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Abstract 
This study examines the properties of monthly CPI inflation in G7 countries and the Euro area 
(aggregate) over the period 1973-2007 using a new iterative decomposition procedure that 
separates changes in mean, seasonal and dynamic components together with conditional 
volatility. We uncover mean and seasonality breaks for all countries and, even allowing for 
these, changes in persistence are indicated for all countries except Canada. Further, while 
volatility reductions are widespread in the mid- to early 1980s, Canada, France and the US all 
exhibit increased volatility from 1999 onwards. Of methodological interest, iteration is shown 
to provide more evidence of persistence breaks and fewer volatility breaks overall compared 
with the usual approach of sequentially examining changes in the properties of inflation, 
while application of linear seasonal adjustment also reduces evidence of persistence breaks. 
Although failure to allow for breaks in mean, seasonal or dynamic components affects 
conclusions about the existence and dates of volatility breaks, nevertheless, evidence remains 
of a volatility increase in some countries in 1999. 
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1. Introduction 

The decline in the volatility of output and many other real macroeconomic variables in the 

last two decades of the twentieth century has been well documented for the US and other 

industrialized countries, see McConnell and Perez-Quiros (2000), Sensier and van Dijk 

(2004) and Stock and Watson (2005), among others. The explanations put forward for this so-

called “Great Moderation” include (i) “good policy” (Clarida, Galí and Gertler, 2000), in 

particular more pro-active monetary policy; (ii) “good (business) practice”, predominantly in 

the form of improved inventory management (Herrera and Pesavento, 2005), and (iii) “good 

luck”, meaning that the typical magnitude of exogenous shocks has declined since the 1970s 

(Ahmed, Levin and Wilson, 2004). Blanchard and Simon (2001) argue that while the causes 

of the decline in US output volatility are complex, this decline can be linked to changes in the 

properties of inflation and particularly to a decline in inflation volatility over the period 1952-

2001. 

 Inflation plays a key role in monetary policy, which has changed a number of times 

for the US and other developed economies over the postwar period. Consequently, one stream 

of literature (including Altimisso et al., 2006, Benati, 2008, Cecchetti and Debelle, 2006, 

Levin and Piger, 2006, O’Reilly and Whelan, 2005) focuses on possible structural breaks in 

inflation persistence associated with monetary policy changes. Nevertheless, the frequency 

and extent of such persistence changes remain controversial, principally because they can be 

confused with changes in the underlying mean level of inflation (see Marques, 2004 and 

Clark, 2006). Further, Paya, Duarte and Holden (2007) find that lower frequency data exhibits 

higher persistence. However, despite the strong relationship between output and inflation 

volatility uncovered by Blanchard and Simon (2001), relatively little attention has been paid 

to the nature of changes in inflation volatility.  

Structural breaks in mean and persistence complicate testing for changes in volatility1. 

For example, assume that observed annualized monthly inflation behaves like a white noise 

series, but with a structural change in level from 4% to 1% at one-third of the sample period. 

                                                 
1 In a similar vein, Arellano (2006) emphasises the importance of allowing for volatility breaks when testing for 
mean breaks in his comment on Cecchetti and Debelle (2006). Hansen (1992) provides a simulation result 
showing that one’s ability to detect conditional mean breaks is severely undermined in the presence of volatility 
breaks.  
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It is straightforward to see that ignoring this mean break leads to the spurious conclusion that 

inflation volatility has declined2.  

 This paper directly confronts the issues associated with disentangling the nature of 

changes in the properties of inflation by undertaking a comprehensive examination of possible 

(in)stability in the mean, seasonality, persistence and (conditional) volatility of consumer 

price inflation for the G7 countries and the Euro area. For this purpose, we design and 

implement an iterative procedure to identify and distinguish between breaks in each of these 

inflation characteristics. Although we make use of Qu and Perron’s (2007) approach to testing 

for multiple structural breaks, to our knowledge no procedure has previously been proposed 

that allows iteration between components in the context of testing for breaks. 

Using monthly consumer price index (CPI) inflation rates over the period 1973-2007, 

we find that persistence breaks are less widespread than mean breaks. However, we find 

stronger evidence of persistence declines than Cecchetti and Debelle (2006), with our results 

largely implying zero persistence for the recent period, as in Benati (2008). Further, even 

taking account of mean, seasonality and persistence breaks, inflation volatility breaks are 

detected for all countries. In addition to widespread volatility declines in the early 1980s, we 

document increases in inflation volatility for Canada, France and the US around 1999, 

implying (in the light of Blanchard and Simon, 2001) that the “Great Moderation” may have 

been a temporary phenomenon. Unusually for studies of the properties of inflation, we 

analyse seasonally unadjusted data. This is partly because official seasonally adjusted CPI 

series exist only for the US and Germany. More persuasively, however, seasonal adjustment 

is a filtering operation, and the smoothing implied in such adjustment may reduce the 

magnitude of changes in the mean and persistence properties (Ghysels and Perron, 1996). We 

return to this issue below. 

The paper proceeds by introducing the dataset in Section 2, discussing methodology in 

Section 3 and analysing our results in Section 4.  Section 5 offers some conclusions. 

 

 

                                                 
2 The sample mean will be (close to) 2%, such that volatility during the first one-third of the sample period, 
when inflation fluctuates around 4%, appears to be much larger than during the remaining part of the sample 
period. 
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2. Data 

We analyse monthly CPI for each of the G7 countries and also the Euro area from March 

1973 (post Bretton-Woods) to December 20073.  The Euro area series relates to the countries 

in the Euro area at each specific date, so that Greece enters in 2001 and Slovenia in 2007. 

However, both countries are relatively small and hence these composition changes should not 

unduly affect the aggregate Euro area series. We consider monthly inflation rates, constructed 

as the first difference of the natural logarithm of the CPI index and multiplied by 100. 

 The series analysed are shown in the upper left-hand panel in each of Figures 1 to 8. A 

cursory glance at these graphs indicates the presence of outliers (see, for example, Canada in 

Figure 1), changes in mean inflation (such as for France, Figure 3) and/or volatility 

(apparently present for the US, Figure 8). In addition, many of the series are seasonal, with 

this perhaps being clearest for Germany and the UK (Figures 4 and 7, respectively). The next 

section outlines our methodology for disentangling these effects. 

 

 

3. Methodology 

This section describes our iterative testing approach used to identify and distinguish between 

breaks in mean, seasonality, persistence and (conditional) volatility of the inflation series. In 

addition, we account for the possible presence of aberrant observations by allowing for 

outliers. Section 3.1 details the iterative decomposition, with Section 3.2 then describing the 

sensitivity analyses we undertake in relation to this procedure. Finally, Section 3.3 outlines 

Qu and Perron’s (2007) multiple break testing procedure, which is our main econometric tool.  

