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Abstract

In this paper, we extend Bai and Perron’s (1998, Econometrica, pp. 47-

78) method for detecting multiple breaks to nonlinear models. To that end,

we consider a nonlinear model that can be estimated via nonlinear least

squares (NLS) and features a limited number of parameter shifts occur-

ring at unknown dates. In our framework, the break-dates are estimated

simultaneously with the parameters via minimization of the residual sum

of squares. Allowing for breaks in the marginal distribution of regressors

and errors, and using new empirical process theory results, we derive the

asymptotic distributions of both break-point and parameter estimates and

propose several instability tests. Simulations show good finite sample prop-

erties of our procedure.

JEL classification: C12, C13, C22

Keywords: Multiple Change Points, Nonlinear Least Squares
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1 Introduction

As pointed out by Lucas (1976), policy shifts and time-varying market conditions

induce behavioral changes in the decisions of economic agents. Hence, over longer

time spans, a stable model might not be the appropriate tool to capture the fea-

tures of economic decisions. A popular way to capture instability in macroecono-

metric models is to impose sudden parameter shifts or break-points at unknown

dates.

Both the econometric and statistical literature on break-point problems is ex-

tensive1, and its main focus is on testing for breaks rather than estimation. For

example, early work by Quandt (1960) suggests using a supremum (sup) type test

for inference on a single unknown break-point. Whether in linear or nonlinear set-

tings, most subsequent work - see inter alia Anderson and Mizon (1983), Andrews

and Fair (1988), Ghysels and Hall (1990), Andrews (1993), Sowell (1996), Hall and

Sen (1999) and Andrews (2003) - proposes tests that are designed against the al-

ternative of a one-time parameter variation or of more general model misspecifica-

tion. For parametric settings, Bai and Perron (1998) is among the few papers that

proposes tests for identifying multiple breaks. Their tests are designed for linear

models estimated via ordinary least-squares (OLS). While these tests are useful,

the linear framework might be considered a limitation. In practice, researchers

often argue that it can be difficult to discriminate between misspecification due to

parameter instability or neglected nonlinearity. It is therefore desirable to develop

a framework that allows both features. While tests such as the ones developed in

Eitrheim and Teräsvirta (1996) can detect instability in some classes of nonlinear

models, they are not particularly designed against an alternative with breaks nor

offer an estimation framework that can allow for both smooth and sudden change.

One of the aims of this paper is to provide change-point tests in the spirit of Bai

1For statistical literature surveys, see Zacks (1983), Krishnaiah and Miao (1988), Bhat-
tacharya (1994), Csörgö and Horváth (1997); for recent developments in econometrics, see Dufour
and Ghysels (1996) and Banerjee and Urga (2005).
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and Perron’s (1998) tests, but with a maintained nonlinearity assumption. These

tests are valid for a large class of parametric nonlinear models, including inter alia

smooth transition models, neural networks, partially linear models.

Compared to inference procedures, the issue of consistently estimating one or

multiple change-points - when their location is unknown - has received consider-

ably less attention in the literature. Within linear parametric models, there are

a few methods that yield consistent estimates of the break-points, e.g. maximum

likelihood - Quandt (1958), least-squares - Bai (1994), least absolute deviation -

Bai (1995), minimum description length - Davis, Lee, and Rodriguez-Yam (2006).

In Bai and Perron’s (1998) paper, the break points are estimated simultaneously

with the regression parameters via least-squares methods. Bai and Perron (1998)

establish consistency and derive the convergence rate of the resulting break point

fractions under fairly general assumptions. They also propose a sequential pro-

cedure for selecting the number of break points in the sample based on various

tests for parameter constancy. This procedure is extended to models with cross-

regime restrictions by Perron and Qu (2006), and to multivariate frameworks by

Qu and Perron (2007). Hall, Han, and Boldea (2009) further extend Bai and

Perron’s framework to linear models with endogenous regressors. A slightly differ-

ent approach is proposed by Davis, Lee, and Rodriguez-Yam (2006); they suggest

estimating the number and location of breaks not separately, but simultaneously

via minimization of the minimum description length (MDL) criterion of Rissanen

(1989).

While useful, all analyses above are restricted to linear models. Nevertheless,

several economic models exhibit asymmetries that are usually quantified as non-

linearities or breaks, but rarely both. For example, threshold models are largely

viewed today as a special case of smooth transition models, when the smoothness

parameter of the transition function approaches infinity. Similarly, change-points

are viewed as a special case of smooth transition models with the state vari-

able time and the smoothness parameter approaching infinity, see e.g. van Dijk,
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Teräsvirta, and Franses (2002). However, such a treatment is not desirable, since

it is difficult to develop estimation and inference theory in the presence of pa-

rameters approaching infinity; even if these parameters are not the main object of

inference, it is likely that their estimation will affect the estimation of other param-

eters of interest. While this discussion highlights the importance of distinguishing

between breaks and time transitions with smoothness parameters close to infinity,

it does not preclude the treatment of smooth and sudden change jointly. Since

our assumptions about the form of the nonlinearity encompass smooth transition

models, our results provide a framework for inference that allows modeling breaks

and smooth transitions jointly, without treating them as mutually exclusive.

To that end, in this paper we consider a univariate nonlinear model that can

be estimated via NLS - or under stronger assumptions, equivalent methods such as

quasi-maximum likelihood - and exhibits multiple unknown breaks. Allowing for

a limited number of breaks in the marginal distribution of the regressors and/or

errors, we show that a minimization of the sum of squared residuals over all possible

break dates and parameters yields consistent estimates of both the unknown break

fractions and parameters. We further prove T -rate convergence of break fraction

estimates, a key result because it implies that inference on parameters can be

conducted as if the break-points were known a priori. To obtain this result, we

make use of two new empirical process theory results: one in the context of piece-

wise strictly stationary processes, extending a result in Caner (2007), and another

for more general empirical processes when the errors are independent. We also

discuss sufficient but higher level assumptions for more general processes in the

errors and the regressors.

Based on the above, we provide various structural stability tests - in the pres-

ence or absence of autocorrelation - that naturally generalize those proposed by

Bai and Perron (1998). We consider global tests for zero versus a fixed number

of breakpoints, known or unknown, as well as sequential tests for an additional

break. These tests can be used to develop a sequential method for finding the
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number and locations of breaks, as suggested by Bai and Perron (1998) in linear

settings. Moreover, the sequential Wald test we propose - similar to Hall, Han,

and Boldea (2009) - allows for marginal breaks in the distributions of regressors,

at the same time extending the strategy of identifying the number of breaks to

settings where autocorrelation is present.

For forecasting purposes, it is still of interest to know with certain confidence

when the last break occurred. As Bai (1994, 1995, 1997) shows, change-point

distributions in linear models can be derived in two cases: when the magnitude of

parameter shifts is constant and when it shrinks to zero at a certain rate. Because

in the first case, the confidence intervals depend on the distribution of the data, the

device of shrinking shifts is used to ensure that shifts disappear at a slow enough

rate so that pivotal statistics can still be obtained. In practice, this framework

can be viewed as one of moderate shifts, according to Bai and Perron (1998). A

local analysis of small shifts is presented in Elliott and Müller (2007) for linear

models, but providing a similar framework here is beyond the scope of our paper.

We consider each of the two cases above in turn. For the first case, we pro-

vide an asymptotic approximation to the exact change-point distribution, but this

approximation is - as for linear cases its exact counterpart - dependent on the

distribution of the data. For the second case, we obtain a similar asymptotic dis-

tribution as in Bai (1997). We validate the usefulness of our estimators, tests and

confidence intervals via simulations.

The paper is organized as follows: Section 2 describes our model. Section

3 reveals the assumptions needed for our estimation method. We outline the

consistency and limiting distributions results in Section 4. Section 5 rederives -

in a nonlinear context - two classes of stability tests. Section 6 shows good finite

properties of our break-point estimators, tests and number of break-points. Section

7 concludes. Sketch proofs are relegated to the Appendix, while the detailed proofs

can be found in a Supplemental Appendix that is available from the authors upon

request.
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2 Model

In this section, we introduce a nonlinear model with breaks. Consider a univariate

nonlinear data generation process with m unknown change-points:

yt = f(xt, θ
0
i+1) + ut t ∈ I0

i = [T 0
i + 1, T 0

i+1] i = 0, 1, . . .m (1)

where T 0
0 = 0 and T 0

m+1 = T by convention. Here yt is the dependent variable,

xt (s× 1) are the regressors, θ0
i+1 (p× 1) are parameters that change at dates T 0

i ,

f : Rs × Θ → R is a known measurable function on R for each θ ∈ Θ, and T is

the sample size. To begin, we consider m to be a known finite positive integer,

but we allow for the break dates to be unknown to the researcher; we consider the

question of how to estimate m in Section 6. For simplicity, let ft(θ) = f(xt, θ) and

denote by T̄m ≡ (T0 = 1, T1, . . . , Tm, Tm+1 = T ) any m-partition of the interval

[1, T ]. To further simplify the notation, we will stack column vectors such as θ0
i+1

and θi+1 into two corresponding (m + 1)p × 1 vectors, θc
0 and θc. For a given

sample partition and given parameter values θc, denote by ST (T̄m, θc) the sum of

squares.2

One of our main goals is to provide a method for estimating the unknown pa-

rameters and change points. As in Bai and Perron (1998), the estimation method

we propose is based on the least-squares principle3 and follows in two steps. First,

we obtain the sub-sample NLS estimators for each partition:

θ̂c
T (T̄m) = argmin

θc(T̄ m)

ST ( T̄m, θc(T̄m) ) (2)

Second, we search over all possible partitions to obtain the break-point estimates.

2We use superscript c to distinguish between (m + 1)p × 1 parameter vectors and the p × 1
parameter vectors at which ft(·) is evaluated.

3Note that an extension to more general settings such as generalized method of moments
(GMM) is non-trivial because minimizing a GMM criterion over all possible partitions does not
yield consistent estimates of the break-fractions indexing the break-points even for linear models
and one break under reasonable conditions, see Hall, Han, and Boldea (2009).
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The estimates T̂ = (1, T̂1, . . . , T̂m, T ) for change-points and θ̂c
T = (θ̂1, . . . , θ̂m+1) for

parameters are obtained as follows:

T̂ = argmin
T̄ m

ST ( T̄m, θ̂c
T (T̄m) ) and θ̂c

T = θ̂c
T (T̂ ) (3)

The above is an NLS estimation with an appropriate modification to allow for mul-

tiple break-points, and can be legitimately performed provided that E[utft(θ
0
i+1)] =

0 for each t = T 0
i + 1, . . . , T 0

i+1 (i = 0, 1, . . . m).

