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Abstract

This paper investigates the importance of cross-country interactions in identi-

fying the effect of the great moderation and measuring the relationship between

volatility and economic activity for the G7. A model of output growth for each G7

country is obtained taking cross-section interactions into account by augmenting

univariate GARCH-M models with cross-country weighted averages of growth. The

analysis shows that the effect of the great moderation and volatility on economic

activity is statistically significant, and positive, only if cross-country interactions

are factored in.
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1 Introduction

This paper investigates the relationship between volatility and economic activity for

the G7 countries in a time series framework. The time series framework used to mea-

sure volatility and to estimate its effect on economic activity is the GARCH-in-mean

(GARCH-M) model developed by Engle, Lilien, and Robins (1987). In this framework,

it is also possible to account for structural breaks in the mean and variance of growth.

Breaks in the variance that lead to a drop in volatility are of particular interest as this

gives evidence for a great moderation.

The innovation of the paper is that it adjusts the GARCH-M model so that it takes

country interactions into account to investigate the nature of the great moderation and

the effect of volatility in economic activity. A model that takes country interactions into

account is obtained by augmenting the univariate GARCH-M model with cross-country

weighted averages of growth. Using cross-country weighted averages in this way is a

technique developed in Pesaran, Schuermann, and Weiner (2004) and Dees, Di Mauro,

Pesaran, and Smith (2007).

There is a long history of studies that investigate the relationship between volatil-

ity and economic activity with GARCH-M models and generally find a positive, but

insignificant, effect of volatility (see for example Caporale & McKiernan, 1996; Fang,

Miller, & Lee, 2008; Speight, 1999). These studies, however, ignore cross-country inter-

actions. If country interactions are taken into account, however, this study finds that

the impact effect of volatility is positive and significant in 4 of the G7 countries and the

long-run effect of volatility on economic activity is positive and statistically significant

in all G7 countries. Theoretically, there are a number of reasons for why volatility could

affect growth positively. The idea of creative destruction (Schumpeter, 1942), precau-

tionary savings (Mirman, 1971) and opportunity cost considerations (see for example

Hall, 1991) all predict a positive relationship1.

The modelling framework also allows to check for the effects of a great moderation

in the G7. The analysis shows that there is evidence for a great moderation for five of

the G7 countries, namely Canada, France, Italy, the United Kingdom and the United

1There are, however, also a number of reasons for why volatility could affect growth negatively. This
could be due to irreversibilities in investment (Bernanke, 1983), learning-by-doing (Martin & Rogers,
1997) or a change in the composition of investment (Stiglitz, 1993).
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States. All countries experience a fall in volatility around 1985, except for France where

the fall happens around 1980.

As the effect of volatility on economic activity is positive and the great moderation

signifies a drop in volatility, it follows that the great moderations has a negative effect on

economic activity. The long-run effect of the great moderation is found to be statistically

significant for Canada, the United Kingdom and the United States.

The paper also assesses the importance of cross-country interactions by performing

a simulation exercise. The results are forthcoming.

The paper is organised as follows. Section 2 describes the modelling framework. It

presents the GARCH-M model with shift dummies and cross-country weighted averages

and derives the long-run effects of volatility and the great moderation on economic

activity. Section 3 discusses the estimation results. Before presenting these results,

however, it discusses the data, an exogeneity test, the break detection procedure, the

model selection procedure and the estimation method. Section 4 assesses the importance

of cross-country interactions using a simulation exercise. Section 5 concludes.

2 Modelling the role of the great moderation and the ef-

fect of volatility on economic activity using GARCH-in-

mean models with country interactions

The general econometric framework in this paper is the univariate gereralised autore-

gressive conditional heteroscedasticity-in-mean model (GARCH-M) developed by Engle,

Lilien, and Robins (1987). This framework models the variance of the dependent variable

in a separate equation and is able to estimate its feedback on the dependent variable.

The standard GARCH-M model, however, is adjusted in two ways. First, shift dum-

mies in the mean and variance equation are included in order to account for structural

breaks. The effect of ignoring structural breaks in the mean is well known. As Perron

(1989) shows, structural breaks biases the autoregressive parameters in the mean equa-

tion towards 1. Ignoring structural breaks in the variance has a similar effect. Early

studies find that the persistence of volatility shocks of stock returns, interest rates and

exchange rates are very high, i.e. the estimated autoregressive parameters in the vari-

ance equation are close to one (see Bollerslev, Chou, & Kroner, 1992 for a review). In
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response to this empirical finding, Engle and Bollerslev (1986) propose the Integrated

GARCH (IGARCH) model. Diebold (1986), in a comment to the original IGARCH

paper, however, argues that this persistence could be due to structural change in the

variance. Lamoureux and Lastrapes (1990) show that this is indeed the case using daily

stock-return data and Monte Carlo simulations. Furthermore, Hillebrand (2005) proves

it and coins this effect ’Spurious almost-integration’.

Taking structural breaks into account, however, is not only motivated by statistical

considerations. The dummies also have an economic interpretation. The dummy vari-

ables in the mean equation can be interpreted as productivity changes (see for example

Nordhaus, 2004), whereas the dummy variables in the variance equation can be justified

by the various mechanism that could lead to shifts in the variance (see Stock & Watson,

2002). Negative breaks in the variance are of particular interest as they provide evidence

for a great moderation.

The second adjustment, which is the innovation of the paper, is the inclusion of

cross-country weighted averages of growth to account for cross-country interactions.

The use of cross-country weighted averages in this way is a technique used in the Global

VAR literature (see for example Dees, Di Mauro, Pesaran, & Smith, 2007; Pesaran,

Schuermann, & Weiner, 2004).

In what follows, I first describe the univariate GARCH-M models. Then, I derive

the long-run effects of volatility and the great moderation on economic activity.

2.1 The GARCH-M model with country interactions

The standard GARCH(1,1) model augmented with shift dummies and cross-country

weighted averages is given by

∆yit = ci0 +
l∑

k=1

cikDMikt + λiσit+

s∑
k=0

βik∆y
∗
it−k +

p∑
k=1

φik∆yit−k + εit (2.1)

σ2it = αi0 +

f∑
k=1

αikDVikt + ηiε
2
it−1 + γiσ

2
it−1 (2.2)

where ∆yit is the growth rate for country i at time t, DMikt are possible shift dummies

in the conditional mean which are equal to 0 before the break date and equal to 1 on
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and after the break date, σit is the conditional standard deviation of growth, which is

the measure of volatility, and ∆y∗it−k are the cross-country weighted averages of growth

which are defined as

∆y∗it =
7∑
j=1

wij∆yjt,
7∑
j=1

wij = 1 and wii = 0, (2.3)

where wij is the average share of total trade of country i with country j and total trade

is defined as the sum of exports and imports between country i and the other countries.

