

### Sustainable Cities: Options for Responding to Climate cHange Impacts and Outcomes

### WP3 Workshop Report

### Draft 1

Claire Smith & Sarah Lindley

April 2008



#### 1. INTRODUCTION

The Sustainable Cities: Options for Responding to Climate cHange Impacts and Outcomes (SCORCHIO) is a consortium project funded by the Engineering and Physical Sciences Research Council (EPSRC). The project, lead by the University of Manchester, was begun in 2007 and will run until 2010. The ultimate aim of the research is to develop tools for analysis of adaptation options in urban areas, with a particular emphasis on heat and human comfort in the built environment. In order to fulfil this aim, the project will address the following five objectives:

- 1. To develop a statistical climate simulator for urban areas that can be used for impact and adaptation studies, taking account of both "greenhouse" climate change and the additional influence of the urban landscape and direct heating.
- 2. To model typical buildings and their surroundings in order to develop a new, readily usable heat and human comfort vulnerability index that accounts for the effects of building construction, form and layout.
- 3. To estimate heat emissions from buildings, together with a set of energy-related air pollutant and greenhouse gas end user emission budgets in order to understand the implications of different building adaptation options.
- 4. To develop GIS-based decision support tools for exploration of adaptation options for urban planning and design.
- 5. To demonstrate the methods and tools developed in each work package through in depth case studies, working in partnership with practicing planners and designers.

The work has been organised into three work packages. The first work package (WP1) is centred on a detailed investigation of present and future urban temperatures. The second (WP2) uses this information to model and assess impacts and adaptation. The final work package (WP3) focuses on vulnerability assessment and the development of options appraisal tools for planners and designers. The tool will synthesise the results from the earlier SCORCHIO research (WP1 and 2) in prototype GIS-based decision support modules (see Box 1).Stakeholder engagement is central to the project and meetings with a core stakeholder group are held on a 6-monthly basis. Work is being carried out using Greater Manchester and Sheffield as case study cities.

Work package 3 began at the end of 2007 and is now beginning the process of drawing together initial findings from WPs 1 and 2. This report documents the findings from a workshop held in March 2008 with the core stakeholder group and a range of other key stakeholders. The purpose of the workshop was to assist with answering a number of key questions about the form and function of the decision-support tools to be developed through the project.

The workshop was broken down into 5 parts with the aim of answering the following specific questions:

- 1. What are the general aims and scope of the SCORCHIO decision support tool?
- 2. What do stakeholders require the SCORCHIO tool to provide?
- 3. What tools already exist and how appropriate are these tools for adapting to heatrelated issues facing UK cities?
- 4. What city-scale scenarios need to be considered in the development of the SCORCHIO tool?
- 5. Where should local and neighbourhood work be carried out and what types of adaptation options should be considered?

A number of briefing documents were produced ahead of the meeting and the workshop itself consisted of presentations, plenary discussions and break-out group sessions. A list of the participants is given in Appendix 1.

| Box 1: SCORCHIO Project Structure                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                             |
| Work Package 1: Downscaling of climate variables for urban areas                                                                                                            |
| Lask 1.1 Hadley Model runs for city-scale urban climate assessment                                                                                                          |
| UKCIP08 runs with the added feature of urban processes that can be used to assess                                                                                           |
| the effect of changing land cover and anthropogenic heat sources on the urban                                                                                               |
| climate.                                                                                                                                                                    |
| Task 1.2 Temporal downscaling of weather variables                                                                                                                          |
| Deliverable: Stochastic weather generator hourly outputs of temperature, solar radiation and windspeed, vapour pressure and precipitation.                                  |
| Task 1.3 Spatial patterns of temperature in urban areas                                                                                                                     |
| <i>Deliverable</i> : A database of spatial distributions of temperature for Manchester and Sheffield and methodology for generating future scenarios of urban temperature.  |
| Work Package 2: Modelling impacts and adaptation of the built environment                                                                                                   |
| Task 2.1: Classification of buildings and urban land cover                                                                                                                  |
| with validation in Manchester and Sheffield                                                                                                                                 |
| Task 2.2: Thermal modelling of the built environment and vulnerability index                                                                                                |
| Deliverables: 1. A model for assessment of the impacts of climate change on                                                                                                 |
| buildings, within their urban context; 2. A vulnerability index for rapid assessment of<br>urban areas on the basis of building classification and urban climate scenarios. |
| Task 2.3: Estimation of emissions of heat and energy-related end user air pollutant and<br>greenhouse gas emission budgets associated with buildings                        |
| Deliverable: Methods for the assessment of combined end user air pollutant, heat and                                                                                        |
| GHG emissions budgets associated with different building adaptation options.                                                                                                |
| Work Package 3: Vulnerability assessment and options appraisal tools for planners                                                                                           |
| Task 3.1: Visualisation of heat scenarios and vulnerability at a city scale                                                                                                 |
| Deliverable: A city-scale GIS for examining scenarios of urban heat and vulnerability                                                                                       |
| to climate change<br>Task 3.2: Prototype built environment adaptation options appraisal tools                                                                               |
| Deliverables: A specification and prototype modules for a formal decision support tool                                                                                      |
| based on GIS outputs, model results, and other project deliverables which will allow                                                                                        |
| the exploration of optimal adaptation options for urban planning and design.                                                                                                |
| Task 3.3: Case studies of adaptation of the built environment                                                                                                               |
| Deliverable: I wo case studies, co-developed with practicing planners and designers                                                                                         |
| and comfort for building occupants in an area of the city and adaptation options to                                                                                         |
| render the area less vulnerable to future changes in urban temperatures.                                                                                                    |

