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Abstract: We propose new information criteria for impulse response function matching estimators

(IRFMEs). These estimators yield sampling distributions of the structural parameters of dynamic sto-

chastic general equilibrium (DSGE) models by minimizing the distance between sample and theoretical

impulse responses. First, we propose an information criterion to select only the responses that produce

consistent estimates of the true but unknown structural parameters: the Valid Impulse Response Selection

Criterion (VIRSC). The criterion is especially useful for mis-speci�ed models. Second, we propose a criterion

to select the impulse responses that are most informative about DSGE model parameters: the Relevant Im-

pulse Response Selection Criterion (RIRSC). These criteria can be used in combination to select the subset

of valid impulse response functions with minimal dimension that yields asymptotically e¢ cient estimators.

The criteria are general enough to apply to impulse responses estimated by VARs, local projections, and

simulation methods. We show that the use of our criteria signi�cantly a¤ects estimates and inference about

key parameters of two well-known new Keynesian DSGE models. Monte Carlo evidence indicates that the

criteria yield gains in terms of �nite sample bias as well as o¤ering tests statistics whose behavior is better

approximated by �rst order asymptotic theory. Thus, our criteria improve on existing methods used to

implement IRFMEs.
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1 Introduction

Since the seminal work of Rotemberg and Woodford (1997), there has been increasing use of im-

pulse response function matching to estimate parameters of dynamic stochastic general equilibrium

(DSGE) models. Impulse response function matching estimation (IRFME) is a limited informa-

tion approach that minimizes the distance between sample and DSGE model generated impulse

responses. Those applying this estimator to DSGE models include, among others, Christiano,

Eichenbaum and Evans (2005, CEE hereafter), Altig, Christiano, Eichenbaum, and Lindé (2005,

ACEL hereafter), Iacoviello (2005), Jordà and Kozicki (2007), DiCecio (2005), Boivin and Gian-

noni (2006), Uribe and Yue (2006) DiCecio and Nelson (2007), and Dupor, Han, and Tsai (2007).

Despite the widespread use of impulse response function (IRF) matching, only ad hoc methods

have been used to choose which IRFs and how many lags to match.

In a recent paper, Dridi et al (2007) present a comprehensive statistical framework for analyz-

ing econometric estimation of DSGE in which the parameters of a structural economic model are

estimated by matching moments using a binding function obtained from an instrumental model.

Using this terminology in our context, the DSGE is the structural model, the VAR is the instru-

mental model and the impulse response function is the binding function. Their framework allows

the model to be mis-speci�ed and distinguishes the parameters into three categories: parameters

of interest, estimated nuisance parameters and calibrated nuisance parameters. Since the struc-

tural model may be mis-speci�ed, an important issue is whether the structural model encompasses

- or partially encompasses - the instrumental model in the sense that estimation based on the

binding function nevertheless yields consistent estimators of the parameters of interest. As well as

introducing this conceptual framework, Dridi et al (2007) derive �rst order asymptotic properties of

(Partial) Indirect Inference estimators within this set-up, and propose a statistic for testing whether

the structural model (potentially) encompasses the instrumental model.

Dridi et al�s (2007) discussion of encompassing highlights the importance of the choice of binding

function within this type of estimation. As noted by Dridi et al, the choice of the binding function

is analogous to the choice of moment function in moment based estimation. In the literature on

moment based estimation, it is recognized that two aspects of the choice of moment function are

important: (i) valid moment conditions are needed to obtain consistent estimation: (ii) not all

valid moment conditions are informative and that it may be desirable in terms of �nite sample
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properties to base the estimation on a subset of valid moment conditions. Exploiting the analogy

between moment conditions and binding functions, it can be seen that Dridi et al�s encompassing

test addresses (i) above; however, their analysis does not address the sequential testing issues that

arise if the statistic is used repeatedly as part of a speci�cation search. To our knowledge, (ii)

above has not been considered in the context of IRFME, where it is common to use IRF up to a

relatively large, pre-speci�ed number of lags.

In this paper, we address the issue of which impulse response functions to use in impulse response

function matching estimation. Working within the framework provided by Dridi et al (2007), we

propose two new criteria: the Valid Impulse Response Selection Criterion (VIRSC) and the Relevant

Impulse Response Selection Criterion (RIRSC). The VIRSC is designed to determine which impulse

response functions to include in order to obtain consistent estimators of the parameters of interest.

The RIRSC is designed to select from the set of valid impulse responses those which are informative

about the parameters of interest by excluding those that are redundant. We provide conditions

under which the two criteria are weakly and strongly consistent, and report simulation evidence

that shows the sensitivity of IRFME to the choice of impulse responses and also the e¢ cacy of our

criteria.

The RIRSC criterion is applied to the DSGE models of CEE and ACEL. We often obtain point

estimates that are little changed from those CEE and ACEL report. Nonetheless, the RIRSC yields

economically important changes in inference regarding several key parameters that lead to strikingly

di¤erent conclusions than those of CEE and ACEL. We conjecture that the parameter estimates

in CEE and ACEL may be subject to small sample biases, and we investigate this issue in Monte

Carlo experiments. The Monte Carlo exercises indicate that, in general, the small sample bias of

IRFMEs is mitigated by RIRSC compared to using a relatively large �xed lag length, and that the

VIRSC works well in small samples. Thus, the criteria that we propose should be attractive to

analysts at central banks and other institutions conducting policy evaluation with DSGE models,

as well as academic researchers testing newly developed DSGE models.

As mentioned above, the framework considered in this paper is inspired by the work of Dridi et al

(2007), and we believe that our results both complement and extend their analysis in the following

ways. We propose information criteria for the selection of both valid and relevant responses,

whereas they focus more on hypothesis testing and model selection. We focus on commonly used
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methodologies for IRFME, including but not limited to simulation-based estimators, whereas they

focus on general simulation-based estimators. Our criteria can be used not only for IRFMEs but

also for general classical minimum distance and Indirect Inference Estimators. Relative to this

literature, and in particular relative to Dridi et al. (2007), we add useful information criteria to

select valid as well as relevant restrictions, thus signi�cantly extending the scope of their analysis.

Our approach is also connected to the literature on moment selection, with VIRSC and RIRSC

being extensions to Classical Minimum Distance estimators of criteria proposed by Andrews (1999)

and Hall et al (2007). The criteria that we propose are also connected to several strands of the

literature that estimate DSGE models. Rotemberg and Woodford (1996), CEE (2005), and ACEL

(2005) employ IRFMEs that minimize the di¤erence between sample and theoretical IRFs using

a non-optimal weighting matrix. Jordà and Kozicki (2007) show that our RIRSC meshes with

an IRFME estimator based on local projections and an optimal weighting matrix. Note that our

criterion is applicable whether the weighting matrix is e¢ cient or not. Finally, we show that our

criterion can be an element of the Sims (1989) and Cogley and Nason (1995) simulation estimator.

The paper is organized as follows. Section 2 presents our new criterion for the IRFME in

the leading VAR case and discusses the assumptions that guarantee its validity. In section 3, we

provide a clarifying example. The projection and simulation-based estimators are studied in section

4. Sections 5 and 6 present the empirical results and Monte Carlo analyses. Section 7 concludes.

All technical proofs and assumptions are collected in the Appendix.

2 The VAR-based IRF Matching Estimator

In this section, we consider the leading case in which the researcher is interested in estimating

the parameters of a DSGE model by using a VAR-based IRFME. This estimator is obtained by

minimizing the distance between the sample IRFs obtained by �tting a VAR to the actual data

and the theoretical IRFs generated by the DSGE model. The sample and the theoretical IRFs are

identi�ed by restrictions implied by the DSGE model. This requires we assume that the DSGE

model admits a structural VAR representation, so that the sample IRFs are informative for the

DSGE model parameters. We are interested in the VAR:

Yt = 	0 +	1Yt�1 +	2Yt�2 + :::+	p0Yt�p0 + "t; (1)
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where Yt = [Y1;t; Y2;t; :::; YnY ;t]
0 is nY � 1, t = 1; 2; :::; T , and "t = ["1;t; "2;t; :::; "nY ;t]

0 is white noise

with zero mean and variance �". The population VAR lag order is p0. For (1) to have an in�nite

order Vector Moving Average (VMA) representation and IRFs, we make the following standard

assumption:1

Assumption (A0). In eq. 1, 	(L) = InY �	1L�	2L2� � � � �	p0Lp0 is invertible, where L

is the lag operator and InY is the (nY � nY ) identity matrix and p0 is �nite.

The model�s parameters are (�; �; �): � is a p�� 1 vector of structural parameters of interest, �

is a p� � 1 vector of estimated nuisance parameters and � is a p� � 1 vector of calibrated nuisance

parameters.2 �, � and � belong to � � <p� , A � <p� and � � <p� . Let 
 denote a vector of

population IRFs with maximum horizon H estimated from data Y T � [Y 01 ; :::; Y 0T ]0. In particular,

we will use 
i;j;� to denote IRFs of each variable Yi;t+� to a structural shock "j;t at horizon � , where

i; j = 1; :::; nY , � = 1; :::;H.3 Let 
� be a
�
n2Y � 1

�
vector that collects the population IRFs at a

particular horizon � :



�
= (

i=1z }| {

1;1;� ; 
1;2;� ; :::; 
1;nY ;� ;

i=2z }| {

2;1;� ; 
2;2;� ; :::; 
2;nY ;� ; :::;

i=nYz }| {

nY ;1;� ; :::; 
nY ;nY ;� )

0

The population IRFs at horizons � = 1; 2; :::;H can be further collected in the
�
n2YH � 1

�
vector


 so that 
 =
�

0
1
; 
0

2
; :::; 
0

H

�0
: We will use 
0 to denote the true value of 
.

1Note that even if the true theoretical model has a VAR(1) representation, our results still apply for the Indirect

Inference estimator that we discuss in Section 4.
2Our �, � and � correspond to �11, �21 and �22 of Dridi et al. (2007).
3For simplicity we assume that the dimension of yt, ny; and that of "t, n", are equal. However, ny can be greater

than n". For example, suppose that a tri-variate VAR(2) with two shocks is �tted to the actual data in order

to estimate eight DSGE model parameters using an optimal weighting matrix. When H = 2, suppose the 18�18

asymptotic covariance matrix of all possible IRFs is singular with rank of 12. Suppose the Moore-Penrose generalized

inverse of the asymptotic covariance matrix is used as the weighting matrix and that the 18�8 Jacobian matrix of the

theoretical IRF has rank of 8, which is implicit in assumption (1). In this case, the eight DSGE model parameters

will be identi�ed. If instead the tri-variate VAR(2) is driven only by one shock, the asymptotic covariance matrix has

rank six. As a result, the inverse of the asymptotic covariance matrix of the IRFME is singular and the DSGE model

parameters will not be identi�ed. The dimension of shocks matters for identi�cation but not necessarily relative to the

dimension of yt. Provided rank conditions are satis�ed, adding a redundant vector of variables to the VAR system,

while holding the number of shocks �xed, will not violate the identi�cation condition. However, the �nite-sample

performance of the IRFME estimator can deteriorate.
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Finally, let g(�; �; �) be a n2YH � 1 vector of impulse responses obtained by a DSGE model.

These impulse responses are the binding function between the structural parameters �; �; � and the

impulse responses 
: The structural parameters � and � are estimated from


 = g(�; �; ��)

where �� is calibrated.

The question that we address in this paper is which subset of 
 and g should be used. To

address this question, we introduce selection vectors that choose subsets of impulse responses.

De�nition of c. Let c be a n2YH � 1 selection vector that indicates which elements of the

candidate impulse responses are included in estimation. We use c to index functions of impulse

responses, that is, 
(c) and g(�; c). If cj = 1 then the jth element of 
 is included in 
(c), and

cj = 0 implies this element is excluded.

For example, if only impulse responses up to horizons h < H are selected, c = [11�n2Y h 01�n2Y (H�h)]
0

where 1m�n and 0m�n denote m � n matrices of ones and zeros, respectively. If the impulse

responses of the second element of Yt with respect to the �rst element of "t are used, c =

1H�1 
 [01�nY 1 01�(nY �1) 01�(nY �2)nY ]
0. Note that jcj = c0c equals the number of elements

in 
(c). The set of all possible selection vectors is denoted by CH , that is

CH =
n
c 2 <n2YH ; cj = 0; 1; for j = 1; 2; : : : n2YH; and c = (c1; : : : cn2YH

)0; jcj � 1
o
:

The methodologies proposed in this paper are valid for general minimum distance estimators

as well as indirect inference estimators. In particular, a special case on which we focus is the IRF

Matching Estimator (IRFME). The IRFME is a classical minimum distance estimator such that:0@ �̂T (��; c)b�T (��; c)
1A = arg min

�2�;�2A

�b
T (c)� g ��; �; ��; c��0 b
T (c) �b
T (c)� g ��; �; ��; c�� ; (2)

where 
̂T (c) is an estimate of 
(c) and b
T (c) is a weighting matrix. b
T (c) could be the inverse
of the covariance matrix of the IRFs 
̂T (c) or, as often found in practice, a restricted version of

this matrix that has zeros everywhere except along its diagonal, which displays the variances of the

IRFs. In general, b
T (c) can be readily obtained from standard package procedures that compute

IRF standard error bands.4

4 In this paper, we focus on optimal weighting matrix estimators because the VIRSC is based on the overidentifying

restrictions test statistic, although both methods can be extended to non-optimal weighting matrices.
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In order to implement the IRFME in practice, the researcher has to choose which impulse

responses to use in (2). Our contribution to the existing literature is to provide statistical criteria

to choose c. The criterion that we propose allows the researcher to avoid using the IRFs that

are mis-speci�ed and/or that contain only redundant information; at the same time, we enable

the researcher to identify the �relevant horizon� of the IRFs. Since IRFs that do not contain

additional information only add noise to the estimation of the deep parameters, these IRFs should

be eliminated. The following de�nitions formalize these concepts:

We make the following Assumptions, which are slight modi�cations of the assumptions in Dridi

et al. (2007):

Assumption (A1). (a) �� � is non-empty and compact in <p� �<p�. (b) The parameter value

[�00; ��
0]0 belongs to the interior of ���. �0 is the true parameter value whereas �� is the pseudo-true

parameter value. (c) There is a function QT (Y T ; 
(c); c) that is twice continuously di¤erentiable

in 
 such that

b
T (c) = 
0(c)� �@2QT (Y T ; 
0(c); c)@
(c)@
0(c)

��1
@QT (Y T ; 
0(c); c)

@
(c)
+ op(1):

Assumption (A2). The true parameter value �0 2 � is a unique solution to max�2�maxc0;H2C0;H(�;��) jc0;H j

where

C0;H(�; ��) = fc 2 CH : 
(c) = g(�; �; ��) for some � 2 Ag: (3)

In addition, we de�ne C0;H(��) � C0;H(�0; ��):
5

Assumption (A3). Let P0 denote the true probability distribution. (a) 1p
T

@QT
@
(c)(Y T ; 
0 (c) ; c) is

asymptotically normally distributed with zero mean and a �nite p.d. asymptotic covariance matrix:

I0(c) = P0 lim
T!1

V ar

�
T�1=2

@QT
@
(c)

(Y T ; 
0(c); c)

�
(4)

(b) There is a jcj � jcj �nite matrix J0(c) such that:

J0(c) = P0 lim
T!1

T�1
@2QT

@
(c)@
0(c)
(Y T ; 
0(c); c): (5)

5This assumption ensures that the true parameter value �0 is the unique parameter value at which there are most

valid IRFs. For just-identi�ed cases, there may be other parameter values at which the restriction holds, but none of

other parameter values give as many valid IRFs as the true parameter value does.
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Assumption (A4). g (�; �; �) is continuously di¤erentiable in (�; �) and @g(�0;��(c);��;c)
@[�0;�0]0

has full

column rank (p� + p�) :

Finally, let:

�0(c) � J�10 (c)I0(c)J
�1
0 (c)


(c) � ��10 (c)

W (��; c) �
�
@g0(�0; �� (c) ; ��; c)

@[�0; �0]0
��10 (c)

@g(�0; �� (c) ; ��; c)

@[�0; �0]0

��1
; (6)

and let W (1;1)(��; c) denote the (p��p�) upper-left diagonal sub-matrix of the (p� + p�)� (p� + p�)

matrix W (��; c). Using results from Dridi et al. (2007), Lemma 9 in the Appendix shows that

the estimates of � and � are asymptotically normal, centered around their true and pseudo-true

parameter values, respectively, with joint asymptotic covariance matrix W (��; c).

