1. The case of k2 > k0
2 can

be handled in a similar way and thus is omitted. �.

Proof of Theorem 3

Consider again the model used in the proof of Proposition 3. Define β̂1 to be the 2SLS estimator
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based on t ∈ [k̂1 + 1, k2], β̂2 to be the 2SLS estimator based on t ∈ [k2 + 1, T ], β̃1 to be the 2SLS

estimator based on t ∈ [k̂1 + 1, k0
2], and β̃2 to be the 2SLS estimator based on t ∈ [k0

2 + 1, T ].

To facilitate the proof we must first consider the properties of these estimators. Note that from

Proposition 3 (ii) it follows that we need to consider only k2 ∈ B2 = {k2 : |k2 − k0
2| < C2s

−2
T }.

We have

T 1/2(β̃1 − β0
1) =


T−1

k0
2∑

t=k̂1+1

wtw
′
t




−1

T−1/2

k0
2∑

t=k̂1+1

wtũt. (69)

Let [1, k̂2] \ (B∗ ∪ B2) ≡ B̄ and note that B∗ ∩ B2 = ∅. We have

T−1

k0
2∑

t=k̂1+1

wtw
′
t = T−1

k0
2∑

t=k0
1+1

wtw
′
t + (−1)I{k̂1>k0

1} T−1

k̂1∨k0
1∑

t=(k̂1∧k0
1)+1

wtw
′
t

= Op(1) + (−1)I{k̂1>k0
1}T−1

∑

B∗

wtw
′
t

= Op(1) + Op(T−1[s∗T ]−2) = Op(1).

Similarly, we have

T−1/2

k0
2∑

t=k̂1+1

wtũt = T−1/2

k0
2∑

t=k0
1+1

wtũt + (−1)I{k̂1>k0
1} T−1/2

k̂1∨k0
1∑

t=(k̂1∧k0
1)+1

wtũt

= Op(1) + (−1)I{k̂1>k0
1}T−1/2

∑

B∗

wtũt

= Op(1) + Op(T−1/2[s∗T ]−1) = Op(1).

Thus, it follows from (69) that β̃1 = β0
1 + Op(T−1/2). Now consider β̂1 − β̃1. By definition, we

have

T 1/2(β̂1 − β̃1) =


T−1

k2∑

t=k̂1+1

wtw
′
t




−1

T−1/2
k2∑

t=k̂1+1

wtũt

−


T−1

k0
2∑

t=k̂1+1

wtw
′
t




−1

T−1/2

k0
2∑

t=k̂1+1

wtũt. (70)
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We have35


T−1

k2∑

t=k̂1+1

wtw
′
t




−1

=


T−1

k0
2∑

t=k̂1+1

wtw
′
t




−1

+


T−1

k0
2∑

t=k̂1+1

wtw
′
t




−1

×

(−1)I{k2>k0
2}T−1

k2∨k0
2∑

t=(k2∧k0
2)+1

wtw
′
t


T−1

k2∑

t=k̂1+1

wtw
′
t




−1

(71)

=


T−1

k0
2∑

t=k̂1+1

wtw
′
t




−1

+ op(1), uniformly in B2,

and

T−1/2
k2∑

t=k̂1+1

wtũt − T−1/2

k0
2∑

t=k̂1+1

wtũt = (−1)I{k2<k0
2}


T−1/2Υ̂′

2

k2∨k0
2∑

t=(k2∧k0
2)+1

zt[ut + v′tβ
0
x(t, T )]

+ T−1/2Υ̂′
2

k2∨k0
2∑

t=(k2∧k0
2)+1

ztz
′
t(∆

0
2 − ∆̂2)β0

x(t, T )


 (72)

= (−1)I{k2<k0
2}T−1/2Υ̂′

2

k2∨k0
2∑

t=(k2∧k0
2)+1

zt[ut + v′tβ
0
x(t, T )]

+ Op(T−1s−2
T ), uniformly in B2

= Op(T−1/2s−1
T ), uniformly in B2.

Therefore, using these results in (70), we obtain T 1/2(β̂1 − β̃1) = Op(T−1/2s−1
T ) uniformly in B2.