#### <u>2. PART 1</u>: What are the general aims and scope of the SCORCHIO decisionsupport tool? (Sarah Lindley)

The first presentation gave a brief overview of Work Package 3, outlining the objectives for the 3 sub-tasks (see Box 1) and providing details of the three levels of information it is anticipated the tool will provide: City-scale, Neighbourhood-scale and Building-scale. As part of this presentation there was an indication of the elements of the SCORCHIO tool which are considered to be largely fixed and those where there is more flexibility (Table 2). It is these

latter, more flexible elements that the views and inputs of the stakeholder group will help to shape. The proposed framework for the SCORCHIO tool is given in Figure 1.

| CHARACTERISTIC                     | DETAILS                                                                                                                                                                                                                                                                                                               |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fixed Elements                     |                                                                                                                                                                                                                                                                                                                       |
|                                    |                                                                                                                                                                                                                                                                                                                       |
| Geographical scope                 | Greater Manchester; Sheffield                                                                                                                                                                                                                                                                                         |
| Use of urban morphology framework  | Greater Manchester has been classified into 29 land<br>use categories, which are compatible with the<br>National Land Use Database, as part of the earlier<br>ASCCUE (Adaptation Strategies for a Changing<br>Climate in the Urban Environment) project.                                                              |
| Thematic focus                     | Heat and thermal comfort in the urban environment                                                                                                                                                                                                                                                                     |
| Some aspects of climate model runs | Greenhouse gas emissions scenario A1B <sup>1</sup> will be used for all underlying urban heat island simulations (see Part 4).                                                                                                                                                                                        |
| GIS framework                      | The tool will be developed within the GIS environment.                                                                                                                                                                                                                                                                |
| Flexible Aspects                   |                                                                                                                                                                                                                                                                                                                       |
| Some aspects of climate model runs | The contribution of anthropogenic heating, the<br>proportional change of land use (% vegetation, bare<br>soil, water, urban) and/or surface properties (e.g.<br>reflectivity of solar radiation, storage of heat by urban<br>structures) can all be altered to examine future<br>development changes on a city-scale. |
| Case study areas                   | 3-4 case study areas each for Manchester and<br>Sheffield, selected from those nominated by<br>stakeholders (see Part 5), will provide the basis for<br>the neighbourhood/building scale modelling.                                                                                                                   |
| Content and form of data outputs   | Which variables (climate, emissions and energy use) and how should they be presented.                                                                                                                                                                                                                                 |
| User-based preferences             | Any additional functionality or information the tool should provide? What adaptation options should be considered?                                                                                                                                                                                                    |

| Table 2: Characteris | tics of the | SCORCHIO | tool |
|----------------------|-------------|----------|------|
|----------------------|-------------|----------|------|

The SCORCHIO tool was seen as a useful way of 'optioneering', e.g. providing options to compensate for high density developments which are/could be vulnerable to high temperatures. It was also raised that the SCORCHIO tool covers just one aspect of a whole range of variables associated with climate change. The importance of other issues such as transport and flooding was stressed and although it was recognised that the tool is

<sup>&</sup>lt;sup>1</sup> See Briefing Document 1.1

necessarily focussed on urban temperatures, there were requests to consider wider compatibility of the results with other tools focusing on these other elements.

There was some discussion about how the fixed spatial urban morphology units link with OS MasterMap data and Middle/Lower Super Output Areas. Work is currently ongoing at Newcastle, as part of the SCORCHIO project, to refine the existing urban morphology units using the automated disaggregation of OS MasterMap data. Although some output could be generated for Super Output Areas (SOAs), it was noted that this geographical framework would not be suitable for all of the SCORCHIO outputs as the SOAs are determined according to population rather than land use.

