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Abstract

In a simple, forward looking univariate model of price determi-
nation we investigate the evolution of endogenous predictor choice
dynamics in presence of two types of agents: fundamentalists and
chartists. We find that heterogeneous equilibria in which fundamen-
talists and chartists coexist are possible, even when the fraction of
agents is endogenized. We then combine evolutionary selection among
heterogeneous classes of models with adaptive learning in the form of
parameter updating within each class of rules and find that equilibria
in which chartists constantly outperform fundamentalists seem never
to be learnable. Simulations also show that, in general, interactions
between learning and predictor choice dynamics do not prevent con-
vergence of both processes towards their equilibrium values when the
equilibrium is E-stable.
Key words: heterogeneity, expectations, predictor choice, learning.
JEL classification: C15, C62, D83, D84, E37.

1 Introduction

Expectations have long been recognized to play a key role in macroeconomic
and finance models. After the rise of rational expectations (RE) in the 70s,
in more recent years economists have acknowledged the importance that
bounded rationality can have on (macro)economic dynamics and the role it
should play in modelling real life situations (Sargent, 1993). In particular,

∗I would like to thank Cars Hommes for useful comments on an earlier draft.
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the RE assumption, at least in its strict sense, does not allow for hetero-
geneity of expectations, a feature that seems so commonly observed in real
economic situations when agents have to make forecasts.

For some years now, a growing literature has been developing on learning
in macroeconomics (Evans & Honkapohja, 2001). The main idea is to replace
RE with adaptive learning schemes that can (potentially) converge in the
limit to RE.

When making economic decisions, agents often need to forecast some
future state of the economy: under adaptive learning, they do it by means
of a model (perceived law of motion - PLM) that in their mind well represents
the dynamics of the variable(s) they are trying to forecast. Moreover, the
parameters of that model are fine tuned by recurrent estimation on the basis
of the new information that becomes available over time.

We follow this approach and let agents choose between two possible mod-
els, one that corresponds to the MSV solution for the economy, and the other
that is a simple AR(1) model. Agents who choose the first model are called
fundamentalists, as they correctly recognize the exogenous driving force(s)
for the economy and use them in their forecasts; agents who instead choose
the AR(1) model are called chartists, as they only base their predictions
on past data, trying to extract (and exploit) the autocorrelation structure
present in the data.

In order to impose some rigor on what would otherwise be an arbi-
trary imposition of heterogeneity, we let agents choose endogenously among
the two different predictors, i.e., we let the fraction of fundamentalists vs.
chartists be determined endogenously in the economy.

We model the choice between predictors using a logit model, following
the seminal work by Brock and Hommes (1997). This modeling strategy
captures a sort of bounded rationality, in the sense that the best performing
model (in any measure we care to use) is not chosen by all agents all the
time. Moreover, parameters of the two models have to be fine tuned to the
economy, in order to deliver the best possible forecasts, i.e., to minimize
their mean squared errors. We start by assuming that these optimal values
are known to agents, and then, in a later section, we drop this assumption
and let agents learn those values through econometrics techniques such as
recursive least squares (RLS). In this way, we are able to combine adaptive
learning, in the form of parameter updating within a class of models, with
evolutionary selection among heterogeneous classes of models.

The main question the paper tries to answer is whether fundamentalists
and chartists can survive together in an economy, or if instead fundamental-
ists (chartists) will always run chartists (fundamentalists) out of the market
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in the long run. Moreover, we want to investigate the interaction between
two types of learning, within a model and across models, to understand how
they might affect each other.

In the literature, heterogeneous expectations with endogenous predictor
choice have been analyzed in particular in the contest of a Cobweb model.
In Brock and Hommes (1997) agents can have either rational or naive ex-
pectations, while in Lasselle et al. (2005) agents are split between rational
expectations and adaptive expectations. In De Grauwe, Dewachter and
Embrechts (1993) the authors consider models of exchange rates with two
classes of agents, fundamentalists and chartists; while Chiarella (1992), Lux
(1995) and Sethi (1996) analyze stock market models with fundamentalists
and chartists. None of these works, though, couple the endogenous deter-
mination of the relative fraction of agents using each model with learning
dynamics.