Since β̃2 is based on an estimation with the correct break imposed, it follows by standard

arguments that β̃2 = β0
2 + Op(T−1/2). Now consider β̂2 − β̃2. We have

T 1/2(β̂2 − β̃2) =

(
T−1

T∑

t=k2+1

wtw
′
t

)−1

T−1/2
T∑

t=k2+1

wtũt −


T−1

T∑

t=k0
2+1

wtw
′
t




−1

T−1/2
T∑

t=k0
2+1

wtũt

+I{k2 < k0
2}

(
T−1

T∑

t=k2+1

wtw
′
t

)−1

T−1

k2∨k0
2∑

t=(k2∧k0
2)+1

wtw
′
t


T 1/2(β0

1 − β0
2). (73)

By similar arguments to (71), we have
(

T−1
T∑

t=k2+1

wtw
′
t

)−1

=


T−1

T∑

t=k0
2+1

wtw
′
t




−1

+ op(1), uniformly in B2,

and by similar arguments to (72),

T−1/2
T∑

t=k2+1

wtũt − T−1/2
T∑

t=k0
2+1

wtũt = (−1)I{k2>k0
2}T−1/2

k2∨k0
2∑

t=(k2∧k0
2)+1

wtũt

= Op(T−1/2s−1
T ), uniformly in B2.

35Using A−1 − B−1 = B−1(B − A)A−1 .
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Therefore, we have

(
T−1

T∑

t=k2+1

wtw
′
t

)−1

T−1

k2∨k0
2∑

t=(k2∧k0
2)+1

wtw
′
t


T 1/2(β0

1 − β0
2) = Op(T−1/2s−1

T )

and so T 1/2(β̂2 − β̃2) = Op(T−1/2s−1
T ).

With this background, we now consider the distribution of k̂2, where

k̂2 = argmink2∈B2 [SSR(k̂1, k2) − SSR(k̂1, k
0
2)]

and SSR(k1, k2) denotes the residual sum of squares in interval [k1 + 1, T ] with partition at k2.

Obviously if k2 = k0
2 then the minimand is zero, and so we concentrate on the case in which

k2 6= k0
2.

Define β̂(t, T ) = β̂1I{t ≤ k2} + β̂2I{t > k2} and β̃(t, T ) = β̃1I{t ≤ k0
2} + β̃2I{t > k0

2}.

Notice that from our previous results we have:

T 1/2[β̃(t, T ) − β̂(t, T )] = T 1/2(β̃1 − β̂1)I{t ≤ (k2 ∧ k0
2)} + T 1/2(β̃2 − β̂2)I{t > (k2 ∨ k0

2)}

+ I{(k2 ∧ k0
2) + 1 ≤ t ≤ (k2 ∨ k0

2)}
[
T 1/2(β̃1 − β̂2)I{k2 < k0

2}

+ T 1/2(β̃2 − β̂1)I{k2 > k0
2}
]

= Op(T−1/2s−1
T ) + T 1/2sT θ0

1(−1)I{k2<k0
2} + Op(1).

Let B̄2 = [k̂1 + 1, T ] \ [(k2 ∧ k0
2) + 1, k2 ∨ k0

2], then using similar arguments to the derivation of

(38) we have

SSR(k̂1, k2) − SSR(k̂1, k
0
2) =

T∑

t=k̂1+1

at + 2
T∑

t=k̂1+1

ct = A + 2C (74)

where at = T 1/2[β̃(t, T ) − β̂(t, T )]T−1wtw
′
t

{
T 1/2[β0(t, T ) − β̂(t, T )] + T 1/2[β0(t, T ) − β̃(t, T )]

}
,

and ct = T 1/2[β̃(t, T ) − β̂(t, T )]T−1/2wtũt. Consider A and C in turn. We have A =
∑

B2
at +

∑
B̄2

at, and

∑

B̄2

at = Op(T−1/2s−1
T )T−1

∑

B̄2

wtw
′
t Op(1) = op(1), uniformly in B2,

∑

B2

at = T 1/2sT θ0′
1 (−1)I{k2<k0

2}

(
T−1

∑

B2

wtw
′
t

)
×

{
T 1/2[β0(t, T ) − β̂(t, T )] + T 1/2[β0(t, T ) − β̃(t, T )]

}
.
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If t ∈ B2 then we have

T 1/2[β0(t, T ) − β̂(t, T )] = T 1/2[β0
1 − β̂2]I{k2 < k0

2} + [β0
2 − β̂1]I{k2 > k0

2}

T 1/2[β0(t, T ) − β̃(t, T )] = T 1/2[β0
1 − β̃1]I{k2 < k0

2} + T 1/2[β0
2 − β̃2]I{k2 > k0

2}

and so setting dT = T 1/2[β0(t, T ) − β̃(t, T )] + T 1/2[β0(t, T ) − β̂(t, T )], we have

dT =
{

T 1/2[β0
1 − β̃1] + T 1/2[β0

2 − β̂2] + T 1/2(β0
1 − β0

2 )
}
I{k2 < k0

2}

+
{

T 1/2[β0
2 − β̃2] + T 1/2[β0

1 − β̂1] + T 1/2(β0
2 − β0

1 )
}
I{k2 > k0

2}

= T 1/2θ0
T,1(−1)I{k2<k0

2} + Op(1), uniformly in B2.