The conditional variance of country i at time t, σ2it, depends on a constant αi0,

possible shift dummies DVikt which are equal to 0 before the break date and equal to

1 on and after the break date, the squared lagged error term and a lag of the variance.

The shift dummies with a negative coefficient are then interpreted as evidence for a

great moderation. Note that equation 2.2 reduces to an ARCH(1) model if γi equals

zero.

The standard properties for the error term in the model hold. The conditional mean

and variance of the error term are equal to 0 and σ2it, respectively, i.e. εit ∼ (0, σ2it), and

the error term is serially uncorrelated, i.e. COV [εit, εit−k] = E[εitεit−k] = 0 for k 6= 0.

Note that the error term of each country only consist of an idiosyncratic component as

the model takes cross-country interactions into account. It follows that the error term

across countries is uncorrelated, i.e. COV [εit, εjt] = E[εitεjt] = 0 for i 6= j.

2.2 Measuring the long-run effect the great moderation and volatility

on economic activity

In order to find the long-run effect of the great moderation and volatility, we first

calculate the short-run effect of the great moderation and volatility on the growth rate

and then premultiply these short-run effects with the multiplier.

To find the short-run effect of the great moderation on economic activity, equation

2.2 is first substituted into equation 2.1 and then the derivative is taken with respect

to the particular variance dummy or dummies, DVikt, that relates or relate to the great
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moderation. These dummies are denoted as DViGM and their effects as αiGM , i.e.

∂∆yit
∂DViGM

= λi
1

2

(
αi0 +

f∑
k=1

αikDVikt + ηiε
2
it−1 + γiσ

2
it−1

)− 1
2
αiGM (2.4)

=
λiαiGM

2
√
σ2it

(2.5)

≡ αSRiGM
(2.6)

The short-run effect of volatility on growth is equal to

∂∆yit
∂σit

= λi ≡ λSRi . (2.7)

In order to find the multiplier we stack the model, i.e.

∆yt = c0 +
l∑

k=1

ckDMkt + λσt+

s∑
k=0

βk∆y∗t−k +

p∑
k=1

φk∆yt−k + εt (2.8)

σ2
t = α0 +

f∑
k=1

αkDVkt + ηε2t−1 + γσ2
t−1 (2.9)

∆y∗t = W∆yt (2.10)

where all the coefficient matrices are 7 × 7 matrices, except the constants c0 and α0

which are 7×1 vectors. The diagonal elements of these matrices are equal to the country-

specific estimates and the off-diagonal elements are equal to 0. The weights matrix is

equal to

W =



0 w12 · · · w17

w21 0
... w27

...
...

. . .
...

w71 w72 · · · 0


(2.11)

where wij is the share of total trade of country i with country j.
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Substituting equation 2.10 in equation 2.8 gives

∆yt = c0 +
l∑

k=1

ckDMkt + λσt +
s∑

k=0

βkW∆yt−k +

p∑
k=1

φk∆yt−k + εt (2.12)

and using the lag operator and rearranging gives

∆yt =
(
I7 −B(1)−Φ(1)

)−1(
c0 +

l∑
k=1

ckDMkt + λσt + εt

)
(2.13)

where B(1) =
∑s

k=0 βkW and Φ(1) =
∑p

k=1φk. It follows that the multiplier is

equal to
(
I7−B(1)−Φ(1)

)−1
and so the long-run effect of the great moderation and

volatility are

αLR
GM
≡
(
I7 −B(1)−Φ(1)

)−1
αSR

GM
=



αLR(1,1)GM
αLR(1,2)GM

· · · αLR(1,7)GM

αLR(2,1)GM
αLR(2,2)GM

· · · αLR(2,7)GM

...
...

. . .
...

αLR(7,1)GM
αLR(7,2)GM

· · · αLR(7,7)GM


(2.14)

and

λLR ≡
(
I7 −B(1)−Φ(1)

)−1
λSR =



λLR(1,1) λLR(1,2) · · · λLR(1,7)

λLR(2,1) λLR(2,2) · · · λLR(2,7)
...

...
. . .

...

λLR(7,1) λLR(7,2) · · · λLR(7,7)


, (2.15)

respectively. Note that the short-run effect of the great moderation, αSRiGM
, includes

the contemporaneous variance, σ2it. In order to find the long-run effect of the great

moderation the contemporaneous variance is replaced by the long-run variance.

Because the model takes country interactions into account through the weight matrix

W , the off-diagonal elements of the matrices with the long-run effects are nonzero. The

diagonal elements are the long-run effects of country i on the growth rate of country

i. The off-diagonal elements are the long-run effects of country j on the growth rate of

country i. To arrive at the effect of total long-run effects, the row elements of the matrices

with the long-run effects are summed. This total effect incorporates the internal and

external effects. Thus the total long-run effects of the great moderation and volatility
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are equal to

αTLR
GM

≡ αLR
GM
S =



∑7
j α

LR
(1,j)GM∑7

j α
LR
(2,j)GM

...∑7
j α

LR
(7,j)GM


and λTLR ≡ λLRS =



∑7
j λ

LR
(1,j)∑7

j λ
LR
(2,j)

...∑7
j λ

LR
(7,j)


, (2.16)

respectively, where S is a 7× 1 vector of ones.

3 Assessing the role of the great moderation and the effect

of volatility on economic activity

3.1 Properties of economic activity in the G7

The measure of economic activity in this study is the seasonal adjusted monthly growth

rate of industrial production from the OECD’s Main Economic Indicators (MEI) database2.

The analysis is done for the G7 over the period February 1961 – May 2013. The G7

consist of Canada (CAN), France (FR), Germany (GER), Italy (ITA), Japan (JAP),

the United Kingdom (UK) and the United States (US). Figure 1 presents the monthly

growth rates and table 1 presents the summary statistics3. The monthly growth rates

of industrial production are found to be stationary, serially correlated, conditional het-

eroscedastic and not normally distributed4. The data used to calculate the average trade

weights in the definition of the cross-country weighted averages, wij in equation 2.3, is

2This measure is compared with GDP in the appendix. Figure 2 in appendix A plots the two series
together. The two series follow the same path, except for France and the United Kingdom where the
growth rate of industrial production is slower than GDP from 1975 and 1970 onwards, respectively.
Table 6 shows some numbers expressing the relatedness of the two series. Panel A shows that the
correlation between the two series is quite high, irrespective if the series are in levels, in logs or in
growth rates. Panel B shows that, as expected, the IPI series is much more volatile than GDP for all
G7 countries.