Guse (2005) and Berardi (2007) analyse heterogeneous learning, but a
limitation of those works is that the proportion of agents using each model
is exogenously determined. Guse (2007) tries to amend this problem in the
same framework as Guse (2005) by introducing a game theoretic analysis
of interactions between two type of agents endowed with different perceived
laws of motion. Finally, Branch and Evans (2006) consider a Cobweb model
with heterogeneous expectations, where agents can use different (but all
misspecified) models, and show that in the limit intrinsic heterogeneity is
possible when the correctly specified model is not available to agents.

Our work is somewhat in the spirit of Guse (2007), though it differs
from it in many dimensions as it considers a different structural model,
different types of expectations and a different endogenous predictor choice
mechanism: in particular, we analyze a simple model of price determination
where fundamentalists and chartists interact through learning and a discrete
logit model of predictor choice. It is meant to give a simplified representation
of how an asset price (or any other price that displays positive feedback from
expectations of future prices on current values) is determined on the market.
The main difference with respect to Branch and Evans (2006), a part from
the type of expectational feedback that in their work is negative, is that we
want to study whether heterogeneity can survive when the correct model of
the economy is available to agents.

The structure of the paper is as follows: Section 2 introduces the model;
Section 3 solves it under heterogeneous expectations and analyses its E-
stability; Section 4 introduces endogenous predictor choice dynamics, analy-
ses E-stability of the endogenous equilibrium and simulate the ensuing sys-
tem; Section 5 introduces real-time adaptive learning and analyzes its inter-

3



play with predictor choice dynamics; Section 6 concludes.

2 The model

The model representing the system is a simple univariate forward looking
model

yt = AEtyt+1 +Bwt (1)

where y is the price level and w the exogenous driving force represented by
a stationary AR(1) process:

wt = ρwt−1 + εt (2)

with εt ∼ N(0, σ2ε) and 0 ≤ ρ < 1.
The model can be thought of as a model of financial markets, where

net demand (and therefore current price) of the asset depends positively
on its future expected price and on a fundamental driving process (here
wt) that could for example represent firm’s profits. A is strictly positive,
meaning that there is a positive feedback from expectations of future values
on current values, as it is common in financial markets. The semi-reduced
form (1) could also represent a model of exchange rates, with the exogenous
process representing, for example, interest rates or inflation differentials.

There are two types of traders, fundamentalists and chartists. Funda-
mentalists use the right model, in the sense that it is consistent with the
MSV solution in which the endogenous variable depends only on the exoge-
nous driving process. Chartists use instead an AR(1) model in the attempt
to discover statistical regularities in the time-series for prices.

With homogeneous expectations, for A < 1 the model is determinate
and for A < 1/ρ the MSV equilibrium is E-stable. The MSV REE is

yt =
B

1− ρA
wt. (3)

For A > 1 the model is indeterminate and there exist an infinite number
of AR(1) solutions, none of which is E-stable. This last result is derived
assuming that agents use a PLM of the type yt = awt + byt−1. Note that
while this solution is never learnable for any parameterizations, the restricted
perception equilibrium (RPE) that would emerge if agents were to use the
model yt = byt−1 will turn out to be learnable for a wide range of para-
meterizations. This RPE is in fact an example of a consistent expectations
equilibrium (CEE) in the sense of Hommes and Sorger (1998): here the true
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law of motion is a linear stochastic process driven by an exogenous linear
random process, while agents believe in a simple AR(1) process driven by
i.i.d. noise.

In the heterogeneous setting, there is a unitary mass of agents split be-
tween α fundamentalists (denoted by superscript f) who correctly recognize
the exogenous driving process and use information about it to form their
expectations

PLMf : yt = awt ⇒ Ef
t yt+1 = aρwt; (4)

and (1− α) chartists (denoted by superscript c), who use past observations
to predict future ones, using a simple AR(1) model

PLM c : yt = byt−1 ⇒ Ec
t yt+1 = b2yt−1. (5)

Parameters a and b are chosen by agents as optimal linear projections, so
as to minimize the mean square errors (MSEs) incurred in making forecasts:

ā : E[wt(yt − awt)] = 0 (6)

b̄ : E[yt−1(yt − byt−1)] = 0. (7)

Note that when there are chartists in the economy, the model used by
fundamentalists is also misspecified (underparameterized), as it misses the
lag component that is introduced into the ALM by chartists.