There was some concern that the fixed spatial units may become quickly outdated due to ongoing development in Manchester. This is particularly important in terms of case study area selection and is discussed under Part 5. Other suggestions were that a similar process of Local Authority auditing of results could take place as that undertaken as part of the Adaptation Strategies to Climate Change in the Urban Environment (ASCCUE) project.



#### Figure 1: Framework for the SCORCHIO decision support tool

## <u>3. PART 2</u>: What do stakeholders require the SCORCHIO tool to provide? (John Handley)

Part 2 began with an overview of the policy context for the development of the SCORCHIO tool. A summary of some of the major policy drivers at EU, national, regional, conurbation and neighbourhood scales was provided (see Figure 2). This presentation highlighted the potentially large policy grounding for SCORCHIO and its associated tools. Indeed it was noted that there were still additional policy elements which could be added to Figure 2 dealing with energy policy, building regulations and other related areas such as transportation policy.





Although many welcomed the idea of tailoring research findings to wider policy goals, some concerns were raised about the difficulties in matching scientific outputs with the very directed information requirements of, for example, Local Authority policy. It was recognised that there is a gap between what is being learnt from scientific research and the sort of information that stakeholders are being asked to provide. Furthermore, there is a limit to what sort of information science can currently provide and the format that this information can be provided in, for example associated with the scale and coverage of findings.

There was discussion about how the SCORCHIO outputs and associated tools could feed into the national performance indicators. LAs have to select a subset of appropriate indicators from those available and will be required to provide self certification regarding their performance in relation to each selected indicator. The most relevant indicator for SCORCHIO is NI 188: Adapting to climate change, but there are also possible links with some of the other indicators (see Table 3). It was also noted that several other indicators

would have some relevance, such as those associated with transportation (for example, with respect to the impact of anthropogenic heat emissions in the urban environment).

The SCORCHIO work could also have implications for alleviating/identifying areas of fuel poverty. The research team mentioned that some thermal mapping work had taken place during winter 2007/08 which could potentially be used to help provide information for this purpose.

The point was also raised that while changes to the City Region Governance include the work of the Environment Commission who are responsible for delivering carbon reduction initiatives such as mini-Stern and Manchester is my Planet, there is also a separate Planning and Housing Commission responsible for Place Shaping / the Spatial planning agenda. It is this commission who will be leading on the production of a Sub Regional Spatial Strategy and who are currently leading and project managing work such as the Greater Manchester Strategic Flood Risk Assessment and the Green Infrastructure work with TEP Consultancy.

| NATIONAL<br>INDICATOR                                      | CALCULATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LINKS TO SCORCHIO                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 185:CO2<br>reduction from<br>Local Authority<br>operations | $\left(\frac{x_{t+1} - x_t}{x_t}\right) * 100$<br>$x_{t+1}$ = amount of CO <sub>2</sub> emission in year t+1<br>$x_t$ = amount of CO <sub>2</sub> emission in year t                                                                                                                                                                                                                                                                                                          | Buildings within case study<br>areas might be simulated<br>under different adaptation<br>options which will provide<br>energy consumption and<br>emissions output. This could<br>then feed into plans for<br>adaptation of council buildings.                                                                                                                                                                         |
| 186: Per capita<br>CO2 emissions in<br>the LA area         | $\left(\frac{\left(\frac{h_{t}+b_{t}+r_{t}}{pop_{t}}\right)-\left(\frac{h_{t+n}+b_{t+n}+r_{t+n}}{pop_{t+n}}\right)}{\left(\frac{h_{t}+b_{t}+r_{t}}{pop_{t}}\right)}\right)*100$ $h = \text{tonnes CO}_{2} \text{ from domestic housing}$ $b = \text{tonnes CO}_{2} \text{ from business and industry}$ $r = \text{tonnes CO}_{2} \text{ from road transport}$ $pop = \text{LA population (thousands)}$ $t = \text{baseline year (2005)}$ $t + n = \text{latest year of data}$ | Buildings within case study<br>areas might be simulated<br>under different adaptation<br>options in order to provide a<br>measure of energy<br>consumption and end-user per<br>capita $CO_2$ emissions. These<br>results could feed into plans for<br>adaptation of buildings.                                                                                                                                        |
| 187: Tackling fuel<br>poverty                              | $\left(\frac{x}{y}\right)*100$<br>x = number of households assessed on income<br>related benefits who are in energy inefficient<br>homes (SAP rating < 30)<br>y = number of households on income related to<br>benefits for whom a SAP assessment has been<br>carried out.                                                                                                                                                                                                    | The SCORCHIO outputs are<br>not directly related to the<br>calculation of the fuel poverty<br>indicator. However, information<br>could be provided to show<br>winter urban temperature<br>patterns and future trends<br>associated with the<br>SCORCHIO scenarios. It is<br>also possible that the<br>vulnerability indices may<br>provide useful information for<br>the assessment of fuel poverty<br>vulnerability. |
| 188: Adapting to                                           | Authorities report level they have reached as                                                                                                                                                                                                                                                                                                                                                                                                                                 | This is the main focus of                                                                                                                                                                                                                                                                                                                                                                                             |