Hence, we have

∑

B2

at = θ0′
T,1

∑

B2

wtw
′
tθ

0
T,1 = θ0′

T,1Υ
0′
2 Q2Υ0

2θ
0
T,1|k0

2 − k2| + op(1), uniformly in B2.

Recalling that A =
∑

B2
at +

∑
B̄2

at, we obtain from the above results that

A = θ0′
T,1Υ

0′
2 Q2Υ0

2θ
0
T,1|k0

2 − k2| + op(1), uniformly in B2. (75)

Similarly, we have C =
∑

B2
ct +

∑
B̄2

ct where

∑

B̄2

ct =
∑

B̄2

T 1/2[β̃(t, T ) − β̂(t, T )]T−1/2wtũt = Op(T−1/2s−1
T )Op(1) = op(1), uniformly in B2,

∑

B2

ct =
∑

B2

T 1/2[β̃(t, T ) − β̂(t, T )]T−1/2wtũt = [(−1)I{k2<k0
2}θ0′

T,1 + Op(1)]
∑

B2

wtũt

= [(−1)I{k2<k0
2}θ0′

T,1 + Op(1)]



Υ0′

2 T−1/2

k2∨k0
2∑

t=(k2∧k0
2)+1

zt[ut + v′tβ
0
x(t, T )] + Op(T−1s−2

T )





= [(−1)I{k2<k0
2}θ0′

T,1]



Υ0′

2 T−1/2

k2∨k0
2∑

t=(k2∧k0
2)+1

zt[ut + v′tβ
0
x(t, T )]



 + op(1), uniformly in B2.

It follows that

A + 2C = 2(−1)I{k2<k0
2}θ0′

T,1Υ
0′
2 T−1/2

k2∨k0
2∑

t=(k2∧k0
2)+1

zt[ut + v′tβ
0
x(t, T )]

+ |k2 − k0
2|θ0′

T,1Υ
0′
2 Q2Υ0

2θ
0
T,1 + op(1), uniformly in B2. (76)

It can be recognized that (76) has the same basic structure as (8) and so the rest of the proof

follows by similar arguments to the proof of Proposition 2. �
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Proof of Proposition 4

Consider the following model with m = 2 and h = 1.

yt =





(x′
t, z

′
1,t)β

0
1 + ut, t ≤ T 0

1

(x′
t, z

′
1,t)β0

2 + ut, T 0
1 + 1 ≤ t < T 0

2

(x′
t, z

′
1,t)β0

3 + ut, t > T 0
2

(77)

x′
t =





z′t∆
0
1 + vt, t ≤ T 0

1

z′t∆0
2 + vt, t > T 0

1

(78)

with π0
1 = λ0

1, thus T ∗
1 = T 0

1 in the notation of Section 3.2. For ease of notation, we set κ = [Tπ1],

ki = [Tλi], k0
i = [Tλ0

i ]. Also let κ̂ denote the estimator of k0
1 from the reduced form, that is,

κ̂ = [T π̂1]. As in the proof of Proposition 3, we have κ̂ ∈ B∗ = {κ : |κ−k0
1| ≤ C∗

1 [s∗T ]−2}, for some

C1 > 0, and from that proposition we also need only consider k̂2 ∈ B2 = {k2 : |k2−k0
2| ≤ C2s

−2
T }

for some C2 > 0. We now consider the properties of k̂1 = [T λ̂1] where λ̂1 is defined in (17) with

λ̂k−1 = 1 and λ̂k+1 = k̂2.

Proof of part (i): The basic proof strategy is the same as that Proposition 1 (i). By similar

arguments to (28), we have

k̂2∑

t=1

ũtdt = Ũ ′PW̄∗ (W̄ ∗ − W̄ 0)β0 + Ũ ′PW̄∗ Ũ − Ũ ′(W̄ ∗ − W̄ 0)β0 (79)

where W̄ ∗ is now a diagonal partition of W at k̂1, W = [w1, w2, . . . , wk̂2
]′, W̄ 0 is now the diagonal

partition of W at k0
1, Ũ = [ũ1, ũ2, . . . , ũk̂2

].