3 Heterogeneous expectations equilibrium

The equilibrium values ā and b̄ depend on the parameters A, B, ρ and
α. While the first three are structural parameters, α should be regarded as
endogenous, coming from the choice of agents about their forecasting model.
As a first step, we start here by treating α as a structural and exogenous
parameter and compute the heterogeneous expectations equilibrium (HEE)1

for different values of it. In a later section, we will then relax this assumption
and model α as the outcome of endogenous predictor choice dynamics.

Substituting agents’ expectations from (4) and (5) into (1) we can find
the ALM for yt

yt = (Aαaρ+B)wt +A(1− α)b2yt−1
1For a definition of the concept of HEE used here, see Berardi (2007). From a learning

perspective, in a HEE parameter estimates have converged to the optimal value, the one
that minimizes the MSE, for all agents invoved.

5



which can then be used to solve (6) and (7)2 for the equilibrium values of a
and b:

ā =
B

1−Aαρ−A(1− α)ρb̄2
(8)

and
b̄ : b3Aρ(1− α)− b2A(1− α) + b− ρ = 0. (9)

As it can be seen, ā depends on b̄ and the solution for the latter comes from
a 3th-degree polynomial, which we solve numerically. There are of course 3
solutions, of which at least one real. Using Descartes’ Sign Rule we can see
that, for A and ρ positive, there are a maximum of 3 positive real roots and
a maximum of 0 negative real roots, i.e., all the real roots will be positive.3

Numerical computations show that, in the region of the parameter space we
will consider, there is almost always only one real solution; 3 real solutions
emerge only for low values of ρ, and in a very narrow region of the space.
From (8), we can see that as α→ 1, we obtain again the homogeneous MSV
RE solution (3).4

Note that for ρ = 0, there are two solutions: {ā = B, b̄ = 0} and
{ā = B, b̄ = 1/A(1 − α)}. If we substitute the ensuing expectations into
the structural model, in the first case (with b̄ = 0) we obtain the MSV
RE solution yt = Bwt (and fundamentalists turn out to be correct), while
for b̄ = 1/A(1 − α) we have yt = 1/A(1 − α)yt−1 + Bwt, which is a linear
combination of the two models used by the two groups. Ex post, thus, both
fundamentalists and chartists are making mistakes, the first because they
ignore the effect on prices introduced by the second. This last equilibrium,
though, is never E-stable. Nonetheless, imposing ρ = 0 will allow us to
derive some analytical results in a later section, where we will use this case
to help understand the more complicated case with ρ > 0.

Note that for ρ = 0, there is no intrinsic autocorrelation in the driving
process, and all the autocorrelation in prices comes from chartists’ behavior:
in this sense, it is a sort of "self-confirming" autcorrelation; for ρ > 0,

2The main difficulty in solving for the optimal values for a and b is that variances and
covariances involving the endogenous variable depend, in equilibrium, on the value of the
parameters that are to be found. Variances and covariances needed in order to find the
solutions are available in the Appendix.

3This result relies on the restrictions imposed above, namely A, ρ > 0. We are not
considering here models with negative feedback from expectations or with negative auto-
correlation in the exogenous driving process.

4Note that for α = 1, the model implies b = ρ: as there are only fundamentalists in
the economy, the autocorrelation in the price level is the same as that in the exogenous
driving force. Of course, there are no chartists actually using the equilibrium value for b.
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instead, there is some persistence in the driving process that is passed on to
prices, and this can be picked up (and increased) by chartists. This could
explain why in the first case the HEE is not E-stable, while in the second
case it can be.