2.1 The Valid IRF Selection Criterion

Our �rst goal is to identify the largest subset of IRFs that guarantee consistent estimation of the

parameters of interest �, that is the set of valid IRFs. We de�ne the Valid Impulse Responses

Selection Criterion by

V IRSCT (��; c) = b�T (��; c)� h(jcj)�T ; (7)

where

b�T (��; c) = T [b
T (c)� g(�̂T (��; c); �̂T (��; c); ��; c)]0
̂T (c)
�[b
T (c)� g(�̂T (��; c); �̂T (��; c); ��; c)];


̂T (c) is a consistent estimator of 
(c); h(jcj)�T is a deterministic penalty that is an increasing

function of the number of impulse responses. For example, the SIC-type penalty term imposes

h(jcj) = jcj and �T = ln (T ) and it is acceptable for the VIRSC under the restrictions of Assumption

B3 listed and discussed below.

We select impulse response functions by minimizing the criterion (7):

ĉV IRSC;T = arg min
c2CH

V IRSCT (��; c): (8)

In this section, our main result shows that bcV IRSC;T converges in probability to the (unique)

selection vector, c0, that chooses only valid restrictions. This selection vector provides consistent
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estimates of the DSGE model parameters (which satisfy almost sure convergence in Section 5). We

de�ne the following sets of selection vectors for valid restrictions:

Cmax;H(��) = fc 2 C0;H(�; ��) : jcj � jc0;H j for all c0;H 2 C0;H(�0; ��)g; (9)

C0;H(�; ��) was de�ned in (3) and it is the set of selection vectors in which the remaining restrictions

are valid. Cmax;H(��) is the set of selection vectors in C0;H(�; ��) that maximizes the number of

selected vectors in C0;H
�
�; �

�
. Also, in addition to Assumptions (A0)�(A4), we consider:

Assumption (B1). Cmax;H(��) = fc0g.

Assumption (B2). 
̂T (c)
p! 
(c); where 
(c) is positive de�nite.

Assumption (B3). h(�) is strictly increasing and �T !1 as T !1 with �T = o(T ).

Note that Assumption B1 ensures that the set of valid IRFs is uniquely identi�ed.6 Assumption

B2 ensures that there are consistent estimators for the asymptotic variances that enter our formulae.

Such consistent estimators of �0(c) can be found in Lütkepohl (1990) and Lütkepohl and Poskitt

(1991). Assumption B3 imposes appropriate assumptions on the penalty terms that guarantee the

validity of the proposed information criterion. Also, note that the SIC-type penalty term (h(jcj) =

jcj and �T = ln (T )) and the Hannan-Quinn-type penalty term (h(jcj) = jcj and �T = ln [ln (T )])

satisfy Assumption B3, but the AIC-type penalty term, for which h(jcj) = jcj and �T = 2; does

not.

Theorem 1 (Valid IRF Selection Criterion (VAR case)) Suppose that Assumptions A0, A1,

A3�A4 hold for c 2 CH , that Assumption A2 holds for c 2 C0;H
�
�; �

�
and that Assumptions B1�B3

hold. Let ĉV IRSC;T be de�ned in (8). Then ĉV IRSC;T
p! c0.

2.2 The Relevant IRF Selection Criterion

Our second goal is to identify the fewest number of IRFs that guarantee that, asymptotically, the

covariance matrix of the IRFME is as small as possible.7 We de�ne the Relevant Impulse Responses

6Suppose that there are two elements, c1 and c2, and that they are distinct. Then de�ne c3 as the maximum of

c1 and c2. Then c3 includes more IRFs than c1 and c2 and c3 consists of valid IRFs, a contradiction. So it has to be

unique.
7For two covariance matrices, A and B, we say that A is smaller than B if B �A is positive semi-de�nite.
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Selection Criterion by

RIRSCT (��; c) = ln(jŴ (1;1)
T (��; c)j) + k(jcj)mT ; (10)

where Ŵ (1;1)
T (��; c) is a consistent estimator of W (1;1)(��; c), and k(jcj)mT is a deterministic penalty

that is an increasing function of the number of impulse responses. For example, the SIC-based

criterion selects k(jcj) = jcj and mT =
ln(
p
T)p
T

(see Assumption C3 and the remarks thereafter for

more discussion on the choice of these parameters).

We select impulse response functions by minimizing the criterion (10):

ĉRIRSC;T = arg min
c2C0;H(��)

RIRSCT (��; c): (11)

where C0;H(��) is the set of selection vectors in which the restrictions are valid, de�ned below (3).

In this section, the main result shows that ĉRIRSC;T converges in probability to the (unique)

selection vector cr. The vector cr chooses, among the valid IRFs, those: (i) with the smallest

asymptotic variance and (ii) if a relevant IRF is dropped, the asymptotic variance is larger.8 It is

useful to de�ne selection vectors that pick IRFs yielding e¢ cient estimators:

CE;H(��) = fc 2 C0;H(��) : W (1;1)(��; c) =W (1;1)(��; c0)g;

Cmin;H(��) = fc 2 CE;H(��) : jcj � jcE;H j for all cE;H 2 CE;H(��)g:

CE;H(��) is the set of selection vectors in which selected restrictions yield e¢ cient estimators.

Cmin;H(��) is the set of selection vectors that pulls out non-redundant IRFs from the valid IRFs. We

sequence the selection vectors �rst to �nd an element in CE;H(�) and second to acquire an element

in Cmin;H(�). In addition to Assumptions (A0)�(A4), we consider:

Assumption (C1). Cmin;H(��) = fcrg.

Assumption (C2).

Ŵ
(1;1)
T (��; c) = W (1;1)(��; c) +Op(T

�1=2)

for c 2 CI;H(��); where

CI;H(��) � fc 2 C0;H(�; ��) : Assumptions A(0)�A(4) holdg;
8The reason why we require (ii) is that even if one adds redundant IRFs to the relevant IRFs one still obtains the

same smallest asymptotic variance.
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and

jŴT (��; c)j
p! 1:

for c 2 C0;H(��) \ CcI;H(��).

Assumption (C3). k(�) is strictly increasing and mT satis�es mT ! 0 and T 1=2mT ! 1 as

T !1.

Remarks. CI;H(��) is the set of selection vectors that maximizes the number of selected valid

responses. Assumption C1 ensures that the set of relevant IRFs is uniquely identi�ed. Although

the validity of the assumption depends on the model and has to be checked on a case by case

basis, we can show that Assumption C1 is satis�ed in the simpli�ed practical method discussed in

Section 2.3 below as well as in Example 1 and in the AR(1) case discussed respectively in Sections

3 and 7.1 below. Even when Assumption C1 is not satis�ed, we expect our criterion will select

elements in the set Cmin;H(��), and therefore the estimator remains consistent.9 Note that we allow

for some selection vectors for which the parameters are not identi�ed provided Assumption C1

holds. Assumption C2 ensures that there are consistent estimators for the asymptotic variances

that enter our formulas. Assumption C3 imposes appropriate assumptions on the penalty terms

that guarantee the validity of the proposed information criterion. Furthermore, note that the SIC-

type penalty term, k(jcj) = jcj and mT =
ln(
p
T)p
T

satis�es Assumption C3 whereas the AIC-type

penalty term, for which k(jcj) = jcj and mT =
2p
T
does not.

We show that our criterion is weakly consistent in the following theorem:

Theorem 2 (Relevant IRFs Selection Criterion (VAR case)) Suppose that Assumptions (A0),

(A1)�(A4) and (C1)�(C3) hold. Let ĉRIRSC;T = argminc2C0;H(��)RIRSCT (
��; c). Then ĉRIRSC;T

p!

cr.

2.3 Suggestions for Practical Implementation

Theorems 1 and 2 describe the asymptotic behavior of the two criteria, the VIRSC and the RIRSC,

that consider all possible combinations of IRFs. However, implementing these criteria in practice

9Suppose Cmin;H(��) = fc1r; c2rg. We expect that bc 2 fc1r; c2rg with probability approaching one. Then b�T =
1�;rb�T ��; c1r�+ (1� 1�;r)b�T ��; c2r�+ op (1), where 1�;r equals 1 if c1r is selected and equals zero if c2r is selected.
Since b�T ��; c1r� and b�T ��; c2r� converge in probability to �0, then b�T p! �0.
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might become very computationally intensive, given the large number of variables included in typical

VARs and the fact that H can be large (for example, CEE chose H = 12). Applied researchers,

however, often impose an ad hoc maximum lag length to all the IRFs a DSGE model is asked to

match.

For practical reasons, we suggest the following. First, select the valid IRFs among the (nY � nY )

set of all IRFs given a pre-speci�ed choice for H. Second, among the valid IRFs, select the relevant

IRFs across horizons h, for h 2 f1; 2; : : : ;Hg. Our VIRSC and RIRSC can be easily tailored to

this special case.

This ad hoc approach selects the valid IRFs using a set of selection vectors that consider all

IRFs up to the maximum horizon H. Let

bcV IRSC;T = arg min
c2CH

V IRSCT (��; c): (12)

where

CH = fc 2 CH : c = 1H�1 
 d for some d = [d1; d2; :::; dn2Y ]
0; dj 2 f0; 1g; j = 1; 2; :::; n2Y g:

De�ne �C0;H
�
�
�
by C0;H

�
�
�
as in (3), with CH replaced by CH . Also de�ne �Cmax;H

�
�
�
by

Cmax;H
�
�
�
as in (9) with C0;H

�
�
�
replaced by �C0;H

�
�
�
. We have:

Corollary 3 (Simpli�ed VIRSC Criterion (VAR case)) Let the structural model have a VAR

representation (1), and the estimator of the parameters be de�ned as (2), where c is chosen by (12).

Suppose that Assumptions A1-A4, B1-B3 hold with �CH , �Cmin;H and �c0 replacing CH , Cmin;H and

c0, respectively. Then bcV IRSC;T p! c0.

Relevant IRFs are selected among the set of possible IRFs 
1; 
2; :::; 
H that satisfy the validity

criterion. Let cY denote the n2Y � 1 vector that selects the valid IRFs for h = H; that is the last

n2Y � 1 component of bcV IRSC;T . Let cY h = [c0Y ; c0Y ; :::c0Y| {z }
1�n2Y h

01�n2Y (H�h)
]0 and

CH =
n
cY h = [11�n2Y h

01�n2Y (H�h)
]0; for h = 1; 2; :::;H

o
:

De�ne �CE;H
�
�
�
, �Cmin;H

�
�
�
and �cr by CE;H

�
�
�
, Cmin;H

�
�
�
and cr, respectively, with CH replaced

by CH . Note that, in this case, �Cmin;H
�
�
�
directly satis�es Assumption C1.10

10 In fact, if the order of the VAR is �nite, then elements of Cmin;H are all �nite. Suppose that there are two
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Using these de�nitions, we implement the RIRSC by selecting the maximum horizon of IRFs

that minimizes the RIRSC across horizons for the given choice of IRF shocks and variables obtained

by the VIRSC:

ĥT = arg min
h2f1;2;:::;Hg

RIRSCT (��; cY h): (13)

Let hr denote the corresponding IRF lag length implied by cr : cr = [11�n2Y hr
01�n2Y (H�hr)

]0: It

follows immediately from Theorems 1 and 2 that ĥT is a consistent estimate of hr:

Corollary 4 (Simpli�ed RIRSC Criterion (VAR case)) Let the structural model have a VAR

representation (1), and the estimator of the parameters be de�ned as (2), where c is chosen by (12).

Suppose that Assumptions A1-A4, C1-C3 hold with CH
�
�
�
, Cmin;H

�
�
�
and cr replaced by CH

�
�
�
,

�Cmin;H
�
�
�
and �cr, respectively. Then ĥT

p! hr.

3 Interpretation of the Criteria

This section provides examples that clarify the identi�cation problem for DSGE model parameters

estimated by IRF matching. The examples also make concrete the de�nitions of redundant and

relevant IRFs under the RIRSC, as well as the usefulness of the VIRSC in the presence of model

mis-speci�cation.

3.1 Interpretation of the VIRSC

Example 1 (A Simple New Keynesian Model) Consider the following simpli�ed New Key-

nesian model (cfr. Canova and Sala, 2009):

yt = k1 + a1Etyt+1 + a2 (it � Et�t+1) + e1t (14)

�t = k2 + a3Et�t+1 + a4yt + e2t (15)

it = k3 + a5Et�t+1 + e3t (16)

where yt is the output gap, �t is the in�ation rate, it is the nominal interest rate, and e1t; e2t; e3t

are i.i.d.(0,1) contemporaneously uncorrelated shocks. The �rst equation is the IS curve, the second

elements in the set Cmin;H , and denote these elements by hr;1 and hr;2, and let hr;1 and hr;2 be di¤erent, with

hr;1 < hr;2. By de�nition of Cmin;H ; they achieve the same asymptotic variance but since hr;1 < hr;2 then hr;2 cannot

be element of Cmin;H , thus inducing a contradiction. Therefore, the set Cmin;H must be unique.
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is a Phillips curve and the third characterizes monetary policy.

