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Abstract

Forecast combination methodologies exploit complementary relations be-
tween different types of econometric models and often deliver more accurate
forecasts than the individual models on which they are based. This paper
examines forecasts of seasonally unadjusted monthly industrial production
data for 17 countries and the Euro Area, comparing individual model fore-
casts and forecast combination methods in order to examine whether the
latter are able to take advantage of the properties of different seasonal spec-
ifications. In addition to linear models (with deterministic seasonality and
with nonstationary stochastic seasonality), more complex models that cap-
ture nonlinearity or seasonally varying coefficients (periodic models) are
also examined. Although parsimonous periodic models perform well for
some countries, forecast combinations provide the best overall performance
at short horizons, implying that utilizing the characteristics captured by
different models can contribute to improved forecast accuracy.
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1. Introduction

Agents working with seasonal data often require forecasts of intra-year observa-
tions; for example, managers need to forecast future monthly demand for their
products in order to ensure that they have sufficient stocks on hand to meet this
demand. Indeed, the production of many commodities is itself highly seasonal,
largely due to the traditional factory closures that take place during the sum-
mer and Christmas periods. Perhaps because of their marked intra-year patterns,
economists interested in seasonality have often focused on industrial production se-
ries (for example, Beaulieu and Miron, 1991, Cecchetti and Kashyap, 1996, Matas-
Mir and Osborn, 2004).
The nature of seasonality is also of interest to official statistical agencies, in-

cluding Eurostat, which is responsible for data provision relating to the European
Union. Although many economists concentrate on seasonally adjusted values, the
process of seasonal adjustment may itself involve forecasting future intra-year val-
ues of the unadjusted series, as discussed by Ghysels, Osborn and Rodrigues (2006)
in the context of the recently-developed X-12-ARIMA method of the US Bureau
of the Census. There has, however, been surprisingly little empirical analysis of
the accuracy of methods for forecasting seasonal economic time series.
Rather than selecting a single model for forecasting, an alternative approach is

to combine forecasts derived from a range of models. This has particular attraction
in the context of forecasting seasonal series, since there are a number of different
ways of handling seasonality that may be appropriate depending on the properties
of the series in question. For example, seasonality may be of the deterministic form,
it may exhibit nonstationary stochastic properties, it may be periodic (seasonally-
varying coefficient) in nature, or it may exhibit non-linear interaction with the
business cycle; see Ghysels and Osborn (2001) for discussion of some relevant
models and their properties. Rather then choosing between these possibilities, a
user may elect to adopt a forecast based on a combination of models. Indeed,
the use of a suitably chosen combination may lead to improved forecast accuracy
compared to the choice of a single method.
Since the early work of Bates and Granger (1969), several methods have been

developed for combining forecasts. Since time series models are simplifications
of complicated processes that are imperfectly understood, single models are typi-
cally incomplete representations of a data generating process (DGP). Hence, com-
binations of forecasts from different models, which may provide complementary
information, can assist in the approximation of the DGP. In practice, such combi-
nations are often found to outperform forecasts produced by a single model (see,
inter alia, Bates and Granger, 1969, Granger and Ramanathan, 1984, Stock and
Watson, 1999, 2004). Against this, Hibon and Evgeniou (2005) find that the best
individual forecast model performs as well as the best combination. Nevertheless,
as these authors state, combining forecasts retains an advantage in being less risky
than selecting among the available individual model forecasts.
This paper studies the post-sample accuracy of forecasts of seasonally unad-

justed monthly industrial production indices (IPI) from 17 individual countries
(Austria, Canada, Denmark, Finland, France, Germany, Greece, Hungary, Italy,
Japan, Luxembourg, Netherlands, Portugal, Spain, Sweden, United Kingdom and
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USA) and an aggregate series for the Euro Area. In total, we examine 17 (linear
and nonlinear) forecasting models and 18 procedures for combining the informa-
tion from these 17 models. Our aim is to examine the relative accuracy of these
approaches and to investigate whether any general lessons emerge about whether
combining forecasts improves accuracy for these seasonal series.
The outline of the paper is as follows. Section 2 briefly introduces the forecast

models considered in this paper. In Section 3 we study the empirical properties of
the IPI series to investigate whether they display non-linearity and/or periodicity
(seasonally-varying coefficients). Section 4 discusses predictive accuracy measures
and introduces the combination methods considered. Substantive results in rela-
tion to forecast accuracy for the seasonal IPI series are contained in Section 5.
Finally, Section 6 concludes the paper.

2. The Models

Our discussion first considers representations of seasonality in the context of con-
stant parameter linear models, with subsequent subsections considering non-linear
(SETAR) and periodic models. Although most of this discussion is general in the
sense of referring to S seasons per year, our empirical analysis of monthly IPI
below (obviously) employs S = 12.

2.1. Linear Seasonal Models

Following Ghysels, Osborn and Rodrigues (2006), for the purpose of presentation
we write the seasonal model as

ySn+s = μSn+s + xSn+s (2.1)

φ (L) xSn+s = uSn+s (2.2)

where ySn+s (s = 1, ..., S, n = 0, ..., N − 1) represents the observed value in season
s (in our case a month) of year n, with total available observations assumed to be
T = SN ; the polynomial φ(L) contains any unit roots in ySn+s and is specified in
the following subsections according to the model being discussed, L represents
the conventional lag operator such that LkxSn+s ≡ xSn+s−k, k = 0, 1, ..., the
driving shocks {uSn+s} of (2.2) are assumed to follow an ARMA(p, q), 0 ≤ p, q <
∞ process written as β(L)uSn+s = θ(L)εSn+s, where the roots of β(z) ≡ 1 −Pp

j=1 βjz
j = 0 and θ(z) ≡ 1 −Pq

v=1 θvz
v = 0 lie outside the unit circle, |z| = 1,

and εSn+s ∼ iid(0, σ2). The term μSn+s represents a deterministic kernel which is
usually assumed to be either i) a set of seasonal means, i.e.,

PS
s=1 δsDs,Sn+s where

Ds,Sn+s is a dummy variable taking value 1 in season s and zero elsewhere, or ii) a
set of seasonals with a (nonseasonal) time trend, i.e.,

PS
s=1 δsDs,Sn+s+τ (Sn+ s).

In general, the second of these is more plausible for economic time series, since it
allows the underlying level of the series to trend over time, whereas μSn+s = δs
implies a constant underlying level, except for seasonal variation.
Linear forecasting models can be classified in terms of their assumptions about

unit roots in φ(L). The two most common forms of seasonal models in empirical
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analyses employ either seasonally integrated models, with φ(L) = ∆S in (2.2), or
deterministic seasonality combined with φ(L) = 1 − L or φ(L) = 1. In addition,
seasonal autoregressive integrated moving average (SARIMA) models with φ(L) =
∆S∆1 retain an important role as a forecasting benchmark. Each of these three
models is briefly discussed in a separate subsection below.