#### Table 3: National Indicators related to the SCORCHIO project

| climate change | follows:                                             | SCORCHIO. Outputs from          |
|----------------|------------------------------------------------------|---------------------------------|
|                | Level 0: The authority has not assessed and          | SCORCHIO would relate to        |
|                | managed climate risks and opportunities.             | Level 2 which the authority can |
|                | Level 1: The authority has undertaken a              | then use to progress to Levels  |
|                | comprehensive, local risk-based assessment of        | 3 and 4.                        |
|                | current vulnerabilities to weather and climate, both |                                 |
|                | now and in the future. It has developed possible     |                                 |
|                | relevant council strategies plans partnerships etc.  |                                 |
|                | Level 2. The authority has identified the most       |                                 |
|                | effective adaptation responses to address the        |                                 |
|                | risks and opportunities, explicitly related to other |                                 |
|                | council strategies, plans and operations. This will  |                                 |
|                | yield a set of locally specific, preferred options.  |                                 |
|                | Level 3: The authority has developed an              |                                 |
|                | adaptation action plan to deliver necessary steps    |                                 |
|                | to achieve the existing objectives set out in        |                                 |
|                | council strategies, plans etc in light of projected  |                                 |
|                | climate change.                                      |                                 |
|                | adaptation action plan and a process for             |                                 |
|                | monitoring and review to ensure progress with        |                                 |
|                | each measure.                                        |                                 |

# <u>4. PART 3</u>: What tools already exist and how appropriate are these tools for adapting to heat-related issues facing UK cities? (Claire Smith)

This question was tackled through providing an initial presentation of the various tools identified through a review of appropriate academic and grey literature sources. The findings of this review were summarised in Document 3.1 (see Appendix 3). The presentation introduced several tools associated with the three spatial scales covered in the SCORCHIO project (City, neighbourhood and building). It was noted that tools were developed across a range of platforms and had different aims and objectives. Participants were then given the opportunity look more closely at three selected tools through a hands-on session (Table 4). Finally, participants were asked to evaluate the tools using a prepared questionnaire and feedback general comments (Table 5). The findings from these sessions will be used to help determine the form and function of the SCORCHIO tools.

A second questionnaire asked participants to consider the general characteristics of the SCORCHIO tool, its data requirements, output formats and platforms. A summary of findings is given in Appendix 3.

| Group | ΤοοΙ      | Spatial Scale | Platform                       | Details                                                                                         |
|-------|-----------|---------------|--------------------------------|-------------------------------------------------------------------------------------------------|
| 1     | MIST      | City          | Web-based                      | Sailor & Dietsch (2007). Freely available from: <u>http://www.heatislandmitigationtool.com/</u> |
| 2     | CITYGreen | Neighbourhood | GIS                            | More details available from:<br>http://www.americanforests.org/<br>productsandpubs/citygreen/   |
| 3     | AUSSM     | Building      | Fortran<br>program<br>with GUI | Tanimoto et al (2004). Freely available from: <u>http://ktlabo.cm.kyushu-u.ac.jp/</u>           |