We consider the terms in (79) in turn. First consider W̄ ∗′W̄ ∗. To this end, define δ̂(t, T ) =

∆0(t, T ) − ∆̂(t, T ), where ∆0(t, T ) = ∆0
1I{t ≤ k0

1} + ∆0
2I{t > k0

1}, ∆̂(t, T ) = ∆̂1I{t ≤ κ̂} +

∆̂2I{t > κ̂}, therefore

δ̂(t, T ) =





∆0
1 − ∆̂1, t ≤ κ̂ ∧ k0

1

∆0
2 − ∆̂2, t > κ̂ ∨ k0

1

(∆0
1 − ∆̂2)I{κ̂ < k0

1} + (∆0
2 − ∆̂1)I{κ̂ > k0

1}, t ∈ B∗

(80)

Letting B̄∗ = (B∗)c, the complement of B∗ on [1, k̂2], we then have: δ̂(t, T ) = Op(T−1/2) for

t ∈ B̄∗; δ̂(t, T ) = Op(s∗T ) for t ∈ B∗. It then follows that

∥∥W̄ ∗′W̄ ∗∥∥ = ‖
k̂2∑

t=1

wtw
′
t‖ ≤ ‖Υ̂(t, T )′Υ̂(t, T )‖ ‖

k̂2∑

t=1

ztz
′
t‖ = Op(T ) (81)
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where Υ̂(t, T ) = [∆̂(t, T ), Π].

Now consider W̄ ∗′Ũ . We have

‖W̄ ∗′Ũ‖ = ‖
∑

t∈B∗

wtũt +
∑

t∈B̄∗

wtũt‖ ≤ ‖
∑

t∈B∗

wtũt‖ + ‖
∑

t∈B̄∗

wtũt‖ (82)

Now,

‖
∑

t∈B∗

wtũt‖ ≤ ‖
∑

t∈B∗

Υ̂(t, T )′zt[ut + v′tβ
0
x(t, T )]‖ + ‖

∑

t∈B∗

Υ̂(t, T )′ztz
′
tδ̂(t, T )β0

x(t, T )‖

≤ Op([s∗T ]−1) + Op([s∗T ]−2)Op(s∗T )Op(1) = Op([s∗T ]−1),

and

‖
∑

t∈B̄∗

wtũt‖ ≤ ‖
∑

t∈B̄∗

Υ̂(t, T )′zt[ut + v′tβ
0
x(t, T )]‖ + ‖

∑

t∈B̄∗

Υ̂(t, T )′ztz
′
tδ̂(t, T )β0

x(t, T )‖

= Op(T 1/2).

Thus it follows from (82) that

W̄ ∗′Ũ = Op(T 1/2) + Op([s∗T ]−1) = Op(T 1/2). (83)

For W̄ ∗′(W̄ ∗ − W̄ 0)β0, we have

∥∥W̄ ∗′(W̄ ∗ − W̄ 0)β0
∥∥ =

∥∥∥∥∥∥

k̂1∨k0
1∑

t=(k̂1∧k0
1)+1

wtw
′
t(β

0
2 − β0

1)

∥∥∥∥∥∥
= Op(TsT ), (84)

and for Ũ ′(W̄ ∗ − W̄ 0)β0, we have

∥∥∥Ũ ′(W̄ ∗ − W̄ 0)β0
∥∥∥ =

∥∥∥∥∥∥

k̂1∨k0
1∑

t=(k̂1∧k0
1)+1

ũtw
′
t(β

0
2 − β0

1)

∥∥∥∥∥∥
≤ Op(T 1/2sT ). (85)

Combining (79), (81) and (83)-(85), we obtain
∑k̂2

t=1 ũtdt = Op(T 1/2sT ). The desired result then

follows by similar arguments to the proof of Proposition 1 (i).