3France and Japan have extreme observations and these are replaced by the median growth rate of
the original data over the full sample. In particular, the extreme observations are March–April 1963 for
France due to a miner strike, May–July 1968 for France due to the May ’68 upraising and March–June
2011 for Japan due to an earthquake.

4The unit root rest is the Elliott, Rothenberg, and Stock (1996) test. This test has more power
than the original augmented Dickey-Fuller unit root test. This test has also another advantage. When
a break is present in the data, the Dickey-Fuller test is biased towards non-rejection of a unit root
(Perron, 1989). The ERS DF-GLS unit root test, in contrast, is asymptotically robust to level breaks
(Elliott et al., 1996, p. 816). To test for serial correlation and conditional heteroscedasticity in the data
I calculate the Ljung-Box Q-statistics for the data and the Ljung-Box Q-statistics for the squared data,
respectively. To test if the data is normally distributed I use the Jarque-Bera test statistic. See table 5
in appendix A for the results of these tests.
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Table 1: Summary statistics of the monthly growth rates of industrial production for
the G7 (in %), 1961:02-2013:05

N Median Mean Sta. Dev. Min Max

CAN 628 0.19 0.24 1.10 -3.76 4.13

FR 628 0.04 0.14 1.35 -4.70 5.66

GER 628 0.23 0.20 1.75 -9.46 12.31

ITA 628 0.18 0.18 2.16 -14.78 13.51

JAP 628 0.38 0.34 1.54 -8.38 6.60

UK 628 0.10 0.09 1.36 -7.88 9.73

US 628 0.29 0.24 0.76 -4.21 3.09

import and export data from the IMF’s Direction of Trade Statistics5.

3.2 Exogeneity test of ∆y∗it

An important assumption in the model in equation 2.1-2.2 is that the contemporaneous

cross-country weighted average is exogenous, i.e. the country specific growth rate at

time t, ∆yit, does not affect the cross-country weighted average at time t, ∆y∗it. In

statistical terms this assumptions implies that ∆y∗it and the error term are uncorrelated,

i.e. COV (∆y∗it, εit) = 0.

A standard procedure to test if a variable is exogenous is to compare OLS and

2SLS estimates as proposed by Hausman (1978). If the estimates of the two estima-

tion methods differ significantly, then the suspected endogenous variable is endogenous.

Unfortunately, GARCH models cannot be estimated with OLS and 2SLS. Therefore, I

adjust the models discussed in section 2 so that OLS and 2SLS estimation are possible

and we can still test if ∆y∗it is exogenous. In particular, I exclude the variance equation

and the conditional standard deviation in the mean equation. This gives a standard

AR(p) model augmented with the cross-country weighted averages. As the error term

in this framework is not conditionally homoscedastic, I use adjusted standard errors

throughout the procedure. I find the optimal number of lags by allowing for up to six

lags of the lagged variables and use the model where the AIC is maximized. Thus the

adjusted model is

∆yit = ci0 +

l∑
k=1

cikDMikt +

s∑
k=0

βik∆y
∗
it−k +

p∑
k=1

φik∆yit−k + εit (3.1)

5The average trade weights can be found in table 7 in appendix A. The cross-country weighted
averages are plotted in figure 3 in appendix A
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Figure 1: Monthly growth rates of industrial production for the G7, 1961:02–2013:05
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where s and p are the optimal lags.

To check if ∆y∗it is exogenous, we need to test if COV (∆y∗it, εit) = 0 in the above

model. This can be done through a regression test based on the reduced form of ∆y∗it.

In order to do the regression based test, we set the reduced form of ∆y∗it equal to

∆y∗it = ci0 +

l∑
k=1

cikDMikt +

s+1∑
k=1

βik∆y
∗
it−k +

p+1∑
k=1

φik∆yit−k + ξit (3.2)

Note that the number of lags of ∆yit and ∆y∗it is now one more that in equation 3.1.

This implies that the instruments are an extra lag of ∆yit and ∆y∗it.

As all the exogenous variables are uncorrelated with εit, it follows that COV (∆yit,

∆y∗it) = 0 if and only if COV (εit, ξit) = 0. Writing εit = θiξit + eit, where eit is

uncorrelated with ξit and has a mean of zero, implies that COV (εit, ξit) = 0 if and only

if θi = 0. An easy way to test this is to include ξit in the original model and check if it

is significant. As ξit is unobserved the estimated residuals of equation 3.2 are used, ξ̂it,

i.e.

∆yit = ci0 +
l∑

k=1

cikDMikt +
s∑

k=0

βik∆y
∗
it−k +

p∑
k=1

φik∆yit−k + θiξ̂it + υit (3.3)

Table 2 shows the results of the above procedure. The reported t-statistics are

based on the White heteroskedasticity-consistent standard errors. For all countries, θi

is insignificant at the 5 % level and so we can conclude that ∆y∗it is exogenous.

Table 2: Exogeneity test of ∆y∗it

CAN FR GER ITA JAP UK US

θi -1.330 0.684 -0.700 -0.767 -2.405 -0.132 0.452
(-1.72) (0.49) (-0.98) (-0.52) (-0.67) (-0.34) (0.64)

Notes: - t-statistics based on White heteroskedasticity-consistent stan-
dard errors are in brackets.

3.3 Determining potential structural breaks in the mean and variance

of growth

The procedure to determine structural breaks is based on Bai and Perron (1998) and Bai

and Perron (2003). Bai and Perron (1998) develop various procedures to identify mul-

tiple structural breaks in the linear model and Bai and Perron (2003) discuss practical
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issues for empirical applications of these procedures. In particular, Bai and Perron (2003,

p.15-16) recommend to first calculate the UDmax and WDmax test statistics to check

if there is at least one level break in of data. If this is the case, then the SupF (`+1|`)

statistic should be used sequentially to determine higher order breaks. The procedure

allows for a maximum number of 5 possible breaks, this implies that the maximum `

equals 4. In order to account for cross-country interactions, the cross-country weighted

averages are included in the procedure.