 Table 4: Tools demonstrated in the hands-on breakout groups

| AUSSM                               | AUSSM      | AUSSM                      | AUSSM               | AUSSM                                      | AUSSM                                              | CITYGreen                        | CITYGreen               |
|-------------------------------------|------------|----------------------------|---------------------|--------------------------------------------|----------------------------------------------------|----------------------------------|-------------------------|
|                                     |            |                            |                     |                                            |                                                    |                                  |                         |
| 4 .                                 | 4 -        | <b>с</b> о                 | ю ·                 | ю 0                                        | ю 0                                                | 4 (                              | с (                     |
| 4 -                                 | 5          | ი ი                        | 4 (                 | ლ <del>,</del>                             | 0 +                                                | 0 5                              | ლ <i>&lt;</i>           |
| - ღ                                 | 04         | <u>م</u> ۷                 | v m                 | - ო                                        | - 4                                                | <del>1</del> ო                   | 1 4                     |
| Yes                                 | Don't know | Yes                        | Yes                 | Yes                                        | Yes                                                | Yes                              | Yes                     |
| % change/<br>Graphs                 |            | Raw data/<br>Graphs        | Raw data/<br>Graphs | Raw data/<br>Graphs                        | Raw data/<br>Graphs                                | Raw data/<br>Graphs              | % change                |
| 7 7                                 |            | ~                          | 4                   | <del>ر</del> س                             | 4                                                  | ო                                | 2 2                     |
| 1<br>1<br>3d-models                 |            | -                          | 3                   |                                            | 2                                                  | 3                                | <del></del>             |
| City-scale temp<br>and windspeed    |            |                            |                     | Costs of climate<br>impacts/<br>adaptation | Energy<br>consumption                              |                                  |                         |
| Quick, simple                       |            |                            |                     | Very fast, looks<br>good                   | Fast                                               | Links in with<br>current systems | Good overall<br>concept |
| Cannot define<br>building context   |            | Used technical<br>language |                     | Limited help,<br>undefined terms           | Potential for users<br>to run rmodel               | Not very user-<br>friendly       | Seemed<br>complicated   |
| Design variables<br>would be useful |            |                            |                     |                                            |                                                    | Would require<br>training        |                         |
| No                                  | °N<br>N    | Maybe                      | Maybe               | Maybe                                      | Yes, to link with<br>other aspects e.g<br>flooding | Q                                | MAybe                   |

| Table 5: Eva | aluation of Existi | na Tools. E  | ach column | relates to an   | individual r | esponse. |
|--------------|--------------------|--------------|------------|-----------------|--------------|----------|
|              |                    | IIG 10013. L |            | i ciales lo ali | manyiadan    | caponac. |

| Tool Evaluated                                                                        | MIST       | MIST                                                 | MSSUA                                                         |
|---------------------------------------------------------------------------------------|------------|------------------------------------------------------|---------------------------------------------------------------|
| Please rate the following criteria<br>on a scale of 1-5:                              |            |                                                      |                                                               |
| Ease of use                                                                           | 4          | 2                                                    | 3                                                             |
| Flexibility                                                                           | 3          | 4                                                    | 4                                                             |
| Speed                                                                                 | <b>~</b>   | 5                                                    | Э                                                             |
| Clarity of Results                                                                    | 2          | 3                                                    | 2                                                             |
| Do the inputs seem feasible?                                                          | Don't know | Yes                                                  | No                                                            |
| How were the results presented?<br>To what extent is data in this                     | Other      | Raw Data                                             | Graphs                                                        |
| format useful                                                                         |            |                                                      |                                                               |
| Kaw data<br>% change                                                                  |            |                                                      |                                                               |
| Maps                                                                                  |            |                                                      |                                                               |
| Graphs                                                                                | -          |                                                      |                                                               |
| Other (Specify)                                                                       |            |                                                      |                                                               |
| Are there any other output<br>variables that would be useful to<br>your organisation? |            | Carbon<br>emissions,<br>energy data                  |                                                               |
| Is there anything in particular<br>that you liked about the tool?                     |            |                                                      | Simple                                                        |
| Is there anything in particular<br>that you disliked about the tool?                  |            | Too general                                          |                                                               |
| Any Additional comments about<br>the tool?                                            |            | Not enough<br>localised data                         | Needs to be<br>user-friendly                                  |
| Would this tool be useful in your<br>organisation?                                    | Maybe      | Maybe – to give<br>a generalised<br>idea of strategy | Yes, in the con-<br>text of the<br>sustainable<br>communities |

# 5. PART 4: What city-scale scenarios need to be considered in the development of the SCORCHIO tool? (Doc 4.1) (Mark McCarthy): SCORCHIO climate model simulations

This session comprised an overview of the three proposed Hadley Centre Regional Climate Model experiments being carried out as part of the SCORCHIO project. These will form the basis for development of the city-scale scenarios (using a weather generator and additional spatial interpolaton techniques) and will complement the scenario runs undertaken as part of UKCIP08.

- Experiment 1: Greenhouse gas induced transient climate change; anthropogenic heating from current energy statistics; current land use classification.
- Proposed Experiment 2: As Experiment 1 with gradually increasing anthropogenic heating (change from 25 Wm<sup>-2</sup> to 75 Wm<sup>-2</sup>)
- Proposed Experiment 3: To be decided

This overview was followed by a plenary discussion. In this, several points were raised which will help the research team decide on an appropriate design for Experiment 3 and to reassess the proposed Experiment 2.