Proof of part (ii): The general proof strategy is similar to Proposition 1 (ii). Define Vε(C) =

{k1 : |k1 − k0
1| < εT, k0

1 − k1 > C1s
−2
T }36, for some C1 > 0, SSR1 to be the residual sum of

squares from 2SLS estimation of the structural equation based on sample [1, k̂2] with a break

at k1, SSR2 to be the residual sum of squares from 2SLS estimation of the structural equation
36The case k1 > k0

1 can be handled in a similar fashion.
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based on sample [1, k̂2] with a break at k0
1, SSR3 to be the residual sum of squares from 2SLS

estimation of the structural equation based on sample [1, k̂2] with breaks at k1 and k0
1. By similar

arguments to the proof of Proposition 1 (ii), we have

SSR1 − SSR2

k0
1 − k1

≥ N1 − N2 − N3 (86)

where

N1 = (β̂∗
2 − β̂∆)′

(
W ′

∆W∆

k0
1 − k1

)
(β̂∗

2 − β̂∆)

N2 = (β̂∗
2 − β̂∆)′

(
W ′

∆W̄

k0
1 − k1

)(
W̄ ′W̄

T

)−1(
W̄ ′W∆

T

)
(β̂∗

2 − β̂∆)

N3 = (β̂∗
1 − β̂∆)′

(
W ′

∆W∆

k0
1 − k1

)
(β̂∗

1 − β̂∆)

where β̂∗
1 is the 2SLS estimator of the regression parameter based on t = 1, 2, . . ., k̂1, β̂∆ is the

2SLS estimator of the regression parameter based on t = k1 +1, . . . , k0
1, β̂∗

2 is the 2SLS estimator

of the regression parameter based on t = k0
1+1, . . . , k̂2, W∆ = [0p×k1, wk1+1, . . . , wk0

1
, 0p×(k̂2−k0

1)
]′

and W̄ is the diagonal partition of W = [w1, . . . , wk̂2
] at k1.

It is straightforward to show that N1 dominates N2 for small ε. Therefore, we focus on

showing that N1 dominates N3 for small ε, large C and N1 is positive with large probability.

Since β̂∗
1 and β̂∆ are sub-sample estimators of β0

1 , it follows by standard arguments that β̂∗
1 =

β0
1 + Op(T−1/2) and β̂∆ = β0

1 + Op(T−1/2) for C and T large. On the other hand, since

β̂∗
2 = β0

2 +




k̂2∑

t=k0
1+1

wtw
′
t




−1
k̂2∑

t=k0
1+1

wtũt

it follows that β̂∗
2 = β0

2 + Op(T−1/2). Using these results we obtain β̂∗
2 − β̂∆ = (β0

2 − β0
1 ) +

Op(T−1/2) and β̂∗
1 − β̂∆ = Op(T−1/2). Since, for large C, we have W ′

∆W∆/(k0
1 − k1) = Op(1), it

follows from the results above that N1 = Op(s2
T ) and N3 = Op(T−1). Therefore, N1 dominates

N3. Finally for large C, W ′
∆W∆/(k0

1 − k1) is p.d. and so N1 > 0 with large probability. �.

Proof of Theorem 4

Consider the model used above in the proof of Proposition 4. Define β̂1 to be the 2SLS estimator

based on t ∈ [1, k1], β̂2 to be the 2SLS estimator based on t ∈ [k1 + 1, k̂2], β̃1 to be the 2SLS

estimator based on t ∈ [1, k0
1], and β̃2 to be the 2SLS estimator based on t ∈ [k0

1 + 1, k̂2]. To

facilitate the proof we must first consider the properties of these estimators. Note that from

Proposition 4 (ii) it follows that we need consider only k1 ∈ B1 = {k1 : |k1 − k0
1| < C1s

−2
T }.
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Consider first β̂1. We have

β̂1 = β0
1 +

(
k1∑

t=1

wtw
′
t

)−1
k1∑

t=1

wtũt

+

(
k1∑

t=1

wtw
′
t

)−1



k1∨k0
1∑

t=(k1∧k0
1)+1

wtw
′
t


 (β0

2 − β0
1)I{k1 > k0

1}

= β0
1 + Op(T−1/2) + Op(T−1s−1

T ) = β0
1 + Op(T−1/2) uniformly in B1. (87)

Also we have

β̂2 = β0
2 +




k̂2∑

t=k1+1

wtw
′
t




−1
k̂2∑

t=k1+1

wtũt

+




k̂2∑

t=k1+1

wtw
′
t




−1


k1∨k0
1∑

t=(k1∧k0
1)+1

wtw
′
t


 (β0

1 − β0
2)I{k1 < k0

1}

+




k̂2∑

t=k1+1

wtw
′
t




−1


k̂2∨k0
2∑

t=(k̂2∧k0
2)+1

wtw
′
t


 (β0

3 − β0
2)I{k̂2 > k0

2}

= β0
2 + Op(T−1/2) uniformly in B1. (88)