In particular, to find the break dates in the mean growth rates, the UDmax, WDmax

and SupF (`+1|`) statistics are calculated for the error term of the following equation

∆yit = ci0 +
6∑

k=0

βk∆y
∗
it−k + εit. (3.4)

To find the breaks in the variance, the statistics are calculated for the absolute values

of the error term (as in Herrera & Pesavento, 2005 and Fang & Miller, 2009) of the

following equation

∆yit = ci0 +

l∑
k=1

cikDM ikt +

6∑
k=0

βk∆y
∗
it−k + εit (3.5)

where DMikt are the mean shift dummy variables.

Table 3 shows the results of the above procedure. Panel A shows that Canada,

France, Germany, Italy and the United States experienced one break in their mean

growth rate, whereas Japan and the United Kingdom experienced two. The particular

dates of the mean breaks of the G7 countries do not really coincide with each other.

The results for the breaks in the variance are shown in panel B. Two countries, namely

Germany and Japan, did not experience a break in the variance. Canada, France and

the United States, in contrast experienced one break and Italy and the United Kingdom

two. Most of the break dates, however, happened around the mid-80s.

3.4 Model selection procedure and estimation method

In order to find the most parsimonious model, an important issue with GARCH models

needs to be taken into account and that is the possibility of the Zero-Information-

Limit Condition (ZILC) introduced by Nelson and Startz (2007). In many econometric
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Table 3: Results of the break detection procedure

Panel A: Breaks in the mean

CAN FR GER ITA JAP UK US C.V.

UDmax 29.56 29.97 18.70 33.52 44.45 18.40 27.09 21.70
WDmax 29.56 33.14 24.13 33.52 49.67 26.35 33.26 23.31
SupF (2|1) 22.03 13.19 22.77 22.40 74.67 25.14 22.15 23.62
SupF (3|2) 15.81 7.17 15.43 13.74 17.27 23.85 22.15 24.74
SupF (4|3) 10.52 11.09 11.21 8.79 25.05 7.31 9.98 25.63
SupF (5|4) 0.00 0.00 11.21 5.69 0.00 11.92 0.00 26.39

Break 1 1970:03 1978:04 1969:05 1985:10 1970:07 1974:03 1991:03
Break 2 2005:01 1981:12

Panel B: Breaks in the variance

CAN FR GER ITA JAP UK US C.V.

UDmax 18.85 8.83 4.91 46.19 2.45 22.14 15.97 7.46
WDmax 18.85 11.94 5.49 46.19 3.91 23.49 15.97 8.20
SupF (2|1) 8.27 7.86 4.13 13.06 1.73 11.42 3.41 8.51
SupF (3|2) 6.68 7.12 0.55 2.34 2.53 2.05 1.85 9.41
SupF (4|3) 4.95 1.76 0.65 9.53 4.94 5.62 1.02 10.04
SupF (5|4) 0.00 0.14 0.00 0.00 0.00 0.00 0.00 10.58

Break 1 1984:11 1979:08 1969:08 1972:01 1984:02
Break 2 1985:12 1987:08

models the asymptotic variance of a parameter estimate depends on the value of another

structural parameter. If the parameter estimate is close to a critical value, then the

asymptotic variance is very large and the model is weakly identified. More formally,

Nelson and Startz (2007, p.49) argue that ZILC holds for an estimator θ̂ if there is a

value of γ, say γ0, such that limγ→γ0 Iθ̂ = 0, where Iθ̂ is the inverse of the variance of

θ̂. Nelson and Startz (2007) introduce ZILC as a way to identify such model where the

above leads to spurious inference.

Ma, Nelson, and Startz (2007) show that ZILC can also hold for GARCH mod-

els. They show that if the true ARCH effect, ηi in equation 2.2, is small, then the

GARCH(1,1) model is weakly identified. The effect of this is that the GARCH coeffi-

cient, γi in equation 2.2, is biased upward and the corresponding standard error is too

small. Thus the results point to persistence where in fact this is not the case. Ma, Nel-

son, and Startz (2007, p16-17) also propose a procedure to detect this spurious result.

To check for ZILC in the GARCH(1,1) model, the implied autocorrelation function of

the conditional variance from the GARCH(1,1) should be compared with the one im-
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plied by an ARCH(q) model. If they differ a lot, then this is evidence that ZILC holds.

Also, if the estimated conditional variance of the GARCH(1,1) and an ARCH(q) models

are very different, then this also gives evidence for ZILC. Ma, Nelson, and Startz (2007)

propose to model the variance as an ARCH(q) model if ZILC is detected. Thus if ZILC

is detected, the variance equation, equation 2.2, is replaced with

σ2it = αi0 +

f∑
k=1

αikDVikt +

q∑
k=1

ηikε
2
it−k. (3.6)

There are, however, a few other issues that also need to be taken into account in

order to find the most parsimonious model for each country. A first one is the possibility

of a nonnormal error process as ignoring this leads to inconsistent standard errors6.

Estimating the models with the normal and the t-distribution as error distribution allows

us to test which distribution fits the data better. The model with the t-distribution,

however, has one more parameter than the model with the normal distribution, namely

the degrees of freedom. A second issue is that the Hessian of the log-likelihood function

of the GARCH-M model is not block diagonal and so the mean and variance parameters

are correlated. Therefore, all the parameters need to estimated simultaneously. Finally,

the models should be well-specified. The models are well-specified if the mean and

variance of the standardized residuals are equal to 0 and 1, respectively, the distribution

of the residuals corresponds to the one assumed in the estimation procedure and there

is no evidence of serial correlation and conditional heterscedasticity in the standardized

residuals.

Taking the above issues into account, the most parsimonious model for each country

is determined by estimating up to a GARCH(1,1) model with the t-distribution as error

distribution and up to six lags of all the possible lagged variables in the mean model.

The well-specified model that maximises the Akaike Information Criteria (AIC) where

ZILC does not holds is then picked as the best representation of the data.

The Marquardt optimization algorithm is used to estimate the models. As with any

iterative process, however, the algorithm could stop at a local maximum instead of the

global maximum. To counter this problem, all the models are estimated with various

6Previous studies remedied this by estimating GARCH models with the normal distribution but
applying the consistent variance-covariance estimator developed by Bollerslev and Wooldridge (1992).
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initial values to check if the likelihoods are the same7.

3.5 Estimation results

Table 4 shows the estimation results of the well-specified models8. Panel A and B show

the estimates for the mean and variance equation, respectively.