- whether gradual changes over a long period were realistic or whether increases would be expected throughout the timescale of the experiments. An important distinction between CO<sub>2</sub> emissions and energy use was made at this point – highlighting that trends in CO<sub>2</sub> emissions are not necessarily equivalent to trends in anthropogenic heat emissions within urban areas.
- Whether it would be better to undertake a larger number of shorter experiments to look at a wider variation of changes rather than one single Experiment 3.
- Whether researchers should review the specific requirements from Experiment 3 following assessment of the results from Experiments 1 and 2 in recognition that it is likely the results from Experiments 1 and 2 will provide a guide to an appropriate form for Experiment 3.
- Whether inputs could be selected which are sensitive to things that LAs are able to influence, for example a consideration of policy drivers and see how these could be translated into model runs.
- > Whether issues associated with the multifunctionality of areas could be incorporated.

### Table 6: Experimental options for the Hadley model runs and equivalent city-scale scenario

| Model Parameter                                                | Example City-Scale Scenario                       |  |  |
|----------------------------------------------------------------|---------------------------------------------------|--|--|
| Changes to the proportions of urban and other land-cover types | Development on greenbelt                          |  |  |
| Increasing anthropogenic heat emissions                        | Increasing energy use and transportation          |  |  |
| Increasing albedo                                              | The use of high reflectivity building materials   |  |  |
| Changes to surface roughness                                   | Changes to the urban environment that affect wind |  |  |
| Changes to heat capacity                                       | Decreasing thermal mass of buildings              |  |  |

# <u>6. PART 5</u>: Where should local and neighbourhood work be carried out and what types of adaptation options should be considered? (Docs 5.1 and 5.2) (Claire Smith)

Participants were asked to propose potential case study sites to form the basis of the detailed neighbourhood and building scale research to be carried out in SCORCHIO Task 3.3 (see Box 1). In order to help inform the process of proposing case study locations a set of guidelines for the selection of areas was supplied to participants ahead of the workshop and a pro forma provided to give further details of each of the areas proposed.

Some of the criteria provided were as follows:

• Size of the case study area – it was suggested that areas be a minimum of 1km<sup>2</sup> and a maximum of 5km<sup>2</sup>, or 2-3 of the ASCCUE neighbourhood scale Urban Morphology Type (UMT) units;

Availability of a case study 'champion' to facilitate data collection and to provide other assistance to the research team, such as providing input for the evaluation of prototype tools;
the availability of links to existing groups/projects (such as Manchester South, Piccadilly Gardens Group, New East Manchester);

• Availability of and access to appropriate data (land-use, height etc);

• Availability of an opportunity for adaptation;

- the nature of site as new build or existing stock (including approximate age);
- the nature and use of buildings as residential, commercial, city centre, retail or mixed; and
- the general location and setting of the site as city-centre, inner city, suburbs or semi-rural.

Five case study areas were proposed for Greater Manchester and a further two have been nominated following the workshop (Table 7). It was suggested that the SCORCHIO team will provide some results for all the case study areas nominated (including, for example meteorological measurements for all areas during the ground and flight transects). However, due to time and resource constraints it was noted that it would only be possible to model 3-4 areas within Greater Manchester in more detail with a further 2-3 areas in Sheffield.

A range of climate change adaptation options will be modelled for the detailed case study areas, which will allow the user to assess the options according to criteria including, vulnerability to heat, greenhouse gas emissions and energy consumption. The building/neighbourhood-scale adaptation options are flexible and will be chosen based on user requirements. Some examples of the kind of adaptation options envisaged are listed in Box 2.

| Name                     | Situation               | Size | Land Use                                                                                                                                  | Further information                                                                                                                                               |
|--------------------------|-------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Oxford Road Corridor     | City<br>Centre          | 2-3  | Academic, health,<br>commercial,<br>residential                                                                                           | Major transport corridor;<br>Links with the i-tree project                                                                                                        |
| Brunswick                | Inner City              | 1-2  | Predominantly<br>residential with<br>some commercial                                                                                      | MCC currently procuring PFI<br>to include re-design and<br>refurbishment of council<br>housing.                                                                   |
| Collyhurst               | Inner City              | 1-2  | Predominantly<br>residential with<br>some commercial                                                                                      | Major redevelopment<br>planned – Collyhurst<br>Information Pack will be<br>available May 2008                                                                     |
| Stockport                | Town<br>Centre          | 2-3  | Retail, industrial<br>residential                                                                                                         | Situated close to a major<br>road; limited greenspace;<br>extensive regeneration<br>planned; 2 major<br>applications in place                                     |
| Radcliffe                | Small<br>Town<br>Centre | 2-3  | Commercial and residential                                                                                                                | Surrounding green areas;<br>close proximity to Irwell; high<br>density developments<br>proposed; new school. Area<br>has been subject to flood<br>risk assessment |
| Rochdale                 | Town<br>Centre          |      | Retail and<br>Commercial                                                                                                                  | Major re-development<br>planned                                                                                                                                   |
| Salford:<br>1. Pendleton | Inner City              | 2    | Mixture of early 20 <sup>th</sup><br>century terraced<br>housing and modern<br>high and low rise<br>housing and mixed<br>use development. | Planning guidance is<br>currently being drafted for<br>the regeneration of<br>Pendleton over next 15-20<br>years.                                                 |
| 2. Lower Broughton       | Inner City              | 1    | Predominantly residential with                                                                                                            | planned. Detailed flood risk<br>assessment of area has                                                                                                            |