 

3.1. Iterative procedure for structural break and outlier detection 

We decompose the monthly inflation rate Yt into components for the level (L), seasonality (S), 

outliers (O) and dynamics (y), where only the last of these is stochastic. This differs from the 

usual unobserved components approach, as employed by Harvey (1989) and others, where 

both the levels and seasonal components are typically allowed to be stochastic. However, the 

presence of such stochastic components would imply that inflation has both a zero frequency 

                                                 
3 Data for G7 countries are obtained from the OECD (www.oecd.org), and the Euro area series from Datastream. 
The latter series is the Euro area harmonised index of consumer prices (HICP) produced by Eurostat when this is 
available, but constructed by Datastream prior to 1990.  
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unit root and the full set of seasonal unit roots, a conclusion which has not found support in 

previous analyses of inflation; see, for example, Canova and Hansen (1995) for the US and 

Osborn and Sensier (2008) for the UK.  

Therefore, allowing for structural change in each of the components, we consider the 

model 

ttttt yOSLY +++=  (1) 

jtL μ=                                     
11

,...,11 kk TTt += − ;   1,...,1 11 += mk    (2) 

∑
=

=
s

l
ltlkt DS

1
2

δ                           
22

,...,11 kk TTt += − ;   1,...,1 22 += mk  (3) 
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itikt uyy += ∑

=
−

1
,3

φ                  
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,...,11 kk TTt += − ;   1,...,1 33 += mk  (4) 

2
4

)var( ktu σ=                           
44

,...,11 kk TTt += − ;   1,...,1 44 += mk    (5) 

where t0  = 0; Tm+1 = T (T denotes the total sample size) and for s seasons per year (s = 12 for 

monthly data), Dlt, l = 1, …, s are seasonal dummies equal to unity if the observation at time t 

falls in season l and zero otherwise. Note that the coefficient δk,l
  represents the deviation of 

the unconditional mean of inflation in the l-th season (month) from the overall mean level jμ  

and, for identification purposes, we impose the restriction ∑ =

s

l lk1 2
δ = 0 for all seasonality 

regimes k2 = 1, …, m2+1. Outliers, Ot, are defined as observations more than five times the 

interquartile range away from the “local” median, using the procedure adopted by Stock and 

Watson (2003). Once an outlier is detected we replace it with the median of the six 

neighbouring non-outlier observations4. The specification of (2)-(5) allows m1 breaks in the 

level component Lt, m2 breaks in the seasonal component St, m3 breaks in the autoregressive 

coefficients of the dynamic component yt and m4 breaks in conditional volatility. It is 

important to note that the number of structural breaks in these four components do not have to 

be the same and nor do their temporal locations. 

 It is difficult, if not impossible, to test satisfactorily for multiple structural breaks in all 

components of (1) in a simultaneous procedure if these breaks may occur at different dates. 

                                                 
4 The procedure is available on Mark Watson’s website http://www.princeton.edu/~mwatson/publi.html, in the 
replication files for Stock and Watson (2003). Our application uses a “local” median, in the sense that their 
procedure is applied within the iterations through which levels shifts and seasonals are removed. Neighbouring 
observations are also considered in this context. 
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Complications arise because the structural break testing methodologies developed so far 

assume a pre-specified distance between consecutive break dates, thus limiting the possible 

number of breaks. For example, using 15% trimming in the methodology of Bai and Perron 

(1998, 2003) or Qu and Perron (2007) would allow at most 5 breaks in the parameters in any 

of (2) to (5) over the 35-year sample period we analyse. However, potential changes in 

seasonal patterns due to (say) changes in data collection methods or to tax effects, considered 

alongside mean and/or persistence shifts arising from changes in monetary policy and 

volatility changes due to good luck renders plausible the existence of more than a total of five 

parameter changes over our sample. Nevertheless, estimating and testing for breaks 

sequentially also poses problems, since testing for structural breaks in one component can be 

affected by the presence of breaks in other components. For example, Marques (2004) shows 

empirically that conclusions concerning changes in inflation persistence crucially depend on 

the specification of mean inflation, with much more evidence for a decline in inflation 

persistence obtained if mean inflation is assumed constant than if the level is allowed to 

exhibit structural breaks. Similarly, reconsider the example in the Introduction where a series 

exhibits a large structural break in mean at one-third of the sample period. If this series has 

stable deterministic seasonality, ignoring the level shift will spuriously suggest that a break in 

the seasonal pattern has occurred. In addition to these, a further complication is that the 

presence of outliers can affect persistence estimates; see Franses and Haldrup (1994). 

Therefore, we employ an iterative approach to examine breaks in each of the 

components of the inflation series alongside outlier detection and removal. First, the level, 

seasonal and dynamic parts are each set to zero in order to initialise the process, with outliers 

then detected5. Second, having corrected for outliers, and with the dynamics still set to zero, 

we test for breaks in the seasonal component6 and obtain (using the appropriate sub-samples) 

our first estimate of the seasonal part that allows for structural instability. Third, we subtract 

the seasonal component from the original series and test for level shifts. The break dates are 

recorded, leading to the first estimate of mean inflation, adjusted for any breaks uncovered. In 

the fourth step of the loop, having removed outliers, seasonal and level components from the 

                                                 
5 Outliers are corrected so as to impose minimal distortion. For example, a permanent level shift in CPI, perhaps 
caused by an introduction of consumption tax that leads to a single outlier in inflation, is adjusted in the inflation 
series. However, if a single event leads to an abnormal increase in the CPI series that returns to close to its 
previous level in the following month, we make a single outlier correction in the CPI series, rather than making 
two corrections in the inflation data. Outlier correction is sequential, correcting the first outlier and then 
checking for any remaining outliers, with additional outliers then removed until no more are detected. 
6 Alternatively, initial mean breaks could be considered prior to initial seasonal breaks. However, the only 
impact of considering mean breaks first is a relatively marginal change in the date of one mean break for 
Germany. 
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original series, we test for breaks in the autoregressive (AR) coefficients of the dynamic 

component.  

This loop is iterated until convergence is achieved for the dates of outliers and 

structural breaks7. In these iterations, the latest estimates of all components are removed, 

except for that under study. Thus, for example, level, seasonal and dynamic (AR) components 

are removed when outliers are examined, while the latest detected outliers, mean and 

dynamics are removed when testing for seasonal breaks. This analysis is conducted using 

heteroskedasticity robust inference throughout. 

Once convergence is achieved in the iterative procedure just described for the 

components of (1), we could in principle subtract these four components from the original 

series and proceed with testing for (conditional) volatility breaks in the residuals tû . 