To consider the issue of mis-speci�cation, assume that the researcher imposes a4 = a4 in his/her

model, whereas a4 is di¤erent from zero in the true data generating process (15). In addition,

suppose the true values of the parameters a1; a3 are known and equal to 0:5 and k1 = 0: Then the

solution of the model is:0BBB@
it

yt

�t

1CCCA =

0BBB@
i

y

�

1CCCA+
0BBB@

1 0 0

a2 1 0

a2a4 a4 1

1CCCA
0BBB@
e1;t

e2;t

e3;t

1CCCA (17)

where

0BBB@
i

y

�

1CCCA = �

0BBB@
�a5a4 �0:25a5 �0:25 + a2a4
�0:5 (1� a5) a2 �1:5a2
�a4 �0:5 �a2a4

1CCCA
0BBB@
k1

k2

k3

1CCCA and � = 1
�0:25+(a5�1)a2a4 :

Suppose the researcher is mainly interested in estimating the slope of the IS equation (a2).

Using the notation of the previous sections, � = fk1; a1; a3;ag ; � = fa2g ; and � = fk2; k3; a5g

is the empty set. He has two options to estimate the parameter of interest: MLE or IRFME.

Recall that the researcher works with a mis-speci�ed model that assumes that a4 = a4, where we

let a4 = 1. MLE will recover consistent estimates of the mean parameters (y, � and i). Let the

researcher recover the parameter of interest from (17) assuming a4 = 1 using information on the

variances and covariances:0BBB@
it

yt

�t

1CCCA � N

0BBB@
0BBB@
i

y

�

1CCCA ;
0BBB@

1 a2 a2

a2 a22 + 1 a22 + 1

a2 a22 + 1 a22 + 2

1CCCA
1CCCA (18)

For example, the researcher may estimate ba2 = ccov(�t; it); while in reality the distribution implied
by (17) is 0BBB@

it

yt

�t

1CCCA � N

0BBB@
0BBB@
i

y

�

1CCCA ;
0BBB@

1 a2 a2a4

a2 a22 + 1 a4a
2
2 + a4

a2a4 a4a
2
2 + a4 a22a

2
4 + a

2
4 + 1

1CCCA
1CCCA ; (19)

then ba2 ! a2 � cov(�t; it). Note that a2 = a2a4 6= a2, which in general will not recover the true

value of a2 unless the true parameter value is a4 = 1. It is important to note that in this example
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the response of yt to e1;t is the valid and relevant response among the three IRFs at impact, whereas

the responses of �t to e1;t; e2;t are not valid.

Consider now the IRFME based on the response of yt to e1;t from (17). Since that IRF is not

a¤ected by assuming a4 = 1 or not, then the researcher will correctly estimate a2 whether or not

the model is correctly speci�ed or not.

3.2 Interpretation of the RIRSC

Example 2 (Labor Productivity and Hours) This example follows Watson (2006). Watson

(2006) derives the VAR representation for a simple RBC model outlined in Christiano, Eichenbaum

and Vigfusson (2006, Section 2), in which a technology shock is the only disturbance that a¤ects

labor productivity in the long run. Watson (2006) shows that the RBC model can be written as a

bivariate VAR(3) model in labor productivity (yt=lt) and employment (lt):24 1 �y

0 1

3524 �ln�ytlt �
ln(lt)

35 =

24 0 �y


1 �l � �y
1

3524 �ln�yt�1lt�1

�
ln(lt�1)

35+
24 0 0

��l
1 �y(1 + �l)
1

3524 �ln�yt�2lt�2

�
ln(lt�2)

35
+

24 0 0

0 ��y�l
1

3524 �ln�yt�3lt�3

�
ln(lt�3)

35+
24 �t

�t

35 (20)

where � is the capital share in production; �l is the serial correlation coe¢ cient in the tax rate

on labor income process; ~az and az are, respectively, the parameters associated with the lagged

state of technology in the policy rule for labor in the standard and recursive versions of the model;


1 = (~az � az�l)=(1 � �y); 
2 = �~az�l=(1 � �y); �t = (1 � �y)�z"zt , vt = al�l"
l
t; and "

l
t, "

z
t are

i.i.d. zero mean and unit variance shocks (cfr. Watson, 2006, eqs. 3 and 4). The structural

parameters of interest in this example are �y; 
1 and �l. For identi�cation purposes, we impose the

short-run restriction that az = 0, which yields the short-run restriction, 
1 = ~az=(1��y): Thus 
1
is informative for the structural parameter ~az, given the estimate of �y.

In the notation of the previous sections, the structural parameters of interest are � = f�y; �lg,

the estimated nuisance parameter is � = f
1g, and the calibrated nuisance parameters are � =

faz; al; �l; �zg. There are two trivial examples of redundant impulse responses. One is the response

of�ln
�
yt
lt

�
to "zt , which is always zero �see (20). Another is restrictions on the impulse responses 
j

for j > 3: since the model is a VAR(3) model, restrictions for j > 3 are nonlinear transformation of
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the �rst three impulse responses, and thus are �rst-order equivalent to some linear combinations of

the above restrictions. Therefore, adding these restrictions will not reduce the asymptotic variance.

However, even if an impulse response depends on the parameters of interest and its horizon is less

than or equal to p, the impulse response may be redundant.

4 Alternative IRF Matching Estimators

Although the VAR-based IRFME is the most widely used IRFME, alternative IRFME have been

proposed in the literature. Jordà and Kozicki (2007) proposed IRFME based on local projections. In

addition, researchers have been interested in simulation-based methods to approximate theoretical

impulse responses. This section extends the RIRSC to these IRF matching estimators, and describes

how our criterion is implemented in these contexts.

4.1 The IRF Matching Projection Estimator

Consider �rst the local projections method advocated by Jordà (2005) and used in Jordà and

Kozicki (2007). The simplest version of his estimator for the ��th step impulse response is B̂1;�D,

where B̂1;� is directly estimated from

Yt+� = B0;� +B1;�+1Yt�1 +B2;�+1Yt�2 + � � �+Bp;�+1Yt�p + u�t+�

for � = 1; :::;H, and D is a matrix derived from the identi�cation procedure.

Let the vector of structural impulse responses estimated by local projections be denoted byb
J;T (c). Jordà�s local projection impulse response estimator is:0@ �̂J;T (��; c)b�J;T (��; c)
1A = arg min

�2�;�2A
(b
J;T (c)� g(�; �; �; c))0b
T (c)(b
J;T (c)� g(�; �; �; c)) (21)

where g(�; �; �; c) is the vector of the model�s theoretical impulse responses given structural para-

meter �, and b
J;T (c) is the inverse of a consistent estimator of the asymptotic covariance matrix of

̂J;T (c).

Our main result for the local projection estimator is:
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Theorem 5 (Consistent IRF Selection (Local Projections case)) Suppose that Assumptions

A1-A4, B1-B3, and C1-C3 hold with cWT (��; c) replaced by cWJ;T (��; c) which is a consistent estima-

tor of (6) constructed using b
J;T (c) and b
J;T (c), and cW (1;1)
J;T (�; c) the (p� � p�) upper-left diagonal

sub-matrix of cWJ;T (�; c): Let the estimator of � be (21), where c is chosen such that:

ĉV IRSC;T = arg min
c2CH

V IRSCJ;T (��; c); where

V IRSCJ;T (��; c) = b�J;T (��; c)� h(jcj)�T ;
b�J;T (��; c) = T (
̂J;T (c)�g(�̂J;T (��; c); �̂J;T (��; c); ��; c))0
̂J;T (c)(
̂J;T (c)�g(�̂J;T (��; c); �̂J;T (��; c); ��; c))

and:

ĉRIRSC;T = arg min
c2C0;H(��)

RIRSCJ;T (��; c); and

RIRSCJ;T (��; c) = log(jcW (1;1)
J;T (�; c)j) + k(jcj)mT :

Then ĉV IRSC;T
p! c0 and ĉRIRSC;T

p! cr.

4.2 Indirect Inference Estimators

The third estimator that we consider is the simulation-based estimator. The simulation-based

estimator is an indirect-inference (II) estimator with a sequence of �nite-order VAR models used as

an auxiliary model (see Smith (1993) and Dridi, Guay and Renault (2007), and Gourieroux, Monfort

and Renault (1993) for examples of indirect inference applied to DSGE models and �nancial models,

respectively). In the macroeconomics literature, the application of simulation-based estimators to

IRFMEs is referred to as the Sims-Cogley-Nason estimator.11

The II estimator is implemented as follows. First, �t a VAR(p) to the actual data to obtain

sample impulse responses b
T (c).12 Note that all the results in this section still hold if the VAR

is of in�nite order provided that H is �nite. Next, simulate synthetic data of length T from the

DSGE model with parameter vector (�; �; ��). Let the s � th simulated synthetic data obtained

using initial condition Y s0 be denoted by Y
s
T (�; �;

��; Y s0 ), and repeat this process for s = 1; ::; S,

where S is the total number of simulation replications. Estimate the VAR(p) on the synthetic

11The Sims-Cogley-Nason estimator was popularized by Kehoe (2006).
12All the subsequent estimated parameters should also be function of p, the estimated VAR lag length. However,

in order to simplify notation, we suppress this dependence in the notation.
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samples s = 1; ::; S to obtain a matrix of simulated theoretical IRFs. Let eg(s)T (�; �; ��) denote the
vector of simulated impulse responses from the s-th synthetic sample. Finally, de�ne egST (�; �; ��)
to be the average across the ensemble of simulated IRFs, which we refer to as the (approximate)

theoretical impulse responses, egST (�; �; ��) =(1=S)PS
s=1 eg(s)T (�; �; ��). As the paper did earlier, c is

used to index subsets of IRFs, egST (�; �; ��; c). Note that the matrix of shock innovations is drawn
only once and held �xed as � is adjusted to move egST (�; �; ��; c) closer to b
T (c).

The II estimator of � minimizes the distance between the average simulated theoretical impulse

responses and the sample impulse responses:0@ �̂II;T (S; ��; c)b�II;T (S; ��; c)
1A = argmin

�2�
(b
T (c)� egST (�; �; ��; c))0b
T (c)(b
T (c)� egST (�; �; ��; c)); (22)

where b
T (c) is a weighting matrix.13
Next, consider the problem of selecting the impulse responses for the IRFME. We impose

additional assumptions:

Assumption (A1�). Let P� denote the probability measure of the simulated data. For the simulated

theoretical impulse responses egST (�; �; ��; c), QT (Y T ; 
(c); c) satis�es
egST (�; �; ��; c) =

1

S

SX
s=1

eg(s)T (�; �; ��; c);
eg(s)T (�; �; ��; c) = 
0(c)�

�
@2QT (Y

s
T (�; �;

��; Y s0 ); 
0(c); c)

@
(c)@
0(c)

��1
�@QT (Y

s
T (�; �;

��; Y s0 ); 
0(c); c)

@
(c)
+ op(1):

Assumption (A3�). (a) 1p
T

@QT
@
(c)(Y

s
T (�0; �� (c) ;

��; Y s0 ); 
0(c); c) is asymptotically normally distrib-

uted with zero mean and asymptotic covariance matrix

I�0 (��; c) = P� lim
T!1

V ar

�
T�1=2

@QT
@
(c)

(Y sT (�0; �� (c) ;
��; Y s0 ); 
0(c); c)

�
and independent of the initial values Y s0 , s = 1; 2; :::; S. (b) There is a jcj� jcj matrix J�0 (��; c) such

that

J�0 (��; c) = P� lim
T!1

T�1
@2QT

@
(c)@
0(c)
(Y sT (�0; �� (c) ;

��; Y s0 ); 
0(c); c):

13The Appendix shows that, under quite mild conditions, �̂II;T (S; ��; c) is consistent and asymptotically normal.
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Assumption (A4�). eg(s)T (�; �; �; c) is continuously di¤erentiable in (�; �; �) and P� limT!1 @eg(s)T (�0;��(c);��;c)

@[�0;�0]0
=

@g(�0;��(c);��;c)
@[�0;�0]0

.

Assumption (A5). Let Cov� denote covariance under P�. There are jcj � jcj matrices K0(��; c)

and K�
0 (
��; c) such that

lim
T!1

Cov�

�
1p
T

@QT
@
(c)

(Y T ; 
0(c); c);
1p
T

@QT
@
(c)

(Y sT (�0; �� (c) ;
��; Y s0 ); e
0(�0; �� (c) ; ��; c); c)� = K0(��; c)

lim
T!1

Cov�

�
1p
T

@QT
@


(Y sT (�0; �� (c) ;
��; Y

s
0); 
0(c); c);

1p
T

@QT
@


(Y lT (�0; �� (c) ;
��; Y

l
0);e
0(�0; �� (c) ; ��; c); c)� = K�

0(
��; c)

independent of the initial values Y s0 and Y
l
0 , s 6= l, s; l = 1; 2; :::; S.

Let the following de�nitions hold:

�0(S; ��; c) = J�10 (c)I0(c)J
�1
0 (c) +

1

S
J��10 (��; c)I�0 (��; c)J

�
0 (
��; c)�1

+

�
1� 1

S

�
J��10 (��; c)K�

0 (
��; c)J��10 (��; c)

�J�10 (c)K0(��; c)J
��1
0 (��; c)� J��10 (��; c)K 0

0(
��; c)J�10 (c)


(S; ��; c) = ��10 (S;
��; c)

W (S; ��; c) =

�
@g0(�0; �� (c) ; c)

@[�0; �0]0
(�0(S; ��; c))

�1@g(�0; �� (c) ; c)

@[�0; �0]0

��1
(23)

and W (1;1)(S; ��; c) denotes the (p��p�) upper-left diagonal sub-matrix of the (p� + p�)� (p� + p�)

matrices W (S; ��; c). Lemma 10 in the Appendix shows that the simulation-based estimators

�̂II;T (��; c); �̂II;T (��; c) are asymptotically normal, centered around their true and pseudo-true pa-

rameter values, respectively, with an asymptotic covariance matrix equal to W (S; ��; c): Finally, letcWII;T (S; �; c) be a consistent estimator of W (S; ��; c) and b�II;T (S; ��; c) be de�ned as
b�II;T (S; ��; c) = T (b
T (c)� egST (b�II;T �S; ��; c� ; b�II;T �S; ��; c� ; ��; c))0

�b
T (c)(b
T (c)� egST (b�II;T �S; ��; c� ; b�II;T �S; ��; c� ; ��; c)):
Finally, letcW (1;1)

II;T (S; �; c) be the (p��p�) upper-left diagonal sub-matrix of the (n2YH�n2YH)matrixcWII;T (S; �; c): Note that Gourieroux, Monfort and Renault (1993, S112�S113) propose consistent

estimators of �0(S; ��; c) for some special cases which can be used to construct cWII;T (S; ��; c) andcWII;T (S; �; c) can be computed using (71) in the Appendix.