Now consider β̃1. We have

β̃1 = β0
1 +




k0
1∑

t=1

wtw
′
t




−1
k0
1∑

t=1

wtũt = β0
1 + Op(T−1/2). (89)

For β̃2, we have

β̃2 = β0
2 +




k̂2∑

t=k1+1

wtw
′
t




−1
k̂2∑

t=k1+1

wtũt

+




k̂2∑

t=k1

wtw
′
t




−1


k̂2∨k0
2∑

t=(k̂2∧k0
2)+1

wtw
′
t


 (β0

3 − β0
2)I{k̂2 > k0

2}

= β0
2 + Op(T−1/2) uniformly in B1. (90)

Now consider β̂1 − β̃1. From the formulae above, it follows that

T 1/2(β̂1 − β̃1) =

(
k1∑

t=1

wtw
′
t

)−1 k1∑

t=1

wtũt −




k0
1∑

t=1

wtw
′
t




−1
k0
1∑

t=1

wtũt + op(1) (91)

After some manipulations, it follows from (91) that

‖T 1/2(β̂1 − β̃1)‖ =

∥∥∥∥∥∥

(
k1∑

t=1

wtw
′
t

)−1
∥∥∥∥∥∥

∥∥∥∥∥∥

k1∨k0
1∑

t=(k1∧k0
1)+1

wtũt

∥∥∥∥∥∥
+ op(1). (92)
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Now,
∥∥∥
∑k1∨k0

1
t=(k1∧k0

1)+1
wtũt

∥∥∥ is the same order as
∥∥∑

t∈B1
wtũt

∥∥ and

∥∥∥∥∥
∑

t∈B1

wtũt

∥∥∥∥∥ ≤

∥∥∥∥∥
∑

t∈B1∩B∗

wtũt

∥∥∥∥∥ +

∥∥∥∥∥∥
∑

t∈B1∩B̄∗

wtũt

∥∥∥∥∥∥
. (93)

Since
∥∥∥∥∥
∑

t∈B1∩B∗

wtũt

∥∥∥∥∥ ≤

∥∥∥∥∥
∑

t∈B1∩B∗

Υ̂(t, T )′zt(ut + v′tβ
0
x(t, T )

∥∥∥∥∥ +

∥∥∥∥∥
∑

t∈B1∩B∗

Υ̂(t, T )′ztz
′
tδ̂(t, T )β0

x(t, T )

∥∥∥∥∥

= Op([sT ∨ s∗T ]−1) + Op([sT ∨ s∗T ]−2)Op(s∗T )

= Op([sT ∨ s∗T ]−1)
{

Op(1) + Op

(
s∗T

sT ∨ s∗T

)}

= Op([sT ∨ s∗T ]−1) = Op(s−1
T ∧ [s∗T ]−1),

and
∥∥∥∥∥∥
∑

t∈B1∩B̄∗

wtũt

∥∥∥∥∥∥
≤

∥∥∥∥∥∥
∑

t∈B1∩B̄∗

Υ̂(t, T )′zt[ut + v′tβ
0
x(t, T )]

∥∥∥∥∥∥
+

∥∥∥∥∥∥
∑

t∈B1∩B̄∗

Υ̂(t, T )′ztz
′
tδ̂(t, T )β0

x(t, T )

∥∥∥∥∥∥
= Op(s−1

T ) + Op(s−2
T T−1/2) = Op(s−1

T ),

it follows from (93) that ‖
∑

t∈B1
wtũt‖ ≤ Op(s−1

T ∧ [s∗T ]−1)+Op(s−1
T ) = Op(s−1

T ) and hence from

(92) we have T 1/2(β̂1−β̃1) = op(1). A similar argument can be used to show that T 1/2(β̂2−β̃2) =

op(1).

With this background, we now consider the distribution of k̂1, where

k̂1 = argmink1∈B1 [SSR(k1, k̂2) − SSR(k0
1 , k̂2)]

It is easily established37 that

SSR(k1, k̂2) − SSR(k0
1 , k̂2) =

k̂2∑

t=1

at + 2
k̂2∑

t=1

ct = A + 2C (94)

where at and ct are defined as below (74) in the proof of Theorem 3 but with β̂(t, T ) = β̂1I{t ≤

k1} + β̂2I{t > k1}, β̃(t, T ) = β̃1I{t ≤ k0
1} + β̃2I{t > k0

1}. Define I2 = [1, k̂2] and B̄1 = I2 \B1.