However, Pitarakis (2004, page 44) notes that “It is a notoriously difficult problem to design 

good test procedures about the equality of regression slopes while not necessarily maintaining 

the equality of variance assumption”. Indeed, Hansen (2000) shows that structural changes in 

the marginal distribution of regressors render the Andrews (1993) type structural break tests 

asymptotically invalid. This situation may be relevant for our analysis given the empirical 

evidence for structural breaks in volatility of inflation, see Blanchard and Simon (2001),  

Sensier and van Dijk (2004), and Stock and Watson (2007), among others.  

To account for this possibility we incorporate an additional ‘inner loop’ that iterates 

between testing for breaks in the AR coefficients of the dynamic component yt and its 

conditional volatility. To be precise, after removing outliers, mean and seasonal components, 

the sub-loop tests for breaks in dynamics; in the first iteration this employs heteroscedasticity 

robust inference, but subsequently a constant variance assumption is used8. If any break is 

detected, the AR model is estimated allowing for these breaks, with variance breaks then 

investigated using the resulting residuals. If volatility breaks are detected, the residual 

variances are estimated over the implied volatility segments. Weighting the yt series with the 

estimated standard deviations, the test for breaks in dynamics is again applied, and so on until 

convergence is achieved in the dynamics/volatility break dates. Once this ‘inner loop’ has 

converged, we return to the main loop and proceed as above.  

                                                 
7 Since we lose p observations in order to estimate the AR(p) model, and consequently our dynamic component 
will be p observations short of others, we set missing dynamic components to their unconditional mean of zero. 
8 Pitarakis (2004) uses Monte Carlo simulations to assess the properties of mean break tests in the presence of 
volatility break, uncovering an extreme size distortion that actually increases with the sample size. He then 
provides evidence on improvements offered by a GLS transformation in that context. 
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In the implementation of this procedure, the maximum number of iterations is set to 

20. In a small number of cases, the procedure does not yield converge to a unique set of break 

dates, but rather converges to a cycle between two sets of dates. In such cases, we select 

between these sets based on the minimization of the Hannan-Quinn (HQ) information 

criterion, defined in this context as  

[ ].1)1()1(121))ln(ln(2

)(ˆln

4321
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3.2 Sensitivity analyses 
The iterative procedure outlined above models seasonality as deterministic, both for the 

statistical reason that there is little evidence that CPI series contain stochastic seasonal unit 

roots and also because seasonality in prices partly reflects institutional effects (such as the 

timing of indirect tax changes) and the construction methodology, with these effects better 

represented as changing at specific dates rather than continuously changing. In this respect, 

one notable change in seasonality in CPI occurs during the 1990s or early 2000s, when price 

reductions due to ‘sales’ are first included in the calculation of consumer prices for a number 

of Euro area countries, including France and Germany (Commission of the European 

Communities, 2000, p.66; Bilke, 2005). Also, Hamid and Dhakar (2008) present evidence that 

seasonality in monthly CPI inflation for the US differs between republican and democratic 

presidencies. 

 However, it is more common to study changes in the properties of CPI inflation after 

the application of a seasonal adjustment filter. Therefore, we present summary results for the 

case where the linear X-11 filter coefficients are used to capture seasonal effects, in place of 

the deterministic seasonal model of (3). The X-11 filter coefficients are embedded within the 

iterations, rather than being applied prior to other analysis, in order to replicate some of the 

sophistication of the X-12-ARIMA seasonal adjustment methodology in terms of outlier 

detection and dynamics (see, for example, Ghysels and Osborn, 2001, pp.106-108). 

 Another set of summary results presented investigates the results of taking a single 

pass through the outlier, seasonality, levels, dynamics and volatility breaks procedure outlined 

in the preceding subsection. Comparison with the principal results therefore allows the effects 

of iteration to be seen. Finally, we present results obtained when the seasonal, level and 
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dynamic components of (1) are assumed constant over the sample period, with only outliers 

and volatility breaks taken into account. These last results focus on the sensitivity of the 

volatility breaks to the assumptions made about other components, and are obtained both 

without and with iteration between outliers and volatility. 

 

3.3 Testing for multiple structural breaks 

The iterative procedure of the previous subsection is implemented using the Qu and Perron 

(2007) test for multiple structural breaks9. At each step, following the recommendation of Bai 

and Perron (2006), we first test the null hypothesis of no breaks against an unknown number 

of breaks. If the null of no breaks is rejected we use a sequential testing procedure to estimate 

the number and locations of breaks. 

All tests relating to the components of (1) are examined in a regression framework, 

with the form of the regression varying according to the component being tested for structural 

breaks. Specifically: 

(i) To test for breaks in the seasonal component St, we regress tttt yOLY ˆˆˆ −−−  on a  

set of centred seasonal dummies Δjt = Djt – Dkt, j = 1, …, s-1 (where Djt is a 

conventional zero/one seasonal dummy variable for season j) that is 

t

s

kj
j

jtjitttt uyOLY +Δ=−−− ∑
≠
=1

ˆˆˆ δ , with the omitted season k coefficient retrieved 

as ∑
≠
=

−=
s

kj
j

jiki
1
δδ . The estimated AR coefficients for the dynamic component yt, 

are used to form tŷ . 

(ii) For the level component Lt, we employ the regression titttt uyOSY +=−−− μˆˆˆ .  

(iii) To test for breaks in the dynamic component ttttt OSLYy ˆˆˆ −−−≡ , use an AR(p) 

model tti uyL =)(φ , with AR polynomial p
ipiii LLLL φφφφ −−−−= ...1)( 2

21  in the 

lag operator L.  

                                                 
9 Although the Qu and Perron (2007) procedure is developed for multivariate systems, it is adopted here because 
of its attractive features, including the possibility of using volatility break information when testing for mean 
breaks, as well as an explicit handling of volatility breaks that allows us to avoid the current practice of using 
mean break tests in conjunction with some form of volatility proxy in the context of the Bai and Perron (1998, 
2003) methodology. Further, our Monte Carlo experiments indicate increased precision of volatility break dating 
using Qu and Perron’s (2007) maximum likelihood estimator. 
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In all cases, the most recent estimates are employed when constructing the dependent variable 

for the regression.  