Theorem 6 describes the IRF selection criteria we propose for the II estimator:
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Theorem 6 (Consistent IRF Selection (Simulation-based case)) Let Assumptions A1, A1�,

A2, A3�, A4�, A5 hold. Let c be chosen such that:

ĉV IRSC;T = arg min
c2CH

V IRSCII;T (��; c); where

V IRSCII;T (��; c) = b�II;T (S; ��; c)� h(jcj)�T ;
and

ĉRIRSC;T = arg min
c2C0;H(��)

RIRSCII;T (��; c); and

RIRSCII;T (��; c) = log(jcW (1;1)
II;T (S; �; c)j) + k(jcj)mT :

Then, under Assumptions B1-B3, ĉV IRSC;T
p! c0 and, under the additional Assumptions C1-C3,

ĉRIRSC;T
p! cr.

5 Strongly Consistent IRFs Selection

This section derives additional results that guarantee almost sure convergence of the VIRSC and

RIRSC. This analysis will provide more guidance on the choice of the penalty term than the

weak consistency results of Sections 2.1 and 2.2 (in fact, the weak consistency results only require

Assumption C3 which is valid for many choices for �(jcj) and mT ), although at the cost of imposing

additional assumptions on the data. For simplicity, we will do so only in the simulation-based

estimator: the results for the VAR-based and the Projection-based estimators follow directly as

special cases. We impose additional assumptions:

Assumption (D). (a) There is a unique �0(��; c) and �0(��; c) such that

[�0(��; c)
0; �0(��; c)0]0 = argmin�2�;�2A [
0(c)� g(�(��; c); �(��; c); ��; c)]0
(S; ��; c)

[
0(c)� g(�(��; c); �(��; c); ��; c)];

and [�̂II;T (S; ��; c)0; �̂II;T (S; ��; c)0]0
a:s:! [�0(��; c)

0; �0(��; c)0]0 for all c 2 CH : (b) There is a sequence

of positive semi-de�nite matrices f
̂T (S; ��; c)g such that 
̂T (S; ��; c)
a:s:! 
(S; ��; c) where 
(S; ��; c)

is positive de�nite for all c 2 C0;H
�
��
�
. (c) The Law of the Iterated Logarithm (LIL) holds:

lim sup
T!1

1

(2T lnlnT )1=2

���b0 
1=2(S; ��; c) �
̂T (c)� g(�0(��; c); �0(��; c); c)���� = 1; a:s:
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for all b 2 <jcj such that jbj=1 (where b is a generic vector) and c 2 C0;H
�
��
�
where lnlnT denotes

ln(ln(T )). (d) sup�2�;�2A kD~gST (�; �; ��; c)�Dg(�; �; ��; c)k = oas(1).

The following results holds:

Theorem 7 (Strong Consistency of VIRSC ) Suppose that Assumptions A4�, B1, B3 and D

hold. Then ĉV IRSC;T
a:s:! c0.

Theorem 7 shows that the results of Theorem 1 can be strengthened to almost sure convergence.

We can derive similar results for the RIRSC under the following Assumption. Let Y st (�; �; ��; Y
s
0 )

denote the time t component of the vector Y sT (�; �; ��; Y
s
0 ):

Assumption (E). (a) Let G(c) � @g(�; �; ��; c)=@[�0; �0]0j�=�0;�=��(c);
�G(c) = (@=@�0)vec

�
@g(�; �; ��; c)=@[�0; �0]0

	
j�=�0;�=��(c); bG(c) be a consistent estimator of G(c), and

let the following approximations hold:

T 1=2(�̂T (��; c)� �0 (c)) = �
�
G(c)0
(S; ��; c)G(c)

	�1
G(c)0
(S; ��; c)�

T 1=2[
̂T (c)� egST (�0; �; �; c)] + o(1) a:s: (24)

T 1=2vecfĜT (c)�G(c)g = �G(c)T�1=2(�̂T (��; c)� �0) + o(1) a:s: (25)

Also, !v(Yt; Y st (�; �; ��; Y
s
0 ); �0; c) and !
(Yt; Y

s
t (�; �;

��; Y s0 ); �0; c) exist such that:

T 1=2vechfb�T (S; ��; c)� �0(S; ��; c)g = T�1=2
TX

t=1+m

!v(Y t; Y
s
t (�0;� (c) ;

��; Y
s
0); �0; c) + o(1) a:s:(26)

T 1=2(
̂T (c)� ~g
S
T (�0; �� (c) ;

��; c)) = T �1=2
TX

t=1+m

!
(Y t; Y
s
t (�0;� (c) ;

��; Y
s
0); �0; c) + o(1) a:s:

for some 0 < m <1.

(b) Let !(Yt; Y st (�; �; ��; Y
s
0 ); �0; c) = [!
(Yt; Y

s
t (�; �;

��; Y s0 ); �0; c)
0 !v(Yt; Y st (�; �; ��; Y

s
0 ); �0; c)

0]0.

De�ne 
!(S; ��; c) = limT!1V ar[T
�1=2PT

t=1 !(Yt; Y
s
t (�; �;

��; Y s0 ); �0; c)].
PT
t=1 !(Yt; Y

s
t (�; �;

��; Y s0 ); �0; c)

satis�es the LIL in the sense that for all b 2 <dim(!) with kbk = 1,

lim
T!1

sup

(
1

(2T lnlnT )1=2

�����b0
!(S; ��; c)�1=2
TX
t=1

!(Yt; Y
s
t (�; �;

��; Y s0 ); �0; c)

�����
)
= 1; a:s:

for all c 2 C.
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Assumption (F). Let the penalty function be k(jcj)mT where k(�) is strictly increasing and mT =

o(1) and either: (i) lim infT!1 T 1=2mT =(lnlnT )
1=2 = � where z < � < 1 and z is a positive

constant that is de�ned in Appendix A; or (ii) lim infT!1 T 1=2mT =(lnlnT )
1=2 = +1.

The following results holds:

Theorem 8 (Strong Consistency of RIRSC ) Suppose that Assumptions A4�, C1, C3, E and

F hold. Then ĉRIRSC;T
a:s:! cr.

Remarks. Theorem 8 establishes conditions under which ĉRIRSC;T is strongly consistent for

cr. It can be seen that the conditions on the penalty term are necessarily satis�ed if �(jcj; p; T ) =

(jcj�p)ln[T 1=2]=T 1=2, which is the penalty term associated with the Schwarz information criterion.

However, the conditions are not necessarily satis�ed if �(jcj; p; T ) = (jcj�p)ln[ln
�
T 1=2

�
]=T 1=2, which

is the penalty term associated with the Hannan and Quinn information criterion. In the latter case,

if selection is over all possibilities then strong consistency requires that z = 21=2(!�(cr) + !�(c))

for all c 2 CE;H where !�(c) is de�ned in Appendix A. Notice that if this condition fails for some

�c 2 CE;H , then one of two scenarios unfolds: if � = z then the assignment is random between cr

and �c; if � < z then ĉRIRSC;T
a:s:! �c and so more moments are included than is necessary to achieve

the minimum variance. The data dependence of the condition governing these outcomes makes this

choice of penalty term unattractive.

It is interesting to contrast the conditions on the penalty term for the case considered here in

which the order of convergence of cW (1;1)
T (S; �; c) to W (1;1)(S; �; c) is T�1=2. For weak consistency,

it is only necessary that mT ! 1 and mT = o(T 1=2). Given the discussion above, the strong

consistency results suggest the use of a penalty term for which lim infT!1 T 1=2mT =(lnlnT )
1=2

diverges. Theorem 8 therefore provides more guidance on the choice of penalty term than the

corresponding weak consistency result.

Theorem 8 relies crucially on Assumptions E and F, which are high level assumptions that

guarantee approximations by the law of iterated logarithms. For simplicity, Theorem 8 also relies

on the use of the optimal weighting matrix, which however is not crucial. Theorem 8 would still

hold with any positive de�nite weighting matrix.
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6 Empirical Analysis of Two Representative DSGE Models

This section applies a VAR-based IRFME and the information criteria to the new Keynesian DSGE

models of CEE and ACEL. The goal is to assess the impact of the VIRSC and the RIRSC on the

estimated parameters of these DSGE models. Since the VIRSC con�rms that all IRFs are valid,

we focus on the RIRSC. We estimate the CEE and ACEL models �xing the maximum number

of impulse response lags at 20 (excluding those that are zero by assumption) and employing the

RIRSC. In either case, the IRFME is implemented with a diagonal weighting matrix.14

The CEE and ACEL DSGE models use di¤erent schemes to identify IRFs. The CEE model

is estimated by matching the responses of nine aggregate variables only to an identi�ed monetary

policy shock. The identi�cation relies on an impact restriction that orthogonalizes the monetary

policy shock with respect to the nine aggregate series. We use this identi�cation to estimate nine

parameters of the CEE DSGE model.

Long-run neutrality restrictions identify the IRFs engaged to estimate the parameters of the

ACEL DSGE model. The ACEL DSGE model is constructed such that: (i) neutral and capital

embodied shocks are the only shocks that a¤ect productivity in the long run; (ii) the capital

embodied shock is the only shock that a¤ects the price of investment goods; and (iii) monetary

policy shocks do not contemporaneously a¤ect aggregate quantities and prices. These restrictions

identify IRFs for ten aggregate variables with respect to neutral technology, capital embodied and

monetary policy shocks. The ACEL DSGE model presents 18 parameters to estimate.

Table 1(a) reports the results for the ACEL DSGE model. From the left to right of the table,

the columns list parameters, parameter estimates and standard errors under RIRSC, and parameter

estimates and standard errors given a �xed IRF lag length of 20. We implement the RIRSC by

matching the IRFs with respect to the three shocks and progressively reduce the lags in all three

IRFs one by one. Next, the RIRSC criterion (10) is applied as the number of lags in each IRF

ranges from two to 20, which gives a total of number of IRF points (h) ranging between 6 and

60. The RIRSC selects h = 3 for the three IRFs, which makes it possible for the 18 ACEL DSGE

model parameters to be identi�ed.

The RIRSC has one important e¤ect on ACEL DSGE model parameter estimates. Across the

14ACEL remark that the diagonal weighting matrix ensures that the estimated DSGE model parameters are such

that theoretical IRFs lie as much as possible within con�dence bands of estimated IRFs.
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RIRSC and �xed lag length IRFMEs, there are six ACEL DSGE model parameters with t-ratios

greater than two, with qualitatively similar point estimates. The �xed lag length IRFME yields an

additional parameter, ��z , which is the AR(1) coe¢ cient on the growth rate of the labor neutral

productivity shock, whose point estimate is 0.89 with a standard error of 0.16. This implies a

persistent growth rate of the labor neutral productivity shock (e.g., its half-life to an own shock is

over six quarters) that contrasts with the RIRSC-based estimate ��z = 0:24 and a standard error

of 0.70. Since this standard error is nearly three times larger than its point estimate, under RIRSC,

inference points to a random walk labor neutral productivity shock for the ACEL DSGE model.

Although the remaining 11 ACEL DSGE model parameters have t-ratios less than two, note the

distance across the RIRSC and �xed lag estimates (which are close to those reported by ACEL).

For example, the RIRSC and �xed lag IRFMEs produce an estimate of the coe¢ cient on marginal

cost in the new Keynesian Phillips curve (NKPC), 
, of 0.21 and 0.04, respectively. The latter

estimate produces a steeply sloped NKPC, while the latter suggests monetary policymakers face a

weaker trade-o¤. Nonetheless, these estimates of 
 are smaller than the associated standard errors.

Another appealing feature of the RIRSC-IRFME appears from the standard errors reported in

parentheses below the estimates reported in Table 1(a). Note that the RIRSC-IRFME has smaller

standard errors.

INSERT TABLES 1 AND 2 HERE

A crucial aspect of the ACEL DSGE model is the implied average time between �rms�price

re-optimization, which is a function of 
. Since the RIRSC-IRFME estimate of 
 is larger than

the �xed lag IRFME estimate, according to Table 1(b) the former estimate implies that on average

monopolistically competitive �rms change their prices at most about every three quarters in the

homogeneous capital model. This contrasts with the �xed lag IRFME, which estimates price

changes every �ve quarters on average. From the standard errors reported in parentheses below the

estimates reported in Table 1(a): note that the di¤erences are statistically signi�cant at conventional

levels.

Table 2 presents estimates of the CEE DSGE model, where the monetary policy shock is the

only shock of interest. In this case, the RIRSC chooses 6 lags for the impulse response. We see

that RIRSC and the �xed lag length IRFMEs generate nearly identical results for the �ve CEE
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DSGE model parameters with t-ratios greater than two. The remaining four parameter estimates

di¤er across the RIRSC and the �xed lag length IRFMEs. However, the �xed lag length IRFME

delivers estimates that are often close to those reported by CEE.15

As a robustness analysis, we investigate whether the insensitivity of our point estimates in Tables

1 and 2 to a di¤erent IRF lag length is robust to di¤erent choices for the initial parameter values and

to the step size for the numerical derivatives. Unreported results show that a slight perturbation of

the initial parameter values does not substantially change the main results, although the estimates

might change considerably when the magnitude of the perturbation is large.16 The results are

considerably less sensitive to the choice of the step size; in that case, the estimates and standard

errors change only very slightly.

7 Monte Carlo Robustness Analysis

The striking di¤erence in the estimates of some key parameters in the previous section deserves

an additional careful investigation into the causes of why this happens. In this section, we argue

that the di¤erence in the estimates is likely caused by small sample biases, and report Monte Carlo

simulations to show that the use of our methodology provides substantially more precise estimation

of the deep parameters of the structural models. Unfortunately, a careful Monte Carlo analysis of

ACEL and CEE is computationally infeasible at the moment. Thus, we consider a simple univariate

AR(1) process; the structural VAR(3) discussed in example 2; and the simpli�ed New Keynesian

model discussed in example 1.

15We attribute any disparities between the �xed lag estimates of Table 2 and those of CEE to modi�cations to

the computational procedure used to implement the IRFME. For example, we make it more robust to changes in

the initial parameter values. Further, we aim to obtain more precise results by (i) using a Newton-Raphson type

algorithm rather than a simplex algorithm; (ii) increasing the maximum iterations to 1000 rather than 10; and (iii)

changing the grid sizes for numerical derivatives. The latter two are responsible for most of the di¤erences in the

numerical parameter values.
16 In particular, results were robust to adding a Normal(0; �) shock to the initial parameter values with � 2 [1; 10],

but were not robust to ad-hoc initial parameter values (e.g. the origin).
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7.1 The AR(1)

To start, �rst consider the following simple univariate AR(1):

yt = �yt�1 + "t , t = 1; 2; :::T

where "t are random draws from a normal distribution with mean zero and variance one; � = 0:4 and

T = 100: We estimate the deep parameter � by the IRFME that minimizes the distance between

the vector of IRFs estimated by �tting an AR(2) to the data and the theoretical IRF derived from

the AR(1). The weighting matrix b
T is the inverse of the covariance matrix of the estimated IRFs
calculated by using Monte Carlo simulation. In this section we let H denote either the number of

IRFs matched by the IRFME with a �xed number of IRF lags (when we refer to the usual IRFME)

or the maximum number of IRFs considered when criterion (10) is used to select the relevant IRF

lag length. In this example, all IRFs are valid; also note that Assumption C1 holds, and the unique

relevant IRF is the �rst.