2.1.1. Seasonally Integrated Model

The seasonally integrated model assumes that seasonality is nonstationary, with
seasonal (or annual) differencing of ySn+s required in order to render the process
stationary. Therefore φ(L) = 1 − LS = ∆S in (2.1) and, since ∆S = (1− L)(1 +
L + L2 + ... + LS−1), seasonal integration imposes the presence of unit roots not
only at the zero frequency, but also at each of the so-called seasonal frequencies.
Stationary dynamics in economic time series are often represented in autore-

gressive (AR) form. With this assumption, namely β(L)uSn+s = εSn+s in (2.2)
with β(L) a pth order polynomial, the seasonally integrated model is

β(L)∆SySn+s = β(1)Sτ + εSn+s (2.3)

since ∆SμSn+s = Sτ . Thus, with the inclusion of an intercept, the seasonally
integrated process of (2.3) has a common annual drift, β(1)Sτ, across seasons.
Clearly, the essential features of the model are retained if a moving average com-
ponent is added to (2.3). Notice that the underlying seasonal means μSn+s are not
observed, since the seasonally varying component

PS
s=1 δsDs,Sn+s of μSn+s in (2.1)

is annihilated by seasonal (that is, annual) differencing.
From an economic point of view, nonstationary seasonality can be controversial

because the values over different seasons are not cointegrated and hence can move
in any direction in relation to each other, so that “winter can become summer”.
This lack of cointegration appears to have been first noted by Osborn (1993).

2.1.2. Deterministic Seasonal Models

When seasonality results in peaks and troughs across particular seasons year after
year, it may be described by deterministic variables leading to what is convention-
ally referred to as deterministic seasonality. In this case the underlying seasonal
pattern is assumed to display means that are constant over time.
A simple deterministic seasonal model with stationary AR dynamics can be

given as

β(L)ySn+s =
SX
s=1

β(L) (δsDs,Sn+s) + β(1)(Sn+ s)τ + εSn+s (2.4)

where εSn+s is again a zero mean white noise process. In this case, the deterministic
component of the estimated model explicitly includes seasonal intercepts and a
linear trend. However, the assumption of stationary dynamics may be unrealistic
since it is common for economic time series to exhibit evidence of a zero frequency
unit root. Therefore, φ(L) = 1−L may be imposed in (2.2). Again assuming that
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the stationary dynamics are of the AR form, (2.1)-(2.2) then becomes

β(L)∆1ySn+s =
SX
s=1

β(L)∆1μSn+s + εSn+s (2.5)

where∆1μSn+s = μSn+s−μSn+s−1, so that (only) the change in the seasonal means
between seasons s and s− 1 is identified.

2.1.3. SARIMA Model

When working with nonstationary seasonal data, both annual changes and changes
between adjacent seasons are important concepts. This motivates the model

β (L) (1− L)(1− LS)ySn+s = θ(L)εSn+s (2.6)

which results from specifying φ(L) = ∆1∆S = (1−L)(1−LS) in (2.2). The intu-
ition is that the filter (1−LS) captures the tendency for the value of the series for a
particular season to be highly correlated with the value for the same season a year
earlier, while (1 − L) captures the nonstationary nonseasonal stochastic compo-
nent. It is worth noting that the imposition of ∆1∆S annihilates the deterministic
variables (seasonal means and time trend) of (2.1), so that these do not appear in
(2.6).
However, since (1 − L)(1 − LS) = (1 − L)2(1 + L + L2 + ... + LS−1), (2.6)

imposes unit roots at all seasonal frequencies, as well as two unit roots at the
zero frequency. As a result these models may be empirically implausible (see e.g.
Osborn, 1990, and Hylleberg, Jørgensen and Sørensen, 1993). Nevertheless, they
can be successful in forecasting due to their parsimonious nature and hence provide
a useful benchmark for forecast accuracy comparisons.
A specific SARIMA model of particular interest as a benchmark for seasonal

forecasting is the "airline model" of Box and Jenkins (1970), which imposes β(L) =
1 in (2.6), together with θ(L) = (1− θL)(1−ΘLS).

2.2. Seasonal SETAR Models

The SETAR class of non-linear models allows the classification of observations into
different regimes according to the value taken by a specific threshold variable, and
hence captures a form of asymmetric or time-varying behaviour.
In this study, we consider a seasonal two-regime SETAR (SSETAR) model of

order p of the form

ySn+s =
2X

k=1

SX
s=1

[δs,kDs,Sn+s+τ s,kDs,Sn+s(Sn+s)]Ik,Sn+s+

pX
i=1

ρiySn+s−i+εt (2.7)

where Ik,Sn+s, k = 1, 2, corresponds to a binary indicator variable with value
determined by the threshold variable qSn+s−d; the disturbance in each regime is
assumed to be white noise with constant variance. The regimes in (2.7) are defined
by the value of qSn+s−d in relation to some constant threshold γ. In practice the
threshold variable is typically a lag of ySn+s, or a linear combination of lagged
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ySn+s; see, inter alia, Tsay (1989, p.23) and Hansen (1997, p.10). Notice that
(2.7) allows the intercept and trend to vary with the regime as well as the season,
with the AR lag coefficients assumed to be time-invariant. Although more general
forms of SSETAR model can be employed, their greater flexibility implies the
estimation of a larger number of coefficients. In our forecasting context, we prefer
the more parsiminous version of (2.7).
Implicitly (2.7) assumes that ySn+s is stationary. To allow for unit root behav-

ior, (2.7) may be estimated using ∆1ySn+s (as in Matas-Mir and Osborn, 2004) or
∆SySn+s, with appropriate changes in the deterministic terms of the regression.
However, before this type of model is applied in empirical work, it is important

to determine whether the data justifies its use through a test for threshold effects.
Chan (1990) and Hansen (1997) suggest the test statistic

F (γ) = T

µeσ2 − bσ2 (γ)bσ2 (γ)
¶

(2.8)

where eσ2 and bσ2 (γ) represent the disturbance variance estimators acquired from
the residuals of a linear and a SETAR model, respectively. The null hypothesis
considers a linear model as appropriate, while the alternative of regime-dependent
coefficients supports the SETAR model. A difficulty in applying these tests arises
when γ is unknown since this parameter is identified only under the alternative
hypothesis. This problem was first identified by Davis (1977); see also Hansen
(1996). As the asymptotic distributions are non-standard, critical values for (2.8)
in a specific application can be obtained using the bootstrap method suggested by
Hansen (1997).