A first thing to note is that the cross-country weighted averages are numerous in

the models. Looking at the estimates on volatility, λ, we see that the impact effect of

volatility is positive for all countries and statistical significant at conventional levels in

four of the G7 countries, namely Canada, Japan, the United Kingdom and the United

States. The long-run effect of total volatility, λTLR, is statistical significant at the 1%

level for all G7 counties. The standard errors for the long-run effect of volatility are

obtained with the delta method.

The mean dummy variables are only statistically significant for Germany, Japan and

the United States. The signs of these significant estimates, however, are different. Japan

experienced a productivity slowdown around 1970, whereas Germany and the United

states experienced an increase in productivity around 1970 and 1990, respectively.

Panel B shows that all models are estimated with the t-distribution as error distribu-

tion, except for Canada. The variance model picked by the model selection procedure is

the ARCH(1) model for all countries, except for Italy and Japan where the best model

is a GARCH(1,1) model9.

All the variance dummies included in the models are significant at the 5% level. The

results show that volatility drops in the 1980s or around 1980 for all the countries that

experienced at least one break in the variance of growth. These countries are Canada,

France, Italy, the United Kingdom and the United States. Thus for these countries

there is evidence for a great moderation. The effect of the great moderation, αiGM ,

7I estimate the models with the estimates of the OLS regression for the mean equation as starting
values and various fractions of these OLS estimates. The fractions of the OLS estimates are 0.8, 0.5 and
0.3.

8A series of residual diagnostic tests are shown in table 8 in appendix A. Figure 4 in appendix A
for plots of the distribution of the residuals together with the theoretical distribution assumed in the
estimation process.

9For France, there was evidence for ZILC and therefore the variance model is a ARCH(q) process. The
number of lags q is determined by estimating up to lag 6 and picking the highest lag order while ignoring
models where one or more lags have a negative estimate. Figure 6 in appendix A shows that the implied
autocorrelation function of the conditional variance and the estimated conditional standard deviation
for the GARCH(1,1) and ARCH(q) model is very different. For Japan, I report the GARCH(1,1) model
as the standardized residuals of the ARCH(1) model are not conditional homoscedastic.
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Table 4: Estimation results

Panel A: Mean Equation

CAN FR GER ITA JAP UK US

c0 -0.641∗ -0.480 -0.561 -0.345 -0.117 -0.364∗ -0.260∗∗

(0.344) (0.724) (0.378) (0.448) (0.326) (0.211) (0.118)

c1 0.020 -0.053 0.247∗ -0.002 -0.400∗∗∗ -0.206 0.128∗∗∗

(0.138) (0.238) (0.147) (0.254) (0.132) (0.205) (0.046)

c2 -0.050 0.234
(0.133) (0.213)

λ 0.710∗∗ 0.477 0.310 0.223 0.449∗ 0.365∗ 0.493∗∗

(0.303) (0.538) (0.249) (0.203) (0.245) (0.190) (0.192)

β0 0.578∗∗∗ 0.513∗∗∗ 0.502∗∗∗ 0.529∗∗∗ 0.346∗∗∗ 0.400∗∗∗ 0.271∗∗∗

(0.058) (0.043) (0.065) (0.064) (0.073) (0.047) (0.026)

β1 0.193∗∗ 0.364∗∗∗ 0.350∗∗∗ 0.468∗∗∗ 0.200∗∗ 0.244∗∗∗ 0.144∗∗∗

(0.076) (0.051) (0.070) (0.070) (0.080) (0.047) (0.027)

β2 0.056 0.357∗∗∗ 0.077 0.267∗∗∗ 0.019
(0.070) (0.052) (0.069) (0.068) (0.029)

β3 0.078 0.234∗∗∗ 0.199∗∗∗ 0.128∗ -0.051
(0.067) (0.050) (0.062) (0.071) (0.032)

β4 0.113∗ 0.110∗ 0.028 0.085∗∗∗

(0.066) (0.063) (0.071) (0.029)

β5 0.114∗

(0.069)

β6 -0.158∗∗

(0.065)

φ1 -0.240∗∗∗ -0.494∗∗∗ -0.352∗∗∗ -0.370∗∗∗ -0.254∗∗∗ -0.271∗∗∗ 0.042
(0.045) (0.041) (0.045) (0.045) (0.045) (0.041) (0.044)

φ2 -0.054 -0.249∗∗∗ -0.146∗∗∗ -0.123∗∗∗ 0.165∗∗∗ -0.127∗∗∗ 0.104∗∗∗

(0.045) (0.043) (0.033) (0.048) (0.039) (0.033) (0.036)

φ3 0.136∗∗∗ -0.148∗∗∗ -0.022 0.309∗∗∗ 0.117∗∗∗

(0.040) (0.043) (0.043) (0.037) (0.032)

φ4 -0.125∗∗∗ -0.007 0.133∗∗∗ 0.052
(0.039) (0.044) (0.035) (0.035)

φ5 -0.093∗∗ 0.035 -0.052∗

(0.037) (0.043) (0.031)

φ6 0.102∗∗∗ 0.116∗∗∗

(0.033) (0.038)

λ
TLR

2.278∗∗∗ 1.384∗∗∗ 1.501∗∗∗ 1.679∗∗∗ 2.218∗∗∗ 1.045∗∗∗ 1.928∗∗∗

(0.621) (0.474) (0.454) (0.503) (0.747) (0.280) (0.555)
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Table 4: Continued

Panel B: Variance Equation

CAN FR GER ITA JAP UK US

α0 1.093∗∗∗ 1.655∗∗∗ 1.541∗∗∗ 1.137∗∗ 0.954∗∗∗ 0.835∗∗∗ 0.375∗∗∗

(0.096) (0.210) (0.160) (0.458) (0.176) (0.186) (0.055)

α1 -0.508∗∗ -0.854∗∗∗ 1.174∗∗ 1.285∗∗∗ -0.196∗∗∗

(0.106) (0.209) (0.576) (0.357) (0.054)

α2 -1.880∗∗∗ -1.551∗∗∗

(0.679) (0.323)

η 0.095∗∗ 0.092∗ 0.334∗∗∗ 0.217∗∗∗ 0.284∗∗∗ 0.199∗∗∗ 0.346∗∗∗

(0.047) (0.054) (0.095) (0.072) (0.085) (0.068) (0.091)

γ 0.452∗∗∗ 0.158
(0.144) (0.102)

ν 12.926∗ 6.171∗∗∗ 10.042∗∗ 6.616∗∗∗ 6.845∗∗∗ 5.625∗∗∗

(7.829) (1.144) (4.565) (1.787) (1.565) (1.248)

α
TLR

GM
-0.307∗∗∗ -0.131 -0.165 -0.187∗ -0.205∗∗

(0.109) (0.125) (0.108) (0.097) (0.082)

Notes: - The model is:

∆yit = ci0 +

l∑
k=1

cikDMikt + λiσit+

s∑
k=0

βik∆y∗it−k +

p∑
k=1

φik∆yit−k + εit

σ2
it = αi0 +

f∑
k=1

αikDVikt + ηiε
2
it−1 + γiσ

2
it−1

where ∆y∗it−k are cross-country weighted averages defined as

∆y∗it =

7∑
j=1

wij∆yjt,

7∑
j=1

wij = 1 and wii = 0,

where wij is the average share of total trade of country i with country j and
total trade is defined as the sum of exports and imports between country i and
the G7 other countries.