3 Assumptions

To derive the statistical properties of our estimators, we establish a framework

that combines elements of asymptotic theory in stable nonlinear models and un-

stable linear models. As pointed out by Hansen (2000), the marginal distributions

of regressors and/or errors may change, possibly at different locations in the sam-

ple than the population parameters of the equation of interest. Our framework

is designed to achieve as much generality as possible with respect to changes in

marginal distributions.4 In dealing with nonlinear asymptotics, we impose usual

smoothness and boundedness assumptions that closely follow e.g. White and Do-

mowitz (1984) and Gallant and White (1988), as well as a new assumption that

originates from arguments of uniform convergence in θ × r we need to consider.

To deal with instability, we adapt some assumptions from Bai and Perron (1998).

Assumption 1. Let vt = (x′t, ut)
′. Then either (i) {vt} is a piece-wise strictly

stationary process on intervals [T ∗
j−1+1, T ∗

j ], j = (1, . . . ,m∗+1), T0 = 0; Tm∗+1 = T

for a fixed m∗; T ∗
j = [Tλ∗j ], where 0 < λ∗1 < . . . < λ∗m∗ < 1; {vt} is also an α-

mixing process of size −2s/(s − 2), where s > 2, and the errors are uncorrelated

4Allowing for these types of changes is important in many settings. For example, when
estimating a possibly asymmetric (nonlinear) interest rate reaction function, regressors such as
output gap or inflation gap may exhibit changes in variance, due to a period of Great Moderation
- see e.g. Stock and Watson (2002) - and these changes may occur at different locations than
those in the parameters of the equation of interest.
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with the regression function, i.e. E [utft(θ)] = 0 for all θ, t or (ii) The errors

{ut} are independent of each other and of the regressors, i.e. ut ⊥ xk, us for all

k and t 6= s; {xt} is a near-epoch dependent (n.e.d.) sequence of size −1 on an

underlying α-mixing process of size −2s/(s− 2), with s > 2.

Assumption 2. The function ft(·) is a known measurable function, twice contin-

uously differentiable in θ for each t.

Assumption 3. Let Ft(θ) = ∂ft(θ)/∂θ, p × 1 vector and f
(2)
t (θ), a p × p matrix

with (i, j)th element f
(2)
t,i,j = ∂2ft(θ)/(∂θi∂θ′j). Also denote by ‖ · ‖ the Euclidean

norm. Then (i) the common parameter space Θ is a compact subset of Rp; (ii)

E[supt≤n0,θ|utft(θ)|] < ∞, for some fixed n0, and supt,θ E|utft(θ)|2s < ∞; (iii)

supt,θ E‖utFt(θ)‖2s < ∞; (iv) For i, j = 1, . . . p, supt,θ E‖utf
(2)
t,i,j(θ)‖s < ∞ for all

t.

Assumption 4. (i) S(θc) = plim T−1ST (θc) has a unique global minimum at θc
0;

(ii) Let Ai,T (θ0
i ) = Var T−1/2

∑
t∈I0

i−1
utFt(θ

0
i ), for i = 1, . . . ,m+1, and AT (θ, r) =

Var T−1/2
∑[Tr]

t=1 utFt(θ). Then Ai,T (θ0
i )

p→ Ai(θ
0
i ), and AT (θ, r)

p→ A(θ, r) , where

the two limits are finite positive definite matrices not depending on T , and the

last convergence is uniform in θ× r. (iii) Let Di,T (θ0
i ) = T−1

∑
t∈I0

i−1
Ft(θ

0
i )Ft(θ

0
i )
′

and DT (θ, r) = T−1
∑[Tr]

t=1 Ft(θ) Ft(θ)
′. Then Di,T (θ0

i )
p→ Di(θ

0
i ) and DT (θ, r)

p→
D(θ, r), where the two limits are finite positive definite matrices not depending on

T , and the last convergence is uniform in θ × r; (iv) E[ft(θ
0
i )] 6= E[ft(θ

0
i+1)], for

each i = 1, 2, . . . , m.

Assumption 5. T 0
i = [Tλ0

i ], where 0 < λ0
1 < . . . < λ0

m < 1.

Assumption 1(i) allows for a fixed number of shifts in the distribution of errors

and/or regressors, m∗, possibly at different locations than the parameter breaks in

(1), and ensures that the change-point fractions indexing the change-points in the

distribution of vt are asymptotically distinct.5 We alternatively derive our results

5Note that m∗ as well as λ∗j are taken as given and are not objects of inference here, unless
9



under Assumption 1(ii). A further discussion about why these assumptions arise

in the context of nonlinear models with breaks, along with ways of relaxing them,

can be found after Lemma 1.

Assumption 1 also ensures that the model can be estimated via NLS, since

the errors are uncorrelated with the regression function. Assumption 2 and 3 are

overall typical smoothness and boundedness assumptions encountered in nonlinear

models.6 Assumption 4 (i) is the usual NLS identification assumption, while (ii)-

(iv) are required because of the unstable structure of the model. Part (ii) and

(iii) are similar to those in Bai and Perron (1998) and refer to the existence of

limiting variances within regimes, while (iv) ensures that the parameter shifts

across regimes can be identified. Note that (ii)-(iii) require uniform convergence

in θ × r, as compared to uniform convergence in r in linear models; this renders

the asymptotic theory we use non-standard. Assumption 5 is a typical assumption

for unstable models, allowing the break-fractions to be fixed and hence the break-

points to be asymptotically distinct.

4 Asymptotic Behavior of Estimates

4.1 Consistency of Break-Fraction Estimates

In Section 2, we described a least-squares based method similar to its linear coun-

terpart in Bai and Perron (1998). To elucidate the connection between linear

and nonlinear settings, we will provide a heuristic discussion first. As Gallant

(1987) shows, NLS estimators have the same form as OLS estimators (in stable

m = m∗ and all breaks in {vt} and the parameters of (1) coincide. Knowledge of m∗ and λ∗j is
irrelevant as far as asymptotic distribution results are concerned, but may be of course crucial
for both getting consistent estimates of certain asymptotic variances, as well as obtaining the
null distribution of stability tests if the break-points in parameters do not coincide with the ones
in the distribution of {vt} - see Hansen (2000) and Section 5.

6Note that Assumption 3(ii) is slightly stronger, implying that the expectation of the first n0

realizations of the process {supθ|utft(θ)|} exists. This assumption is only needed to obtain the
result in Lemma 1 under Assumption 1(ii) and is not imposed in other parts of the analysis.
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models) up to a first-order approximation. To see that, denote by X the T × s

and f(X, θ) the T × 1 regressors in stable OLS, respectively NLS models, and let

F = ∂f(X, θ0)/∂ θ, where θ0 is the true parameter value. The similarity between

OLS and NLS can be seen from the equation below:

OLS = (X ′X)−1X ′y; NLS = (F ′F )−1F ′y + op(T
−1/2) (4)

Given this similarity, extending Bai and Perron’s (1998) methodology to non-

linear settings may seem straightforward. However, consistency of parameters

estimates, and related to this, the Taylor expansion needed to obtain a similar for-

mula as in (4) for unstable NLS estimates cannot be legitimately obtained prior

to deriving the consistency and convergence rate of break-fraction estimates. For

the latter we require different proof strategies, but the results are similar to Bai

and Perron (1998) and are summarized in Theorems 1 and 2.

Theorem 1. For each i = 1, . . . , m, let λ̂i be the smallest number such that

T̂i = [T λ̂i]. Then, under Assumptions 1-5, λ̂i
p−→ λ0

i .

For intuition and because they are informative for Assumption 1, we outline

the main steps of the proof here, the details being relegated to the Appendix.

Define ût = yt − ft(θ̂k+1), for t ∈ Îk and dt = ût − ut = ft(θ
0
j+1)− ft(θ̂k+1), for

t ∈ I0
j ∩ Îk, with I0

j = [T 0
j + 1, T 0

j+1] and Îk = [T̂k + 1, T̂k+1] and k, j = 0, 1, . . . , m.

Also, denote ψt(θ) = utft(θ), a mean zero process governed by Assumption 1.

Then:

T−1

T∑
t=1

utdt = T−1

m∑
i=0

∑

I0
i

ψt(θ
0
i )− T−1

m∑
i=0

∑

Îi

ψt(θ̂i) = I + II.

The proof of consistency rests on showing that I + II is op(1). While I = op(1)

by a simple law of large numbers, the analysis of II is more complicated as this

term contains not only sums with random endpoints but summands that depend
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on the parameter estimators, which in turn depend on the random endpoints. In

showing II, we appeal to the following result:

Lemma 1. Under Assumptions 1-2 and 3(i)-(ii), T−1
∑[Tr]

t=1 ψt(θ) = Op(T
−1/2)

uniformly in θ × r ∈ Θ× [0, 1].

Lemma 1 was shown by Caner (2007) under the assumption that {vt} is a

strictly stationary process. To address issues raised in Hansen (2000), we first

relax strict stationarity over the whole sample to piece-wise strict stationarity.

However, there may be cases of interest where even piece-wise strict stationarity

is not desired, so we also establish Lemma 1 in the Appendix under Assumption

1(ii), which restricts xt only to be n.e.d. but at the price of requiring independence

of {xt} and {ut} and the serial independence of {ut}. The proof uses Ottaviani’s

inequality and empirical process theory.

Remark The conditions of Lemma 1 allow for serial correlation in ut, but rule

out models with lagged dependent variables in xt. The extension of the lemma

to such processes is problematic due to the type of non-stationarity induced by

breaks in the parameters of lagged dependent variables.7 These issues seem to

be mitigated under some assumptions, as stated in Andrews and Fair (1988), pp.

620, who describe without proof some classes of primitive conditions one would

need to employ for a weak law of large numbers (but not a central limit theorem)

uniform in θ× r. However, note that if Lemma 1 holds, all the other results in the

paper hold with appropriate modifications, thus lagged dependent variables can

be considered at the expense of imposing Lemma 1.