To test the null hypothesis 00 : μμ =iH  )1...,,1( 1 += mi , 00 : δδ =iH  

)1...,,1( 2 += mi  where )',...,( 1 isii δδ=δ , or 00 : φφ =iH  )1...,,1( 3 += mi  where φi = 

)',...,,( 21 ipii φφφ , against m ≤ M breaks (for a specified maximum M) we employ the statistic 

[ ]),,(supmaxmax
1

εqmFaWD TmMm≤≤
= , (7) 

where 11 =a  and for 1>m , m is m1, m2 or m3, as appropriate, ),(/)1,( mccam αα= , in which 

),( mc α  is the asymptotic critical value of the supremum statistic ),,(sup εqmFT  at 

significance level α , in which  
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is a Wald-type test statistic for structural change at m unknown break dates, β̂  is the vector of 

coefficients, that is , μ̂ , δ̂  or φ̂ , for m breaks at given dates with estimated covariance matrix 

)ˆ(βV , R is a non-stochastic matrix such that )...,,()( 121 +′−′′−′=′ mmR βββββ , q is the 

number coefficients (all of which are allowed to change), λi (i = 1, …, m) indicate the break 

dates as fractions of the sample size, that is, 1...0 1 <<<< mλλ  with ][ ii TT λ= and finally 

εΛ  denotes all permissible sample partitions. To allow for potential breaks in the residual 

variance for each equation, we use the Heteroskedasticity Consistent (HC) version of the tests 

when testing for the presence of breaks. Moreover, in the first iteration for mean and seasonal 

breaks we also allow for autocorrelation through the use of HAC, using the quadratic spectral 

kernel with automatic bandwidth selection as in Andrews (1991).  

If the WDmax test of (7) rejects the null of no breaks at the 5% significance level, a 

sequential F-type test is used to determine the number of breaks and their locations. In 

particular, the test statistic is defined as  
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(8). The test statistic in (9) is applied for l = 0, 1, …, m until the test fails to reject the null 

hypothesis of no additional structural breaks. Note that, for each value l, the estimates of all 

break dates are re-estimated to find those corresponding to the global maximum of the 

likelihood function. 

 The null hypothesis of no break in conditional volatility, 2
0

2
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)1...,,1( 4 += mi , is tested using a likelihood ratio test statistic. In particular, the SupF 

statistic of (7) is replaced by the SupLR statistic defined as  
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tû  (t = 1, …., T) the residual series from (4), while ~ represents the corresponding quantities 

computed under the null hypothesis of no volatility breaks. Similarly, the sequential test of (9) 

is replaced by  
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Having obtained the number of structural breaks using (9) or (11), as appropriate, the 

break dates are estimated as those that maximise the corresponding statistic. Using the 

methodology of Qu and Perron (2007), 90% confidence intervals are also computed for the 

break dates. 

From a practical point of view the maximum number of breaks, M, needs to be 

specified, as well as the minimum fraction ε of the sample in each regime. Critical values of 
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the tests depend on both the number of coefficients allowed to change and ε. In general ε has 

to be chosen large enough for tests to have approximately correct size and small enough for 

them to have decent power. Moreover, when the errors may be autocorrelated and/or 

heteroskedastic, ε  has to be larger than when these features are absent. In order to balance 

these issues, we set ε = 0.2 and M = 2 when the tests are applied for the seasonal component10 

and 15.0=ε  with M = 5 otherwise.  

 

 

4. Results 

Section 4.1 discusses our principal empirical results concerning the presence of structural 

breaks in different characteristics of monthly CPI inflation for each of the G7 countries and 

the Euro area over the period March 1973 to December 2007, obtained using the iterative 

decomposition procedure described in Section 3.1. Section 4.2 considers the sensitivity 

analyses. 

 

4.1 Iterative decomposition results 

Figures 1 to 8 show the decomposition resulting from the application of the iterative method. 

From the upper left-hand chart, and moving first from left to right, the charts show: (a) the 

original unadjusted CPI inflation series; (b) the estimated dynamic component yt (constructed 

by removing outliers, mean and seasonal components) together with its estimated persistence, 

defined as the sum of the autoregressive coefficients in (4) and corresponding 2± standard 

error bands (in red), and volatility break dates (vertical green lines); (c) the level component 

Lt with 2± standard error bands; (d) the estimated seasonal component for each seasonal 

regime (again with 2± standard error bands); (e) outliers Ot that are removed; and (f) the 

correlogram of the dynamic component yt within each dynamic regime j, together with an 

approximate 95% confidence interval of )(12 1−−± jj TT . With the exception of the 

correlogram, all standard errors are obtained using the White (1980) HC covariance matrix in 

the corresponding regression. Where relevant, the graphs showing the seasonal components 

                                                 
10 Of course, only one observation per year is available on monthly seasonal effects, implying that relatively few 
structural changes can be realistically allowed in these. The fraction ε = 0.2 is specified to allow for the inclusion 
of ‘sales’ prices in CPI in a number of Euro area countries in the 1990s/early 2000s (Commission of the 
European Communities, 2000, p.66). The use of ε = 0.3 results in seasonal breaks for a number of countries 
estimated at the end-point of the interval allowed, while ε = 0.2 yields more satisfactory results overall. 
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and the correlograms for the dynamic component are colour-coded with the first regime (that 

is, the sub-sample to the first break date) in blue, the second in red and the third in pink. 

 Table 1 provides numerical results, which supplement the graphical ones presented in 

the figures. Several interesting conclusions emerge. Firstly, consider the mean breaks results 

reported in Panels A and B. All eight countries (where, for simplicity we refer to the Euro 

area as a ‘country’) experience at least one mean break in the first half of the 1980s, with 

inflation falling by more than half by the end of 1985 compared to its value at the beginning 

of the sample (compare the regime means in Panel B). The high inflation levels of the 1970s, 

of course, reflect the global price shocks of large oil price increases. Further, Canada, Euro 

area France, Italy and the UK all experience further declines in the early 1990s, with all 

countries then having inflation rates between 0.15% and 0.25% a month. In the case of Japan, 

however, mean inflation from late 1998 is negative, reflecting the long-lasting deflationary 

episode it has experienced. These patterns of declines in underlying inflation levels are also 

evident as the downward ‘steps’ in the mean graphs of Figures 1 to 8. 

For some countries mean breaks are dated just before the introduction of inflation 

targeting, with November 1990 for Canada (target adopted in February 1991) and March 1992 

for the UK (inflation target announced in October 1992). In both cases the inflation target 

adoption dates lie within the 90% confidence intervals for the break dates, which are also 

shown in Table 1. Altissimo et al. (2006) point out that 1990s breaks for countries that 

adopted the euro (and, by implication, for the Euro area aggregate) may correspond to 

implementation of the nominal convergence required by the Maastricht Treaty, which was 

signed in February 199211. Overall, and in line with Cecchetti and Debelle (2006), Altissimo 

et al. (2006) and others, it is evident that level shifts since the early 1970s are an important 

feature of the inflation process for these countries. 

Secondly, Panels C and D in Table 1 indicate that all countries two experience breaks 

in their seasonal patterns, with these patterns altering in both the 1980 and 1990s in Canada, 

Italy, Japan and UK, with changes in the 1990s and around 2000 for the Euro area, France, 

Germany and the US. Indeed, the close co-incidence of the dates for changed seasonality in 

the Euro area, France and Germany is notable. As anticipated, due to the change in the prices 

covered, the magnitude of seasonality increases from 2000 for the Euro area, with such an 

increase taking place in 1992 for France, due to their inclusion of sales prices from this date. 