2.3. Periodic Models

Periodic autoregressive (PAR) models provide a class of model for seasonally un-
adjusted data which allow the coefficients to change according to the seasons of a
year. This seasonal parameter variation can prove useful in describing economic
situations in which choices made by economic agents show distinct seasonal char-
acteristics. Problems associated with dismissing periodicity are well described in
Osborn (1991) and in Tiao and Grupe (1980).
PARmodels assume that the observations for different seasons can be described

by distinct autoregressive models. We consider the following PAR(S, p) model

ySn+s =
SX
s=1

[δsDs,Sn+s + τ sDs,Sn+s(Sn+ s)] +
SX
s=1

psX
j=1

αjsDs,Sn+sySn+s−j + εSn+s

(2.9)
where ps is the order of the autoregressive component corresponding to season s,
p = max(p1, ..., pS), and εSn+s ∼ iid (0, σ2). In its unrestricted form of (2.9), the
model coefficients can be estimated by ordinary least squares. PAR models can
be applied to either the levels of the series, as in (2.9), or after the application of
first differences. Also, the trend coefficient can either be allowed to vary with the
season or to be constant with τ s = τ (s = 1, ..., S).
Similarly to the SETAR models previously discussed, it is advisable also in this

case to verify whether the data shows this type of property before employing a PAR
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forecasting model. Allowing the possibility of a seasonal deterministic component,
the most direct test of the non-periodic null hypothesis considers

H0 : αis = αi, s = 1, ..., S, i = 1, ..., p (2.10)

against the alternative that not all αis are equal, which we denote as FPAR. This
test can be performed by the usual F-test, which (for T sample observations used
for estimation of (2.9)) asymptotically follows an F distribution with ((S − 1) p,
T − (S + 2)p) degrees of freedom; see Boswijk and Franses (1996). Alternatively,
following Franses (1996, pp.101-102) a residual-based approach can be adopted.
As a first step, a non-periodic AR(p) model is estimated for ∆SyS+s. Using the
resulting residuals, periodicity is tested through the auxiliary regression,

bvSn+s = pX
i=1

φi∆SySn+s−i +
rX

j=1

SX
s=1

γjsDs,Sn+sbvSn+s−j + uSn+s (2.11)

via an F-test for the joint significance of the γjs for order r. Under the non-periodic
null hypothesis, this F-statistic asymptotically follows a standard F-distribution
with (Sr, T − p− Sr) degrees of freedom.
As an additional option, or a complementary procedure, the auxiliary regression

bv2Sn+s = ω0 +
S−1X
k=1

ωkDk,Sn+s + eSn+s (2.12)

can be used to check for seasonal heteroscedasticity. As argued by Franses (1996),
neglected parameter variation may surface in the variance of the residual process.
Under the null hypothesis of no seasonal heteroscedasticity, an F-test for ωk =
0, k = 1, ..., S − 1 asymptotically follows a standard F-distribution with (S −
1, T − p) degrees of freedom. It should be noted, however, that finding of seasonal
heteroscedasticity does not necessarily imply that a PAR model should be used,
since this could arise from a conventional constant-coefficient model subject to
disturbances which have seasonally-varying variances.

3. Empirical Properties of Industrial Production

3.1. Data

The data used in this study is the logarithm of monthly IPI data for 17 individual
countries and the Euro Area. Therefore, the first difference has the interpretation
of the monthly growth rate, and the annual difference as the annual growth rate.
Table 1 reports some descriptive statistics for these annual and monthly growth
rates, after outlier correction. Outlier detection and correction was carried out
using the Tramo/Seats program developed by Gømez and Maravall (1996). For
ease of interpretation, the differenced values are multiplied by 100 prior to the
calculation of the statistics of Table 1.
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Table 1: Descriptive Statistics

Country Outliers Annual Growth Monthly Growth

AO TC LS Mean SD Mean SD

Austria 0 0 0 3.21 3.90 0.30 8.59

Canada 0 1 0 2.57 4.87 0.19 6.25

Denmark 0 2 0 2.40 6.55 0.20 17.16

Euro Area 3 0 3 1.55 3.09 0.12 11.12

Finland 3 0 2 3.39 5.81 0.29 14.92

France 0 0 1 1.14 3.15 0.08 15.13

Germany 2 0 1 1.37 3.37 0.10 6.71

Greece 2 3 1 1.09 4.11 0.09 8.04

Hungary 0 1 0 2.52 8.72 0.25 10.90

Italy 0 0 0 0.90 4.36 0.06 31.85

Japan 0 0 0 1.68 4.91 0.18 7.53

Luxembourg 1 1 2 3.29 6.01 0.24 12.53

Netherlands 0 0 0 0.99 4.16 0.07 7.84

Portugal 1 0 0 2.44 4.99 0.18 15.59

Spain 0 0 1 1.70 3.46 0.17 21.00

Sweden 3 0 2 2.64 4.52 0.22 26.46

UK 0 0 1 1.00 3.52 0.06 7.14

USA 2 2 1 2.52 3.67 0.21 2.01
Note: The columns labeled AO, TC and LS refer to the nature of outliers detected and
indicate the respective number of outliers observed. Outlier detection and correction

was carried out using the automatic procedure in TRAMO/SEATS.

Our data covers the period January 1980 to December 2005 (before differenc-
ing). However, outliers are removed only for the subsample used for the estimation
of the models, which is January 1980 to December 2002.
Although IPI growth over this period is positive in all cases, Table 1 indicates

very different experiences across the countries considered for its mean and vari-
ability. Indeed, Italy, Spain and Sweden have a standard deviation of monthly
growth around six to eight times that of annual growth, pointing to the highly
seasonal nature of these IPI series. On the other hand, for Canada, Hungary and
USA, these monthly and annual growth rate standard deviations are of similar
magnitude.
The remainder of this section discusses some tests undertaken to examine the

characteristics of our data series. The outlier corrected subsample to December
2002 is used for this analysis.