With Lemma 1 in mind and using the definition of the sum of squared residuals,

7Note that by dropping strict stationarity, the limit of the process ΨT (θ, r) =
T−1/2

∑[Tr]
t=1 ψt(θ) in Lemma 1 becomes a non-standard Gaussian process, more general than

the Kiefer process in Caner (2007), Lemma 1, since its variance-covariance function may depend
nonlinearly on the fractions of the partial sums. In other words, ΨT (θ, r) may not have a unique
limit for all r, because its terms undergo a number of shifts; however, that does not in general
preclude uniform boundedness in θ× r, and the latter is all we need for Lemma 1 to go through.
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one can show that:

T−1

T∑
t=1

d2
t + 2T−1

T∑
t=1

dtut ≤ 0 (5)

Consistency follows from the following lemma:

Lemma 2. Let Assumption 1-5 hold. Then: (i) T−1
∑T

t=1 utdt = op(1); (ii) If

λ̂j
p9 λ0

j for some j, then lim sup P
[
T−1

∑T
t=1 d2

t > C
]

> ε, for some C > 0, ε > 0.

Given part (i) of Lemma 2 and inequality (5), it follows that T−1
∑T

t=1 d2
t =

op(1). The latter is in contradiction with part (ii) of Lemma 2, establishing con-

sistency of break-fraction estimates.

4.2 Rates of Convergence

A necessary next step involves determining the convergence rates of the break-

fraction estimates. The results are summarized below:

Theorem 2. Under Assumptions 1-5, for every η > 0, there exists a finite C > 0

such that for all large T , P (| T (λ̂k − λ0
k) |> C) < η, (k = 1, . . . , m).

Theorem 2 is useful since the consistency of θ̂c
T can be established provided that

the difference between the estimated and the true objective function is no more

than op(1). This is the case here because Theorem 2 implies that the difference

involves a bounded number of op(1) terms. Given the T -rate convergence of break-

fraction estimates, the limiting distributions of parameter estimates follow from

standard NLS asymptotics:

Theorem 3. Under Assumptions 1-5, θ̂i and θ̂j are asymptotically independent

and T 1/2(θ̂i − θ0
i )

d→ N (0, Φi(θ
0
i )), where Φi(θ

0
i ) = [Di(θ

0
i )]

−1Ai(θ
0
i )[Di(θ

0
i )]

−1

for i, j = 1, . . . ,m + 1, i 6= j.

Theorems 1-3 allow us to estimate the covariance matrices Φi(θ
0
i ) by replacing

Di(θ
0
i ) with D̂i(θ̂i) = T−1

∑T̂i

t=T̂i−1+1
Ft(θ̂i)Ft(θ̂i)

′ and Ai(θ
0
i ) with a heteroskedas-

ticity and autocorrelation (HAC) robust covariance matrix estimator, Âi(θ̂i). If

we consider the special case:
13



Assumption 6. (i) Assumption 1 holds with m = m∗, T ∗
i = Ti, i = 1, . . . , m,

E[ut|xt] = 0 and E[utus|xkxl] = 0 for all t 6= s and all k, l; (ii) The errors are

homoskedastic within regimes: E[u2
t | xt] =

∑T
t=1 σ2

i 1{t ∈ I0
i } for all t; (iii) Let

DT (θ, r) = T−1
∑T 0

i−1+[Tr]

t=T 0
i−1+1

Ft(θ)Ft(θ)
′. Then DT (θ, r)

p→ rDi(θ), (T−1 < r ≤
λ0

i − λ0
i−1), where the latter is a positive definite matrix not depending on T , and

the convergence is uniform in θ× r, with Di(θ) not necessarily the same for all i;

(iv) Let AT (θ, r) = plim Var T−1
∑T 0

i−1+[Tr]

t=T 0
i−1+1

ut(θ)Ft(θ). Then AT (θ, r)
p→ rAi(θ),

(T−1 < r ≤ λ0
i − λ0

i−1), where the latter is a positive definite matrix not depending

on T , and the convergence is uniform in θ×r, with Ai(θ) not necessarily the same

for all i.8

Then the covariance matrix in Theorem 3 simplifies to σ2
i [Di(θ

0
i )]

−1, which can be

estimated, for example, via σ̂2
i [D̂i(θ

0
i )]

−1, where σ̂2
i = (T̂i − T̂i−1)

−1
∑T̂i

t=T̂i−1+1
û2

t ,

for i = 1, . . . , m + 1.

Note that Assumption 6 allows for breaks in marginal distributions of regres-

sors, as well as breaks in the error variance that occur at the same time as the

true breaks in model (1).

4.3 Limiting Distribution of Break Dates

Similar work by Bai (1994, 1995, 1997) for linear models derives the non-standard

distributions of change-point estimates. Hall, Han, and Boldea (2008) extend this

method to models that can be estimated via two stage least squares. These papers

find the distribution of the break-point estimators in two cases, fixed and shrinking

magnitude of shifts. In the first case, in general, the distributions in linear models

depend on the underlying distribution of the regressors and errors. The second

case allows for magnitudes of shifts that shrink to zero as the sample size increases.

We consider both cases in turn.

8Part (iv) is implicit from (ii)-(iii) given (i), but is used explicitly without (ii) for Theorems
8,9.
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4.3.1 Fixed Magnitude of Shifts

Consider the following data generation process, with one break9:

yt =





f(xt, θ
0
1) + ut t = 1, . . . , k0

f(xt, θ
0
2) + ut t = k0 + 1, . . . , T.

An implicit assumption so far was that the parameter shifts are constant:

Assumption 7. δ = θ0
2 − θ0

1, a fixed number.

Denote by ST (k, θ1, θ2) the sum of squared residuals evaluated at a potential

break-point 1 ≤ k ≤ T . Also, let ST (k) = minθ1,θ2 ST (k, θ1, θ2). Then we can

write:

k̂ = argmin
1≤k≤T

argmin
θ1,θ2

V (k, θ1, θ2) (6)

where: V (k, θ1, θ2) = ST (k, θ1, θ2) − ST (k0, θ
0
1, θ

0
2). We obtain a large sample ap-

proximation to this finite distribution, given below:

Theorem 4. Under Assumptions 1-5 and 7, for m = 1,

[
k̂ − k0

]
− argmax

v∈R
J∗(v)

p→ 0,

where J∗(v) is a double-sided stochastic process with J∗(0) = 0, J(v) = J∗1 (v), v <

0, J(v) = J∗2 (v), v > 0, and

J∗1 (v) =

k0∑

t=k0+v+1

[
ft(θ

0
2)− ft(θ

0
1)

]2 − 2

k0∑

t=k0+v+1

ut

[
ft(θ

0
2)− ft(θ

0
1)

]

J∗2 (v) = −
k0+v∑

t=k0+1

[
ft(θ

0
2)− ft(θ

0
1)

]2 − 2

k0+v∑

t=k0+1

ut

[
ft(θ

0
2)− ft(θ

0
1)

]

9The extension to multiple breaks is immediate because the m + 1 errors in the sub-samples
are asymptotically independent given Assumption 1.
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The result above is comparable to linear models. Under Assumption 1(ii),

J∗(v) becomes a two-sides random walk with stochastic drifts. If we also impose

the strict stationarity Assumption 1(i) with m∗ = 0, the limit is a two-sided

Gaussian stochastic process with negative drift, and it is the same as the limit for

shrinking shifts (see next section).

4.3.2 Shrinking Magnitude of Shifts

Instead of Assumption 7, consider Assumption 8, which imposes parameter shifts

that are shrinking at a certain rate wT :

Assumption 8. For i = 1, . . . , m, = θ0
i+1,T − θ0

i,T = δi wT , where δi are fixed p× 1

vectors and {wT} is a scalar series such that wT → 0 and T 1/2−γw2
T → ∞ as

T →∞, for some γ ∈ [
0, 1

2

)
.

This assumption ensures that the asymptotic distributions of the change-point

estimates do not depend on the underlying distributions of {ut, ft(θ)}. Similar

assumptions are inter alia T 1/2−γwT →∞, for γ ∈ (
0, 1

2

)
in Bai and Perron (1998)

and T 1/2wT /(logT )2 →∞ in Qu and Perron (2007). Our assumption allows only

shifts of order T−1/4 or larger, but the simulation section discusses that, despite

this, the coverage probability for the confidence intervals is good. Note that under

shrinking magnitudes of shift, the asymptotic properties of parameter and break-

fraction estimates need to be re-derived (see Appendix), with the break-fraction

distribution presented below.

Theorem 5. Let φ = δ′1A2(θ
0
1)δ1/[δ

′
1A1(θ

0
1)δ1] and ξ = δ′1D2(θ

0
1)δ1/[δ

′
1D1(θ

0
1) δ1].

Under Assumptions 1-5, 6(iii)-(iv), and 8, for m = 1,

[δ′1D1(θ
0
1)δ1]

2

δ′1A1(θ0
1)δ1

w2
T [k̂ − k0] ⇒ argmax

v
Z(v)

where Z(v) = J1(−v)−0.5|v|, v ≤ 0, Z(v) =
√

φJ2(v)−0.5ξ|v|, v > 0, J1(v), J2(v)

are two independent standard scalar Gaussian processes defined on [0,∞], and ‘⇒’
16



denotes weak convergence in Skorohod metric.

Details regarding this process can be found in Bai (1997). The density of

argmaxv Z(v) is characterized by Bai (1997) and he notes that it is not symmetric

if φ 6= 1 or ξ 6= 1. A confidence interval can be constructed as follows. Let

ω̂1,i = (θ̂2 − θ̂1)
′Âi(θ̂1)(θ̂2 − θ̂1)

′, ω̂2,i = (θ̂2 − θ̂1)
′D̂i(θ̂1)(θ̂2 − θ̂1)

′, D̂i(θ) = (T̂i −
T̂i−1)

−1
∑T̂i

t=T̂i−1+1
Ft(θ)Ft(θ)

′; Âi(θ) a HAC estimator of the long-run variance

Ai(θ), and Ĥ = ω̂2
2,1/ω̂1,1. Also, let ξ̂ = ω̂2,2/ω̂2,1 and φ̂ = ω̂1,2/ω̂1,1. Then, a

100(1− α)% confidence interval for k̂ is:

( k̂ − [c1/Ĥ]− 1, k̂ + [c2/Ĥ] + 1 ) (7)

where c1 and c2 are respectively the (α/2)th and (1−α/2)th quantiles for argmaxv Z(v)

which can be calculated using equations (B.2) and (B.3) in Bai (1997).