                                                 
11 Although Germany does not experience any 1990s mean break, those for other Euro area countries may be 
viewed as bringing their inflation levels into line with those already experienced by Germany. 
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Bilke (2005) notes that the inclusion of such prices for France was completed in 1998, which 

corresponds to the second seasonal break date we detect for this country in Panel C. The 

marked seasonal effect for the UK in April is due to the traditional timing of the 

implementation of indirect tax changes arising from the annual government budget; see 

Figure 7, Seasonal chart. The change in seasonality in 1993 in Panel C is close to that found 

by Osborn and Sensier (2008) for the UK retail price index and may be due to the timing of 

budgets being disrupted from that year12.  

As evident from the seasonal components graphed in Figures 1 to 8, these large 

northern hemisphere countries typically see lower than average inflation during the summer 

months, although this is less marked in the US than in other countries. With the exception of 

Japan, strong negative seasonal effects are seen in December or January, although the timing 

of this sometimes changes (for example, in France). The inclusion of price reductions during 

sales has a clear impact on the changed seasonal patterns in these months for Germany and 

the Euro area from 2000.  

Thirdly, outliers are reported in Panel E of Table 1. Some of these are related to tax 

changes, such as the introduction of the Canadian Goods and Services Tax in January 1991 or 

the introduction of the UK Council Tax in April 1991.  

Fourthly, Panel F shows the AR lag lengths for the dynamic component chosen using 

the HQ criterion employed when testing dynamic breaks in the final iteration13. When HQ 

selects a zero lag length, then a lag of 1 is adopted for inference purposes. 

Finally, Panel G shows the number of iterations required to achieve convergence. 

These range from 4 to 19, illustrating the interactions between the structural breaks in the 

components of the model in (1). For Germany and the UK, the iterative procedure cycles 

between two sets of break dates, with results presented being those which minimize the HQ 

criterion of (6), with values shown in Panel H of Table 1. However, in each case the two 

cycles are very close to each other, with no substantive difference between their 

implications14. 

Turning to Table 2, it is notable that inflation dynamics remain unchanged from 1973 

only for Canada (Panel A), which effectively has zero inflation persistence (Panel B). 

Whereas studies that examine inflation persistence allowing for mean breaks (including 
                                                 
12 The dates for all UK budgets since 1900 can be found at http://www.hm-treasury.gov.uk/5511.htm. 
13 The maximum number of lags considered is Pmax=integer(12*(T/100)1/4). 
14  Compared with the results in Table 1, the other set of break dates differ in relation to the first seasonal break 
for both countries, with that for the UK being in February 1982 and for Germany in October 1991.  
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Cecchetti and Debelle, 2006, and Levin and Piger, 2006) typically assume unchanged 

inflation dynamics, our procedure uncovers one break in the AR coefficients for all countries 

except Canada. Indeed, inflation persistence, measured in Panel B as the sum of the AR 

coefficients, is always very low after the dynamic break. This is true even though persistence 

is typically around 0.4 or more when computed over the whole sample period with mean 

breaks, but not dynamic breaks, taken into consideration (shown in parentheses in Panel B). 

Two other aspects of our results in relation to persistence should be noted. Firstly, as 

indicated in Panel C, the HQ criterion selects zero lags in the second dynamic regime for all 

countries except Italy and the US, emphasising that estimated persistence (obtained from the 

use of an AR(1) model) is effectively zero for such countries. For the US, the aggregate of the 

two estimated AR coefficients is almost exactly zero, and hence only Italy is estimated to 

have substantial inflation persistence at the end of the sample. The second piece of evidence is 

provided by the correlograms for the dynamic component (that is, tttt OSLY ˆˆˆ −−− ), shown in 

the bottom right-hand panel of each of Figures 1 to 8, where almost all autocorrelations are 

typically within the confidence bands around zero either over the whole sample period 

(Canada) or in the final dynamic regime (Euro area, France, Germany, Japan and UK). 

Therefore, although Panel A indicates that the timing of the persistence change differs across 

countries, our result that it has been eliminated is stronger than evidence found by others that 

taking into account mean breaks generally lowers persistence estimates (see, for instance, 

Altimisso et al., 2006, Cecchetti and Debelle, 2006, Levin and Piger, 2006). However, our 

results in Table 2 and Figures 1 to 8 are largely in accord with the conclusion of Benati (2008) 

that recent inflation in countries such as Canada, the US and the Euro area can be treated as 

effectively a white noise process.  

Having taken into account the effects of multiple structural breaks in level, seasonal 

and dynamic components as well as outliers through the model given by (1) to (4), Panels D 

and E of Table 2 provide evidence on changes in (conditional) inflation volatility. The results 

in Panel D are broadly consistent across countries, with most countries experiencing a 

volatility break in the first half of the 1980s, corresponding to the beginning of the Great 

Moderation. However, there is also evidence of this moderation coming to an end around the 

close of the century, with volatility increases dated during 1999 for Canada, France and the 

US. Particularly noteworthy is the US, for which we find that (conditional) inflation volatility 

more than doubles from 0.09 to 0.20. Japan shows a different pattern, with an early volatility 
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decline (in 1979), followed by a further decline in 1999. This latter result is in accord with the 

visual impression from Figure 6 of low and steady inflation in Japan.  

The correlograms of the estimated dynamic component in Figures 1 to 8 also imply 

that the relatively simple model of (1) to (4) adequately captures the seasonal pattern in the 

series, since there is little evidence of significant positive serial correlation at a lag of 12 

months. The only exceptions are the UK, where there is modest evidence of such serial 

correlation in the second dynamic regime (after 1990) and for the US, where there are a 

number of significant positive and negative autocorrelations around the annual lag. However, 

in the latter case the second dynamic regime is dated from 1999, and the relatively small 

number of observations in this regime implies that inference may be unreliable. Further, as 

noted in the next subsection, these autocorrelation patterns for the US in this period are not 

specific to the use of the model given by (1) to (4). 

 

4.2 Sensitivity analysis 

Table 3 provides summary results relating to four different model choices. Firstly, in Panel A, 

the monthly linear X-11 filter15 replaces the deterministic seasonal model of (3) within the 

iterations, while in Panel B the model of (1) to (4) is employed without iteration (that is, 

outliers are removed, with seasonality breaks, mean breaks, dynamic breaks and volatility 

breaks then estimated in that order). Finally, Panels C and D show the results when only 

outliers are removed before volatility breaks are estimated, without and with iteration 

respectively. 