Table 3 reports, for various values of H, both the estimated average bias (�bias�) and the empir-

ical rejection rates (�rej. rate�) of nominal 5% signi�cance level tests for the following estimators:

the IRF matching estimator with H lags, labeled �IRFME�; and the IRF matching estimator us-

ing only the IRFs selected by (10), labeled �IRFMERIRSC�. Note that the IRFME with H = 1

is the maximum likelihood estimator. We performed 1,000 Monte Carlo replications, discarding

replications in which the estimator did not converge numerically.

The table shows that the bias of IRFME tends to increase (in absolute value) with the number

of IRFs used (H) and its rejection rates are well above the nominal level of 0:05 for H � 5, and

tend to go to one as H increases. The table also shows that the RIRSC method that we propose

does not su¤er from over-rejections, and that it substantially reduces the bias of the traditional

IRFME.

INSERT TABLE 3 HERE

7.2 The Structural VAR(3) in Example 2

We consider estimation of � and 
l in example 2 by IRFME. We set �y = 0:35, �z = 1; �l = 1,

�l = 0:95, 
l = 1; �l = 0 (because of the short run identi�cation restriction) and e�z = 0:325, so
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that 
1 = 0:5.
17 The sample sizes considered are T = 100; 200; 400 and the number of Monte Carlo

replications is set to 1000. We focus on the choice of horizons and the minimum and maximum

horizons are 1 and 12, respectively.

Table 4 reports the median of absolute bias, variance and coverage probabilities of the 95%

con�dence interval based on the t test when the number of impulse responses is �xed. As expected,

both the bias and the variance become smaller and the coverage becomes more accurate as the

sample size increases. In this data generating process, the coverage probability is most a¤ected by

the number of impulse responses. The best coverage probability is obtained when h = 1 or h = 2

and it deteriorates as more impulse responses are included.

Table 5 shows that the performance of the IRFME using only the IRFs selected by the VIRSC

(labeled "Valid IRF Selection Only"), only those selected by the RIRSC (labeled "Relevant IRF

Selection Only") or in a sequential procedure where the VIRSC is used �rst, and then the RIRSC

is applied to the valid IRFs only (labeled "Valid and Relevant IRF Selection"). The criteria were

implemented using the following choices. For the VIRSC: (AIC) h(jcj) = 2jcj; �T = 1; (SIC)

h(jcj) = jcj; �T = ln(T ); (HQC) h(jcj) = 2jcj; �T = ln(ln(T )): For the RIRSC: (AIC) k(jcj) = 2jcj;

mT = 1=
p
T ; (SIC) k(jcj) = jcj; mT = ln(T )=

p
T ; (HQC) k(jcj) = 2jcj; mT = ln(ln(T ))=

p
T : The

table shows that the RIRSC signi�cantly improves the coverage probability of the IRFME based

on using all IRFs and also on using the valid IRFs. Although the AIC-type penalty term does not

satisfy Assumption C3, it reduces the number of impulse responses which results in the improved

performance of the IRFME.

Table 6 presents summary statistics of the selected numbers of impulse responses. The RIRSC

with the SIC-type penalty term tends to choose h = 1 as the sample size grows in the sense

that the variance becomes small. The RIRSC with the AIC-type penalty term tends to choose

larger numbers of impulse responses and the variance is also larger than the other types of the

penalty term. Overall, the Monte Carlo simulations show that using jointly Valid and Relevant

IRF Selection Criteria results in signi�cant improvements in the performance of the estimators.

INSERT TABLES 4, 5 AND 6 HERE

17We have looked at all the cases in which � 2 f0:275; 0:35; 0:425g, �l = f0:75; 0:85; 0:9; 0:95; 0:975; 1g, �l =

f0:5; 0:75; 1; 1:25; 1:5g. They are qualitatively similar to the reported results and are available upon request.
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7.3 The Simple New Keynesian Model in Example 1

In this example, the researcher does not have to choose across horizons but to choose across impulse

responses only. Note that a Cholesky decomposition will directly recover the IRFs at horizon zero

from (18).

Assume the researcher believes that a4 � a4, where for example a4 = 0:2. Then he will estimate:

0BBB@
it

yt

�

1CCCA =

0BBB@
i

y

�

1CCCA+
0BBB@

1 0 0

a2 1 0

a2a4 a4 1

1CCCA
0BBB@
e1t

e2t

e3t

1CCCA (27)

where it is known that the variance of the shocks is normalized to unity. We thus focus on ex-

tracting information from: [ @yt@e1;t
; @�t@e1;t

; @�t@e2;t
]0 = [a2; a2a4; a4]

0 ; where the selection vector c is de�ned

accordingly as c = [c1; c2; c3]0. We thus have, for each shock, three impulse responses of the three

macroeconomic variables to the shock, which could be taken individually, in combinations of two,

or all three, for a total of 7 combinations. The data generating process is (17) with a4 = 0:8 and

a2 = 0:5; and we let T = 100. The empirical IRFs are derived from (19) and the theoretical model

used by the researcher to recover the responses and the parameters is (27), where a4 is assumed to

be equal to a4: In this example, c1 is the valid and relevant impulse response to estimate a2 when

a4 is far from the true value a4 (as the other IRFs impose the constraint a4 = a4 which can be

mis-speci�ed unless a4 = 0:8); c2 is a valid response when a4 = a4 = 0:8.

Table 7 reports which IRFs are selected by the proposed criteria. Table 7(a) reports results

for the VIRSC and Table 7(b) reports results for the RIRFSC, where the RIRFSC is applied to

the IRFs that satisfy the VIRSC. The results are based on 10,000 Monte Carlo replications. The

criteria were implemented using SIC-type criteria: for the VIRSC: h(jcj) = jcj; �T = ln(T ); for

the RIRSC: k(jcj) = jcj; mT = ln(T )=
p
T : It is clear that the VIRSC tends to select IRFs that

include the �rst one (c1 = 1). However, as a4 gets closer to 0:8, the VIRSC will sometimes select

the second and/or the third responses, as the parameter value imposed by the researcher becomes

closer and closer to its true value. In no case does the VIRSC discards the �rst IRF. Table 7(b)

shows that the additional redundant responses are easily wiped out by the RIRSC, which almost

always selects only the �rst IRF.

Table 8(a,b,c) show that the median bias, variance and mean coverage probabilities are sig-
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ni�cantly improved by using the VIRSC and the RIRSC. For example, if the researcher used all

three IRFs to estimate the parameter of interest, he/she would incur in mis-speci�cation biases

that are sometimes three times as big as those of the parameter estimate based on the VIRSC and

RIRSC. The researcher would also incur in much worse coverage probabilities if he/she focused on

the wrong responses (and the empirical coverage can be as low as zero for those cases), and obtain

standard errors that are signi�cantly larger if some IRFs are erroneously included.

INSERT TABLES 7 AND 8 HERE

8 Conclusions

This paper�s objective is to contribute to the literature on the estimation of dynamic stochas-

tic general equilibrium (DSGE) models by using impulse response function matching estimators

(IRFMEs). We propose simple and econometrically sound methods for doing so, that consist of

information criteria. We show by Monte Carlo simulations that our methods can substantially

improve the precision of the parameter estimates and decrease their biases, both in small samples

(when the IRFs are correctly speci�ed) as well as asymptotically (when the IRFs are mis-speci�ed).

We also show that our methods can substantially change inferences regarding key parameters of

existing representative DSGE models. We hope that the simplicity and the usefulness of the criteria

that we propose will increase the applicability of impulse response function matching estimators in

practice.

Our criteria can be used not only for IRFMEs but also for general classical minimum distance

and Indirect Inference Estimators. Relative to this literature, and in particular relative to Dridi et

al. (2007), we add useful information criteria to select valid as well as relevant restrictions, thus

signi�cantly extending the scope of their analysis.

Finally, we do not provide a systematic analysis of the relative merits of using IRFMEs versus

alternative estimators such as classical full information MLE or Bayesian methods. The latter

estimators employ the entire likelihood of the model rather than the limited information approach

of the IRFME with its focus on selected aspects of a DSGE model. The decision to pursue the

IRFME over a full information approach gives rise to the usual trade-o¤ between e¢ ciency and

robustness. We leave these issues for future research.



29

9 References

Altig, David, Lawrence Christiano, Martin Eichenbaum and Jesper Linde� (2005): �Firm-

Speci�c Capital, Nominal Rigidities and the Business Cycle�, NBER Working Paper 11034, Cam-

bridge, MA.

Andersen, T.G. and B.E. Sorensen (1996), �GMM Estimation of a Stochastic Volatility Model:

A Monte Carlo Study�, Journal of Business and Economic Statistics, 14, 328�352.

Andrews, Donald W.K. (1999): �Consistent Moment Selection Procedures for Generalized

Method of Moments Estimators,�Econometrica 67(3), 543-564.

Blinder, Alan S., Elie Canetti, David Lebow and Jeremy Rudd (1998): Asking about Prices: A

New Approach to Understanding Price Stickiness, Russell Sage Foundation.

Boivin, Jean and Marc Giannoni (2006): �Has Monetary Policy Become More E¤ective?�,

Review of Economics and Statistics 88(3), 445-462.

Christiano, Lawrence and Martin Eichenbaum (1992): �Current Real Business Cycle Theories

and Aggregate Labor Market Fluctuations�, American Economic Review 82(3), 430-450.

Christiano, Lawrence, Martin Eichenbaum and Charles Evans (2005): �Nominal Rigidities and

the Dynamic E¤ects of a Shock to Monetary Policy�, Journal of Political Economy, 113(1), 1-45.

Christiano, Lawrence, Martin Eichenbaum and Robert Vigfusson (2006): �Assessing Structural

VARs�, Macroeconomics Annual 2006, by Daron Acemoglu, Kenneth Rogo¤ and Michael Wood-

ford, MIT Press, Boston, MA.

Cogley, Timothy and James M. Nason (1995): �Output Dynamics in Real-Business-Cycle Mod-

els�, American Economic Review 85(3), 492-511.

Davidson, James (1994): Stochastic Limit Theory: An Introduction for Econometricians, Ox-

ford University Press: Oxford, UK.

Dhrymes, Phoebus J. (1984), Mathematics for Econometrics, Second Edition, Springer Verlag:

New York, NY.

DiCecio, Riccardo (2005): �Comovement: It�s Not a Puzzle�, Working Paper 2005-035, Federal

Reserve Bank of St. Louis.

DiCecio, Riccardo, and Edward Nelson (2007): �An Estimated DSGE Model for the United

Kingdom�, Review, Federal Reserve Bank of St. Louis, 89(4), 215-231.



30

Dridi, Ramdan, Alain Guay, and Eric Renault (2007), �Indirect Inference and Calibration of

Dynamic Stochastic General Equilibrium Models�, Journal of Econometrics 136, 397-430.

Dupor, Bill, Jing Han, and Yi Chan Tsai (2007): �What Do Technology Shocks Tell Us about

the New Keynesian Paradigm?�, Journal of Monetary Economics 56, 560-569.

Gourieroux, Christian S., Alain Monfort and Eric Renault (1993): �Indirect Inference,�Journal

of Applied Econometrics, 8, S85�S118.

Gourieroux, Christian S., and Alain Monfort (1997): Simulation Based Econometric Methods.

Oxford University Press, Oxford, UK.

Hall, Alastair, Atsushi Inoue, Kalidas Jana and Changmock Shin (2007): �Information in Gen-

eralized Method of Moments Estimation and Entropy Based Moment Selection�, Journal of Econo-

metrics 138, 488-512.

Hall, Alastair, Atsushi Inoue, James Nason and Barbara Rossi (2007): �Information Criteria

for Impulse Response Function Matching Estimation of DSGE Models�, Duke University Working

Paper 2007-04.

Hamilton, James (1994), Time Series Analysis, Princeton University Press.

Iacoviello, Matteo (2005), "House Prices, Borrowing Constraints and Monetary Policy in the

Business Cycle", American Economic Review, 95(3), 739-764.

Jordà, Òscar (2005): �Estimation and Inference for Impulse Responses by Local Projections,�

American Economic Review 95(1), 161-182.

Jordà, Òscar and Sharon Kozicki (2007): �Estimation and Inference by the Method of Projection

Minimum Distance�, Bank of Canada Working Paper 2007-56.

Jordà, Òscar (2006): �Inference for Impulse Responses,�mimeo, Department of Economics,

University of California.

Kehoe, Patrick J. (2006): �How to Advance Theory with Structural VARs: Use the Sims-Cogley-

Nason Approach�, NBER Working Paper 12575, Cambridge MA.

Lewis, R. and G. C. Reinsel (1985): �Prediction of Multivariate Time Series by Autoregressive

Model Fitting�, Journal of Multivariate Analysis, 16, 393�411.

Lütkepohl, Helmut (1990), �Asymptotic Distributions of Impulse Response Functions and Fore-

cast Error Variance Decompositions of Vector Autoregressive Models,�Review of Economic Statis-

tics 72, 116�125.



31

Lütkepohl, Helmut and D.S. Poskitt (1991): �Estimating Orthogonal Impulse Responses Via

Vector Autoregressive Models,�Econometric Theory 7, 487�496.

Magnus, Jan R. and Heinz Neudecker (1999): Matrix Di¤erential Calculus with Applications in

Statistics and Econometrics, Revised Edition, Chicester, England: John Wiley & Sons.

Newey, Whitney and Daniel McFadden (1994): �Large Sample Estimation and Hypothesis

Testing�, in: R.F. Engle and D.L. McFadden, Handbook of Econometrics, Vol. 4, Elsevier.

Phillips, Peter C.B. and Werner Ploberger (2003), �Empirical Limits for Time Series Econo-

metric Models,�Econometrica, 71, 627�673.

Rotemberg, Julio and Michael Woodford (1997): �An Optimization-Based Econometric Frame-

work for the Evaluation of Monetary Policy�, in Bernanke, B. and J. Rotemberg, eds., NBER

Macroeconomics Annual, Cambridge, MA: MIT Press.

Sims, Christopher A. (1989): �Models and Their Uses�, Institute for Empirical Macroeconomics

Discussion Paper 11, Federal Reserve Bank of Minneapolis.

Smith, Anthony A. (1993): �Estimating Nonlinear Time-Series Models Using Simulated Vector

Autoregressions�, Journal of Applied Econometrics 8, S63-S84.

Uribe, Martin and Vivien Z. Yue (2006): �Country Spreads and Emerging Markets: Who Drives

Whom?�, Journal of International Economics 69, 6-36.