For A, we have
∑k̂2

t=1 at =
∑

t∈B1
at+

∑
t∈B̄1

at and
∑

t∈B̄1
at = Op(T−1s−2

T )Op(1)Op(1) = op(1)

and

∑

t∈B1

at = |k1 − k0
1|θ0′

T,1

(
Υ0′

1 Q1Υ0
1I{k1 < k0

1} + Υ0′
2 Q2Υ0

2I{k1 > k0
1}
)
θT,1 + op(1)

37By a similar argument to the derivation of (74).
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Therefore, we obtain

A = |k1 − k0
1|θ0′

T,1

(
Υ0′

1 Q1Υ0
1I{k1 < k0

1} + Υ0′
2 Q2Υ0

2I{k1 > k0
1}
)
θT,1 + op(1) uniformly inB1.

(95)

Now consider C. We have
∑

B̄1
ct = op(1), uniformly in B1 and

∑

B1

ct = [(−1)I{k1<k0
1}θ0′

T,1]




[
Υ0′

1 I{k1 < k0
1} + Υ0′

2 I{k1 > k0
1}
]

T−1/2

k1∨k0
1∑

t=(k1∧k0
1)+1

zt[ut + v′tβ
0
x(t, T )]





+ op(1), uniformly in B1.

It follows that

A + 2C = |k1 − k0
1|θ0′

T,1

(
Υ0′

1 Q1Υ0
1I{k1 < k0

1} + Υ0′
2 Q2Υ0

2I{k1 > k0
1}
)
θT,1

+2[(−1)I{k1<k0
1}θ0′

T,1]




[
Υ0′

1 I{k1 < k0
1} + Υ0′

2 I{k1 > k0
1}
]

T−1/2

k1∨k0
1∑

t=(k1∧k0
1)+1

zt[ut + v′tβ
0
x(t, T )]





+ op(1), uniformly in B1. (96)

It can be recognized that (96) has the same basic structure as (8) and so the rest of the proof

follows by similar arguments to the proof of Proposition 2. �.
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Table 1: Empirical coverage of break point confidence intervals

Case I, one break model with (β0
1 ; β0

2)=(c ,0.1; -c,-0.1)

Confidence Interval

c = 0.3 c = 0.5 c = 1
q − 1 T

99 % 95 % 90 % 99 % 95 % 90 % 99 % 95 % 90 %

60 .90 .82 .75 .95 .90 .86 .99 .97 .96

120 .95 .89 .85 .97 .93 .89 .99 .97 .96
2

240 .97 .92 .87 .98 .95 .92 1.00 .98 .97

480 .99 .94 .89 .99 .97 .92 1.00 .99 .98

60 .90 .80 .74 94 .88 .83 .99 .98 .96

120 .93 .86 .80 .97 .93 .90 1.00 .98 .97
4

240 .96 .92 .87 .99 .93 .90 1.00 .98 .98

480 .98 .94 .90 .99 .95 .91 1.00 .99 .98

60 .91 .80 .74 .94 .89 .85 .99 .97 .96

120 .94 .86 .81 .97 .93 .88 .99 .98 .96
8

240 .97 .90 .86 .98 .95 .91 .99 .98 .96

480 .98 .93 .89 .99 .96 .92 .99 .98 .96

Notes: Here q− 1 is the number of instruments (excluding the intercept), and the column headed 100a% gives the percentage of times (in 1000

simulations) the 100a% confidence intervals for the break points contain the corresponding true values.
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Table 2: Empirical coverage of break point confidence intervals

Case II, two break model with (β0
1 ; β0

2 , β0
3)=(c,0.1; -c,-0.1; c,0.1)

Confidence Interval

c = 0.3 c = 0.5 c = 1

1st break 2nd break 1st break 2nd break 1st break 2nd break
q − 1 T

99 % 95 % 90 % 99 % 95 % 90 % 99 % 95 % 90 % 99 % 95 % 90 % 99 % 95 % 90 % 99 % 95 % 90 %