- All models are estimated with the t-distribution as error distribution where ν
are the estimated degrees of freedom, except for Canada.

- DMikt and DVikt are country-specific shift dummies in the mean and variance
equation, respectively. The specific dates of the breaks can be found in table 3.

- Standard errors are in brackets. The standard errors for the total long-run
effects are found using the delta method.

- *,**,***: Significant at the 10%, 5% and 1% level, respectively.
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corresponds to the first variance dummy for Canada, France and the United States.

For Italy and the United Kingdom the great moderation corresponds to the second

variance dummy. Also note that Italy and the United Kingdom experienced an increase

in volatility around 197010.

As the effect of volatility on economic activity is positive and the great moderation

signifies a drop in volatility, it follows that the great moderations has a negative effect on

economic activity. The long-run effect of the great moderation is statistically significant

in three countries, namely Canada, the United Kingdom and the United States.

4 Testing the importance of country interactions

This section assesses the importance of cross-country interactions in the relationship

between volatility and economic activity with a simulation exercise. The simulation

exercise is done as follows. The null hypothesis is that cross-country interactions are

unimportant for measuring volatility effects. First, we estimate a model under the null

hypothesis, i.e. a model that does not allow for cross-country interactions. Thus,

∆yit = c̃i0 + c̃i1 ˜DM it + λ̃iσ̃it +

p∑
k=1

φ̃ik∆yit−k + ε̃it (4.1)

σ̃2it = α̃i0 +

f∑
k=1

α̃ikD̃V ikt + η̃iε̃
2
it−1 + γ̃iσ̃

2
it−1 (4.2)

COV [εit, εjt] = 0. (4.3)

The break detection procedure is the same as for the model with country interaction,

except that there are no cross-country weighted averages in the relevant equation. The

estimation procedure is the same as for the model with cross-country interactions dis-

cussed in section 3.4. Then, we use this model and the estimated parameters to construct

S simulated series.

For each simulated series, we estimated the model without and with the cross-country

weighted averages and use the estimates to calculate the respective total long-run effect

of volatility, i.e. λ̃TLR for the model in 4.1-4.3 and λTLR for the model in 2.1-2.3.

This procedure gives a distribution of λ̃TLR - λTLR and so we can test if the observed

10The estimated conditional standard deviation for all G7 countries are shown in figure 5 in ap-
pendix A.
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difference is statistically different from 0. The results are forthcoming.

5 Conclusion

This paper investigated the importance of cross-country interactions in identifying the

role of the great moderation and the effect of volatility on economic activity in the G7.

The general framework used to measure volatility and to estimate its effect on economic

activity was the GARCH-M framework with shift dummies in the mean and variance

equation to account for structural change. This framework was then augmented with

cross-country weighted averages to account for cross-section dependence.

The analysis showed that volatility has a positive and statistically significant effect on

economic activity in 4 of the G7 countries, namely Canada, Japan, the United Kingdom

and the United States. The total long-run effect of volatility is found to be positive and

significant for all G7 countries.

The analysis found evidence for a great moderation for five of the G7 countries,

namely Canada, France, Italy, the United Kingdom and the United States. All countries

experience a fall in volatility around 1985, except for France where the fall happens

around 1980. Moreover, the long-run effect of the great moderation on economic activity

is found to be negative and significant in three of the 5 countries that experienced a

great moderation, namely Canada, the United Kingdom and the United States.

The paper also developed a simulation exercise to assess the importance of cross-

country interactions. The results are forthcoming.
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A Appendix A

Table 5: Properties of the monthly growth rates of industrial production for the G7,
1961:02–2013:05

Panel A: Unit root test

CAN FR GER ITA JAP UK US

ERS DF-GLS -8.25 -7.69 -2.45 -8.03 -4.02 -3.08 -6.59

C.V. at 5% -1.94 -1.94 -1.94 -1.94 -1.94 -1.94 -1.94

Panel B: Distribution

CAN FR GER ITA JAP UK US

Skewness -0.133 0.129 0.058 0.197 -0.856 0.026 -0.899

Kurtosis 3.496 4.391 9.431 10.704 7.538 12.882 7.357

Jarque-Bera 8.28 52.34 1082.62 1556.96 615.55 2555.16 581.39
[0.0159] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000]

Panel C: Tests for serial correlation and conditional heteroscedasticity

CAN FR GER ITA JAP UK US

Q(3) 48.23 59.65 67.52 49.14 92.04 22.04 170.51
[0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000]

Q(9) 81.39 100.63 76.37 89.99 117.89 35.94 250.32
[0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000]

Q2(3) 14.49 25.11 87.63 109.95 377.60 109.25 128.05
[0.0020] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000]

Q2(9) 27.68 66.56 89.46 138.60 399.19 113.75 140.66
[0.0010] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000]

ARCH(3) 12.36 23.11 104.95 104.45 235.24 114.04 96.84
[0.0063] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000]

ARCH(9) 21.33 48.49 105.51 114.38 241.40 118.48 100.05
[0.0113] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000]

Notes: - The unit root rest is the Elliott et al. (1996) test.

- p-values are in square brackets.

- Q(p): Ljung-Box Q-statistics at lag p for the data.

- Q2(p): Ljung-Box Q-statistics at lag p for the squared data.