3.1 E-stability of HEE

We are interested now in checking whether or not the equilibrium just found
could be the outcome of adaptive learning dynamics. Suppose agents did
not know the equilibrium values for a and b, could they learn these val-
ues through adaptive learning schemes such as recursive least squares? To
answer this question, we will make use of the concept of E-stability.5

In order to assess E-stablity, we need to derive the ODEs governing the
limiting behavior of the parameters being learned by agents. Given the
misspecifications in the PLMs, we can not map directly the PLMs into the
ALM, but we need to project the ALM onto the restricted space of the
PLMs. Using the stochastic approximation approach, we can thus derive
the differential equations representing the T-maps from PLMs to the ALM:

ȧ =
Γ

1− ρΩ
− a (10)

ḃ = Γ
¡
σ2y
¢−1

σ2w,y−1 +Ω− b =

¡
1− Ω2¢ ρ
(1 + ρΩ)

+Ω− b (11)

where Γ, Ω, σ2y and σ2w,y−1 are as defined in Appendix A and all depend
on the value of a and b, but for simplicity of notation we do not write out
this dependence explicitly. By evaluating the Jacobian J (see Appendix B)
at the points (ā, b̄) that solve (6), (7),6 we can evaluate E-stability of the
equilibrium: this requires the two eigenvalues of J to have negative real part.

We consider the parameter space delimited by .01 ≤ A ≤ 3,7 .01 ≤
α ≤ .99 and ρ = {.3, .6, .9} (with B = .1) and analyze E-stability of the
real solutions: it turns out that only one solution can be E-stable and the
contour map in Figure 1 shows the region of E-stability (light green) for this
solution.

The region of E-stability for the HEE seems to be related with the re-
gion of E-stability for the homogeneous REE (A < 1/ρ), except that for low
values of α the region here tends to shrink down and E-stability requires

5For a detailed explanation of the concept of E-stability, see Evans and Honkapohja
(2001).

6These (ā, b̄) are of course also the solutions to (10), (11).
7This includes a region of determinacy (A < 1) and one of indeterminacy (A > 1).
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a lower A. Note that for high values of A and low values of α, there are
combinations of these two parameters that lead to a violation of the restric-
tion Ωρ < 1 necessary for having a finite covariance structure in the system
(see Appendix): all these combinations, though, reside in a subregion of the
E-instability area.8

By setting α = 0, we are also able to analyse E-stability for the restricted
perceptions equilibrium (RPE) that emerges when the economy is populated
only by chartists. As we have mentioned before, and is shown in Figue 2,
the RPE turns out to be E-stable in a wide region of the parameter space.9

4 Endogenous predictor choice dynamics

In order to endogenize the relative size of the two groups (α), we look at
the relative performance of the two forecasting models for different values
of A, ρ and α. As a measure of performance, we use the difference in the
mean squared errors (MSEc −MSEf ) and show it in Figure 3 as contour
map, where the green color represents regions of the parameter space where
MSEc −MSEf > 0, while the blue color shows regions where chartists
outperform fundamentalists. We show 3 cases, for ρ = .4, .6 and .9: as it can
be seen, in all cases there is a stripe cutting across the graph where chartists
are able to outperform fundamentalists.10 For values of ρ lower than .4,
though, fundamentalists always have smaller forecast errors than chartists:
this means that there must be enough persistence in the exogenous data
generating process for an AR(1) model to be able to replicate successfully
the dynamics of the endogenous variable.

4.1 The general case

We can now use this measure of relative performance to endogenize the
fraction of fundamentalists/chartists in the economy. In the previous sec-
tion we have derived equilibrium values for the endogenous parameters (ā, b̄)
as function of the parameters (A,B, ρ, α). Now we endogenize α and look

8 If we decrease ρ even further below .3, the region of E-stability increases rapidly and
comprises an area where the restriction on Ωρ is not satisfied: here, as in the rest of the
paper, we do not consider such cases, since when the restriction on Ωρ is violated the
model breaks down and can not deliver meaningful results.