Watson, Mark W. (2006): �Comment on �Assessing Structual VARs� by L. Christiano, M.

Eichenbaum, and R. Vigfusson�, NBER Macroeconomics Annual.



32

Appendix A: Proofs

Notation. In what follows,
p! denotes convergence in probability, d! denotes convergence in dis-

tribution, dim(v) denotes the length of vector v, and for a matrix A: kAk2 � tr(A0A), bA denotes
an estimate of A, �p.s.d.�denotes positive-semide�nite, �p.d.�denotes positive-de�nite, and E (:)

denotes the expectation operator. Finally, Bc denotes the complement of a set B.

Proposition 9 (Asymptotic Normality of Parameter Estimates �VAR case) Suppose that

Assumptions (A1)�(A4) are satis�ed. Then:

p
T

0@ �̂T (��; c)� �0 (c)

�̂T (��; c)� ��(c)

1A d! N
�
0;W (��; c)

�
:

The proof follows from Proposition 3.5 of Dridi et al. (2007).

Proposition 10 (Asymptotic Normality of Parameter Estimates �Simulation-based case)

Suppose that Assumptions (A1),(A2),(A1�),(A3�),(A4�),(A5) are satis�ed. Then:

p
T

0@ �̂II;T (��; c)� �0 (c)

�̂II;T (��; c)� ��(c)

1A d! N
�
0;W (S; ��; c)

�
;

where

W (S; ��; c) =

�
@g0(�0; �� (c) ; c)

@[�0; �0]0
(�0(S; ��; c))

�1@g(�0; �� (c) ; c)

@[�0; �0]0

��1

(S; ��; c) = ��10 (S;

��; c)

�0(S; ��; c) = J�10 (c)I0(c)J
�1
0 (c) +

1

S
J��10 (��; c)I�0 (��; c)J

�
0 (
��; c)�1

+

�
1� 1

S

�
J��10 (��; c)K�

0 (
��; c)J��10 (��; c)

�J�10 (c)K0(c)J
��1
0 (��; c)� J��10 (��; c)K 0

0(c)J
�1
0 (c):

The proof follows from Proposition 3.5 of Dridi et al. (2007).

Proof of Theorem (1). Consider two cases: (1) the case in which c0 and c 2 CH \ C0;H(��)c

are compared; and (2) the case in which c0 and c 2 CH \ C0;H(��) are compared. First, when c 2
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CH \C0;H(��)c, (1=T )�̂T (��; c)
p! j(��; c) for some constant j(��; c) > 0 whereas �̂T (��; c0) = Op(1).

Thus, it follows from Assumption B3 that

T�1(V IRSCT (��; c0)� V IRSCT (��; c)) = �j(��; c) + op(1):

That is, (1=T )(V IRSCT (��; c0) � V IRSCT (��; c)) is negative with probability approaching one.

Next, when c 2 CH \ C0;H(��), �̂T (��; c0) and �̂T (��; c) are both Op(1). Note that �̂T (��; c) is Op(1)

whether or not �0 and �� (c) are identi�ed by the IRFs selected by c. By de�nition jc0j > jcj and

Assumption B3, �h(jc0j)�T + h(jcj)�T ! �1. Thus V IRSCT (��; c0) � V IRSCT (��; c)
p! �1.

Combining these two results, V IRSCT (��; c0) < V IRSCT (��; c) for all c 6= c0 with probability

approaching one.

Proof of Theorem (2). First suppose that c 2 CE;H
�
��
�
and c 6= cr. It follows from Proposition

9 and Assumptions C2 and C3 that

T 1=2(RIRSC(��; c)�RIRSC(��; cr)) = T 1=2(ln(jŴT (��; c)j)� ln(jŴT (��; c)j))

+T 1=2(k(jcj)� k(jcrj))mT

! +1 (28)

as the �rst term is Op(1) by Assumption C2 and the second term diverges to in�nity by Assumption

C3. Thus T 1=2(RIRSC(��; c) � RIRSC(��; c0)) is positive with probability approaching one as

T ! 1. Next consider the case in which c 2 CI;H
�
��
�
\
�
CE;H

�
��
��c. By Theorem 22 of Magnus

and Neudecker (1999, p.21), it follows from Assumption C1 that ln(jWT (��; c)j)�ln(jWT (��; cr)j) > 0.

Thus it follows from Assumptions C2 and C3 that

RIRSC(��; c)�RIRSC(��; cr)

= ln(jŴT (��; c)j)� ln(jŴT (��; cr)j) + k(jcj)mT � k(jcrj)mT

= ln(jWT (��; c)j)� ln(jWT (��; cr)j) + op(1)

> 0 (29)

with probability approaching one. Third, when c 2 CNI;H
�
��
�
\
�
CE;H

�
��
��c where

CNI;H
�
��
�
= fc 2 C0;H

�
��
�
: c =2 CI;H

�
��
�
g; (30)

it follows from Assumption C2 that

RIRSC(��; c)�RIRSC(��; cr)
p! +1: (31)
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Because CE;H
�
��
�
[ (CI;H

�
��
�
\ CcE;H

�
��
�
) [ (CNI;H

�
��
�
\ CcE;H

�
��
�
) = CI;H

�
��
�
[ CNI;H

�
��
�
=

C0;H
�
��
�
,

RIRSC(��; cr) < RIRSC(��; c) (32)

for all c 2 CH
�
��
�
such that c 6= cr with probability approaching one asymptotically. Since, by

de�nition, ĉT minimizes RIRSC(��; c):

RIRSC(��; ĉT ) � RIRSC(��; c)

for all c 2 CH
�
��
�
; then,

RIRSC(��; ĉT ) � RIRSC(��; cr) (33)

Therefore it follows from (32), (33) and Assumption C3 that ĉRIRSC;T
p! cr.

Proof of Theorem (5) and (6). The proofs are as in Theorem 1 and 2.

Proof of Theorem (7). Let D~gST (�; �; �) denote the Jacobian of ~g
S
T (�; �; �) with respect to � and

�. Note that the �rst order conditions are written as:

D~gST (�̂II;T (S;
��; c); b�II;T (S; ��; c); ��; c)0
̂T (S; ��; c)(
̂T (c)�~gST (�̂II;T (S; ��; c); b�II;T (S; ��; c); ��; c)) = 0;

(34)

It follows from (34) that, for �0(��; c) and �0(��; c) de�ned in Assumption D(a):

�
T

2lnlnT

� 1
2

24 �̂II;T (S; ��; c)� �0(��; c)b�II;T (S; ��; c)� �0(��; c)
35

= �
h
D~gST (�̂II;T (S;

��; c); b�II;T (S; ��; c); ��; c)0
̂T (S; ��; c)D~gST (��T (S; ��; c); ��T (S; ��; c); ��; c)i�1
D~gST (�̂II;T (S;

��; c); b�II;T (S; ��; c); ��; c)0
̂T (S; ��; c)� T

2lnlnT

� 1
2

(
̂T (c)� ~gST (�0(��; c); �0(��; c); ��; c))

= �
�
Dg(�0(��; c); �0(��; c); ��)

0
(S; ��; c)Dg(�0(��; c); �0(��; c); ��; c)
��1

Dg(�0(��; c); �0(��; c); ��; c)
0
(S; ��; c)

�
T

2lnlnT

� 1
2

(
̂T (c)� ~gST (�0(��; c); �0(��; c); ��; c)) + o(1) a:s:(35)

where ��T (��; c) [��T (��; c)] is a point between �0(��; c) and �̂II;T (S; ��; c) [resp. �0(��; c) and b�II;T (S; ��; c)],
the �rst equality follows from the mean-value theorem, and the second from Assumptions D(a)�
D(c). Suppose that c 2 C0;H(��) so that the IRFs selected by c are valid. Then it follows from
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Assumption D that�
1

2lnlnT

� b�T (��; c)
=

�
T

2lnlnT

�
[
̂T (c)� ~gST (�̂II;T (S; ��; c); �̂II;T (S; ��; c); ��; c)]0
̂T (S; ��; c)[
̂T (c)� ~gST (�̂II;T (S; ��; c); �̂II;T (S; ��; c); ��; c)]

=

�
T

2lnlnT

�24
̂T (c)� g(�0(��; c); �0(��; c); ��; c)�Dg(��T (��; c); ��T (��; c); ��; c)
0@ �̂II;T (S; ��; c)� �0(��; c)

�̂II;T (S; ��; c)� �0(��; c)

1A350


̂T (S; ��; c)

24
̂T (c)� g(�0(��; c); �0(��; c); ��; c)�Dg(��T (��; c); ��T (��; c); ��; c)
0@ �̂II;T (S; ��; c)� �0(��; c)

�̂II;T (S; ��; c)� �0(��; c)

1A35
=

�
T

2lnlnT

��

̂T (c)� g(�0(��; c); �0(��; c); ��; c)

�0
M 0
1
(S;

��; c)M1

�

̂T (c)� g(�0(��; c); �0(��; c); ��; c)

�
+o(1) a:s:

=

�
T

2lnlnT

��

̂T (c)� g(�0(��; c); �0(��; c); ��; c)

�0


1
2 (S; ��; c)

M2

1
2 (S; ��; c)

�

̂T (c)� g(�0(��; c); �0(��; c); ��; c)

�
+ o(1) a:s: (36)

where

M1 = Ijcj �Dg(�0(��; c); �0(��; c); ��)
�
Dg(�0(��; c); �0(��; c); ��; c)

0
(S; ��; c)Dg(�0(��; c); �0(��; c); ��; c)
��1

Dg(�0(��; c); �0(��; c); ��)
0
(S; ��; c)

M2 = Ijcj � 

1
2 (S; ��; c)Dg(�0(��; c); �0(��; c); ��; c)

�
Dg(�0(��; c); �0(��; c); ��; c)

0
(S; ��; c)Dg(�0(��; c); �0(��; c); ��; c)
��1

Dg(�0(��; c); �0(��; c); ��; c)
0


1
2 (S; ��; c):

SinceM2 is symmetric and idempotent with rank jcj�p��p�, it follows from the Schur decomposi-

tion theorem that there is a (jcj�(jcj�p��p�))matrix S such thatM2 = SS0 and S0S = Ijcj�p��p� .

Thus it follows from (36) and Assumption D(c) that

lim sup
T!1

�
1

2lnlnT

� b�T (��; c) = jcj � p� � p�: a:s: (37)

Suppose that c1 and c2 both select valid IRF with jc1j > jc2j. It follows from (37) that

lim sup
T!1

1

2lnlnT
b�T (��; c1) = jc1j � p� � p�; a:s:; (38)

lim sup
T!1

1

2lnlnT
b�T (��; c2) = jc2j � p� � p�; a:s:; (39)

whereas

T

lnlnT
(�h(jc1j)�T + h(jc2j))�T ) =

T

lnlnT
(�h(jc1j) + h(jc2j))�T ! �1 (40)

Combining (34), (35) and (36) yields

V IRSCT (��; c1) < V IRSCT (��; c2) + oas(1) (41)
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whenever c1; c2 2 C0;H
�
�
�
with jc1j < jc2j.

Consider the case in which c1 2 C0;H
�
�
�
and c2 2 CH

�
�
�
nC0;H

�
�
�
. Then

1

T
b�T (��; c1) = o(1) a:s:; (42)

1

T
b�T (��; c2) > 0; a:s:; (43)

while it follows from Assumption B3 that

1

T
h(jc1j)�T ! 0; (44)

1

T
h(jc2j)�T ! 0; (45)

It follows from (44)�(45) that

1

T
V IRSCT (��; c1) <

1

T
V IRSCT (��; c2) + o(1) a:s: (46)

whenever c1 2 C0;H
�
�
�
and c2 2 CH

�
�
�
nC0;H

�
�
�
. The desired result follows from (41), (46) and

Assumption B1.

Proof of Theorem (8). Let

M̂T (c) = Ŵ
(1;1)
T (S; ��; c)�1 = ĜT (c)

0
̂T (S; ��; c)ĜT (c);

where ĜT (c) = @~gST (�̂II;T (S; ��; c); �̂II;T (S; ��; c); ��; c)=@([�
0; �0]0). It implies

RIRSCII;T (��; c) = �ln[jM̂T (c)j] + k(jcj)mT : (47)

Also de�ne M(c) = G(c)0
(S; ��; c)G(c). We have the following expression for M̂T (c)�M(c):

M̂T (c)�M(c) = ĜT (c)
0
̂T (S; ��; c)ĜT (c) � G(c)0
(S; ��; c)G(c)

= ĜT (c)
0
̂T (S; ��; c)fĜT (c) � G(c)g + ĜT (c)

0f
̂T (S; ��; c)� 
(S; ��; c)gG(c)

+fĜT (c) � G(c)g0
(S; ��; c)G(c) (48)

We also have the following representation:


̂T (S; ��; c)� 
(S; ��; c) = 
(S; ��; c)
n
�0(S; ��; c) � �̂T (S; ��; c)

o

̂T (S; ��; c) (49)

and

vec
n
�0(S; ��; c) � �̂T (S; ��; c)

o
= �vech

n
�0(S; ��; c) � �̂T (S; ��; c)

o
(50)
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where (49) follows since 
̂T (S; ��; c) = (�̂T (S; ��; c))
�1 and � is the matrix such that vec(:) =

�vech(:). The above equations are the foundations for the analysis. The proof rests on equations

derived in the following three steps.

Step 1: From (48)�(50) and Assumptions E(a)-E(b), it follows that

M̂T (c)�M(c) = G(c)0
̂T (S; ��; c)fĜT (c) � G(c)g + G(c)0fb
T (S; ��; c)� 
(S; ��; c)gG(c)
+ fĜT (c) � G(c)g0W (c)G(c) + o(fT=lnlnTg�1=2) a:s:

� aT (c) + o(fT=lnlnTg�1=2) (51)

Step 2: Using Dhrymes (1984)[Proposition 89, p.105], we have

tr
n
M(c)�1(M̂T (c)�M(c))

o
= vecfM(c)�1g0vecfM̂T (c)�M(c)g (52)

>From (51), it follows that aT (c) can be written as

aT (c) = vecfG(c)0b
T (S; ��; c)[ĜT (c) � G(c)]g + vecfG(c)0[b
T (S; ��; c)� 
(S; ��; c)]G(c)g
+ vecf[ĜT (c)� G(c)]0
(S; ��; c)G(c)g (53)

= a1;T (c) + a2;T (c) + a3;T (c): (54)

Taking the terms of the right hand side of (54) in turn, we have

For the �rst term, a1;T (c):

Using Dhrymes (1984)[Corollary 25, p.103], it follows that

a1;T (c) = vecfG(c)0b
T (S; ��; c)[ĜT (c)� G(c)]g

=
h
Ip 
G(c)0b
T (S; ��; c)i vecfĜT (c) � G(c)g (55)

Using Assumptions E(a) and E(b) and eq. (55), it follows that

a1;T (c) = �
�
Ip�+p� 
G(c)0
(S; ��; c)

�
�
n
G(c)

�
G(c)0
(S; ��; c)G(c)

	�1
G(c)0
(S; ��; c)(
̂T (c)� ~gST (S; �0; �� (c) ; ��; c))

o
+ o(fT=lnlnTg�1=2) a:s: (56)

where the rate follows from the Law of the Iterated Logarithm in Assumption E(b).