Theorem 5 can be extended to yield confidence intervals for the multiple break

model, because given Assumption 1, the sample segments are asymptotically in-

dependent, allowing for the analysis of the limiting distribution to be carried out

as in the one break case:

Corollary to Theorem 5. Define φi = δ′iAi+1(θ
0
i )δi/[δ

′
iAi(θ

0
i )δi] and ξi = δ′iDi+1(θ

0
i )δi

/[δ′iDi(θ
0
i )δi]. Under Assumptions 1-5, 6(iii)-(iv) and 8,

[δ′iDi(θ
0
i )δi]

2

δ′iAi(θ0
i )δi

w2
T [k̂ − k0] ⇒ argmax

v
Zi(v)

where Zi(v) = Wi,1(−v) − 0.5|v|, v ≤ 0, Wi(v) =
√

φiWi,2(v) − 0.5ξi|v|, v > 0

and Wi,1(v), Wi,2(v) are independent standard scalar Gaussian processes defined

on [0,∞], for i = 1, . . . ,m.

Confidence intervals can thus be obtained by redefining the appropriate quan-

tities in (7) for each break-point estimator.
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5 Tests for Multiple Breaks

This section is concerned with finding the number of breaks m, so far treated as

known. To that end, we consider similar tests in Bai and Perron (1998), as well as

equivalent sup Wald tests that are useful when autocorrelation is present. Given

the results in the previous sections, we are able to show that their distribution

carry over from linear settings. The critical values are already tabulated in Bai

and Perron (1998) and Bai and Perron (2003a).

5.1 Sup F-Tests

The F -tests based on differences in sum of squared residuals can be carried out as

long as long as Assumption 6 holds. Extensions to serially correlated errors can

be found in Section 5.2.

5.1.1 An F Test of No Breaks Versus a Fixed Number of Breaks

Consider the following hypothesis:

H0 : m = 0 vs. HA : m = k. (8)

where k is a fixed finite positive integer. For this purpose, consider a partition

(T1, . . . , Tk) of the [1, T ] interval such that Ti = [Tλi]. We also need to restrict

each change point to be asymptotically distinct and bounded away from the end-

points of the sample. To this end, define Λε = {λ̄k ≡ (λ1, . . . , λk) : |λi+1 − λi| ≥
ε, λ1 ≥ ε, λk ≤ 1 − ε}, where ε is a small number, in practice ranging from 0.05

to 0.15. As in Bai and Perron (1998), consider a generalized version of the sup

F -type tests proposed in Andrews (1993):

sup
λ̄k∈Λε

FT (k; p) = sup
λ̄k∈Λε

(SSR0 − SSRk)/kp

SSRk/[T − (k + 1)p]
(9)
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where SSR0 and SSRk are the sums of squared residuals under the null, respec-

tively under the alternative hypothesis. Let Bp(·) be a p-vector of independent

Brownian motions. The following theorem describes the distribution of the test

under H0:

Theorem 6. Under Assumptions 2-6 and H0 in (8),

sup
λ̄k∈Λε

FT (k; p) ⇒ 1

kp
sup

λ̄m∈Λε

k∑
i=1

‖λiBp(λi+1)− λi+1Bp(λi)‖2

λiλi+1(λi+1 − λi)

It is worth noting that the distribution of the sup-F test under H0 above does

not depend on any nuisance parameters. As Bai and Perron (1998) show, the test

above is consistent for its alternative. Of course, if autocorrelation is present, this

F-test should be replaced with a Wald-type test of equality of parameters across

regimes, and we describe such a test in the next section.

5.1.2 A Double Maximum F Test

Next, one can consider testing against an unknown number of breaks m < M , M

being an upper bound on the number of change-points. To that end, consider the

hypothesis:

H0 : m = 0 vs. HA : m unknown,m < M, M fixed. (10)

As Bai and Perron (1998) point out, to test this hypothesis it suffices to take the

maximum over weighted versions of the test statistics described in the previous

section, where the weights are (a1, . . . , aM):

D max FT (M, a1, . . . , aM) = max
1≤m≤M

am sup
λ̄m∈Λε

FT (m; p) (11)

The distribution of the test statistic above is:
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Corollary to Theorem 6. Under Assumptions 2-6 and H0 in (10),

D max FT (M,a1, . . . , aM) ⇒ max
1≤m≤M

am

mp
sup

λ̄m∈Λε

m∑
i=1

‖λiBp(λi+1)− λi+1Bp(λi)‖2

λiλi+1(λi+1 − λi)

As Bai and Perron (1998) mention, the choice of weights remains an open

question. It may reflect the imposition of some priors on the likelihood of various

number of breaks. One possibility is to set all weights equal to unity. We denote

this test as:

UD max FT (M, p) = max
1≤m≤M

sup
λ̄m∈Λε

FT (m; p) (12)

Note that, for fixed m and break locations, FT (m; p) is the sum of m dependent χ2
p

variables, each divided by m. This scaling by m can be viewed as a prior that, as

m increases, a fixed sample becomes less informative about the hypotheses that it

is confronted with. Since for any fixed p, the critical values of sup(λ̄k)∈Λε
FT (m; p)

decrease as m increases, this implies that if we have a large number of breaks, we

may get a test with low power, because the marginal p-values decrease with m.

One way to keep marginal p-values of the tests equal across m is to use weights

that depend on p and the significance level of the test, say α. More precisely, let

c(p, α,m) be the asymptotic critical value of the test supλ̄m∈Λε
FT (m; p). Define,

as in Bai and Perron (1998), a1 = 1 and am = c(p, α, 1)/c(p, α,m) for 1 < m ≤ M .

The test obtained this way is:

WD max FT (M, p) = max
1≤m≤M

c(p, α, 1)

c(p, α, m)
× sup

λ̄m∈Λε

FT (m; p) (13)

For consistency of Dmax tests and critical values of both its versions, UDmax

and WDmax, see Bai and Perron (1998).
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5.1.3 An F Test of ` Versus ` + 1 Breaks

Consider the following hypothesis of interest:

H0 : m = ` vs. HA : m = ` + 1. (14)

One would ideally construct such a test based on the difference between the sum

of squared residuals for ` breaks and (` + 1) breaks. Considering the different

mismatches in end-points of partial sums obtained this way, it would be hard to

describe the limiting behavior of such tests. An easier strategy involves imposing

` breaks and testing each segment for an additional break. The test statistic is:

FT (` + 1|`) = max
1≤i≤`+1

1

σ̂2
i

{
ST (T̂1, . . . , T̂`)− inf

τ∈∆i,`

ST (T̂1, . . . , T̂i−1, τ, T̂i, . . . , T̂`)

}

where under H0:

∆i, ` = {τ : T̂i−1 + (T̂i − T̂i−1)η ≤ τ ≤ T̂i − (T̂i − T̂i−1)η}, and σ̂2
i

p→ σ2
i

The following result is proved in the Appendix:

Theorem 7. Under Assumptions 2-6 and H0 in (14), lim P (FT (` + 1|`) ≤ x) =

G`+1
p,η , where Gp,η is the distribution function of sup

η≤µ≤1−η

‖Bp(µ)− µBp(1)‖2

µ(1− µ)
.

Note that this test allows for heterogeneity in regressors and errors across

regimes, including breaks in the distribution of errors and/or regressors occurring

simultaneously with the coefficient breaks.

If there are more than ` breaks, but we estimated a model with just ` breaks,

then there must be at least one additional break not estimated. Hence, at least

one of the (`+1) segments obtained contains a nontrivial breakpoint, in the sense

that both boundaries of this segment are separated from the true break-point by

a positive fraction of the total number of observations. For this segment, the

supF (1, p) test statistic diverges to infinity as the sample size increases, since this
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test is consistent. Then so does FT (` + 1|`), hence this test is consistent too.

5.2 Tests in the Presence of Autocorrelation

In this section, we provide tests that are robust to types of autocorrelation allowed

by Assumption 1. In particular, we extend the tests in Sections 5.1.1-5.1.3; the

first two tests were developed for linear models in Bai and Perron (1998), while

the last test is proposed for linear models in Hall, Han, and Boldea (2009).

5.2.1 A Wald Test of Zero Versus a Fixed Number of Breaks

The hypothesis in (8) can be re-written as: H0 : Rk θc
0 = 0, where Rk is the con-

ventional matrix such that (Rk θc
0)
′ = (θ0′

1 −θ0′
2 , . . . , θ0′

k −θ0′
k+1). The corresponding

sup Wald test statistic is:

sup
(λ1,...,λk)∈Λε

WT (k; p) = sup
λ̄k∈Λε

θ̂c′(T̄k)R
′
k (Rk Υ̂(T̄k) R′

k)
−1 Rk θ̂c(T̄k)

where θ̂c′(T̄k) = [θ̂′1(T̄k), . . . , θ̂
′
k+1(T̄k)], Υ̂(T̄k) = diag [Υ̂1(T̄k), . . . , Υ̂k+1(T̄k)], and

Υ̂i(T̄k) = T−1[D̂−1
i (θ̂i(T̄k))] [Âi(θ̂i(T̄k))] [D̂−1

i (θ̂i(T̄k))], recalling that T̄k was a cer-

tain k-partition of the sample interval.

To facilitate the presentation of an intuitive form for the distribution of the

sup Wald tests, rewrite Rk = R̃k ⊗ Ip, with R̃k being the conventional k× (k + 1)

matrix such that (R̃kβ)′ = (β1 − β2, . . . , βk − βk+1), where βi the ith element of

some (k +1)×1 vector β, and Ip is the p×p identity matrix. From the Appendix,

it follows that:

Theorem 8. Under Assumptions 1-5, 6(iii)-(iv) and H0 in (8),

sup
λ̄k∈Λε

WT (k; p) ⇒ sup
λ̄k∈Λε

B̃k(λ̄k),

where: B̃k(λ̄k) = B′
p(k+1) { [C−1

k R̃′
k(R̃kC

−1
k R̃′

k)
−1R̃kC

−1
k ]⊗Ip }Bp(k+1), with Bp(k+1) =
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[B′
p(λ1), B

′
p(λ2) − B′

p(λ1), . . . , B
′
p(λk+1) − B′

p(λk)]
′, a p(k + 1) × 1 vector of pair-

wise independent vector Brownian motions of dimensions p, Ck = diag (λ1, λ2 −
λ1, . . . , λk+1 − λk) and λk+1 = 1 by convention.