3.2. Nonlinearity

As an indicator of the potential value of SETAR models for our seasonal series,
we test for the presence of threshold effects in the data by investigating whether
the difference between the coefficients in the regimes is significant in (2.7).
Order selection for the autoregressive component of the seasonal SETARmodel

is also important. In this study, the order of the test regressions employed was
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determined following a general-to-specific procedure (see Ng and Perron, 1995)
in a linear AR model, using a maximum lag of p = 12. The p-values for the
linearity test are obtained using the bootstrap, as suggested by Hansen (1997) in
this context. Our application uses 5000 bootstrap replications.
Table 2 presents the results of tests of linearity against SETAR type nonlin-

earity, which use a regression of the form of (2.7) with q12n+s−d = ∆12y12n+s−d.
Both the delay d and the threshold value γ are endogenously determined, with the
latter obtained from a search over the central 70% of the empirical distribution of
∆12y12n+s−d. The selected AR order (given in the column AR order in Table 2) is
also the maximum delay permitted for d.

Table 2: Testing for Linearity in Industrial Production Series

Country γ d Linearity test (p-value) AR order

Austria -.005 4 .016 12

Canada -.015 1 .121 10

Denmark .052 4 .052 12

Euro Area .014 10 .001 12

Finland .030 12 .218 12

France .019 8 .167 12

Germany .037 5 .007 12

Greece .027 5 .037 12

Hungary .117 9 .023 12

Italy .078 12 .112 12

Japan -.026 2 .054 10

Luxembourg .094 8 .024 12

Netherlands -.065 6 .029 12

Portugal -.003 7 .070 12

Spain .014 6 .464 12

Sweden .021 9 .001 12

UK .045 1 .129 10

USA -.051 2 .067 9

From Table 2, we observe that (at a 5% level) the linear structure is rejected for
nearly half of the countries considered, with the strongest evidence of nonlinearity
being for Germany, Sweden and the Euro Area. These results may be indicative
of the presence of an interaction between seasonality and the business cycle, as
discussed by Matas-Mir and Osborn (2004) for industrial production series.

3.3. Periodicity

Given that monthly data are used in this paper, an obvious PAR model to consider
is a PAR(12, p), which identifies each month as a distinct "season". However,
if used without restrictions, this model has the potential disadvantage of being
highly parameterised. For instance, an unrestricted PAR(12, 12), even with no
deterministic terms, requires estimation of 12 × 12 = 144 coefficients, which points
to identifying more parsimonious models.
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One strategy adopted below is based on the assumption that common behaviour
is present for specific months, leading to the proposal of a PAR(3, p) model. These
PAR(3, p)models are determined by defining three distinct groups of months, with
one group including all months with negative average monthly growth, another all
months with relatively low monthly positive growth and the third group includes
months with the strongest observed average monthly growth1. This grouping leads
to three "seasons" with different numbers of observations.
Table 3 presents the results of tests for periodic coefficient variation. The test

procedures denoted as FPeAR1_12 and FSH are applied to the residuals of an AR
model as described in (2.11) and (2.12) fitted to the annually differenced series.
The FPAR test examines the non-periodic null hypothesis of (2.10) in a regression
for the levels of the data. The maximum lag length p considered is 12 in both
cases, with this order reduced where appropriate through a testing down strategy.

Table 3: Testing for Periodicity in Industrial Production Series

FPeAR1_12 FSH FPAR
PAR(3,p) PAR(12,p) PAR(3,p) PAR(12,p) PAR(3,p) PAR(12,p)

Austria 1.83* 1.37* 3.69* 3.50* 2.05* 1.52*

Canada 2.73* 1.55* 0.08 1.5 8.24* 3.07*

Denmark 3.35* 2.79* 3.14* 1.66 0.64 1.92*

Euro Area 2.81* 1.99* 1.72 1.33 0.88 4.26*

Finland 1.59* 1.66* 3.08 1.79 1.14 4.51*

France 1.85* 2.00* 1.84 1.42 4.94* 3.15*

Germany 2.64* 1.89* 2.6 1.59 1.71 2.22*

Greece 3.50* 1.88* 1.82 1.63 3.69* 1.89*

Hungry 2.46* 2.02* 0.46 0.36 1.02 2.87*

Italy 1.84* 1.91* 3.69* 6.80* 1.06 2.62*

Japan 3.80* 1.88* 0.17 1.59 3.73* 2.60*

Luxemburg 1.80* 1.75* 2.41 1.35 1.55 1.76*

Netherlands 2.84* 2.84* 0.32 0.97 1.1 2.95*

Portugal 2.45* 1.56* 2.53 1.31 1.56 2.10*

Spain 2.23* 2.05* 0.48 0.97 4.61* 4.44*

Sweden 3.15* 2.24* 3.57* 2.73* 3.02 5.82*

UK 2.46* 2.35* 0.92 1.72 1.41 3.21*

USA 1.76* 1.74* 1.12 1.21 7.37* 1.30*
Note: * indicates significance at the 5% level.

Whether applied to the residuals or the levels of the data, Table 3 provides
strong evidence in favour of the presence of periodic coefficient variation across
the IPI series analysed. When directly applied to the coefficients, however, the
FPAR test rejects substantially less often when data are grouped in three seasons
than when all 12 months are considered separately. Nevertheless, the regression

1To be specific, the positive growth regime classifications generally used an average growth
of less than 0.1% per month as low growth and monthly growth of 0.1% or more as high growth.
However, different classification rules were used for Canada and the US, for which low (positive)
growth was defined in relation to thresholds of 0.03% and 0.05%, respectively.
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on which the latter test is based is highly parameterised, so this result may not
be entirely reliable. The FSH test provides only weak evidence of seasonal hete-
rocedasticity across the series considered. Nevertheless, the other results point to
the potential value of using periodic models for forecasting.

4. Forecast Accuracy

To study forecast accuracy, we consider the use of m post-sample observations
to evaluate h-step ahead forecasts generated from models fitted to the first T
observations.
Although many measures of forecast accuracy are available, we follow much of

the literature in basing our evaluation on the Root Mean Squared Prediction Error
(RMSPE), defined as

RMSPE(h) =

vuut 1

m− h+ 1

T+mX
j=h

¡byT+j|T+j−h − yT+j
¢2

(4.1)

where byT+j|T+j−h is the h-step ahead forecast made for period T + j based on data
available at T + j − h. In order to focus on the role of seasonality, which may be
anticipated to be most marked for short-term forecasts of less than a year, results
are computed for horizons h = 1, 3, 8.
To reflect the different approaches to seasonality, we consider specifications

based on various levels of differencing, namely no differences, together with models
after application of the filters ∆S,∆1 and ∆S∆1. All forecasts are considered in
relation to the level of the IPI series using RMSPE as defined in (4.1).
There is growing empirical evidence that nonlinear models perform useful infor-

mation for forecasting (see, inter alia, Terui and van Dijk, 2002). Clements et al.
(2003) compare linear autoregressive and SETAR models and study the degree of
non-linearity that needs to be present in the data before forecasts from non-linear
models outperform linear rivals. Although there are relatively few studies of the
forecast performance of periodic models, evidence provided by Osborn and Smith
(1989) and Rodrigues and Gouveia (2004) indicates that they can perform well if
appropriately specified.