- ARCH(p): ARCH LM test at lag p (Engle, 1982).
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Figure 2: Industrial production versus GDP, 1961:02–2013:05
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(f) United Kingdom
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Notes: Data on industrial production is the monthly industrial production index (IPI) from the
OECD over the period 1960m01–2013m09. The data on GDP is quarterly GDP over the
period 1960Q1–2013Q3. To get the two series in the same time frame, I transform the
monthly IPI into quarterly frequencies by taking the average of the respective months. Once
the two series have the same frequencies, I transform the GDP series into an index with base
year 1961. I also change the base year of the IPI series to 1961. The base number is for both
series 100.
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Table 6: Properties of GDP and IPI series

Panel A: Correlation between GDP and IPI series

CAN FR GER ITA JAP UK US

Correlation of series in levels 0.97 0.92 0.98 0.96 0.98 0.88 0.99
Correlation of series in logs 0.99 0.96 0.98 0.98 0.99 0.93 0.99
Correlation of series in log differences 0.73 0.89 0.66 0.75 0.64 0.68 0.76

Panel B: Volatility of GDP growth and IPI growth

CAN FR GER ITA JAP UK US

Growth GDP 0.88 1.16 1.11 1.04 1.33 0.99 0.84
Growth IPI 1.73 2.42 2.07 2.62 2.86 1.68 1.59
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Figure 3: Cross-country trade weighted averages of the monthly growth rates of indus-
trial production, 1961:02–2013:05

(a) Canada

-4

-3

-2

-1

0

1

2

3

65 70 75 80 85 90 95 00 05 10

(b) France

-6

-4

-2

0

2

4

6

65 70 75 80 85 90 95 00 05 10

(c) Germany

-4

-3

-2

-1

0

1

2

3

4

65 70 75 80 85 90 95 00 05 10

(d) Italy

-6

-4

-2

0

2

4

6

65 70 75 80 85 90 95 00 05 10

(e) Japan

-4

-3

-2

-1

0

1

2

3

65 70 75 80 85 90 95 00 05 10

(f) United Kingdom

-6

-4

-2

0

2

4

65 70 75 80 85 90 95 00 05 10

(g) United States

-5

-4

-3

-2

-1

0

1

2

3

65 70 75 80 85 90 95 00 05 10

22



Table 7: Average trade share of country i with country j as a percentage of total trade

i \j CAN FR GER ITA JAP UK US

CAN 0.00 1.31 2.27 1.10 4.71 3.41 87.21
FR 1.56 0.00 40.83 21.43 4.25 17.29 14.64
GER 1.84 30.02 0.00 20.52 7.41 19.74 20.47
ITA 1.71 28.50 39.29 0.00 3.85 12.48 14.18
JAP 6.41 4.79 11.51 3.51 0.00 6.96 66.82
UK 4.68 19.82 30.15 10.49 7.06 0.00 27.80
US 45.66 5.84 11.32 4.42 23.29 9.47 0.00

Notes: - The table corresponds to the trade weights matrix W in
equation 2.11.

Table 8: Residual diagnostics for the models with cross-country weighted averages

Mean Variance Q(3) Q(9) Q2(3) Q2(9) ARCH(3) ARCH(9)

CAN -0.006 1.002 0.031 5.903 1.628 5.115 1.658 5.476
[0.873] [0.482] [0.999] [0.750] [0.653] [0.824] [0.646] [0.791]

FR -0.003 0.999 0.474 5.074 2.159 8.753 2.148 9.599
[0.930] [0.500] [0.925] [0.828] [0.540] [0.460] [0.542] [0.384]

GER -0.008 1.041 3.993 9.551 4.486 6.070 4.430 5.937
[0.843] [0.232] [0.262] [0.388] [0.214] [0.733] [0.219] [0.746]

ITA -0.018 0.997 0.459 5.596 1.372 11.204 1.370 10.235
[0.653] [0.487] [0.928] [0.780] [0.712] [0.262] [0.713] [0.332]

JAP -0.016 0.999 0.678 3.415 3.697 15.861 3.931 16.147
[0.697] [0.499] [0.878] [0.946] [0.296] [0.070] [0.269] [0.064]

UK -0.036 1.015 0.736 6.047 3.604 6.262 3.713 6.475
[0.365] [0.387] [0.865] [0.735] [0.307] [0.713] [0.294] [0.692]

US -0.041 0.996 0.909 9.101 0.591 5.182 0.575 5.283
[0.308] [0.482] [0.823] [0.428] [0.898] [0.818] [0.902] [0.809]

Notes: - p-values are in square brackets.

- The mean and variance is of the standardized residuals, i.e. (ˆ̃εit − ¯̂
ε̃it)/ˆ̃σit.

- Q(p): Ljung-Box Q-statistics at lag p for the residuals.

- Q2(p): Ljung-Box Q-statistics at lag p for the squared residuals.

- ARCH(p): ARCH LM test at lag p (Engle, 1982).
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Figure 4: Kernel estimate of the residuals and the relevant theoretical distribution for
the model with cross-country weighted averages
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Figure 5: Estimated conditional standard deviation for the model with cross-country
weighted averages
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Figure 6: ZILC: The model with cross-country weighted averages
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Table 9: Estimation results for the model without cross-country weighted averages

Panel A: Mean Equation

CAN FR GER ITA JAP UK US

c̃0 0.176 0.277 0.083 0.595∗∗ -0.010 0.122 0.079
(0.308) (0.290) (0.298) (0.257) (0.334) (0.144) (0.154)

c̃1 -0.251∗∗ -0.375∗∗∗ -0.556∗∗∗ -0.434∗∗∗ -0.248∗∗∗ -0.129
(0.112) (0.119) (0.171) (0.121) (0.085) (0.081)

λ̃ 0.172 0.180 0.098 0.025 0.438∗ 0.078 0.239
(0.272) (0.220) (0.202) (0.116) (0.253) (0.133) (0.179)

φ̃1 -0.105∗∗ -0.359∗∗∗ -0.300∗∗∗ -0.308∗∗∗ -0.220∗∗∗ -0.219∗∗∗ 0.138∗∗∗

(0.045) (0.044) (0.045) (0.044) (0.045) (0.046) (0.044)

φ̃2 0.063 -0.105∗∗ -0.053 -0.053 0.192∗∗∗ -0.079∗∗ 0.175∗∗∗

(0.042) (0.043) (0.038) (0.046) (0.040) (0.037) (0.039)

φ̃3 0.241∗∗∗ 0.021 0.136∗∗∗ 0.053 0.327∗∗∗ 0.062∗ 0.153∗∗∗

(0.042) (0.042) (0.032) (0.041) (0.038) (0.037) (0.035)

φ̃4 0.097∗∗ -0.021 0.086∗∗∗ 0.077∗ 0.138∗∗∗ 0.033 0.086∗∗

(0.042) (0.038) (0.031) (0.043) (0.037) (0.037) (0.036)