It can be shown that the H0 distribution of the sup WT (k; p) is a scaled version

of the corresponding distribution of the sup FT (k; p), with scaling factor kp.

5.2.2 Double Maximum Wald Tests

Given the result in Theorem 8, the D max FT (M,a1, . . . , aM) test has its corre-

sponding autocorrelation-robust version:

D max WT (M, a1, . . . , aM) = max
1≤m≤M

am

mp
sup

λ̄m∈Λε

WT (m; p) (15)

whose distribution is:

Corollary to Theorem 8. Under Assumptions 1-5, 6(iii)-(iv) and H0 in (10),

D max WT (M, a1, . . . , aM) ⇒ max
1≤m≤M

am

mp
sup

λ̄m∈Λε

B̃m(λ̄m)

The scaling mp is used not only to obtain the same asymptotic distributions

as for the corresponding F-tests, but because, in the absence of scaling and equal

weights ai, this test will be equivalent to testing zero against M breaks, since

supλ̄m∈Λε
B̃m(λ̄m) is increasing in m for a fixed p. Given the scaling, the discussion

in Section 5.1.2. about picking am is still valid. Thus, as in Section 5.1.2, we can

use the unweighted version of the test, with am = 1, or the weighted version of

the test, with am = c(p, α, 1)/ c(p, α,m) in (15).

5.2.3 A Wald Test of ` Versus ` + 1 Breaks

For purposes of sequentially estimating the breaks in the presence of autocorrela-

tion, it is desirable to develop a Wald-type test that is designed for testing ` versus
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` + 1 breaks; under ` + 1 breaks, this is equivalent to testing whether, there exists

exactly one i such that θ0
i 6= θ0

i+1, where i ∈ {1, . . . , ` + 1}.
Under H0 in (14), for each index q ∈ {1, . . . , ` + 1} define the corresponding

hypothesis: R∗ [θ0′
q , θ0′

q+1]
′ = 0, where R∗ = R̃∗⊗Ip and R̃∗ = [1,−1]. For simplicity,

let ϑ0
q = [θ0′

q , θ0′
q+1]

′ and ϑ̂q(µ) = [θ̂q(µ)′, θ̂q+1(µ)′]′, where we first estimated the

model with ` breaks, imposed them as if they were the true ones, and then defined,

for each feasible break [Tµ] ∈ ∆q,` - with ∆q,` defined in Section 5.1.3 - parameter

estimates θ̂q(µ), θ̂q+1(µ), for before and after the break.

The appropriate Wald test is:

WT (` + 1|`) = max
1≤q≤`+1

sup
τ∈∆q,`

WT,`(τ, q)

where WT,`(τ, q) ≡ WT,`(µ, q) = ϑ̂q(µ)′R∗′ [R∗Υ̂∗
q(µ)R∗′ ]−1R∗ϑ̂q(µ), with Υ̂∗

q(µ) =

diag [Υ̂∗
q,1, Υ̂

∗
q,2] with Υ∗

q,j = T [D̂∗
q,j(µ)]−1 Â∗

q,j(µ) [D̂∗
q,j(µ)]−1, (j = 1, 2), and

D̂∗
q,1(µ) = T−1

∑τ
t=T̂q−1+1 Ft,q(µ)Ft,q(µ)′, D̂∗

q,2(µ) = T−1
∑T̂q

t=τ+1 Ft,q+1(µ)Ft,q+1(µ)′,

while Â∗
q,1(µ) and Â∗

q,2(µ) are HAC estimators of the limiting variances of respec-

tively T−1/2
∑τ

t=T̂q−1+1 ut,q(µ)Ft,q(µ), T−1/2
∑T̂q

t=τ+1 ut,q+1(µ)Ft,q+1(µ), with Ft,s(µ) =

Ft(θ̂s(µ)) and ut,s(µ) = ut(θ̂s(µ)), (s = q, q + 1). Even though there are easier to

compute estimates of the limiting variance of Υ̂∗
q(µ), for increasing the power of

the test, we consider those that would be more relevant if the alternative is true.

Note that this test is useful for performing sequential estimation of breaks in

the presence of autocorrelation. Not surprisingly, we find that the distribution of

the above Wald test is the same as that of the corresponding F-test, but holds

under more general assumptions:

Theorem 9. Under Assumptions 1-5, 6(iii)-(iv) and H0 in (14), one can write

lim P (WT (`+1|`) ≤ x) = G`+1
p,η , where Gp,η is the cdf of sup

η≤µ≤1−η

‖Bp(µ)− µBp(1)‖2

µ(1− µ)
.
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5.3 Sequential Estimation of the Number of Breaks

Using the test statistics presented above, we can suggest a simple sequential

method for obtaining an estimator, m̂T say, of the number of breaks.

On the first step of the sequential estimation, use either sup FT (1; p), sup WT (1; p)

or Dmax FT (M, p), Dmax WT (M, p), to test the null hypothesis that there are

no breaks. If this null is not rejected then set m̂T = 0; else proceed to the next

step. On the second step, use FT (2|1 or WT (2|1) to test the null hypothesis of

one against two breaks. If FT (2|1) or WT (2|1) does not reject, then m̂T = 1; else

proceed to the next step. On the `th step, by means of FT (`+1|`) or WT (`+1|`),
test the null hypothesis of ` breaks against `+1 breaks, and if the hypothesis is not

rejected, then m̂T = `; else proceed to the next step. This sequential procedure

stops when M , the ceiling on the number of breaks, is reached. If all statistics in

the sequence are significant then the conclusion is that there are at least M breaks.

Note that this is not a proper sequential procedure, because with each sequential

test, the breaks are re-estimated under the null with a global procedure.

6 Simulation Results

There are some clear computational advantages of the Bai and Perron (2003b)

method for detecting breaks. As Bai and Perron (2003b) show, even when the

number of change-points is large, we need not search over all possible partitions

to find the true break. Imposing a minimum length on the segments in each

partition, one need not perform more than T (T + 1)/2 operations to find the

estimated partition.

Here, we implement an algorithm for finding breaks similar to Bai and Per-

ron (2003b). Along with nonlinearity additional issues arise, related to having no

closed form for updating the sum of squares and parameter estimates when one

more observation is present. Although approximate updating procedures such as
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an unscented Kalman filter can be useful, for simplicity we recalculate in each

segment of the T (T + 1)/2 new NLS estimates and sum of squares through global

minimization of the concentrated sum of squares by a quasi Gauss-Newton algo-

rithm.10 As starting values for the nonlinear parameters, we use grid searches,

Taylor expansions of up to 7th order, as well as interpolations suggested in Gallant

(1987) and Bates and Watts (1988).

We pick data generation processes (DGPs) with m = 1, 2, and a nonlinear

function used in Gallant (1987) and Bates and Watts (1988):

f(xt, θ) = θ1
i + θ2

i exp (−xt θ
3
i ), with t ∈ I0

i , for i = 1, . . . , m + 1

The true data was generated such that xt ∼ N(0, 1), ut ∼ N(0, 1) and X ⊥ U .11

Tables 1-3 are reported for 1000 simulations, ε = 0.15 and 6 DGPs, with

m = 0, 1, 2. Let ιj be a j-vector of ones. We pick DGP 1 : m = 0, θc
0 = ι3;

DGP 2, 3, 4 : m = 1, θc′
0 = (1, 2) ⊗ ι′3, (1, 1.5) ⊗ ι′3 and (ι′3; (2, 1, 1)); DGP 5, 6 :

m = 2, θc′
0 = (1, 2, 1)⊗ ι′3, (1, 1.5, 1)⊗ ι′3. The empirical coverage of the break-point

99%, 95%, 90% confidence intervals are almost 100% in each case. This is consistent

with break-point estimates coinciding with the true break-points or being just one

observation away. Table 1 shows very good size and power properties of supF

tests; they improve as the sample size increases, for both m = 1,m = 2, and so do

the properties of the estimate for number of breaks m̂T in Table 2.

Parameter confidence interval coverages reported in Table 3 and are in all cases

close to the nominal size. Overall, our methodology seems to work well in finite

samples.

10The Levenberg-Marquardt algorithm provides similar results.
11To check whether our method works when parameters change in opposite directions, we ran

simulations with xt ∼ N(1, 1) as well. The results are similar and are available upon request.
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Table 1: Relative rejection frequencies of F-statistics

sup F seq F UDmax F

DGP T
0:1 0:2 2:1 3:2

100 .05 .05 .01 0 .05
1

200 .05 .05 .01 0 .05

100 1.00 1.00 .05 0 1.00
2

200 1.00 1.00 .03 0 1.00
100 1.00 1.00 .04 0 1.00

3
200 1.00 1.00 .03 0 1.00
100 .96 .92 .04 0 .96

4
200 1.00 1.00 .04 0 1.00

100 .97 1.00 1.00 .02 1.00
5

200 1.00 1.00 1.00 .01 1.00
100 .94 1.00 .99 .02 1.00

6
200 1.00 1.00 1.00 .01 1.00

Notes: supF denotes the statistic SupFT (k; 1) and the second tier column heading
under it denotes k; seq F denotes the statistic FT (` + 1|`) and the second tier col-
umn beneath it denotes `+1 : `; UDmax F denotes the statistic UDmax FT (5, 1).