9 It turns out that, also in this case, only one solution to (7) can be real and E-stable
in the region where the restriction on Ωρ is satisfied. In particular now, also for very low
values of ρ this condition remains satisfied, and the RPE is E-stable.
10All these regions are in the area where the restriction Ωρ < 1 is satisfied. This

condition is violated only in a subregion of the area below the blue stripes.
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for an equilibrium triple (ā, b̄, ᾱ) dependent on the parameters (A,B, ρ): α
will be now determined endogenously by the relative performance of the
two models. This equilibrium concept, where heterogeneity is endogenized,
is similar in spirit to the misspecifications equilibrium (ME) introduced in
Branch and Evans (2006), except that in their case all agents use a mis-
specified model while here one group of agents is in fact using the correct
model for the economy.11 This is an important difference, because it will
allow us to see whether a correctly specified model always outperforms a
misspecified one or if instead intrinsic heterogeneity can persist also when
the correct model is available to agents (at no extra cost).

The measure we use to describe the performance of each predictor is the
mean squared error (MSE), which comes from assuming a quadratic loss
function for the forecast errors:

MSEf = E(yt − awt)
2 (12)

MSEc = E(yt − byt−1)2. (13)

Agents choose their predictor (i.e., their identity as fundamentalists or
chartists) on the basis of relative performance, according to a discrete logit
model. Denoting with α the fraction of fundamentalists, we have:

α =
exp{−βMSEf}

exp{−βMSEf}+ exp{−βMSEc} (14)

or equivalently

α =
1

2

µ
tanh

·
β

2
(MSEc −MSEf )

¸
+ 1

¶
, (15)

where β is the "intensity of choice" parameter (Brock and Hommes, 1997),
a measure of how fast agents switch predictors. For β → ∞, we have a
deterministic choice model where agents are fully rational and all choose
the predictor with the smaller MSE, while for β = 0 agents split equally
between the two predictors independently of the relative performance. The
parameter β also acts as a re-scaling factor: as the absolute magnitude of
the MSEs (but not their relative one) depends ultimately on the variance of
the noise εt, different combinations of β and σ2ε give similar dynamics for α.
Throughout our reported simulations we will keep β = 10 and σ2ε = .1.

Denoting ∆ = MSEc −MSEf , and noting how this measure depends
on the structural parameters (A,B, ρ) and on α (see Appendix A), we can

11Here correct has to be interpreted as consistent with the MSV REE.
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write

α = f(∆;β)

∆ = g(α;A,B, ρ, σ2ε)

and therefore, with some economy of notation

α = f [g(α)] . (16)

As this function can not be analyzed analytically, we consider the system
in real time, transform the function into a map

αt+1 = f [g(αt)] (17)

and simulate the system in order to find the long-run behavior of α. Note
that as α itself is a function of the structural parameters, the long-run
behavior of the system will be ultimately determined by (A,B, ρ, β, σ2ε).

We will analyse the system for different values of A and ρ, while keep-
ing B = .1, β = 10, σ2ε = .1. For low values of A, fundamentalists al-
ways prevail, and α converges to a fixed point ᾱ ∈ (.5, 1]. Things become
more interesting when there is a strong feedback from expectations to cur-
rent values. We will thus focus on three scenarios, respectively defined by
(A, ρ) = (1.5, .5), (1.5, .62), (1.5, .99).12 In Figure 4 we report results for
the dynamics of α in each of the three different cases. As it can be seen,
for low values of ρ, fundamentalists still prevail even when there is high
feedback from expectations to current variables. For high values of ρ, in-
stead, chartists are able to outperform fundamentalists, as shown in the
third quadrant. For intermediate values (ρ about .62), the system keeps
cycling, as depicted in the second quadrant.13 These cycles increase their
frequency as ρ increases to about .63, and then disappear as the system
quickly enters into a region where the restriction on Ωρ is violated. The
same type of behavior happens for different combination of the parameter
values: in particular, if A is increased, then a lower ρ is sufficient to trigger
cycles and to make chartists outperform fundamentalists.