4.1. Nonlinear Model Forecasts

For the nonlinear (seasonal) SETAR models of (2.7), computing point forcasts
is considerably more involved than computing forcasts from linear models. To
illustrate this, consider the case where the variable ySn+s is described by a first
order nonlinear autoregressive model which is summarised as

ySn+s = F (ySn+s−1; θ) + εSn+s. (4.2)

In this context, when the forecast horizon is longer than 1 period, the linear
conditional expectation operator can not be interchanged with the nonlinear op-
erator F , since E [F (.)] 6= F (E [.]) . Consequently, for a given parameter vector θ
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and horizon h

E [F (ySn+s+h−1; θ) |ΩSn+s] 6= F
¡
E
£¡
ySn+s+h−1|Sn+s

¢ |ΩSn+s

¤
; θ
¢
, h > 1

where ΩSn+s indicates information available at time Sn + s. Obtaining an unbi-
ased point forecast based on (4.2) requires estimation of the left-hand side of this
expression.
The distribution of the white noise disturbance εSn+s in (4.2) is never known

with certainty. However, to overcome this difficulty, forecasts can be computed
using Monte Carlo or bootstrap methods. Clements and Smith (1997) compare
various methods to obtain multiple-step-ahead forecasts for SETAR models and
conclude that the bootstrap method compares favourably to the other methods.
This method is also adopted here, where we use 500 bootstrap replications in order
to approximate E [F (ySn+s+h−1; θ) |ΩSn+s].

4.2. Methods for Forecast Combinations

Combining forecasts, as introduced by Bates and Granger (1969), has often been
found to improve forecast accuracy compared with using an individual forecasting
method. The effectiveness of simple averaging is demonstrated by, among oth-
ers, Bates and Granger (1969) and Granger and Ramanathan (1984), while other
studies demonstrate the usefulness of other approaches to combining multiple in-
dividual forecasts; see, inter alia, Armstrong (1989); Clemen (1989), Diebold and
Lopez (1996), Hendry and Clements (2002), Newbold and Harvey (2002), Stock
and Watson (1999) and Terui and van Dijk (2002).
The remainder of this section briefly introduces the forecast combination meth-

ods that we employ in our empirical analysis. In addition to simple averages (mean
or median), methods for combining forecasts can be classified as being based on
historical RMSPE or derived from regression methods. We devote separate sub-
sections to each of these approaches.

4.2.1. Historical RMSPE

The combinations based on historical RMSPE are formed as a weighted average
of individual forecasts, with weights varying with the historical performance of
each individual forecast; see, inter alia, Diebold and Pauly (1987) and Stock and
Watson (1999). For k separate h-step forecasts, namely byiSn+s+h|Sn+s (i = 1, ..., k),
the forecast combination is given by

by c
Sn+s+h|Sn+s =

kX
i=1

wh
i by i

Sn+s+h|Sn+s

where the weight wh
i is

wh
i =

RMSPE(h)−λi
kP

j=1

RMSPE(h)−λi

(4.3)
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and RMSPE(h)i is the Root Mean Square Predictor Error for method i at hori-
zon h. Since the relative performance of different models can change over time,
following Bates and Granger (1969) we compute RMSPE at the end of the sample
T using information relating to forecasts for the final three years of the estimation
sample, namely T − 35 to T .
As implied by (4.3), the weights on the constituent forecasts are inversely

related to their RMSPE values. A simple average which places equal weight on
all forecasts corresponds to λ = 0. As λ increases, more weight is placed on those
models that have been performing relatively well. In this paper we consider λ ∈
{0, 1, 1.25, 1.5, 2}, with λ = 2 implying that the weights are inversely proportional
to the mean square prediction error.
In addition to weighting as in (4.3), we also consider weights that discount

historical forecast accuracy based on RMSPE (see Stock and Watson, 2004). For
an h-step ahead forecast, the combination weight in this case has the form

wh
i =

m−h
i

kP
j=1

m−h
j

(4.4)

where

mh
i =

vuutT−hX
j=1

δj−1
³byiT−j+1|T−j+1−h − yT−j+1

´2
(4.5)

and δ is the discount factor. In this paper, we consider discount factors of δ ∈
{1, 0.95, 0.90}. Note that for δ = 1 (4.5) operates as a window with no discounting
and this weighting scheme is then equivalent to (4.3) with λ = 2 when the latter
uses all observations to time T .

4.2.2. Regression Methods

Granger and Ramanathan (1984), Diebold (1988) and others, suggest combining
forecasts using regression methods. Following Diebold (2001, p.297) we do not
force the weights to sum to unity, nor do we exclude an intercept. Indeed, in-
clusion of an intercept facilitates bias correction and allows biased forecasts to be
combined. Therefore, the regression used can be expressed as

ySn+s+h = β0 +
kX

j=1

βjbyjSn+s+h|Sn+s + εSn+s+h (4.6)

with j = 1, 2, ..., k, and where k represents the number of individual forecast
methods included. The weights in (4.6) for the observation at T are estimated
using the final 36 observations in the estimation period, namely corresponding to
h-step ahead forecasts for periods T − 35 to T inclusive.
However, with k = 17 in our case, (4.6) implies an excessive parameterisation.

Therefore, in implementing (4.6) we use only the five methods producing the most
accurate forecasts over the latest available 36 observations.
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5. Forecast Performance

5.1. Individual Forecasting Models

Table 4 presents the individual forecasting models that we apply, while the 18
forecast combination procedures used are summarised in Table 5.
As noted in Section 2, the time series models are generally applied to macro-

economic data after differencing, and this is replicated in Table 4. Since the
appropriate level of differencing is often unclear in empirical analyses, we reflect
this uncertainty by applying the same models to data after applying each of the
common differencing filters. For example, low-order ARMA models are applied to
data after annual differencing, and to data after both first and annual differences
are applied; PAR models are estimated for levels and first differenced data, while
SETAR models employ levels and data after (separate) application of the ∆1 and
∆S filters. In each case these choices reflect the type of data to which these models
are applied in practice, in conjunction with the indicated deterministic terms. For
the AR(p) models of Table 4, a maximum order of 24 is considered, while the
SETAR(p) considers a maximum AR order of 12. In both cases, insignificant lags
are eliminated (starting with the minimum t− statistic) prior to using the models
for forecasting. Based on a preliminary investigation, the lag order p is set to 3
for all PAR models.