Table 2: Empirical distribution of the estimated number of breaks

sup F UDmax F

DGP T
0 1 2 3,4,5 0 1 2 3,4,5

100 .95 .05 0 0 .95 .05 0 0
1

200 .95 .05 0 0 .95 .05 0 0

100 0 .95 .05 0 0 .95 .05 0
2

200 0 .97 .03 0 0 .97 .03 0
100 0 .96 .04 0 0 .96 .04 0

3
200 0 .96 .04 0 0 .96 .04 0
100 .04 .93 .03 0 .04 .93 .03 0

4
200 0 .96 .04 0 0 .94 .04 0

100 .03 0 .95 .02 0 0 .98 .02
5

200 0 0 .99 .01 0 0 .99 .01
100 0 .96 .04 0 0 .96 .04 0

6
200 0 0 .99 .01 0 0 .99 .01

Notes: The blocks headed supF or UDmax F give the empirical distribution of
m̂T , obtained via the sequential strategy using Sup FT (1; 1) or UDmax FT (5, 1)
on the first step with the maximum number of breaks set to five.
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Table 3: Empirical coverage of parameter confidence intervals

Confidence Intervals

θ0
1 θ0

2 θ0
3DGP T Regime

99% 95 % 90 % 99% 95 % 90 % 99% 95 % 90 %

100 1st regime .99 .95 .90 .97 .93 .89 .98 .94 .89
2nd regime .99 .95 .89 .98 .95 .89 .98 .95 .89

2
200 1st regime .98 .94 .89 .99 .93 .88 .99 .94 .88

2nd regime .98 .94 .89 .99 .93 .88 .99 .94 .88
100 1st regime .99 95 .90 .97 .93 .89 .99 .94 .89

2nd regime .99 .95 .89 .98 .95 .89 .98 .95 .89
3

200 1st regime .98 .94 .89 .98 .94 .89 .99 .94 .90
2nd regime .99 .94 .89 .98 .94 .89 .98 .94 .90

100 1st regime .98 .94 .87 .96 .91 .86 .98 .93 .86
2nd regime .98 .92 .86 .96 .92 .87 .96 .91 .85

4
200 1st regime .98 .94 .88 .97 .93 .88 .99 .94 .88

2nd regime .98 .93 .89 .98 .94 .89 .98 .93 .88

100 1st regime .96 .91 .87 .94 .89 .85 .97 .92 .87
2nd regime .96 .91 .87 .98 .93 .86 .97 .92 .86
3rd regime .99 .94 .90 .97 .93 .89 .98 .93 .88

5
200 1st regime .98 .94 .89 .99 .93 .88 .99 .94 .88

2nd regime .98 .94 .89 .98 .93 .89 .98 .93 .89
3rd regime .98 .94 .90 .98 .94 .90 .98 .94 .89

100 1st regime .96 .91 .86 .93 .89 .84 .97 .91 .87
2nd regime .95 .88 .82 .96 .90 .84 .96 .90 .84
3rd regime .98 .94 .89 .97 .93 .89 .98 .93 .88

6
200 1st regime .97 .94 .89 .96 .92 .88 .98 .93 .86

2nd regime .98 .93 .87 .97 .93 .89 .98 .93 .89
3rd regime .98 .94 .90 .98 .94 .89 .98 .94 .89

Notes: The column headed 100a% gives the percentage of times the 100a% confi-
dence intervals for each parameter contains its true value.

7 Conclusions

In this paper, a nonlinear method for estimating and testing in NLS models with

multiple breaks is developed. In our framework, the break-dates are estimated si-

multaneously with the parameters via minimization of the residual sum of squares.

Using nonlinear asymptotic theory, we derive the asymptotic distributions of both

break-point and parameter estimates and propose several instability tests. Our

estimation procedure is very similar to that of Bai and Perron (1998), but the

proofs are different since they require some empirical process theory results de-

veloped in this paper, results that may be useful in other settings as well. By
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construction, our method nests nonlinearities and breaks, and is useful in practice

both for testing for breaks in the presence of nonlinearity, and for jointly modeling

breaks and nonlinearity, should evidence for both be present.

Many other issues can be important for modeling nonlinearity jointly with

breaks. Important macroeconomic applications that use structural equation mod-

els with endogeneity can be dealt with by extending the methodology in the cur-

rent paper to multivariate, more general nonlinear models, as well as to partial

structural change. On the other hand, developing primitive conditions along with

new uniform convergence results for more general nonlinear time series processes

is certainly of interest, and we leave this to future research.
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8 Appendix

This Appendix only contains a complete proof of Lemma 1. For the rest, an

outline of the proofs is given; for complete proofs, see Supplemental Appendix.

As a matter of notation, we will use ‖ · ‖ not only to denote the Euclidean

vector norm, but also the matrix norm ‖A‖ = [tr(A′A)]1/2, and ψt(θ) = utft(θ),

respectively Ψt(θ) = utFt(θ).

Proof of Lemma 1.

Lemma 1 translates into showing that under Assumptions 1-3, if ΨT (θ, r) = T−1/2

∑[Tr]
t=1 ψt(θ) is Op(1) uniform in θ, it is also Op(1) uniform in θ× r. For simplicity,

consider the case m∗ = 1; the extension to m∗ > 1 is immediate and omitted for

simplicity.

From Assumption 1(i)-3 and Caner (2007), Lemma 1, it follows that for r ≤ λ∗1,

the limit process of T−1/2
∑[Tr]

t=1 ψt(θ) is a Kiefer process, say K1(θ, r), restricted to

r ≤ λ∗1; that is, K1(θ, r) is the restriction to r ≤ λ∗1 of a Gaussian zero-mean process

with variance covariance function EΨT (θr, r) ΨT (θs, s) = min(r, s) Ω(θr, θs) and
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Ω(θr, θs) = limT→∞ EΨT (θr, 1)ΨT (θs, 1). Hence, we have:

sup
θ,0<r≤λ∗1

|ΨT (θ, r)| ≤ sup
θ,r≤λ∗1

|K1(θ, r)|+ ξ1 (16)

where ξ1 is an op(1) term uniform in θ × r. If r > λ∗1, then by Caner (2007) and

Assumption 1(i)-3, the limit process of T−1/2
∑[Tr]

t=[Tλ∗1]+1 ψt(θ) is a Kiefer process,

say K2(θ, r − λ∗1), such that λ∗1 < r ≤ 1, if T →∞. Hence:

sup
θ,λ∗1<r≤1

|ΨT (θ, r)| ≤ sup
θ
|K1(θ, λ

∗
1)|+ sup

θ,λ∗1<r≤1
|K2(θ, r)|+ ξ2 (17)

where ξ2 is an op(1) term uniform in θ × r. Thus, from (16) and (17), the desired

result follows, since:

sup
θ,0<r≤1

|ΨT (θ, r)| ≤ max

{
sup

θ,r≤λ∗1
|K1(θ, r)|, sup

θ
|K1(θ, λ

∗
1)|+ sup

θ,λ∗1<r≤1
|K2(θ, r)|

}
+op(1)

where the op(1) term is uniformly bounded in θ × r. It remains to show that this

result also follows from Assumptions 1(ii), 2-3.

Proving Lemma 1 for ψt(θ) is equivalent to showing that for any ε > 0, there

exists real ηε > 0, Tε > 0 such that for k = [Tr], P [max1≤k≤T supθ|ΨT (θ, r)| > ηε]

≤ ε. First, note that Ottaviani’s inequality for independent sequences {ψt(θ)} - see

van der Vaart and Wellner (1996), pp. 430 - can be rewritten as described below

when letting λ = µ = η
√

T/2 and provided all quantities below are measurable12:

P

[
max

1≤k≤T
sup
θ∈Θ

∣∣∣∣ΨT (θ, r)

∣∣∣∣ > η

]
≤

P

[
sup
θ∈Θ

∣∣∣∣ΨT (θ)

∣∣∣∣ > η/2

]

1− 2 max
1≤k≤T

P

[
sup
θ∈Θ

∣∣∣∣Ψk(θ)

∣∣∣∣ > η/4

]

≤
max

1≤k≤T
Lk

1− 2 max
1≤k≤T

Lk

(18)

12Measurability is satisfied by Assumption 2, thus we can replace outer probabilities P ∗ in van
der Vaart and Wellner (1996) with probabilities P .
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where Ψk(θ) = k−1/2
∑k

t=1 ψt(θ) and Lk = P [supθ∈Θ|Ψk(θ)| > η/4]. Now consider

k > n0 for large enough but fixed n0, the same as in Assumption 2. Then if Ψ(θ) is

the mean-zero normal distribution with variance A(θ, 1) as defined in Assumption

4, then:

max
k>n0

Lk ≤ max
k>n0

P

[
sup
θ∈Θ

|Ψk(θ)−Ψ(θ)| > η/8

]
+ P

[
sup
θ∈Θ

|Ψ(θ)| > η/8

]
(19)

Since our Assumptions 1(ii), 2-3 involve a special case of the assumptions needed

for the uniform CLT in θ in Gallant and White (1988), pp. 34, we have that, for any

ε∗ > 0 and η > 0, maxk>n0 P [supθ∈Θ|Ψk(θ)−Ψ(θ)| > η/8] < ε∗/2. On the other

hand, since supθ∈Θ|Ψ(θ)| has moments of all orders by van der Vaart and Wellner

(1996), Proposition A.2.3, there is an ηε∗ > 0 such that P [supθ∈Θ|Ψ(θ)| > ηε∗/8] <

ε∗/2. Using these and (19) into (18), we obtain, for k∗ ≡ argmaxk Lk > n0,

P

[
max

1≤k≤T
sup
θ∈Θ

∣∣∣∣ΨT (θ, r)

∣∣∣∣ > η∗
]
≤ ε∗

1− 2ε∗
(20)

Upon defining ε∗ = ε/(1 + 2ε) for any ε > 0, noting that this definition implies

ε∗ < 1/2 without restricting ε > 0, and letting ηε∗ ≡ ηε, Lemma 1 follows if k∗ > n0.

If k∗ ≤ n0, then, by Assumption 2(ii), max1≤k≤n0 Lk ≤ P (supθ,t≤n0
|ψt(θ)| > η/4) ≤

4n
1/2
0 η−1E[supθ,t≤n0

|ψt(θ)|] < Mη−1, say. Then, for any ε∗ > 0 and η = M/ε∗, (20)

is satisfied. By redefining ε∗ as in the case k∗ > n0, and since the two cases are

mutually exclusive, the proof of Lemma 1 is complete.

Let Îi ≡ [T̂i−1 + 1, T̂i] and I0
i ≡ [T 0

i−1 + 1, T 0
i ], (i = 1, . . . , m + 1). To prove

Lemma 2, we use the uniform law of large numbers (ULLN) in Gallant and White

(1988), pp. 34. Note that their assumption of n.e.d. encompasses Assumption

1(i)-(ii):

Proof of Lemma 2.