These simulations show different types of intrinsic heterogeneity that can
emerge in this model: the relative size of the two groups can stabilize on
a fixed value, with one group or the other prevailing in size, or it can keep
changing in a cyclic behavior, as the two groups alternate in taking the lead.

12Other combinations of A and ρ can produce the same three scenarios: in general,
lower values of A require higher values of ρ in order to produce the same scenario.
13 In all results reported, we have checked that the condition on Ωρ is satisfied.
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Note that as α cycles, the equilibrium values of the two forecasting models
(ā, b̄) cycle together: this means that agents, in their learning activity, need
to learn parameters that are drifting around.

A regularity that has emerged from our simulations is that there must
be enough persistence in the exogenous driving process for chartists’ AR(1)
model to be able to compete with the fundamentalists’ one. When there is
a strong (positive) feedback effect from expectations to current values, and
a high autocorrelation coefficient in the exogenous driving precess, chartists
can in fact outperform fundamentalists.

Figure 5 shows an enlargement of the cycle arising for ρ = .62. We have
initialized α = .5. As it can be seen, α decreases slowly for a while, then
drops abruptly before jumping up to 1; at this point we have only fundamen-
talists in the economy, but this situation doesn’t last long, as immediately
α starts dropping, the fraction of chartists is restored and the cycle repeats
itslef.

It is interesting to verify, at this point, the E-stability of the equilibria
in each of the three scenario under investigation. Remember that for each
quintuple (A,B, ρ, β, σ2ε) there is an endogenous HEE, defined as a triple
(ā, b̄, ᾱ) that can represent either a fixed point or a cycle. If the equilibrium is
a fixed point, we can then evaluate its E-stability directly. If the equilibrium
is instead a cycle, it may be that some of the states of the cycle are E-stable
and some are not (as indeed it turns out to be the case in our simulations).
This in practice means that the whole equilibrium is not learnable, as when
the system is at a point in the cycle that is not E-stable, the real-time
parameter estimates would diverge and the cycle break down. Figure 6
shows the E-stability results for the equilibria in the three scenarios shown in
Figure 4: as it can be seen, in the first case (ρ = .5), where fundamentalists
outperform chartists, the equilibrium is E-stable,14 while in the last case
(ρ = .99), where chartists outperform fundamentalists, the equilibrium is
not E-stable. In the intermediate case (ρ = .62), where the equilibrium
value of α keeps fluctuating, E-stability results are mixed: the system is
E-stable in the majority of its states, but becomes E-unstable when α drops
to its lowest three values. Thus, according to our criterion, the equilibrium
as a whole must be considered E-unstable. These results show that the
system can never converge, under endogenous predictor choice and learning
dynamics, to an equilibrium where chartists prevail over fundamentalists, as
these outcomes are not E-stable.
14Here E-stability corresponds to a value of 1 on the y-axes, while E-instability corre-

sponds to 0.
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With regards to the E-stability analysis, we must point out that, for this
analysis to be meaningful, it must be that agents in our economy update
the parameters (a, b) in their model with a higher frequency than that with
which they revise the choice of the model (the frequency of the "update" of
α in the economy). This is an assumption that seems to be quite reasonable:
agents will try to fine-tune continuously the model they are using, but will
consider the option of switching to another model only from time to time,
as this last option is more costly in terms of information requirements. The
minimum relative frequency required would depend on the speed of conver-
gence of the learning process, an issue that we do not address in this paper
and leave for future work. We will relax this assumption later on when we
simulate real time learning dynamics and allow agents to choose, in each
period, both the model and the parameter values in that model.

4.2 The case with ρ = 0

We consider now the case with ρ = 0, even though we have seen that in this
case the HEE (the one that emerges for b̄ = 1/(A(1− α))) is not E-stable.
The reason why we think this case is worth consideration anyway is that in
this case we are able to compute analytically the solution and the MSE for
the two groups of agents.

It turns out that when ρ = 0, ∆ = MSEc − MSEf > 0 iff −1 <
A(1− α) < 1: since A and α are positive, the condition requires A < 1

1−α .
In this case, chartists are outperformed by fundamentalists. If instead A >
1
1−α , then chartists perform better than fundamentalists. This means that
in order for chartists to outperform fundamentalists, the positive feedback
effect from expectations to current price must be high enough, a result that
we had already inferred before from our simulations. Only in this case there
is enough persistence in the data that can be picked up and exploited by a
forecasting model based purely on past data series.