Table 4: Forecast Models

Code Individual Models Filter Deterministic terms
M1 Airline Model ∆1∆12 None
M2 ARMA(1, 1) ∆12 Intercept
M3 ARMA(2, 2) ∆12 Intercept
M4 AR(p) ∆12 Intercept
M5 SSETAR (p) ∆12 Intercept
M6 AR (p) levels Seasonal intercepts + trend
M7 PAR(12, 3) levels Seasonal intercepts + trend
M8 PAR(3, 3) levels Seasonal intercepts & seasonal trends
M9 SSETAR(p) levels Seasonal intercepts & seasonal trends
M10 AR (p) ∆1 Seasonal intercepts
M11 PAR(3, 3) ∆1 Seasonal intercepts + trend
M12 PAR(12, 3) ∆1 Seasonal intercepts & seasonal trends
M13 SSETAR(p) ∆1 Seasonal intercepts
M14 ARMA(1, 1) ∆1∆12 None
M15 ARMA(2, 2) ∆1∆12 None
M16 ARMA(3, 3) ∆1∆12 None
M17 AR(p) ∆1∆12 None

5.2. Forecasting Combination Methods

The combination methods that we consider are based i) on the weight function
(4.3) with S = 12 and λ ∈ (0, 1, 1.25, 1.5, 2); ii) on the mean and median of the
best 5, 10 and 15 models which are chosen based on the historical RMSPE across
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the 17 models considered; iii) on the discounted RMSPE weights as given in (4.4)
and (4.5) with S = 12 and δ ∈ {1, 0.95, 0.90}; iv) based on the regression method
as described in (4.6) and; v) finally, on the mean or median of all combinations.
Table 5 summarizes the individual combination methods used in the empirical
analysis.

Table 5: Combination Methods

Code Combination method Parameters
C1 mean of M1 to M17
C2 median of M1 to M17
C3 (4.3) λ = 0
C4 (4.3) λ = 1
C5 (4.3) λ = 1.25
C6 (4.3) λ = 1.5
C7 (4.3) λ = 2
C8 mean of best 5 models (RMSPE criteria)
C9 mean of best 10 models (RMSPE criteria)
C10 mean of best 15 models (RMSPE criteria)
C11 median of best 5 models (RMSPE criteria)
C12 median of best 10 models (RMSPE criteria)
C13 median of best 15 models (RMSPE criteria)
C14 mean of combinations
C15 (4.4) and (4.5) δ = 1
C16 (4.4) and (4.5) δ = 0.95
C17 (4.4) and (4.5) δ = 0.9
C18 regression method of (4.6)

5.3. Forecasting Results

Forecast accuracy is evaluated by employing the 36 observations from January 2003
to December 2005. All forecasting models are recursively re-estimated over this
forecasting period. In addition, models that require specification of the appropriate
AR order are recursively re-specified during the forecast period, while the weights
required in (4.3), (4.4) and (4.6) are also updated using the most recently available
observations and the corresponding forecast values.

5.3.1. Individual Countries

Table 6 presents the ten best forecasting approaches, according to post-sample
RMSPE(h), out of the 35 considered for each of the countries examined, including
the Euro Area. Not surprisingly, the best performing methods differ over both the
horizon (h = 1, 3, 8) considered and the country. However, two cases of particular
interest may be the USA and the Euro Area. For the former, the simple AR(p)
model M6 estimated in levels, with seasonal intercepts and a trend, does well at
short horizons (h = 1, 3), but this model does not enter the best ten for h = 8. On
the other hand, the PAR(3,3) model M11 in first differences is the most accurate
method at a horizon of h = 8 months and provides a relatively good performance
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at h = 3, but does not enter the top ten at one month ahead. Overall, the best
results for the USA are given by combining forecasts using the either the median
or mean forecast from the most accurate 5 models (C11 and C8 respectively). In
particular, this median combination yields the most accurate forecasts at horizons
of one, a close competitor to the best at h = 3 and the fifth most accurate at
h = 8.

[Insert Table 6 about here]

For the Euro Area, a good performance of the PAR(3,3) model M11 at h = 1, 3
and 8 is again observed. The closest competitor at very short horizons is another
PAR model in levels, namely M7. For the Euro Area, however, it is striking that
combinations perform well at h = 8, where a variety of combined forecasts are
more accurate than any individual model except for the PAR(3,3).
Across all the sub-tables in Table 6, some interesting patterns emerge. Of the

64 evaluations (namely, 18 countries at three forecast horizons), individual models
provide the most accurate forecasts (with a ranking of 1) in approximately two
thirds of cases, with the PAR(3,3) model in first differences M11 achieving this
most often, namely nine times. The next best performing individual model is the
airline model M1, being top ranked six times, while a simple AR(p) in seasonal
and annual differences, M17, also provides robust forecasts with five top places.
Of the forecast combinations, the regression method C18 is best, being ranked top
five times.
The relatively good performance of the PAR models reflects the evidence for

such effects uncovered in Table 3. Indeed, these perform particularly well at the
short forecast horizons of one and three months when estimated on the levels data,
with either M11 or M12 the best forecast model at one or both of these horizons
for Austria, Germany, Japan, Netherlands and Sweden, in addition to the Euro
Area. On the other hand, however, the nonlinear SETAR models do not generally
perform well according to the results of Table 6, although the variants M5 and
M9 do yield the most accurate forecasts at h = 1 for Portugal and Luxembourg
respectively. Nevertheless, overall, the evidence of nonlinearity in Table 2 does not
here lead to improved post-sample forecast accuracy.
Despite individual models typically delivering the most accurate forecasts in

Table 6, the implications change if the top ten models are considered. For h = 1,
combinations occupy 82% of the top ten positions compared with 18% from the
individual models; for h = 3, forecast combinations take 71% of the top ten po-
sitions; and for h = 8, the distribution becomes slightly more symmetric in that
combinations represent 66% of these positions. Indeed, for a few countries (specif-
ically, Denmark, Hungary and Spain), combinations occupy all of the top ten
places for one-month ahead forecast accuracy, while for others (France, Germany,
Japan, Luxembourg and the Netherlands) a specific model delivers the most ac-
curate forecast at this horizon but combinations occupy all the remaining top ten
places. These results imply that while some individual methods can provide good
forecasts, combinations may deliver more consistent forecast performance.
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5.3.2. Overall Accuracy Comparisons

To investigate the overall accuracy of these methods, Table 7 provides summary
information on average rankings and RMSPE. The RMSPE results in the final
column are scaled by that of M1 (the airline model) at each horizon in order to
facilitate comparisons.