 Comparing the mean breaks in Panels A and B of Table 3 with those of Table 1, it is 

clear that estimated mean breaks are relatively invariant to the treatment of seasonality or to 

making a single pass through the algorithm. Indeed, only for France is the number of mean 

breaks sensitive to the choice made. Also, the use of the X-11 seasonal filter generally leads 

to very similar outliers to those in Table 1 and hence, to conserve space, the dates of these are 

not recorded in Table 3. However, the smoothing behaviour of the filter can conflate outliers, 

seasonality and mean breaks, and hence may lead to spurious volatility breaks. It is 

particularly notable that the X-11 linear filter hides the reunification outliers detected for 

                                                 
15 Seasonal adjustment is applied using the procedure of Stock and Watson (2003), which avoids end-point 
problems by using AR models to forecast and backcast observations required to employ the two-sided symmetric 
filter.  
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Germany in Table 1 (Panel E), with these instead being associated with an apparent volatility 

change during 1993 in Panel A of Table 3.  

However, seasonal adjustment sometimes has a substantial influence on estimated 

dynamic breaks and on volatility breaks. More specifically, no dynamic breaks are found for 

Germany or Japan in Panel A of Table 3, which is presumably due to the smoothing inherent 

in the filter (Ghysels and Perron, 1996), while the dates of detected breaks differ markedly 

from those of Table 2 for Italy and the US. Further, adjustment leads to the seasonal break 

detected in Table 2 for the Euro area in 2000 (and attributed to the inclusion of sales prices in 

CPI) being associated with a volatility break in Panel A of Table 3. It is also notable that the 

volatility breaks in the early 1980s for each of France, Germany and Italy found after seasonal 

adjustment are (surprisingly) not uncovered when the corresponding Euro area aggregate is 

examined.  

Although correlograms of the dynamic component after adjustment using the X-11 

filters are not shown, such adjustment leaves significant serial correlation for all series at 

seasonal lags.  This is presumably because the implicit assumptions made about the properties 

of the series when this filter is applied are not satisfied for these monthly inflation series.  

 As noted above, official seasonally adjusted CPI data are available only for Germany 

and the US. When the iterative procedure of Subsection 3.1 is applied to these data, skipping 

the seasonal modelling stage, this yields one mean break for Germany, early in the 1980s, but 

no dynamic breaks and five volatility breaks. These results for Germany are very similar to 

those reported in Panel B of Table 3 and discussed below. For the US, however, the results 

largely reproduce those in Panel A, except that the dynamics and volatility breaks in 1984 and 

1983 (respectively) are absent. Two other features of the official seasonally adjusted series are 

notable in relation to the US results in Tables 1 and 2. Firstly, this data does not imply that 

persistence declines to zero in the second dynamic regime. Secondly, the correlogram for the 

dynamic component in this second regime is very similar to that shown in Figure 8, so that the 

positive and negative significant autocorrelation around the annual lag in the latter part of the 

sample period is not a consequence of the assumptions about seasonality embedded in the 

deterministic specification of (3). 

In comparison with the seasonal breaks in Table 1, obtained after iterating, those in 

Panel B of Table 3 are fewer in number; for example, the breaks for France associated in the 

previous subsection with changed treatment of sales prices are not found in this latter table. 

Nevertheless, the seasonality breaks for Germany, Japan and the UK are largely unchanged. 
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Overall, however, the greatest impact from iteration comes in the dynamic and volatility 

break analysis, which backs up the simulation findings of Hansen (1992) and Pitakaris (2004). 

The apparent difficulty in detecting persistence breaks in the presence of ignored volatility 

breaks is evident from the disappearance of persistence breaks in Germany, Italy, Japan and 

the UK, which would lead (from Panel B of Table 3) to the conclusion that the dynamics of 

inflation in these countries has been unchanged since 1973. This implies that the application 

of a sequential methodology in previous analyses (including Cecchetti and Debelle, 2006) 

could explain their failure to detect persistence breaks after mean breaks are taken into 

account. Further, the volatility break results in Panel B of Table 3 suggest that undetected 

persistence breaks leads to over-specification of volatility breaks.  

In general, iteration between breaks in the components of (1) to (4) helps to uncover 

important interreactions among them. Indeed, it is quite common that outliers are hidden by 

structural changes in other components, especially the mean. For example, outliers in Canada, 

Germany and Italy are undetected in Panel B of Table 3, due to the failure to recognise mean 

breaks, despite the visual evidence for these outliers in Figures 1, 4 and 5 respectively. One 

impact of these neglected outliers is spurious volatility breaks, a phenomenon discussed by 

van Dijk, Franses and Lucas (1999). Another consequence of a single pass is the 

disappearance of seasonality breaks for Canada, France and Italy, which can affect evidence 

of volatility breaks.  

 When no breaks are considered in the systematic part of the model, namely no breaks 

are permitted in (2), (3) or (4), then (as may be anticipated) relatively more evidence is found 

for volatility breaks. For Canada, the Euro area, Germany and the US more volatility breaks 

are identified in Panel C of Table 3 than in Table 2, but fewer are found for Italy and Japan. 

However, iteration between outlier and volatility breaks in Panel D apparently improves 

discrimination between these. This is most clear for Canada, where the detection of one 

outlier after iteration in Panel D reduces the number of volatility breaks from five to two. On 

the other hand, iteration increases both the number of outliers and the number of volatility 

breaks for Italy, while both are reduced for the UK. 

Thus, interaction between outliers and volatility breaks can be very important. Even in 

this simple set-up where other components are assumed to be constant, this illustrates the 

importance of handling outliers within a model, rather than correcting them at a prior stage, as 

is common in empirical studies. 
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 Nevertheless, the increase in the volatility of Canadian and US inflation around 1999 

is not sensitive to the specific methodology employed. Although sometimes dated in 2000 or 

2001 , this volatility break is significant for both countries in Panel D of Table 2, and in each 

of Panels A, B and C of Table 3. This break is also detected when official US seasonally 

adjusted data are employed. However, the volatility break for France around the same date in 

Table 2 is not always present in Table 3. 

 

 

5. Conclusions  

This paper proposes an iterative procedure for the decomposition of a time series into level, 

seasonality, outlier and dynamic components, together with conditional volatility, when these 

components are permitted to exhibit distinct multiple structural breaks over the sample period. 

To our knowledge, such a procedure has not been proposed previously, with analyses that 

allow distinct breaks (such as mean and volatility in Sensier and van Dijk, 2004) considering 

these sequentially. However, our results suggest that substantially more evidence of change 

can be uncovered when the iterative procedure is used rather than a sequential procedure, with 

outliers also being identified more adequately. Further, compared with seasonally adjusting 

the data, we believe that this iterative procedure based on deterministic mean and seasonal 

effects allows a clearer distinction to be drawn between the various characteristics of inflation 

and the dates at which these characteristics have changed. 