If we endogenize α, now, we have that

∆ = MSEc −MSEf = −
h
B2 (A (1− α))2 + 2B

i
(A (1− α))2 − 1 σ2ε

α =
1

2

µ
tanh

·
β

2
∆

¸
+ 1

¶
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and by combining the two expressions above

α =
1

2

tanh
−β

2

h
B2 (A (1− α))2 + 2B

i
(A (1− α))2 − 1 σ2ε

+ 1
 .

We can thus compute the equilibrium value for α, depending on the fun-
damental parameters A, B, β and σ2ε. In particular, we fix B, β and σ2ε
as before and focus our attention on the parameter A.15 In Figure 7 we
show the results: as it can be seen, for A < 2 we have that fundamentalists
outnumber chartists and α > .5, while for A > 2 the opposite happens and
α < .5. Note that when exactly A = 2, a 2-perid cycle emerges, in which A
oscillates between 0.17 and 0.48.

5 Learning dynamics

We turn now to analyze real time learning dynamics and their interactions
with predictor choice dynamics: each period, agents have now to choose
which model to use and select the best value for the parameters in that
model.16 In order to choose the model (i.e., to compute MSEf and MSEc)
they use the most recent estimates of the parameters, both for their model
and for the alternative. We assume here that once learned, the value of all
parameters becomes common knowledge. This is a common assumption in
the literature (see, e.g., Guse (2007)), and it is innocuous here as there are
no costs involved in the learning process.

Note that the learning speed for the two PLMs could affect the results,
so that even though one model might be better with optimal parameter
values, the other could be easier to learn and thus provide more accurate
forecasts over the learning path. The time needed to learn a process (i.e., the
speed of convergence), and its consequences on the dynamics of the system,
is something that is often neglected in the learning literature, with some
notable exceptions (e.g., Marcet and Sargent (1995), Beneviste et al (1990)
and for an application to monetary policy: Ferrero 2007).

15Simulations show that results do not change qualitatively for β ranging in a wide are
between 1 and 1000: relatively high values of β only tend to extremize the equilibrium
values for α.
16We could alternatively choose an asynchronous timing: every period agents reestimate

the parameters in their model, but only from time to time they reconsider the choice of
the model specification. This, though, would effectively split the analysis in two parts:
one of learning dynamics with a fixed α (see section 3.1); the other of the dynamics of α
with fixed ā and b̄ (see section 4).
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In order to analyze real time learning dynamics, we substitute the two
differential equations (10) (11) with the following stochastic difference equa-
tions, representing recursive least squares learning in real time:

at+1 = at + t−1R−1t wt(yt − atwt) (18)

Rt = Rt−1 + t−1(w2t −Rt−1)
bt+1 = bt + t−1S−1t yt−1(yt − btyt−1) (19)

St = St−1 + t−1(y2t−1 − St−1).

The E-stability principle assures that the limiting behavior of these sto-
chastic difference equations is well approximated by the aforementioned dif-
ferential equations, though only in the limit the two systems are equivalent.
We are here interested in investigating how things change over the learn-
ing path, when adaptive learning about the parameters interacts with the
evolutionary learning about the model.

At each time t, agents now form their expectations according to

Ef
t yt+1 = atρwt (20)

Ec
t yt+1 = b2t yt−1 (21)

and given these expectations and the current value of αt, yt can be obtained.
Then, on the basis of the new information available, the values for a, b and
α are updated according to (18), (19) and (15).