60 .91 .75 .66 .93 .81 .71 .94 .86 .79 .94 .87 .84 .98 .95 .94 .98 .96 .94

120 .94 .82 .76 .95 .86 .78 .96 .91 .89 .97 .92 .88 .99 .98 .96 .99 .98 .97
2

240 .97 .88 .81 .97 .92 .86 .98 .95 .91 .98 .94 .90 1.00 .98 .97 1.00 .99 .98

480 .98 .94 .88 .98 .93 .88 .99 .95 .92 .99 .96 .92 1.00 .98 .97 .99 .98 .97

60 .92 .76 .68 .90 .78 .70 .94 .85 .78 .94 .87 .82 .99 .96 .94 .99 .96 .94

120 .94 .84 .76 .94 .86 .78 .97 .91 .86 .98 .92 .87 .99 .97 .96 .99 .97 .96
4

240 .95 .87 .82 .97 .88 .82 .98 .94 .90 .99 .94 .89 .99 .97 .96 1.00 .99 .98

480 .98 .93 .88 .98 .93 .88 .99 .96 .92 .99 .95 .91 1.00 .98 .96 .99 .97 .96

60 .92 .78 .70 .90 .79 .70 .95 .85 .78 .95 .88 .82 .99 .96 .95 .99 .96 .93

120 .95 .83 .75 .94 .84 .76 .97 .90 .86 .97 .91 .86 1.00 .98 .96 .98 .97 .96
8

240 .96 .88 .81 .97 .88 .83 .98 .93 .89 .98 .94 .89 1.00 .98 .96 1.00 .98 .96

480 .97 .92 .86 .98 .92 .88 .99 .95 .92 .99 .97 .94 1.00 .98 .98 .99 .98 .97

Notes: For definitions see Table 1.
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Table 3: Empirical coverage of break point confidence intervals

Case III, one break model with (β0
1 ; β0

2)=(c ,0.1; -c,-0.1)

Confidence Interval

c = 0.3 c = 0.5 c = 1
q − 1 T

99 % 95 % 90 % 99 % 95 % 90 % 99 % 95 % 90 %

120 .89 .80 .73 .95 .88 .83 .98 .95 .92

2 240 .93 .86 .82 .95 .90 .85 .98 .93 .91

480 .97 .90 .85 .98 .92 .86 .99 .96 .93

120 .89 .80 .74 .94 .88 .83 .98 .94 .91

4 240 .92 .86 .80 .97 .91 .87 .98 .96 .93

480 .97 .91 .86 .98 .93 .88 .99 .97 .94

120 .89 .80 .73 .94 .86 .82 .97 .92 .90

8 240 .94 .89 .82 .97 .93 .88 .99 .96 .93

480 .98 .93 .88 .98 .92 .87 .99 .97 .95

Notes: For definitions see Table 1.
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Table 4: Empirical coverage of break point confidence intervals

Case IV, one break model with (β0
1 ; β0

2)=(c ,0.1; -c,-0.1)

Confidence Interval

c = 0.3 c = 0.5 c = 1
q − 1 T

99 % 95 % 90 % 99 % 95 % 90 % 99 % 95 % 90 %

120 .93 .86 .82 .95 .91 .89 .99 .98 .98

2 240 .96 .85 .81 .96 .93 .90 1.00 1.00 1.00

480 .94 .88 .85 .99 .97 .95 1.00 1.00 1.00

120 .93 .87 .84 .95 .92 .90 .99 .99 .99

4 240 .94 .88 .85 .98 .96 .94 1.00 1.00 1.00

480 .97 .93 .90 .99 .99 .97 1.00 1.00 1.00

120 .93 .88 .82 .95 .92 .89 1.00 .99 .99

8 240 .95 .90 .86 .99 .97 .95 1.00 1.00 .99

480 .97 .94 .91 1.00 .98 .96 1.00 1.00 .99

Notes: For definitions see Table 1.
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Table 5: NKPC - stability statistics for structural equation

k q× sup-F F(k+1:k) sup-Wald Wald(k+1:k) BIC

0 - - - - -0.092

1 15.02 12.06 17.02 8.32 0.066

2 13.78 10.22 12.50 11.07 0.247

3 16.09 9.72 20.29 12.95 0.354

Notes: q× sup-F and sup-Wald denote the statistics for testing H0 : m = 0 vs. H1 : m = k,

the first statistic being multiplied by q; F(k+1:k) and Wald(k+1:k) are the statistics for testing

H0 : m = k vs. H1 : m = k + 1; BIC is the BIC criterion; see Hall, Han, and Boldea

(2009) for further details. The percentiles for the statistics are for k = 1, 2, . . . respectively: (i)

q× sup-F and sup-Wald: (10%, 1%) significance level = (19.70, 26.71), (17.67, 21.87), (16.04,

19.42), (14.55, 17.44), (12.59,15.02); (ii) F(k+1:k) and Wald(k+1:k): (10%, 1%) significance

level =(21.79, 28.36), (22.87, 29.30), (24.06,29.86), (24.68, 30.52).
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