[Insert Table 7 about here]

Here some individual linear models perform reasonably well, including the air-
line model (M1) and M17, as well as the PARmodels M7, M11 and M12. However,
it should be noted that the airline and the AR models, M1 and M17, take account
of seasonality only in the naive fashion of largely removing it through the applica-
tion of annual (in addition to first) differences. Although a number of individual
models provide more accurate forecasts than the airline model in terms of average
relative RMSPE at h = 1, the robust performance of this model becomes notable
at longer horizons in Table 7, with no individual model providing more accurate
average relative RMSPE at h = 8. At shorter horizons, however, the PAR models,
and especially the parsiminous PAR(3,3) model in first differences, M11, capture
the seasonality more adequately than any other specification that explicitly models
these patterns.
The poor performance of the SETAR model in levels (M9) and first differences

(M13) is particularly marked in Table 7. This may be a consequence of the nonlin-
earity often evident in Table 3 not being repeated during the forecast period. The
results are also not favourable overall to the use of low order ARMA specifications
after first and annual differences (M14, M15, M16) for forecasting these IPI series.
The average rankings in Table 7 are, however, clear about the quality of the

forecast combinations, with the overall average rankings for these being generally
superior to the individual models considered. Indeed, combinations always occupy
the top average ranking positions. For h = 1, the best performance in terms of
relative RMSPE is given by the combinations based explicitly on past RMSPE,
namely C16 and C17 (discounted RMSPE forecast weights based on (4.4) and (4.5)
with weights δ = 0.95 and δ = 0.90 respectively), followed by C4, C5, C6 and C7
(all based on (4.3) for different choices of λ). In terms of average rank, however,
C17 performs best at this horizon. For h = 3 the best overall average performance
in terms of both average rank and relative RMSPE are given by C15 (undiscounted
RMSPE forecasts based on (4.4) and (4.5) with δ = 1) and C4 (weights (4.3) with
λ = 1). For h = 8, the best performance is C16, followed by C4, C10 and C17.
Overall, therefore, these results point to the use of forecast combination methods
that use previous RMSPE performance as weights.
Table 7 also indicates that almost all combination methods considered give

average RMSPE gains compared to even the best of the individual models for the
short horizons h = 1, 3. The only exceptions to this are C1 (mean of all models)
and C3 ((4.3) with λ = 0) and C18 (regression method of (4.6)).
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6. Conclusion

This study reinforces evidence that combining forecasts from individual models
can improve post-sample forcast accuracy. Our conclusion is based on forecasts
from a large set of individual models and methods of combination of forecasts,
whose performance is evaluated using monthly seasonally unadjusted Industrial
Production data from 17 individual countries (Austria, Canada, Denmark, Fin-
land, France, Germany, Greece, Hungary, Italy, Japan, Luxembourg, Netherlands,
Portugal, Spain, Sweden, United Kingdom and USA) and an aggregate series for
the Euro Area.
The potential of forecast combinations is even more attractive in the context of

seasonal data than data after seasonal adjustment, due to the number of questions
that arise in the analysis of seasonal data. For instance, there are questions as to
the stationarity or otherwise of seasonal dynamics, whether capturing seasonality
requires the use of periodic (seasonally-varying coefficient) models and whether
there are nonlinear seasonal/business cycle interactions. According to our results,
almost all forecast combination methods deliver improved forecast performance,
on average, compared with individual methods. Nevertheless, the combination
methods that produce the most accurate forecasts identify the best forecasting
models and base the combination on these. Indeed, a simple average of the best
five forecasting models for a particular horizon performs well, especially when
forecasting one month ahead. Nevertheless, we find that better combinations can
usually be found by weighting the forecasts using information from the root mean-
square prediction error for earlier periods.
Our results relating to the use of more complex methods of handling seasonality

are mixed, in the sense that nonlinear models here deliver poor forecast perfor-
mance, whereas a parsiminous parameterisation of a periodic model provides the
most accurate forecasts for industrial production in the Euro Area and some other
countries at short horizons. This indicates that future research may examine fur-
ther the extent to which the imposition of restrictions can improve the forecast
performance of such methods.
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Table 6: Ranking of Top Ten Forecasting Models for Each Country

Austria Canada Denmark Euro Area

Rank h=1 h=3 h=8 h=1 h=3 h=8 h=1 h=3 h=8 h=1 h=3 h=8

1 M11 M12 M6 M1 C11 M1 C10 C9 C10 M11 M11 M11

2 C1 M11 M7 C1 C8 C14 C9 C10 C5 M7 M7 C9

3 C3 M6 M12 C3 M7 C12 C7 M4 C4 M12 C10 C14

4 C17 M7 M8 M11 M12 C17 C8 C17 C15 C16 M12 C7

5 M12 C17 C10 C17 M1 C7 C6 C7 C6 C15 M10 C6

6 M6 C16 C16 C16 C14 C16 C5 C6 C7 C4 C15 C16

7 C16 C4 C4 C14 C9 C6 C11 C16 C16 C17 C4 C5

8 C15 C15 C15 C4 C12 C9 C15 C5 C17 C5 C16 C4

9 C4 C5 C17 C15 C7 C5 C4 C4 C14 M10 C17 C15

10 C14 C14 C5 C8 C16 C15 C16 C15 M4 C10 C5 C17

Finland France Germany Greece

Rank h=1 h=3 h=8 h=1 h=3 h=8 h=1 h=3 h=8 h=1 h=3 h=8

1 M17 M17 M17 M6 C18 C18 M17 M11 M11 M17 M10 M10

2 C10 C15 M1 C8 M6 M6 C3 M7 C9 C8 C10 C11

3 C13 C4 C4 C11 C8 C8 C8 C11 M7 C10 C8 C18

4 C11 M1 C15 C18 M12 C11 C17 C15 C17 C11 C13 C10

5 C7 C16 C5 C14 C9 M10 C16 C4 C16 M5 C15 C15

6 C9 C17 C6 C7 C11 M7 C1 C16 C7 C7 C4 C4

7 C8 C5 C14 C9 C7 C7 C4 C17 M12 C6 C5 C16

8 C2 C14 C16 C6 C6 C9 C15 C10 C6 C13 C16 C8

9 M4 C6 C7 C5 C10 C6 C5 C5 C5 C5 C6 C5

10 M10 C7 C17 C4 C5 C5 C14 C8 C14 C15 C17 C17

Hungary Italy Japan Luxembourg

Ranking h=1 h=3 h=8 h=1 h=3 h=8 h=1 h=3 h=8 h=1 h=3 h=8

1 C10 M1 M1 C18 M1 M3 M12 C2 M1 M9 C15 M16

2 C3 C6 C9 M5 M17 C2 C5 C11 C10 C1 C4 M14

3 C17 C2 C10 C14 C8 M2 C6 C5 C17 C3 C14 M1

4 C15 C5 C15 C11 C11 C13 C15 C6 C16 C15 C16 C13

5 C4 C10 C4 C8 C2 M1 C4 C4 C15 C4 C9 M17

6 C16 C7 C5 C4 C13 C14 C7 C15 C4 C18 C5 M15

7 C5 C15 C6 C15 C12 C12 C16 C14 C5 C16 M16 C2

8 C1 C4 C7 M4 C7 C17 C10 C16 C2 C5 C6 C17

9 C6 C17 C17 C16 C10 C16 C17 C7 C6 C17 C17 M5

10 C7 C16 C16 C5 C6 C9 C8 C17 C14 C6 C10 C10

21



Table 7: Ranking of Top Ten Forecasting Models for Each Country
(Cont.)