Simulations show that, in the parameter region where the equilibrium is
E-stable and α converges to a fixed point (e.g., A = 1.5; B = .1; β = 10;
ρ = .5), the interactions between real time heterogeneous learning and pre-
dictor choice dynamics do not prevent convergence of all processes to their
equilibrium values. Moreover, convergence of the learning algorithms is quite
fast for both models, with no clear advantage of one over the other. Where
the equilibrium is E-unstable, instead, parameter estimates (and MSEs) of
both models quickly diverge and the system collapses. These simulations,
thus, confirm our results above that when endogenous predictor choice dy-
namics are coupled with learning dynamics, only situations in which funda-
mentalists constantly outperform chartists can represent long-run equilibria
for the system, as they are the only E-stable equilibria.

6 Conclusions

In this paper we have analyzed a simple univariate forward-looking model
populated by agents that are heterogeneous in terms of their forecasting

14



models. Following a growing literature in economics and finance, we have
allowed for two types of agents, fundamentalists and chartists, whose rel-
ative group size is determined endogenously on the basis of the predictive
power of their model. While fundamentalists form their expectations using a
model that correctly recognizes the role of a fundamental exogenous driving
process, chartists employ a model that only uses past prices to predict future
ones.

Parameters in each model are chosen by agents so as to minimize the
expected mean squared errors of the ensuing predictions, and if these val-
ues are not known, they are learned using econometrics techniques such as
RLS. A main finding of this paper is that fundamentalists do not necessarily
outperform chartists, and are not always able to drive them out of the mar-
ket permanently. This means that intrinsic heterogeneity can persist even
when the correct model is available for selection, and without the need to
introduce ad-hoc costs of information gathering or processing on it. Though
this result has been derived in a simple setting, it could help explaining
why we continue to observe chartist behavior in financial markets. Interest-
ingly, though, it seems that equilibria where chartists constantly outperform
fundamentalists are not learnable by adaptive learners.

Another interesting finding is that, when the equilibrium is E-stable,
coupled dynamics of adaptive learning and evolutionary predictor choice can
simultaneously converge to their equilibrium values and are not displaced
by their interactions. Agents are therefore able to learn simultaneously in
two dimensions: "within" a model, and "across" models.

7 Appendix

7.1 Appendix A

Denoting

Γ(a) = Aαaρ+B

Ω(b) = A(1− α)b2
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we can write recursively

σ2w = Ew2t =
1

1− ρ2
σ2ε

σ2w,w_i = Ewtwt−i = ρiσ2w

σ2w,y = Ewtyt =
Γ

1− Ωρσ
2
w

σ2w,y_1 = Ewtyt−1 = Γρσ2w
∞X
i=0

(Ωρ)i =
Γρ

1−Ωρσ
2
w

σ2y = Ey2t =

µ
Γ2(1 + Ωρ)

(1− Ωρ) (1− Ω2)
¶
σ2w

σ2y,y_1 = Eytyt−1 = Γσ2w,y_1 +Ωσ
2
y.

The expression for σ2w,y_1 of course holds only for Ωρ < 1, which is a restric-
tion we impose on the model in order to have finite covariance structures in
our economy.

Moreover:

MSEf = E(yt − awt)
2 = σ2y + a2σ2w − 2aσ2w,y

MSEc = E(yt − byt−1)2 = σ2y + b2σ2y − 2bσ2y,y_1

7.2 Appendix B

The Jacobian for analyzing E-stability of equilibria is

J =

"
δȧ
a

δȧ
b

δḃ
a

δḃ
b

#
with

δȧ

a
=

Aαρ

1−A(1− α)ρb2
− 1

δȧ

b
=

2A(1− α)ρb (Aαρa+B)

(1−A(1− αρb2))2

δḃ

a
= 0

δḃ

b
= 2bA(1− α) +

−4ρ [A(1− α)]2 b3 + 6ρ2 [A(1− α)]3 b5 − 2ρ2A(1− α)b

(1 + ρA(1− α)b2)2
− 1

16



8 Figures
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Figure 1: Countour map for the E-stability region (green region).
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Figure 2: Contour map for the E-stability region for the RPE emerging
when α = 0.
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Figure 3: Relative performance of chartists and fundamentalists. Blue
regions indicate chartists outperforming fundamentalists.
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Figure 4: Endogenous dynamics for α.
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Figure 6: E-stability of equilibria shown in Figure 4.
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