|  | Table | 7: | Propose | ed Case | Study | Areas |
|--|-------|----|---------|---------|-------|-------|
|--|-------|----|---------|---------|-------|-------|

|                     |                                           |     | some commercial                                   | been completed.                                                                                |
|---------------------|-------------------------------------------|-----|---------------------------------------------------|------------------------------------------------------------------------------------------------|
| 3. Media City       | Inner City                                | 2-3 | New commercial<br>development by<br>Salford Quays | Long term re-development<br>focused on the creation of<br>new and refurbished office<br>space. |
| Sheffield:          |                                           |     |                                                   |                                                                                                |
| 1. Sheffield Hallam | Inner City                                | 1-2 | Retail, Education,<br>Residential                 | Major re-development<br>planned                                                                |
| 2. Upper Don Valley | Inner city<br>and<br>suburban<br>location | 3-4 | Retail, Commercial,<br>Residential, Sport         | Major re-development<br>planned                                                                |

#### Box 2: Building/Neighbourhood Adaptation Options

#### **Development Layout**

- Orientation
- Solar access/shading design (e.g. TCPA projections: 30 degrees either side of due south will enable 80% of dwellings to have access to unobstructed sunlight; asymmetric designs - taller buildings positioned to the north to minimise overshadowing; block proportions will tend toward rectangular shapes, eg 100 x 50 m rather than 60 x 60 m square.) Use of water/greenspace

#### Improvements to the Building Envelope

- Increasing thermal mass (Construction light-, med-, heavy-weight; can also examine the effect of insulation positioning: floors, ceilings, walls, roof).
- Green roofs
- Improving ventilation

#### **Reducing Solar Gains**

- Positioning of the glazing.
- Reducing the glazing percentage.
- Implementing improved glazing types (e.g. solar control, Low-E etc)
- Use of shading (Diffusing, slatted, electrochromic switchable, louvres, overhangs; under various controls: temp, solar, glare etc).

#### **HVAC System**

- Mechanical ventilation design, operation and efficiency
- Cooling system fuel and Coefficient of Performance
- Natural ventilation

#### **Workplace Scenarios**

Greater number of people working at home - decrease internal gains, reduction in traffic

#### 7. CONCLUSIONS AND NEXT STEPS

The workshop had a broad remit but made useful progress towards answering the questions initially posed. In particular there were some useful links made to LA policy requirements and helpful observations to assist in the design of Experiment 3 of the climate model runs. There were a relatively large number of case study locations proposed each with interesting features and differing perspectives on adapting urban areas to climate change. It was agreed that for all case study areas some data would be provided even through it would not be possible to carry out detailed modelling in every location.

The next stage of work will follow up on the case study suggestions and conclude on the most appropriate case studies for the neighbourhood and buildings scale research. To this end, case study area champions have been contacted and asked to provide some more detailed information and some example data by April 23<sup>rd</sup>. The research team has also proposed site visits of each case study area. This will fulfil two needs, it will enable further dissemination information about the SCORCHIO project to interested parties, as was requested at the workshop, and will also help in the process of making a more informed decision.

Work will also now begin on developing the city-scale tools and progress on all aspects of the project will be reported through the regular stakeholder meetings and through the dedicated SCORCHIO website.