For the second term, a2;T (c):

Using A�1 �B�1 = B�1(B �A)A�1 and Dhrymes (1984)[Corollary 25, p.103], it follows that

a2;T (c) = vecfG(c)0[b
T (S; ��; c)� 
(S; ��; c)]G(c)g
=

h
G(c)0b
T (S; ��; c)
G(c)0
(S; ��; c)i vecf�0(S; ��; c)� b�T (S; ��; c)g (57)
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Using (50), (57), and Assumptions E(a) and E(b), it follows that

a2;T (c) = �
�
G(c)0
(S; ��; c)
G(c)0
(S; ��; c)

�
T�1

TX
t=1+m

!v(Yt; Y
s
t (�0; � (c) ;

��; Y s0 ); �0; c)

+ o(fT=lnlnTg�1=2) a:s: (58)

For the third term, a3;T (c):

Using Dhrymes (1984)[Corollary 25, p.103], it follows that

a3;T (c) = vecf[ĜT (c)� G(c)]0
(S; ��; c)G(c)g

=
�
G(c)0
(S; ��; c)
 Ijcj

�
vecfĜT (c)0 � G(c)0g

=
�
G(c)0
(S; ��; c)
 Ijcj

�
N vecfĜT (c) � G(c)g (59)

where N is the permutation matrix such that vec(A0) = Nvec(A). It follows from (59) and Assumptions

E(a) and E(b) that

a3;T (c) =
�
G(c)0
(S; ��; c)
 Ijcj

�
NG(c)(�̂T (c) � �0)

+o((T=lnlnT )�1=2) a:s: (60)

Using Assumptions E(a) and E(b) and eq. (60), it follows that

a3;T (c) = �
�
G(c)0
(S; ��; c)
 Ijcj

�
N

fGT (c)
�
G(c)0
(S; ��; c)G(c)

	�1
G(c)0
(S; ��; c)(
̂(c)� ~gST (�0; c))g

+ o(fT=lnlnTg�1=2) a:s: (61)

Step 3: From Phillips and Ploberger�s (2003, p.665) Proposition A8, we have the following Taylor series

expansion of ln[jM j] around M =M0 for non-negative de�nite M , M0 such that kM �M0kkM�1
0 k < 1,

ln[jM j] = ln[jM0j] + tr
�
M�1
0 (M �M0)

	
� tr

�
(M �M0)M

�1
0 (M �M0)M

�1
0

	
+ o

�
kM�1k3k(M �M0)k3
1� kM�1kkM �M0k

�
(62)

Setting M = M̂T (c) and M0 =M(c) and using (51), (52), (54), (56), (58) and (61) we obtain

ln[jM̂T (c)j] = ln[jM(c)j] + tr
n
M(c)�1(M̂T (c)�M(c))

o
+ o(��1T ) a:s: (63)

where � trf(M �M0)M
�1
0 (M �M0)M

�1
0 g+ o

�
kM�1k3k(M�M0)k3
1�kM�1kkM�M0k

�
= o(��1T ); fT=lnlnTg1=2=�T ! 0

and kM �M0kkM�1
0 k < 1 as T !1.



39

From (63), (52), (56), (58) and (61), it follows that

ln[jM̂T (c)j] = ln[jM(c)j] + vecfM(c)�1g0D(c)T�1
TX
t=1

!(Yt; Y
s
t (�; �;

��; Y s0 ); �0; c)

+ o(fT=lnlnTg�1=2) a:s: (64)

where D(c)0 = [D1(c); D2(c)] and

D1(c) = �
�
f[Ip�+p� 
G(c)0
(S; �; c)] + [G(c)0
(S; �; c)
 Ijcj]NgGT (c)

�
�
G(c)0
(S; �; c)G(c)

	�1
G(c)0
(S; �; c) (65)

D2(c) = �
�
G(c)0
(S; �; c)
G(c)0
(S; �; c)

�
� (66)

where � is as in eq. (50) and N is de�ned after (59). Now de�ne

�t(c) = vecfM(c)�1g0D(c)!(Yt; Y st (�; �; ��; Y s0 ); �0; c)

and !2�(c) = limT!1 V ar[T
�1=2PT

t=1 �t(c)]. Then�
T

lnlnT

�1=2
RIRSC(��; c) = �

�
T

lnlnT

�1=2
ln[jM(c)j] �

�
T

lnlnT

�1=2
T�1

TX
t=1

�t(c)

+

�
T

lnlnT

�1=2
�(jcj)mT + o(1) a:s: (67)

We now use the above results to establish Theorem 8. The proof proceeds by considering two cases.

Part (i): Consider c1 and c2 such thatW (1;1)(S; �; c1)�W (1;1)(S; �; c2) is p:s:d: and hence ln[jM(c2)j] >

ln[jM(c1)j]. Since �(jcj)mT = o(1) from Assumption F, it follows from (67) and Assumption E(b)

that

RIRSC(��; c1) � RIRSC(��; c2) = ln[jM(c2)j] � ln[jM(c1)j] + o(1) a:s: (68)

Since W (S; ��; c) �W (S; ��; cr) is p.s.d. for all c 2 CH , it follows from (68) that RIRSC(��; c) �

RIRSC(��; cE) a.s. for any c 2 CH and cE 2 CE;H . Because RIRSC(��; c) � RIRSC(��; ĉT ) holds

for any c 2 CH by de�nition of ĉT , it has to be the case that ĉT 2 CE;H a.s. for T su¢ ciently large.

Part (ii): Consider ca 2 CE;H such that cr 6= ca. From Assumption E(b), it follows that for c = cr; ca
we have

lim sup
T!1

�
T

lnlnT

�1=2
jT�1

TX
t=1

�t(c)j � 21=2!�(c); a:s: (69)
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Set r(��; cr; ca) = RIRSC(��; cr) � RIRSC(��; ca). Since M(cr) =M(ca) by de�nition in this case,

it follows from (67) and (69) that

lim sup
T!1

�
T

lnlnT

�1=2
r(��; cr; ca) � lim sup

T!1

�
T

lnlnT

�1=2
jT�1

TX
t=1

�t(cr)j

+ lim sup
T!1

�
T

lnlnT

�1=2
jT�1

TX
t=1

�t(ca)j

� lim inf
T!1

(� k(jcrj; T ) + k(jcaj; T )g

� 21=2 (!�(cr) + !�(ca)) +

� lim inf
T!1

n
k(jcaj)� k(jcrj)(T 1=2mT =(lnlnT )

1=2)
o

(70)

Using Assumptions E(b) and C1, it follows from (70) that ĉT = cr for T su¢ ciently large a:s: if

Assumption F holds with (i) and z = 21=2(!�(cr) + !�(ca))=�k where �k = minc2CE;Hk(jcj)� k(jcrj)

or (ii).

Appendix B: Asymptotic Covariance Estimation Formulas

A common choice for the estimate of the weighting matrix b
T (c) is the inverse of the estimated
asymptotic covariance of the IRFs. Let �̂b
T (c) denote the estimate of the asymptotic covariance
matrix of the sample IRFs (see Hamilton, 1994, Section 11.7 for formulas).

De�nition 11 (Consistent Estimation of VAR-based Estimators.) Consistent estimates of

the matrices of interest can be obtained by standard HAC estimators (e.g., Newey and West, 1987).

Let b(T ) be a bandwidth that grows with T and suppose that there are q(Yt; 
0(c); c) such that

QT (Y T ; 
0(c); c) =
TX
t=1

q(Yt; 
0(c); c) + op

�
T 1=2

�
and

b
T (c) = 
0(c)� �@2QT (Y T ; 
0(c); c)@
(c)@
0(c)

��1 TX
t=1

@q(Yt; 
0(c); c)

@
(c)
+ op(1):

Then,

bIT (c) � b(T )�1X
i=�b(T )+1

(1� ji=b(T )j) 1
T

TX
t=1

�
@q(Yt; 
0 (c) ; c)

@
(c)

� �
@q(Yt�i; 
0 (c) ; c)

@
(c)

�0

bJT (c) � 1

T

TX
t=1

@2Qt
@
(c)@
0(c)

(Y T ; 
0(c); c)
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b�T (c) � bJT (c)�1bIT (c) bJT (c)�1
bGT ���; c� � @g(�̂T (��; c); b�T (��; c); ��; c)

@[�0; �0]0

ŴT (��; c) �
h bGT ���; c�0 b�T (c)�1 bGT ���; c�i�1

are consistent estimators of I0(c); J0(c);�0(c);
@g(�0;��(c);��;c)

@[�0;�0]0
;W (��; c).

When eq. 2 holds, and for the optimal choice of the weighting matrix b
T (c) = �̂�1b
T (c), the formulas
simplify to: bIT (c) = b
T (c)�̂b
T (c)b
T (c)0; bJT (c) = b
T (c); b�T (c) = �̂b
T (c).
De�nition 12 (Estimation of Asymptotic Variance of Simulation-based Estimators) Let

Y st (�; �;
��; Y s0 ) denote the time t simulated data from the simulated sample Y

s
T (�; �;

��; Y s0 ). Suppose

that there are q(Yt; 
0(c); c) and q(Y
s
t (�; �;

��; Y s0 ); 
0(c); c) such that

QT (Y T ; 
0(c); c) =

TX
t=1

q(Yt; 
0(c); c),

QT (Y
s
T (�; �;

��; Y s0 ); 
0(c); c) =

TX
t=1

q(Y st (�; �;
��; Y s0 ); 
0(c); c);

b
T (c) = 
0(c)� �@2QT (Y T ; 
0(c); c)@
(c)@
0(c)

��1 TX
t=1

@q(Yt; 
0(c); c)

@
(c)
+ op(1):

and

eg(s)T (�; �; ��; c) = 
0(c)�
�
@2QT (Y

s
T (�; �;

��; Y s0 ); 
0(c); c)

@
(c)@
0(c)

��1
�

TX
t=1

@q(Y st (�; �;
��; Y s0 ); 
0(c); c)

@
(c)
+ op(1):

Let

rt(Y T ; Y
s
T (�; �;

��; Y s0 ); c) = �
�
@2QT (Y T ; 
0(c); c)

@
(c)@
0(c)

��1
@q(Yt; 
0(c); c)

@
(c)

+

�
@2QT (Y

s
T (�; �;

��; Y s0 ); 
0(c); c)

@
(c)@
0(c)

��1
@q(Y st (�; �;

��; Y s0 ); 
0(c); c)

@
(c)

Let b(T ) be a bandwidth that grows with T . Then

b�T (S; ��; c) �
b(T )�1X

i=�b(T )+1

(1� ji=b(T )j) 1
T

TX
t=i+1

rt(Y T ; Y
s
T (�̂II;T (S;

��; c); b�II;T (S; ��; c); ��; Y s0 ); c)�
rt�i(Y T ; Y

s
T (�̂II;T (S;

��; c); b�II;T (S; ��; c); ��; Y s0 ); c)0;
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bGT �S; ��; c� � @egST (�̂II;T (S; ��; c); b�II;T (S; ��; c); ��; c)
@[�0; �0]0

and

ŴII;T (S; ��; c) �
h bGT �S; ��; c�0 b�T (S; ��; c)�1 bGT �S; ��; c�i�1 (71)

are consistent for �0(c);
@g(�0;��(c);��;c)

@[�0;�0]0
and W0(��; c), respectively, under suitable assumptions.
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10 Tables

Table 1(a). Empirical results (ACEL, 2005))

RIRSC (ĥT = 3) Fixed lags (h=20)

Parameter Standard Parameter Standard

Parameters Estimates Errors Estimates Errors

�xM -0.097 0.247 -0.040 0.292

�xz 0.588 1.257 0.329 0.948

cz 0.655 0.664 2.952 3.096

��z 0.237 0.703 0.894 0.159

�x� 0.997 0.107 0.822 0.345

c� 0.307 0.435 0.247 0.440

��� 0.344 0.240 0.239 0.425

�M 0.334 0.113 0.333 0.110

��z 0.203 0.168 0.069 0.068

��� 0.287 0.084 0.304 0.093

" 0.831 0.284 0.809 0.256

S00 6.907 9.842 3.350 3.477

�w 0.832 0.225 0.713 0.261

b 0.779 0.124 0.706 0.135

�a 0.413 0.777 2.029 4.251

cpz 0.144 1.414 1.379 3.732

cp� 0.073 0.580 0.137 0.499


 0.207 0.434 0.039 0.069
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Table 1(b). Implied Average Time Between Re-Optimization (ACEL, 2005)

RIRSC (ĥT = 3) Fixed lags (h=20)

Firm-Speci�c Capital Model 1.294 1.515

(0.037) (0.007)

Homogeneous Capital Model 2.769 5.655

(0.167) (0.046)

Note to Table 1. The table reports parameter estimates and their standard errors for the IRFME with

20 lags for each IRF, and the IRFME with h chosen according to the RIRSC (10), which selects h = 6 for

CEE. The CEE model is a special case of ACEL when only monetary shocks are considered; for consistency,

we maintain the same notation as ACEL, Tables 2 and 3. See ACEL for a complete description.
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Table 2. Empirical results (CEE, 2005)

RIRSC (ĥT = 6) Fixed Lags (h=20)

Parameter Standard Parameter Standard

Parameters Estimates Errors Estimates Errors

�M -0.020 0.300 -0.114 0.272

�M 0.348 0.108 0.352 0.108

� 0.897 0.275 0.836 0.255

S00 3.732 3.695 4.324 4.566

�w 0.624 0.194 0.645 0.261

b 0.762 0.127 0.717 0.144

�f 1.002 0.231 1.097 0.277

�a 0.001 0.152 0.041 0.557


 0.106 0.243 0.208 0.546

Note to Table 2. The table reports parameter estimates and their standard errors for the IRFME with

20 lags for each IRF, and the IRFME with h chosen according to the RIRSC (10), which selects h=3 for

ACEL. The notation is the same as that in Tables 2 and 3 in ACEL, and �f is calibrated to be 1.01. See

ACEL for a complete description.

Table 3. Monte Carlo results for the AR(1) case.