φ̃5 0.052 -0.011 0.056 0.110∗∗∗ 0.079∗∗

(0.040) (0.038) (0.034) (0.042) (0.034)

φ̃6 0.152∗∗∗ 0.079∗∗ 0.144∗∗∗

(0.035) (0.034) (0.038)

λ̃
TLR

0.2642 0.136 0.098 0.026 0.778 0.069 0.533
(0.420) (0.169) (0.204) (0.119) (0.471) (0.119) (0.413)
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Table 9: Continued

Panel B: Variance Equation

CAN FR GER ITA JAP UK US

α̃0 1.052∗∗∗ 1.150∗∗∗ 1.668∗∗∗ 0.534∗∗ 0.872∗∗∗ 0.778∗∗∗ 0.414∗∗∗

(0.133) (0.190) (0.168) (0.257) (0.170) (0.179) (0.098)

α̃1 0.579∗∗ 1.509∗∗∗ 1.207∗∗ 1.979∗∗∗ -0.215∗∗∗

(0.259) (0.573) (0.566) (0.587) (0.071)

α̃2 -0.911∗∗∗ -1.649∗∗∗ -1.409∗∗ -1.468∗∗

(0.231) (0.551) (0.609) (0.634)

α̃3 -0.762∗∗∗

(0.296)

η̃ 0.084∗ 0.190∗∗∗ 0.367∗∗∗ 0.208∗∗∗ 0.257∗∗∗ 0.317∗∗∗ 0.272∗∗∗

(0.046) (0.061) (0.099) (0.068) (0.076) (0.085) (0.083)

γ̃ 0.594∗∗∗ 0.248∗∗ 0.110
(0.119) (0.107) (0.125)

ν̃ 8.498∗∗ 5.932∗∗∗ 7.355∗∗∗ 7.222∗∗∗ 7.880∗∗∗ 5.027∗∗∗

(3.497) (1.152) (2.476) (1.926) (2.593) (1.124)

α̃
TLR

GM
-0.109 -0.083 -0.008 -0.057 -0.075
(0.177) (0.102) (0.039) (0.099) (0.061)

Notes: - The model is:

∆yit = c̃i0 + c̃i1 ˜DM it + λ̃iσ̃it +

p∑
k=1

φ̃ik∆yit−k + ε̃it

σ̃2
it = α̃i0 +

f∑
k=1

α̃ikD̃V ikt + η̃iε̃
2
it−1 + γ̃iσ̃

2
it−1

- All models are estimated with the t-distribution as error distribution
where ν̃ are the estimated degrees of freedom, except for Canada.

- ˜DM it and D̃V ikt are country-specific shift dummy in the mean and
variance equation, respectively. The specific dates of the breaks can be
found in table 11.

- Standard errors are in brackets. The standard errors for the total long-
run effects are found using the delta method.

- *,**,***: Significant at the 10%, 5% and 1% level, respectively.
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Table 10: Residual diagnostics for the models without cross-country weighted averages

Mean Variance Q(3) Q(9) Q2(3) Q2(9) ARCH(3) ARCH(9)

CAN -0.011 1.001 0.062 4.607 0.687 5.112 0.682 4.948
[0.781] [0.482] [0.996] [0.867] [0.876] [0.824] [0.877] [0.839]

FR -0.022 0.993 0.998 8.229 2.222 8.209 2.202 8.548
[0.587] [0.458] [0.802] [0.511] [0.528] [0.513] [0.532] [0.480]

GER -0.020 1.028 1.669 4.367 3.987 5.804 3.991 5.557
[0.625] [0.304] [0.644] [0.886] [0.263] [0.759] [0.263] [0.783]

ITA -0.022 0.993 0.391 8.752 1.622 11.377 1.586 11.049
[0.580] [0.455] [0.942] [0.460] [0.654] [0.251] [0.663] [0.272]

JAP -0.026 1.002 1.181 6.250 5.682 13.563 6.266 14.055
[0.519] [0.479] [0.758] [0.715] [0.128] [0.139] [0.099] [0.120]

UK -0.045 1.000 0.359 4.492 2.854 6.444 2.860 6.725
[0.262] [0.494] [0.949] [0.876] [0.415] [0.695] [0.414] [0.666]

US -0.025 0.982 1.920 6.951 5.469 8.398 5.859 8.759
[0.533] [0.379] [0.589] [0.642] [0.141] [0.495] [0.119] [0.460]

Notes: - p-values are in square brackets.

- The mean and variance is of the standardized residuals, i.e. (ˆ̃εit − ¯̂
ε̃it)/ˆ̃σit.

- Q(p): Ljung-Box Q-statistics at lag p for the residuals.

- Q2(p): Ljung-Box Q-statistics at lag p for the squared residuals.

- ARCH(p): ARCH LM test at lag p (Engle, 1982).
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Figure 7: Kernel estimate of the residuals and the relevant theoretical distribution for
the model without cross-country weighted averages
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Table 11: Results of the break detection without cross-country weighted averages

Panel A: Breaks in the mean

CAN FR GER ITA JAP UK US C.V.

UDmax 25.26 19.33 6.34 9.24 44.46 10.07 22.88 7.46
WDmax 25.26 19.33 6.81 12.02 44.46 10.07 22.88 8.20
SupF (2|1) 5.68 3.28 1.26 5.96 2.43 1.16 4.36 8.51
SupF (3|2) 8.74 1.42 4.49 0.62 1.97 1.25 7.86 9.41
SupF (4|3) 2.46 0.24 0.70 0.49 1.59 3.49 4.31 10.04
SupF (5|4) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 10.58

Break1 1973:08 1974:08 1974:07 1973:09 2000:07 1969:04

Panel B: Breaks in the variance

CAN FR GER ITA JAP UK US C.V.

UDmax 18.29 8.71 5.41 38.61 2.03 19.89 10.85 7.46
WDmax 18.29 12.96 6.07 38.61 2.99 19.89 10.87 8.20
SupF (2|1) 11.24 10.96 1.07 15.65 2.79 10.06 5.06 8.51
SupF (3|2) 5.97 8.65 0.94 3.20 0.62 16.53 2.44 9.41
SupF (4|3) 0.14 2.80 0.95 5.98 2.99 3.83 2.29 10.04
SupF (5|4) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 10.58

Break1 1973:07 1971:09 1968:12 1972:01 1984:02
Break2 1984:11 1979:08 1985:10 1980:05
Break 3 1990:08
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