Part (i). This part follows directly from Lemma 1.
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Part (ii). Consider η > 0 such that [Tη] is an integer. Let 1∗ and 2∗ denote

summing over the sets I1(η) = { [Tλ0
j ]− Tη + 1, . . . , [Tλ0

j ] }, respectively I2(η) =

{ [Tλ0
j ] + 1, . . . , [Tλ0

j ] +Tη }. If λ̂j
p9 λ0

j for at least one j, then there is an η such

that with positive probability, θ̂k will be estimating θ0
j on I1(η) ∈ Îk, but θ0

j+1 on

I2(η) ∈ Îk. Hence, with positive probability greater than ε > 0,

T−1

T∑
t=1

d2
t ≥ T−1

∑
1∗

d2
t (θ̂k, θ

0
j ) + T−1

∑
2∗

d2
t (θ̂k, θ

0
j+1) ≥ inf

θ
HT (θ) (21)

where dt(θA, θB) = ft(θA) − ft(θB), with θA, θB ∈ Θ, and for i = 1, 2, HT,i(θ)

= T−1
∑

i∗ d2
t (θ, θ

0
j−1+i), and HT (θ) =

∑
i=1,2 HT,i(θ).

To prove T−1
∑T

t=1 d2
t > C with probability > ε and establish Lemma 2(ii), it is

sufficient to prove uniform convergence in θ of HT (θ) to a positive quantity H(θ).

Uniform convergence can be established using the ULLN mentioned above, under

Assumptions 1-4. It remains to show that infθ H(θ) > 0. This can be establish by

showing - see Supplemental Appendix:

E[HT (θ)] ≥ ‖θ0
j − θ0

j+1‖2tr
{

inf
t

inf
θ

E[Ft(θ)F
′
t(θ)]

}
> C

where the last inequality follows from Assumption 4(iii).

Proof of Theorem 2.

The proof follows in three steps. The first step redefines the proof objective and

introduces some notation. In the second step two distinct terms are analyzed and

compared to finalize the proof.

Step 1. As in Bai and Perron (1998), without loss of generality, we assume only

three breaks. We will focus on proving Theorem 2 for λ̂2; the analyses for λ̂1 and λ̂3

are similar. For any ε > 0, define Vε = {(T1, T2, T3) : | Ti− T 0
i |≤ εT (i = 1, 2, 3)}.

Since λ̂i
p→ λ0

i , lim P{(T̂1, T̂2, T̂3) ∈ Vε} = 1. Hence, we need only examine the

behavior of breakpoints contained in Vε. Consider, without loss of generality, the

case T̂2 < T 0
2 ; the case T̂2 ≥ T 0

2 can be handled by a symmetric argument. For
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C > 0, define: Vε(C) = {(T1, T2, T3) : | Ti − T 0
i |≤ εT (i = 1, 2, 3); T 0

2 − T2 > C}.
Note that Vε(C) ⊂ Vε. We will show that the probability that the break-points

are contained in Vε(C) is very small. Hence, with large probability, |T̂i−T 0
i | < C,

for i = 1, 2, 3, confirming the content of Theorem 2. So, for proving the latter, it

suffices to show that the break-points will not be contained in Vε(C) with large

probability.

To that end, denote by ST (T1, T2, T3) the minimized sum of squared residuals

for a given 3-break-partition (1, T1, T2, T3, T ) of the sample interval. By definition

of minimized sum of squared residuals, ST (T̂1, T̂2, T̂3) ≤ ST (T̂1, T
0
2 , T̂3). Let ∆2 =

T2 − T 0
2 . We will show that for any η > 0, we can pick ε and C such that:

P

{
min
Vε(C)

(∆2)
−1[ST (T1, T2, T3)− ST (T1, T

0
2 , T3)] < 0

}
< η, for T ≥ T (η). (22)

Equation (22) implies that for large T , with probability ≥ 1 − η, ST (T̂1, T̂2, T̂3)

> ST (T̂1, T
0
2 , T̂3), contradicting the sum of squares minimization definition; thus,

T̂2 6∈ Vε(C), completing the proof.

Define SSR1 = ST (T1, T2, T3), SSR2 = ST (T1, T
0
2 , T3) and introduce SSR3 =

ST (T1, T2, T
0
2 , T3). Then ST (T1, T2, T3)−ST (T1, T

0
2 , T3) = (SSR1−SSR3)−(SSR2−

SSR3). This approach helps carry out the analysis in terms of two problems involv-

ing a single structural change: the first imposing an additional break at T 0
2 between

T2 and T3, and the second introducing an additional break at T2 between T1 and

T 0
2 . Let (θ∗1, θ

∗
2, θ

∗∗
3 , θ∗4), (θ∗1, θ

∗∗
2 , θ∗3, θ

∗
4) and (θ∗1, θ

∗
2, θ

δ
2, θ

∗
3, θ

∗
4) be the NLS parameter

estimates based on partitions (1, T1, T2, T3, T ), respectively (1, T1, T
0
2 , T3, T ) and

(1, T1, T2, T
0
2 , T3, T ). Note that θ∗2, θ

δ
2, θ

∗∗
2 are all estimating θ0

2, while θ∗3, θ
∗∗
3 are

both estimators of θ0
3.

In the light of proving (22), we need to locate the dominating terms in (SSR1−
SSR2) and show that we can pick ε and C such they are positive with large

probability for large T . To that end, let Vε(C) be the domain on which some

quantity qT (·) is defined. We will denote qT ∼ Op(T
b) P (|qT | > T b) < η̄ for
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T ≥ T (η̄) for some b ∈ R and any η̄ > 0, where T as defined here is large.

Note that the statement above depends on the choice of C and ε. We will write

qT ∼ O+
p (T b) if plim qT is positive (or positive definite for matrices). Similarly,

let qT ∼ Op(T
b) + aT , if qT − aT ∼ Op(T

b) for some aT , and qT ∼ O+
p (T b) + aT , if

qT − aT ∼ O+
p (T b). Under this notation, equation (22) is equivalent to:

∆−1
2 (SSR1 − SSR2) ∼ O+

p (1) (23)

because then the probability that (SSR1 − SSR2) is negative is small. So, for

proving Theorem 2, a proof of (23) suffices.

Step 2: To further simplify the notation, let I1 = [1, T1], I2 = [T1 + 1, T2],

I∆
2 = [T2 +1, T 0

2 ], I3 = [T 0
2 +1, T3], I4 = [T3 +1, T ]. Recall that ∆2 = T 0

2 −T2 > C,

and denote e2
t (θA, θB) ≡ u2

t (θA)− u2
t (θB). Consider SSR1 − SSR3 first:

∆−1
2 (SSR1 − SSR3) = ∆−1

2

∑

I∆
2

e2
t (θ

∗∗
3 , θδ

2) + ∆−1
2

∑
I3

e2
t (θ

∗∗
3 , θ∗3) = D1 + D2.

Heuristically speaking, D1 involves a “mismatch“ in estimators, because θ∗∗3 is

estimating θ0
3, while θδ

2 is estimating θ0
2. This “mismatch“ is not present in D2,

because θ∗∗3 and θ∗3 are both estimating θ0
3. Hence, D1 should be dominating D2 for

a large enough ∆2 > C. To see this, note that,for i = 1, . . . , 4, in an interval where

θ0
i is the true parameter value, and θ ∈ Θ, it can be shown that: u2

t (θ) − u2
t =

d2
t (θ, θ

0
i ) − 2ut dt(θ, θ

0
i ). Also, the true parameter value on I∆

2 is θ0
2. Then for

any θA, θB ∈ Θ and t ∈ I∆
2 , e2

t (θA, θB) = d2
t (θA, θ0

2) − d2
t (θB, θ0

2) − 2ut dt(θA, θB).

According to the above, we have:

D1 = ∆−1
2

∑

I∆
2

d2
t (θ

∗∗
3 , θ0

2)−∆−1
2

∑

I∆
2

d2
t (θ

δ
2, θ

0
2) + 2∆−1

2

∑

I∆
2

utdt(θ
δ
2, θ

∗∗
3 ) =

3∑
j=1

D1,j

We will find the order of each of the terms above. In the proof of Lemma 2, we

have shown that processes such as {d2
t (θ, θ

0
2)} satisfy the ULLN. In other words,
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if we pick C large enough, D1,1 ∼ plim∆−1
2

∑
I∆
2

[d2
t (θ

∗∗
3 , θ0

2)] + op(1). To find this

limit, note - from the supplemental Appendix - that θ∗∗3 − θ0
3 ∼ Op(T

−1/2). So, by

similar arguments as in the proof of Lemma 2(ii), we obtain:

D1,1 = ∆−1
2

∑

I∆
2

d2
t (θ

∗∗
3 , θ0

2) ∼ O+
p (1).

This will be the only positive dominating term in SSR1 − SSR2. For analyzing

D1,2, if we pick C big enough, θδ
2 − θ0

2 ∼ op(1). Hence, D1,2 ∼ op(1). Also,

D1,3 ∼ op(1) by Lemma 1. It follows that for large C and small ε, D1 ∼ O+
p (1)−

op(1) + op(1) = O+
p (1).

Note that D2 is different than D1 given that we are summing over a different

interval. For deriving the order of D2, we have to consider two cases, T3 < T 0
3

and T3 ≥ T 0
3 - see supplemental Appendix. For both cases, D2 ∼ C−1Op(1).

Since D1 and D2 determine the order of SSR1 − SSR3, for small ε and large

C,∆−1
2 (SSR1 − SSR3) = D1 + D2 ∼ O+

p (1) + C−1Op(1) = O+
p (1). By similar

arguments as for D2, it can be shown that ∆−1
2 (SSR2 − SSR3) = C−1Op(1),

if we pick C large enough and ε small enough. Hence, ∆−1
2 (SSR1 − SSR2) ∼

O+
p (1)−C−1Op(1) = O+

p (1), provided that C is large enough and ε small enough,

for large T . This is in fact (23), completing the proof.

Proof of Theorem 3.