H IRFME IRFMERIRSC

bias rej. rate bias rej. rate

1 0.0010 0.0531 0.0010 0.0511

5 -0.0243 0.2265 -0.0045 0.0521

10 -0.0135 0.4090 -0.0036 0.0442

20 0.0026 0.6194 -0.0072 0.0473

50 -0.0768 0.6815 -0.0480 0.0506

100 -0.0819 0.6236 -0.0451 0.0577

Note to Table 3. The table reports bias (i.e. true parameter value minus estimated value) and rejection

rates of 95% nominal con�dence intervals for the AR(1) example.
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Table 4a. Bias, Variance, Coverage Probability (T = 100)

�y 
1 �l

h bias var prob bias var prob bias var prob

1 0.013 0.008 0.938 0.002 0.012 0.938 -0.003 0.019 0.943

2 -0.002 0.005 0.910 0.001 0.003 0.926 -0.014 0.006 0.922

3 -0.000 0.004 0.871 0.000 0.003 0.900 -0.011 0.002 0.918

4 -0.006 0.005 0.757 0.004 0.004 0.803 -0.013 0.003 0.857

5 -0.010 0.005 0.679 0.001 0.004 0.749 -0.012 0.004 0.795

6 -0.008 0.005 0.638 0.002 0.004 0.704 -0.013 0.004 0.748

7 -0.004 0.005 0.614 -0.002 0.004 0.682 -0.014 0.003 0.659

8 -0.004 0.005 0.579 0.000 0.004 0.643 -0.017 0.009 0.609

9 -0.002 0.006 0.543 -0.000 0.004 0.620 -0.017 0.011 0.564

10 -0.004 0.006 0.482 0.001 0.005 0.583 -0.022 0.018 0.520

11 0.001 0.006 0.450 -0.002 0.005 0.545 -0.022 0.020 0.494

12 -0.002 0.006 0.430 -0.004 0.005 0.515 -0.022 0.025 0.458

Table 4b. Bias, Variance, Coverage Probability (T = 200)

�y 
1 �l

h bias var prob bias var prob bias var prob

1 -0.003 0.004 0.956 0.004 0.005 0.950 0.004 0.009 0.952

2 -0.006 0.002 0.947 -0.002 0.001 0.951 -0.004 0.003 0.926

3 -0.002 0.002 0.925 -0.002 0.001 0.937 -0.004 0.001 0.945

4 -0.005 0.002 0.824 -0.000 0.001 0.864 -0.004 0.001 0.910

5 -0.006 0.002 0.735 0.002 0.001 0.831 -0.005 0.001 0.837

6 -0.006 0.002 0.730 0.002 0.001 0.803 -0.005 0.002 0.791

7 -0.004 0.002 0.712 0.000 0.001 0.794 -0.005 0.001 0.741

8 -0.005 0.002 0.691 -0.001 0.001 0.774 -0.007 0.003 0.686

9 -0.005 0.002 0.663 -0.002 0.001 0.766 -0.009 0.007 0.660

10 -0.005 0.002 0.622 -0.001 0.002 0.730 -0.011 0.014 0.618

11 -0.005 0.002 0.602 -0.001 0.002 0.724 -0.011 0.012 0.605

12 -0.004 0.002 0.578 -0.002 0.002 0.692 -0.012 0.025 0.562
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Table 4c. Bias, Variance, Coverage Probability (T = 400)

�y 
1 �l

h bias var prob bias var prob bias var prob

1 -0.000 0.002 0.949 -0.000 0.002 0.953 0.000 0.004 0.944

2 -0.004 0.001 0.947 0.001 0.001 0.956 -0.003 0.001 0.942

3 -0.003 0.001 0.944 0.000 0.001 0.941 -0.002 0.000 0.948

4 -0.003 0.001 0.842 0.001 0.001 0.886 -0.002 0.000 0.915

5 -0.005 0.001 0.775 0.001 0.001 0.841 -0.002 0.001 0.879

6 -0.004 0.001 0.781 0.001 0.001 0.829 -0.002 0.000 0.837

7 -0.003 0.001 0.775 0.001 0.001 0.824 -0.003 0.000 0.769

8 -0.003 0.001 0.757 0.000 0.001 0.813 -0.004 0.000 0.720

9 -0.003 0.001 0.716 0.000 0.001 0.803 -0.004 0.001 0.698

10 -0.003 0.001 0.677 0.000 0.001 0.793 -0.005 0.008 0.673

11 -0.003 0.001 0.665 0.000 0.001 0.779 -0.005 0.002 0.667

12 -0.003 0.001 0.648 -0.000 0.001 0.760 -0.006 0.019 0.628

Note to Table 4. The table reports the median bias ("bias"), variance ("var") and the coverage probability

("prob") of 95% nominal con�dence intervals for Example 2. H=12.
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Table 5a. Median Bias, Variance, Coverage Probability (�y)
All AIC SIC HQC

T bias var prob bias var prob bias var prob bias var prob
Valid IRF Selection Only

100 -0.002 0.006 0.430 -0.000 0.006 0.527 -0.002 0.006 0.456 -0.002 0.006 0.479
200 -0.004 0.002 0.578 -0.003 0.002 0.636 -0.004 0.002 0.604 -0.003 0.002 0.605
400 -0.003 0.001 0.648 -0.002 0.001 0.688 -0.002 0.001 0.668 -0.002 0.001 0.672

Relevant IRF Selection Only
100 -0.002 0.006 0.430 0.013 0.008 0.938 0.013 0.008 0.938 0.013 0.008 0.938
200 -0.004 0.002 0.578 -0.003 0.004 0.956 -0.003 0.004 0.956 -0.003 0.004 0.956
400 -0.003 0.001 0.648 -0.000 0.002 0.949 -0.000 0.002 0.949 -0.000 0.002 0.949

Valid and Relevant IRF Selection
100 -0.002 0.006 0.430 0.013 0.008 0.938 0.013 0.008 0.938 0.013 0.008 0.938
200 -0.004 0.002 0.578 -0.003 0.004 0.956 -0.003 0.004 0.956 -0.003 0.004 0.956
400 -0.003 0.001 0.648 -0.000 0.002 0.949 -0.000 0.002 0.949 -0.000 0.002 0.949

Table 5b. Median Bias, Variance, Coverage Probability (
1)
All AIC SIC HQC

T bias var prob bias var prob bias var prob bias var prob
Valid IRF Selection Only

100 -0.004 0.005 0.515 -0.002 0.004 0.628 -0.003 0.004 0.549 -0.003 0.004 0.574
200 -0.002 0.002 0.692 -0.001 0.002 0.755 -0.001 0.001 0.720 -0.001 0.001 0.728
400 -0.000 0.001 0.760 0.000 0.001 0.806 -0.001 0.001 0.776 -0.000 0.001 0.788

Relevant IRF Selection Only
100 -0.004 0.005 0.515 0.002 0.012 0.938 0.002 0.012 0.938 0.002 0.012 0.938
200 -0.002 0.002 0.692 0.004 0.005 0.950 0.004 0.005 0.950 0.004 0.005 0.950
400 -0.000 0.001 0.760 -0.000 0.002 0.953 -0.000 0.002 0.953 -0.000 0.002 0.953

Valid and Relevant IRF Selection
100 -0.004 0.005 0.515 0.002 0.012 0.938 0.002 0.012 0.938 0.002 0.012 0.938
200 -0.002 0.002 0.692 0.004 0.005 0.950 0.004 0.005 0.950 0.004 0.005 0.950
400 -0.000 0.001 0.760 -0.000 0.002 0.953 -0.000 0.002 0.953 -0.000 0.002 0.953

Table 5c. Median Bias, Variance, Coverage Probability (�l)
All AIC SIC HQC

T bias var prob bias var prob bias var prob bias var prob
Valid IRF Selection Only

100 -0.022 0.025 0.458 -0.017 0.004 0.573 -0.018 0.003 0.504 -0.018 0.003 0.519
200 -0.012 0.025 0.562 -0.009 0.001 0.644 -0.010 0.001 0.607 -0.009 0.001 0.616
400 -0.006 0.019 0.628 -0.005 0.001 0.684 -0.005 0.000 0.663 -0.005 0.000 0.669

Relevant IRF Selection Only
100 -0.022 0.025 0.458 -0.003 0.019 0.943 -0.003 0.019 0.943 -0.003 0.019 0.943
200 -0.012 0.025 0.562 0.004 0.009 0.952 0.004 0.009 0.952 0.004 0.009 0.952
400 -0.006 0.019 0.628 0.000 0.004 0.944 0.000 0.004 0.944 0.000 0.004 0.944

Valid and Relevant IRF Selection
100 -0.022 0.025 0.458 -0.003 0.019 0.943 -0.003 0.019 0.943 -0.003 0.019 0.943
200 -0.012 0.025 0.562 0.004 0.009 0.952 0.004 0.009 0.952 0.004 0.009 0.952
400 -0.006 0.019 0.628 0.000 0.004 0.944 0.000 0.004 0.944 0.000 0.004 0.944

Note to Table 5. The table reports the median bias, variance and the coverage probability of 95% nominal

con�dence intervals for Example 2. H=12. Note that all IRFs in this example are correctly speci�ed so the

results using RIRSC and those using both VIRSC and RIRSC are the same.
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Table 6. Selected Number of Impulse Responses
Valid IRF Selection Only

AIC SIC HQC
T H Mean Mode Var Mean Mode Var Mean Mode Var
100 12 9.804 12.000 11.251 11.306 12.000 3.180 10.819 12.000 5.722
200 12 10.635 12.000 8.933 11.623 12.000 1.711 11.294 12.000 4.034
400 12 11.109 12.000 6.125 11.806 12.000 0.759 11.583 12.000 2.327

Relevant IRF Selection Only
AIC SIC HQC

T H Mean Mode Var Mean Mode Var Mean Mode Var
100 12 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000 0.000
200 12 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000 0.000
400 12 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000 0.000

Both Valid and Relevant IRF Selection
AIC SIC HQC

T H Mean Mode Var Mean Mode Var Mean Mode Var
100 12 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000 0.000
200 12 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000 0.000
400 12 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000 0.000

Note to Table 6. The table reports the mean, median and variance of selected horizons of impulse

responses for Example 2.
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Table 7(a). Empirical Selection Frequency for VIRFSC

a4

c1 c2 c3 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 0 0 0.77 0.70 0.57 0.40 0.33 0.09 0.02 0.001 0.001 0.001

0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0

1 1 0 0.22 0.29 0.39 0.49 0.48 0.35 0.18 0.08 0.04 0.11

0 1 1 0 0 0 0 0 0 0 0 0 0

1 0 1 0.001 0.002 0.01 0.04 0.09 0.10 0.08 0.05 0.04 0.05

1 1 1 0.001 0.001 0.01 0.05 0.18 0.44 0.69 0.86 0.91 0.82

Table 7(b). Empirical Selection Frequency for RIRFSC

a4

c1 c2 c3 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 0 0 1 1 0.999 0.999 0.998 0.998 0.998 0.998 0.998 0.998

0 1 0 0 0 0 0.001 0.001 0.001 0.001 0.001 0.001 0.001

0 0 1 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0.001 0 0.001 0.001 0.001 0.001 0.001 0.001

0 1 1 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0 0 0 0

Note to Table 7. The table reports empirical selection frequency for Example 1.
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Table 8(a) Median Bias
a4

c1 c2 c3 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1.000 0.000 0.000 -0.007 -0.003 -0.003 -0.006 -0.009 -0.007 -0.008 -0.005 -0.004 -0.006
0.000 1.000 0.000 -0.500 -0.437 -0.373 -0.311 -0.248 -0.185 -0.121 -0.054 0.003 0.067
0.000 0.000 1.000 �� �� �� �� �� �� �� �� �� ��
1.000 1.000 0.000 -0.021 -0.019 -0.009 -0.016 -0.019 -0.017 -0.020 -0.017 -0.017 -0.018
0.000 1.000 1.000 -0.500 -0.437 -0.381 -0.302 -0.232 -0.214 -0.121 -0.032 0.049 0.081
1.000 0.000 1.000 -0.007 -0.003 -0.004 -0.001 -0.000 -0.009 -0.014 -0.002 0.017 -0.000
1.000 1.000 1.000 -0.021 -0.019 -0.011 -0.011 -0.011 -0.019 -0.025 -0.014 0.004 -0.013

VIRFSC -0.007 -0.005 -0.003 -0.009 -0.013 -0.015 -0.023 -0.014 0.004 -0.013
RIRFSC -0.007 -0.003 -0.003 -0.006 -0.009 -0.007 -0.009 -0.005 -0.005 -0.006

Table 8(b) Median Variance
a4

c1 c2 c3 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1.000 0.000 0.000 0.492 0.491 0.494 0.494 0.491 0.492 0.496 0.492 0.496 0.491
0.000 1.000 0.000 0 0.062 0.125 0.189 0.250 0.313 0.380 0.438 0.507 0.563
0.000 0.000 1.000 �� �� �� �� �� �� �� �� �� ��
1.000 1.000 0.000 0.482 0.485 0.477 0.479 0.480 0.479 0.489 0.481 0.484 0.477
0.000 1.000 1.000 0 0.066 0.131 0.187 0.251 0.307 0.392 0.437 0.473 0.543
1.000 0.000 1.000 0.492 0.491 0.496 0.492 0.492 0.481 0.502 0.491 0.484 0.486
1.000 1.000 1.000 0.482 0.484 0.480 0.477 0.482 0.469 0.495 0.480 0.473 0.473

VIRFSC 0.492 0.491 0.490 0.487 0.483 0.477 0.494 0.481 0.474 0.475
RIRFSC 0.492 0.491 0.494 0.494 0.491 0.492 0.496 0.492 0.496 0.490

Table 8(c) Mean Coverage Probability
a4

c1 c2 c3 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1.000 0.000 0.000 0.950 0.950 0.950 0.950 0.949 0.953 0.951 0.954 0.951 0.950
0.000 1.000 0.000 0.218 0.412 0.701 0.863 0.930 0.971 0.986 0.988 0.989 0.970
0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1.000 1.000 0.000 0.925 0.928 0.933 0.942 0.939 0.951 0.950 0.952 0.950 0.948
0.000 1.000 1.000 0.218 0.412 0.674 0.878 0.944 0.950 0.986 0.990 0.985 0.965
1.000 0.000 1.000 0.950 0.950 0.950 0.950 0.950 0.953 0.951 0.954 0.949 0.951
1.000 1.000 1.000 0.925 0.928 0.933 0.943 0.942 0.950 0.948 0.954 0.952 0.949

VIRFSC 0.942 0.941 0.942 0.945 0.941 0.950 0.948 0.953 0.951 0.949
RIRFSC 0.945 0.944 0.946 0.948 0.945 0.950 0.946 0.953 0.956 0.949

Note to Table 8. The table reports the median bias, variance and mean coverage probability for Example

1. In particular, in Table 8(b). "- -" means that the estimate is not available (this happens because the third

IRF is not informative about the parameter of interest and thus the gradient with respect to that parameter

is zero). In some cases, when a4= 0, some variances are zero, and these correspond to cases in which we are

interested in the IRF that picks restricted estimators, which are imposed to be zero by construction.