Netherlands Portugal Spain Sweden

Rank h=1 h=3 h=8 h=1 h=3 h=8 h=1 h=3 h=8 h=1 h=3 h=8

1 M11 C2 M4 M5 M4 M4 C17 C10 C8 M11 M12 M6

2 C17 C13 M3 M17 M1 M1 C4 C15 C9 C1 M11 M7

3 C16 M11 M2 M4 M11 M12 C15 C4 C7 C3 M6 M12

4 C4 C12 C9 C10 M12 M11 C16 C5 M11 C17 M7 M8

5 C15 M3 C8 C15 C10 C10 C5 C8 C6 M12 C17 C10

6 C3 C9 M11 C4 M17 C13 C8 C6 C5 M6 C16 C16

7 C10 C8 C11 C16 C4 C2 C6 C16 C15 C16 C4 C4

8 C5 C14 C7 C13 C15 C14 C9 C7 C4 C15 C15 C15

9 C13 C7 C17 C17 C17 C17 C7 C17 C16 C4 C5 C17

10 C1 C6 C16 C2 C16 C16 C10 C14 C10 C14 C14 C5

UK USA

Rank h=1 h=3 h=8 h=1 h=3 h=8

1 C18 C18 M7 C11 M6 M11

2 M12 M12 M8 M6 M7 C8

3 M6 M7 M12 C8 C11 M7

4 C8 M8 M6 C9 M10 M1

5 M10 C9 C10 C2 M11 C11

6 M11 C14 M10 C14 C8 C14

7 C14 C7 C8 C13 C9 C12

8 C9 C6 C14 M1 C14 C9

9 C7 C5 C4 C3 C12 C7

10 C10 C4 C15 C12 C13 C2
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Table 7: Average Rank, Average RMSPE and Scaled Average RMSPE

h=1

Model Rank RMSPE Mi/M1

M1 23.2 0.031 1.000

M2 24.6 0.031 1.014

M3 25.2 0.031 1.017

M4 19.6 0.029 0.948

M5 23.2 0.032 1.048

M6 20.6 0.030 0.972

M7 25.1 0.032 1.010

M8 29.0 0.034 1.092

M9 33.4 0.772 28.03

M10 21.3 0.030 0.965

M11 17.9 0.030 0.964

M12 19.4 0.030 0.979

M13 33.8 0.047 1.464

M14 28.1 0.032 1.035

M15 27.5 0.032 1.026

M16 27.2 0.032 1.025

M17 17.6 0.029 0.939

h=3

Rank RMSPE Mi/M1

18.2 0.036 1.000

24.4 0.037 1.055

22.4 0.037 1.047

20.2 0.036 1.000

30.1 0.041 1.178

20.9 0.038 1.030

17.8 0.038 1.028

27.4 0.041 1.119

35.4 0.652 20.10

22.6 0.037 1.028

16.2 0.036 0.991

17.3 0.036 1.012

35.6 0.259 8.741

27.1 0.039 1.082

27.7 0.039 1.087

25.6 0.038 1.077

18.7 0.035 0.985

h=8

Rank RMSPE Mi/M1

15.1 0.048 1.000

20.1 0.049 1.053

20.3 0.050 1.076

19.7 0.050 1.077

28.6 0.056 1.202

20.2 0.052 1.111

16.8 0.049 1.069

20.4 0.050 1.062

35.1 0.927 20.88

20.2 0.050 1.078

17.4 0.049 1.043

16.9 0.049 1.050

35.5 0.724 18.99

26.7 0.054 1.152

27.5 0.055 1.186

26.5 0.054 1.176

21.9 0.050 1.079

h=1

Method Rank RMSPE Ci/M1

C1 21.2 0.062 2.205

C2 15.8 0.029 0.924

C3 19.9 0.058 2.033

C4 9.3 0.028 0.906

C5 10.4 0.028 0.906

C6 10.9 0.028 0.906

C7 10.8 0.028 0.906

C8 10.4 0.028 0.909

C9 13.8 0.029 0.919

C10 9.9 0.028 0.904

C11 12.9 0.029 0.916

C12 17.1 0.029 0.929

C13 13.9 0.029 0.918

C14 12.3 0.028 0.912

C15 9.3 0.028 0.906

C16 9.3 0.028 0.904

C17 9.0 0.028 0.904

C18 21.6 0.032 1.025

h=3

Rank RMSPE Ci/M1

29.2 0.062 1.874

12.8 0.034 0.951

27.7 0.058 1.743

8.3 0.034 0.933

8.8 0.034 0.934

9.4 0.034 0.935

10.6 0.034 0.936

11.8 0.034 0.940

12.3 0.034 0.944

9.7 0.034 0.934

12.7 0.035 0.944

15.1 0.035 0.957

13.9 0.034 0.951

11.2 0.034 0.938

8.2 0.034 0.933

9.4 0.034 0.934

10.8 0.034 0.935

23.7 0.039 1.090

h=8

Rank RMSPE Ci/M1

32.3 0.097 2.273

14.4 0.047 0.988

31.1 0.090 2.096

9.3 0.046 0.968

9.7 0.046 0.969

10.1 0.046 0.969

10.6 0.046 0.971

13.8 0.047 0.992

12.4 0.047 0.982

9.3 0.046 0.966

15.7 0.048 1.010

17.2 0.048 1.002

15.7 0.047 0.991

11.7 0.047 0.975

9.6 0.046 0.968

9.1 0.046 0.968

9.3 0.046 0.968

21.9 0.058 1.255

Note: Scaled average RMSPE is relative to RMSPE of M1, and is denoted Mi/M1 or
Cj/M1 (i = 2, ..., 17, j = 1, ..., 17).
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