Application of the new procedure to monthly CPI inflation in G7 countries and the 

Euro area (aggregate) from 1973 delivers evidence that breaks occur not only in the level of 

(mean) inflation, but also in its seasonal pattern, dynamics (with the single exception of 

Canada) and volatility. These results contribute to the on-going debate (see, for example, 

Cecchetti and Debelle, 2006) about the nature of changes over time in the inflation process of 

developed economies. More specifically, we find that inflation persistence in virtually all 

countries considered (the only exception being Italy) is effectively zero in the latter part of the 

sample period, in line with a similar conclusion of Benati (2008), while inflation volatility 

increases around 1999 for the US and some other countries. 

 While our focus is univariate inflation, the analysis of Blanchard and Simon (2001) 

suggests that the increased inflation volatility we uncover from the end of the last century 

may be indicative of increased output volatility from around that date. Consequently, and also 

in the light of evidence of impending recession in many countries, the “Great Moderation” 
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may prove to have been a temporary phenomenon. Further, the results in this paper point to a 

communality of break dates across countries for the mean and volatility of inflation, which 

indicates that a multi-country analysis may shed further light on international inflation 

linkages and how these have changed over time.  
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Figure 1: Canada Inflation Decomposition  
 

 
 
Notes: Panels (from left to right) show: (a) observed inflation, (b) dynamic component, persistence (red line) 
and volatility break dates (green vertical lines); (c) regime means, (d) deterministic seasonal component for 
regime 1 in blue, regime 2 in red and regime 3 in pink, (e) outliers and (f) correlogram for the estimated 
dynamic component over the sample period 1973.03 to 2007.12. 95% confidence intervals are shown as 
dashed lines. 
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Figure 2: Euro Area Inflation Decomposition 
 

 
 
Notes: See Figure 1. 
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Figure 3: France Inflation Decomposition 
 

 
 
Notes: See Figure 1. 
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Figure 4: Germany Inflation Decomposition 
 

 
 
Notes: See Figure 1. 
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Figure 5: Italy Inflation Decomposition 
 

 
 
Notes: See Figure 1. 
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Figure 6: Japan Inflation Decomposition 
 

 
 
Notes: See Figure 1. 
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Figure 7: UK Inflation Decomposition 
 

 
 
Notes: See Figure 1. 
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Figure 8: US Inflation Decomposition 
 

 
 
Notes: See Figure 1. 
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Table 1. Structural breaks in mean, seasonality and outliers 

Canada Euro Area France Germany Italy Japan UK US 
A. Mean breaks 

82.06  80.01 82.10  80.11 82.05 82.06 
82.02  78.03 82.05  80.07 82.03 82.04 
82.10  81.11 83.03  81.03 82.07 82.08 

 84.03 85.05  84.02    
 84.01 85.04  84.01    
 84.05 85.06  84.03    

90.11 93.07 91.11  91.03  92.03  
89.10 92.09 90.11  89.06  91.07  
91.12 94.05 92.11  92.12  92.11  

  99.11  96.06 98.11   
  88.12  95.09 95.01   
  07.12*  97.03 02.09   

B. Means across sub-sample (and ignoring mean breaks) 
0.79 0.67 0.88 0.41 1.25 0.71 1.08 0.73 
0.37 0.30 0.78 0.15 0.52 0.13 0.42 0.25 
0.16 0.17 0.25  0.39 -0.03 0.15  

  0.12  0.19    
  0.16      

(0.38) (0.67) (0.88) (0.41) (1.25) (0.71) (1.08) (0.38) 
C. Seasonality breaks 

83.11    83.12 84.09 81.09  
80.11    82.10 83.12 81.01  
86.11    85.02 85.06 82.05  

 91.12 92.01 92.01 95.07  93.04 92.04 
 91.02 91.03 91.02 92.11  92.08 88.11 
 92.10 92.11 92.12 98.03  93.12 95.09 

99.07 00.08 98.12 00.01  99.01  99.03 
98.04 00.04 95.12 99.09  96.10  98.02 
00.10 00.12 01.12 00.05  01.04  00.04 

D. S.D. of seasonal fluctuation across regimes (and ignoring seasonality breaks) 
0.23 0.41 0.34 0.40 0.35 0.51 0.61 0.14 
0.30 0.43 0.50 0.55 0.51 0.58 0.70 0.65 
0.26 0.75 0.47 0.47 0.31 0.65 0.75 0.59 

(0.26) (0.55) (0.40) (0.40) (0.38) (0.54) (0.67) (0.35) 
E. Outliers 

91.01   91.07 74.03 73.12 75.05  
   91.10 76.12 74.01 79.07  
   93.01 79.09  91.04  
    80.01    
    80.12    

F. AR orders 
0 1 8 1 12 3 3 13 

G. Number of iterations required for convergence in main-loop 
4 5 12 19* 6 5 19* 4 

H. Model HQ criterion value 
-7.41 -7.4 -10.03 -6.08 -10.37 -6.39 -5.01 -10.53 

Notes: Decomposition of the components of (1) using the iterative method described in the text. Breaks are detected 
using the Qu and Perron (2007) structural break test (Mean: trimming 15%, max breaks 5; Seasonal: trimming 20% 
max breaks 2), with confidence intervals computed using HC standard errors. Panel A shows the estimated break dates 
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for the level component in bold, together with lower and upper bounds of asymptotic 90% confidence intervals. Mean 
monthly inflation rates in the various subsamples determined by the level breaks are given in Panel B, with overall 
mean inflation estimated without levels breaks in parentheses. Panel C shows the estimated break dates for the 
seasonal component in bold, together lower and upper bounds of asymptotic 90% confidence intervals, with * 
indicating that the corresponding estimated bound lies outside the sample period (and is set to the final sample period). 

Panel D shows the standard deviation of the seasonal fluctuations in each subsample, that is 
5.0

1
2 )]1(ˆ[
2

−∑ =
ss

l lkδ , 

together with this measure computed ignoring seasonality breaks (in parentheses). The dates of detected outliers are 
given in Panel E, where an outlier is defined as being 5 times the interquartile range from the median. Panel F 
indicates the autoregressive order of the dynamic component, selected according to the HQ information criterion, and 
used at entry to the dynamic/volatility sub-loop. Panel G shows the number of iterations of the main loop required to 
achieve convergence of the algorithm, with ** indicating that the iteration converged to a two cycle oscillation and 
choice between these is made based on HQ criterion. Finally, Panel H shows the value of the Hannan-Quinn criterion 
of the full model, defined in Equation (6) in the text.  
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Table 2. Dynamic and volatility components of CPI decomposition 
 

Canada Euro Area France Germany Italy Japan UK US 
A. Dynamic breaks 

     79.02   
     76.10   
     81.06   
  85.05  86.10    
  84.08  85.07    
  86.02  88.01    
 90.07     90.10  
 87.01     89.06  
 94.01     92.02  
   00.05    99.03 
   97.03    98.01 
   03.07    00.05 