As usual for nonlinear consistency proofs, we need to show uniform convergence

of the minimand, and then use uniqueness to establish consistency of parameter

estimates. As a matter of notation, consider some partition of the interval [1, T ],

denoted (1, T1, . . . , Tm, T ). Let ST,Ii
(θ) = T−1

∑Ti

t=Ti−1
u2

t (θ) be the partial sum of

squares in interval Ii = [Ti−1+1, Ti], for i = 1, . . . , m+1, and let I0
i = [Ti−1+1, Ti],

respectively Îi = [T̂i−1 + 1, T̂i]. Moreover, let Îi ∇ I0
i = (Îi \ I0

i ) ∪ (I0
i \ Îi),

and define as indicator function ιi : Îi ∇ I0
i → {−1, 1}, where ιi(t) = ιi,t =

1, if t ∈ Îi \ I0
i , and ιi,t = −1, if t ∈ I0

i \ Îi. Then ST,Îi
(θ) − ST,I0

i
(θ) is =
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∑
Îi ∇ I0

i
ιi,t [T−1u2

t ] +
∑

Îi ∇ I0
i
ιi,t [T−1d2

t (θ, θ
0
i )] +

∑
Îi ∇ I0

i
ιi,t [T−12ut dt(θ, θ

0
i )]. By

Theorem 2, there can be no more than 2C integer values contained in Îi ∇ I0
i . By

ULLN, ST,Îi
(θ) − ST,I0

i
(θ) = op(1). Since we replaced the estimated break-points

with the true breaks, standard nonlinear analysis tells us that under Assumptions

1-4, θ̂i
p→ θ0

i , for i = 1, . . . ,m. One can also show - see Supplemental Appendix -

that mean value expansions T 1/2 ∂ST,Îi
/∂θ around θ0

i are uniformly within op(1) of

the mean-value expansions using the true break-point estimates. Hence, standard

nonlinear asymptotics shows that θ̂i have indeed the distribution given in Theorem

3. Asymptotic independence of θ̂i and θ̂j for i 6= j follows from Assumption 1,

completing the proof.

Proof of Theorem 4.

The distribution of k̂ depends on the distribution of argminθ1,θ2
VT (k, θ1, θ2). As-

sume k < k0; the case k ≥ k0 can be handled similarly.

VT (k, θ̂1(k), θ̂2(k)) =
k∑

t=1

[u2
t (θ̂1(k))− u2

t (θ
0
1)] +

k0∑

t=k+1

[u2
t (θ̂2(k))− u2

t (θ
0
1)] +

+
T∑

t=k0+1

[u2
t (θ̂2(k))− u2

t (θ
0
2)] = Σ1 + Σ2 + Σ3. (24)

Since we know the convergence rates of k̂ and θ̂i(k), the minimization problem is

defined over a neighborhood of (k, θ1, θ2). Note that the asymptotic distributions

of Σ1 and Σ3 do not depend on v, since the difference between the summations

involving the true breaks and the estimated breaks is asymptotically negligible,

uniformly in v. Hence, we can write VT (k, θ̂1(k), θ̂2(k)) = D + Σ2 + op(1), where

the op(1) term is uniform in v. On the other hand, it can be shown that:

Σ2 =

k0∑

t=k+1

d2
t (θ

0
2, θ

0
1) +

k0∑

t=k+1

ut dt(θ
0
2, θ

0
1) + op(1)

with the op(1) term uniform in v. Continuity of ft(θ) guarantees that the maximum
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of J∗(v) is unique almost surely, and we can use CMT to express the distribution

of k̂ as stated in Theorem 4.

To prove Theorem 5, we need to show consistency of the break-fractions at a

certain rate, as well as asymptotic normality of parameter estimates. Consistency

is summarized by the following theorem.

Theorem A 1. Under Assumptions 1-5 and 8, λ̂i
p→ λ0

i , for i = 1, . . . , m.

Proof of Theorem A1.

The proof of Theorem A1 is similar to that of Theorem 1, but modifications are

required to avoid the possibility that T−1
∑T

t=1 d2
t

p→ 0 even if a break-fraction

is not consistently estimated. Under Assumptions 1-5 or Lemma 1 and Assump-

tions 2-5, we have:
∑T

t=1 utdt ≤ Op(T
1/2+ν), uniformly over the space of all par-

titions and parameters (T1, . . . , Tm) × θ, with ν ≥ 0. On the other hand, by

arguments similar to before, if at least one break-fraction is not consistently es-

timated,
∑T

t=1 d2
t ≥ ‖θ0

j − θ0
j+1‖2OP (T ) > CTw2

T . By Assumption 8, this term

dominates 2T−1
∑T

t=1 dtut, and T−1
∑T

t=1 d2
t + 2T−1

∑T
t=1 dtut ≤ 0

p→ ∞. The

latter contradicts equation (5), thus the break-points are consistent.

Next, we state the rate of convergence for the break-fractions:

Theorem A 2. Under Assumptions 1-5 and 8, for any η > 0, there is a C > 0

such that, for large T, P (Tw2
T |λ̂k − λ0

k| > C) < η, for any k = 1, . . . , m.

Proof of Theorem A2.

The proof of Theorem A2 proceeds in the same fashion as the proof of Theo-

rem 2, except for convergence rates which are different given shrinking shifts; see

Supplemental Appendix for proof.

Theorem A 3. Under Assumptions 1-5 and 8, T 1/2(θ̂ − θ0)
d→ N (0, Φi(θ

0
i )).

Proof of Theorem A3. The Proof of Theorem A3 is similar to that of Theorem

3 and can be found in the Supplemental Appendix.
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Proof of Theorem 5. Let k < k0, the proof for k ≥ k0 is similar. Also let

v = k0−k, 0 < v ≤ C/v2
T ; by similar arguments as for fixed shifts, using Theorems

A1-A3, VT (k, θ̂1(k), θ̂2(k)) = D + op(1) + Σ2, where the op(1) term is uniform in v

and D is a distribution that does not depend on v. So, even in this case, Σ2 will

govern the distribution of the minimand for shrinking shifts. It can be shown that,

uniformly in v, Σ2 = |v|$2,1− 2$
1/2
1,1 W1(−v) + op(1), for v ≤ 0. Since C/v2

T →∞,

it follows that:

k̂ − k0 = argmax
v≤0

[
$

1/2
1,1 W1(−v)− 0.5|v|$2,1

]
+ op(1) (25)

Note that the limiting Brownian motions can only be obtained under Assumption

6(iii)-(iv), that is, when {utFt(θ)} is second-order stationary within regimes, and

Ft(θ) as well. Breaks in the variance of regressors are excluded, unless they coincide

with the true value. By a change in variable in (25) - see Supplemental Appendix,

we obtain the desired result.

To prove Theorem 6, we need two additional Theorems. Denote by θ̂i and θ̂1,i

the [Ti−1 + 1, Ti], respectively the [1, Ti]- sub-sample estimators of θ0 where Ti is

the i − th break belonging to a certain partition T̄ k on which θ̂i were defined as

well. Then:

Theorem A 4. Under Assumptions 2-6 and H0 : m = 0,

T 1/2(θ̂1,i − θ0) ⇒ σλ−1
i D−1/2(θ0)Bp(λi), where D(θ) is the common value of Di(θ)

in Assumption 4(iii), under H0.

Theorem A 5. Under Assumptions 2-6 and H0 : m = 0,

T 1/2(θ̂i − θ0) ⇒ σ[λi − λi−1]
−1D−1/2(θ0) [Bp(λi)−Bp(λi−1)].

Proof of Theorem A4.

First, θ̂1,i
p→ θ0 because it is just a sub-sample NLS estimator of θ0 in stable models.

Using the mean value theorem, the desired result follows from Assumptions 2,3,4

and 6. The latter is essential for the limit to be a Brownian motion; thus, no
42



breaks in the variance of regressors and errors are allowed. The proof of Theorem

A5 follows the same steps and is omitted for simplicity.

Proof of Theorem 6.

First, under Assumptions 2-6 and H0, SSRk/(T − (k + 1)p)
p→ σ2, an immediate

consequence of Lemma 2. On the other hand, it can be shown:

SSR0 − SSRk =
k∑

i=1

F ∗
T,i, with F ∗

T,i = DR(1, i + 1)−DR(1, i)−DU(i + 1, i + 1)

where the sum subscript 1, i indicates summing over interval [1, Ti], while i indi-

cates, as before, summing over [Ti−1 +1, Ti], and DR(1, i) =
∑

1,i[u
2
t (θ̂1,i)−u2

t ] and

DU(i, i) =
∑

i[u
2
t (θ̂i)−u2

t ]. Using the last two theorems, it can be shown - see Sup-

plemental Appendix - that under Assumptions 2-6, DR(1, i) ⇒ −σ2‖Bp(λi)‖2/λi,

DR(1, i + 1) ⇒ −σ2‖Bp(λi+1)‖2/λi+1 and DU(i + 1, i + 1) ⇒ −σ2‖Bp(λi+1) −
Bp(λi)‖2 /[λi+1 − λi], yielding:

F ∗
T,i ⇒ σ2‖λiBp(λi+1)− λi+1Bp(λi)‖2

λiλi+1[λi+1 − λi]

Proof of Theorem 7.

Under H0 : m = `, compute the estimated break-points, and let SSR(T̂i, T̂j) be

the minimized sum of squared residuals for the segment containing observations

in the interval [T̂i + 1, T̂j], i < j. We can write:

FT (` + 1|`) = max
1≤i≤`

sup
τ∈∆i,η

F ∗
T,i(` + 1|`)/σ̂2

i , (26)

where F ∗
T,i(` + 1|`) = SSR(T̂i−1, T̂i)− SSR(T̂i−1, τ)− SSR(τ, T̂i).
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Using similar arguments to the previous theorem - see Supplemental Appendix:

F ∗
T,i(` + 1|`)

σ2
i

⇒
[
supη≤µ≤1−η

‖Bp(µ)− µBp(1)‖2

µ(1− µ)

]
. (27)

Since the regimes considered in SSR(·, ·) are non-overlapping, F ∗
T,i(` + 1|`) are

asymptotically independent for different i by Assumption 6. Hence, the result in

Theorem 7.

Proof of Theorem 8. Recall that H0 : Rk θc
0 = 0, implying that θ0

1 = . . . =

θ0
k+1 = θ0. Let ∆λi = λi − λi−1, for i = 1, . . . , k + 1. By the uniform convergence

statements in Assumption 6(iii) and (iv), it follows that D̂i(θ̂i(T̄k))
p→ ∆λi D(θ0)

and Âi(θ̂i(T̄k))
p→ ∆λi A(θ0), where D(·), A(·) are the common value of Di(·),

respectively Ai(·) under H0. For simplicity, let A(θ0) ≡ A0 and D(θ0) ≡ D0.

Then:

T Υ̂(T̄k)
p→ [C−1

k ⊗D−1
0 ]× [Ck ⊗ A0]× [C−1

k ⊗D−1
0 ]

T 1/2(θ̂i(T̄k)− θ0) ⇒ (∆λi)
−1D−1

0 A
1/2
0 [Bp(λi)−Bp(λi−1)]

Putting the last two equations together - see Supplemental Appendix - completes

the proof of Theorem 8. The proof of Theorem 9 follows similar steps and can

be found in the Supplemental Appendix.
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