B. Persistence over sub-samples (and ignoring dynamic breaks) 
-0.02 0.52 0.81 0.29 0.39 0.66 0.68 0.74 

 0.14 -0.15 -0.13 0.48 -0.10 0.19 -0.01 
(-0.02) (0.36) (0.67) (0.21) (0.40) (0.43) (0.59) (0.63) 

C. AR orders over sub-samples 
0 1 1 1 1 3 3 3 
 0 0 0 1 0 0 2 

D. Volatility breaks 
     79.09   
     75.11   
     79.11   

83.06 82.07 83.05 82.08 83.12  85.09  
75.01 73.03* 74.04 73.10 82.02  82.09  
83.10 85.04 84.10 84.03 84.01  85.11  

       92.04 
       90.07 
       92.05 

99.12  99.11  95.06 99.01  99.03 
99.06  97.12  90.11 96.10  99.02 

07.12*  07.12*  97.07 99.05  01.02 
E. S.D. of shocks over sub-samples (and ignoring volatility breaks) 

0.33 0.16 0.20 0.24 0.32 0.64 0.37 0.22 
0.20 0.13 0.14 0.17 0.13 0.32 0.18 0.09 
0.32  0.18  0.10 0.16  0.20 

(0.27) (0.14) (0.17) (0.19) (0.20) (0.37) (0.26) (0.19) 
F. Number of iterations required to converge in sub-loop 

2 3 3 3 3 3 3 3 

Notes: Decomposition of the breaks in AR process of (4) into dynamic and volatility components using the iterative 
method described in the text. Breaks are detected using the Qu and Perron (2007) structural break test with 15% 
trimming and a maximum of 5 breaks, with confidence intervals computed as in Qu and Perron (2007) with 
homoscedastic errors. Panel A reports the estimated break dates in AR coefficients (in Bold) with asymptotic 90% 
confidence intervals immediately below. Panel B reports estimated persistence, defined as the sum of autoregressive 
coefficients, based on sub-samples defined by the break dates (and, in parentheses, with no dynamic breaks). The AR 
orders chosen by HQ in each subsample are in Panel C. Panel D shows the estimated volatility breaks  (in Bold) and 
their asymptotic 90% confidence intervals, with * indicating that the interval extends beyond the beginning/end of the 
sample period, with the reported date being the appropriate sample end-point.. Panel E has estimated standard 
deviations of the errors, in subsamples defined by the volatility break dates (and, in parentheses, with no volatility 
break). Panel F shows the number of iterations required for convergence of persistence and volatility breaks. 
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Table 3. Sensitivity analysis 

 Canada Euro Area France Germany Italy Japan UK US 
A. Linear X-11 seasonal adjustment filter 

Mean breaks 
(Dates) 

2 
(83.03, 91.01) 

2 
(84.02, 93.07)

2 
(84.10, 91.11) 

1 
(82.10) 

3 
(80.01, 85.06, 

96.06) 

2 
(81.01, 98.11) 

2 
(81.12, 91.11) 

1 
(82.07) 

Outliers 1 0 0 0 5 3 3 0 
Dynamic breaks 
(Dates) 

0 1 
(88.08) 

1 
(86.02) 

0 1 
(80.07) 

0 1 
(90.10) 

2 
(84.04, 91.07) 

Volatility breaks 
(Dates) 
 

2 
(84.05, 99.12) 

1 
(00.03) 

1 
(82.11) 

3 
(83.08, 88.10, 

93.11) 

2 
(84.11, 95.10) 

2 
(86.03, 99.01) 

1 
(85.07) 

3 
(83.04, 92.02, 

01.06) 

B. Deterministic components with no iterations  
Mean breaks 
(Dates) 

2 
(83.06, 90.09) 

2 
(83.12, 93.03)

4 
(79.05, 84.08, 
91.11,99.11) 

1 
(82.10) 

3 
(84.02, 91.03, 

96.06) 

2 
(80.11, 97.06) 

2 
(82.04, 92.03) 

1 
(82.07) 

Seasonality breaks 
(Dates) 

0 
 

2 
(85.04, 00.08)

0 
 

2 
(93.04, 00.08) 

0 
 

2 
(81.01, 99.01) 

2 
(82.04, 93.04) 

0 
 

Outliers 0 0 0 0 0 1 5 0 
Dynamic breaks 
(Dates) 

0 2 
(86.08, 02.11)

1 
(87.01) 

0 0 0 0 1 
(99.03) 

Volatility breaks 
(Dates) 

5 
(78.10, 84.06, 89.09, 

94.11, 00.01) 

0 1 
(83.05) 

5 
(78.08, 83.10, 

88.12, 94.02, 00.04)

3 
(81.01, 86.04, 

02.10) 

2 
(79.08, 97.04) 

2 
(82.02, 91.05) 

3 
(83.04, 92.04, 

99.03) 
C. . Model for volatility breaks and outliers with no iterations 

Outliers 0 0 0 0 0 1 6 0 
Volatility breaks 
(Dates) 

5 
(79.02, 84.06, 89.10, 

94.11, 99.12) 
 

2 
(92.07, 99.06)

2 
(83.04, 99.11) 

3 
(88.01, 93.02, 

00.03) 

1 
(82.08) 

1 
(84.09) 

2 
(81.06, 91.06) 

3 
(83.04, 92.04, 

 99.03) 

D. Model for volatility breaks and outliers with iterations 
Outliers 1 0 0 0 5 3 5 1 
Volatility breaks 
(Dates) 

2 
(84.06, 99.10) 

2 
(92.07, 99.06)

2 
(83.04, 99.11) 

3 
(88.01, 93.02, 

00.03) 

3 
(80.11, 86.04, 

02.10) 

1 
(84.09) 

1 
(82.02) 

3 
(83.04, 92.04, 

 99.03) 
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Notes: Decomposition of the components of (1) using methods described in the text. Panel A employs the monthly linear X-11 filter coefficients within the iterations to seasonally 
adjust the series. The rows within this panel show: the number of mean breaks and their estimated dates (in parentheses), the number of outliers detected, the number of AR breaks 
and their estimated break dates (in parentheses), and the number of volatility breaks and their estimated dates (also in brackets). Panel B employs one pass of the breaks model with 
deterministic seasonality (i.e. the maximum number of iterations is restricted to be 1), with corresponding information provided to Panel A. Panel C assumes constant mean, 
seasonality and dynamics over the sample period, with outliers removed before detecting volatility breaks, with no iterations. The number of outliers removed and the volatility 
breaks detected are reported, with the dates of volatility breaks also provided (in brackets). Panel D follows the same procedure as in Panel C, except that iteration is undertaken 
between outliers and volatility breaks, with a maximum of 20 iterations.  In all cases, an outlier is defined as being 5 times the interquartile range from the median 
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