#### **APPENDIX 1: Participants at the workshop**

In addition to the stakeholder group, 8 members of the SCORCHIO research team assisted in the facilitation of the workshop: Roger Courtney (Stakeholder Champion), Geoff Levermore (Project Leader; Manchester), Clare Goodess (University of East Anglia), John Handley (University of Manchester), Susan Lee (Sheffield University), Sarah Lindley (Manchester University), Mark McCarthy (Hadley Centre, Met Office), Claire Smith (University of Manchester). Table A1 provides a list of the participants and their affiliations.

| Name             | Organisation                    | Name             | Organisation            |
|------------------|---------------------------------|------------------|-------------------------|
|                  |                                 |                  |                         |
| Mike Ballard     | Manchester Housing              | James Noakes     | Wigan MBC               |
| Garry Banks      | Arup                            | Andy Nolan       | Sheffield City Council  |
| Keith Boxer      | Manchester Knowledge<br>Capital | Cyril Ogunmakin  | Bruntwood               |
| Michelle Colley  | Acclimatise                     | Marian Raines    | Salford City Council    |
| Mike Davies      | UCL-LUCID project               | Mei Ren          | Faber Maunsell          |
| Stephen Finnegan | Arup                            | Jonathan Sadler  | Manchester City Council |
| David Hodcroft   | Bury MBC                        | Steve Simmons    | Sheffield City Council  |
| Katrina Holt     | MCC Planning                    | Barry Simons     | Rochdale MBC            |
| Will Horsfall    | Salford City Council            | Roger Street     | UKCIP                   |
| Tony Hothersall  | Red Rose Forest                 | Matthew Tidmarsh | Trafford MBC            |
| Andy Hunt        | Trafford MBC                    | Steve Whipp      | United Utilities        |
| Hannah Jones     | Stockport MBC                   | Tim Whitley      | Arup                    |
| Paul Needham     | Environment Agency              | Richard Wood     | Stockport MBC           |

#### **Table A1: List of Participants**

|                            | SMURF (Sustainable Management<br>of Urban Rivers and Floodplains)                                                                 | TERRA vision                                                                                                      | UKCIP Adaptation Wizard                                                                                                                                          |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reference                  | Environment Agency (2005)                                                                                                         | Van Voris et al (1993)                                                                                            | Connell and Willows (2003)                                                                                                                                       |
| Platform                   | Web-based                                                                                                                         | GIS with GUI                                                                                                      | Web-based                                                                                                                                                        |
| Function                   | To determine the impact of future<br>development on surrounding river and<br>drainage network                                     | To assess impact of global climate<br>change on composition and biomass<br>of forest                              | Framework to encourage climate-<br>proof decision-making.                                                                                                        |
| Format                     | InfoWorksRS, SIMCAT and/or rule-<br>based models                                                                                  | Temp and ppn outputs from GCM<br>feed into the hierarchical forest gap<br>models.                                 | Guides the user through four key<br>stages using a series of questions.                                                                                          |
| Spatial-scale              | Neighbourhood                                                                                                                     | Individual tree up to regional                                                                                    | Business                                                                                                                                                         |
| Inputs                     | Climate scenario,<br>river section                                                                                                | Traits & environmental response of<br>tree species, land use characteristics,<br>site temperature & soil moisture | Answers to a series of questions.                                                                                                                                |
| Outputs                    | Flow, temperature, ecological, water<br>quality data                                                                              | Spatial maps showing the change in<br>forest composition and biomass over<br>time.                                | An audit trail of answers to key<br>questions.                                                                                                                   |
| Location                   | West Midlands                                                                                                                     | Pacific Northwest                                                                                                 | UK                                                                                                                                                               |
| Comments                   | Cannot examine adaptation options in<br>the web-based version but can examine<br>information for different climate<br>conditions. | Proof of concept demonstration.                                                                                   | This tool is not use to communicate<br>climate impacts, it is used to develop<br>an understanding of how climate<br>change can be integrated into D-M<br>process |
| Available for<br>Download? | Y (SMURFweb only)<br>http://www.smurf-project.info/websmurf/                                                                      | Ν                                                                                                                 | Y<br>(http://www.ukcip.org.uk/resources/tools/<br>adapt.asp)                                                                                                     |

#### **APPENDIX 2: Document 3.1: Climate Change Decision Support Tools**

|                            | MIST                                                                                                  | MSSUA                                                                                                          | Neighbourhood Greening                                                                                               | ENVI-met                                                                                                                          |
|----------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Reference                  | Sailor and Dietsch (2007)                                                                             | Tanimoto et al (2004)                                                                                          | Randall et al (2003)                                                                                                 | Bruse and Fleer (1998)                                                                                                            |
| Platform                   | Web-based                                                                                             | GUI                                                                                                            | Extension for ArcView 3.x                                                                                            | Windows interface                                                                                                                 |
| Function                   | To assess UHI mitigation<br>strategies in terms of climate,<br>air quality and energy<br>consumption. | To assess the effect of the heat<br>island in terms of climate and<br>building thermal<br>performance.         | To examine the effect of<br>strategic management and<br>creation of greenspaces                                      | To analyse the effect of small<br>scale changes in urban design on<br>the local microclimate.                                     |
| Format                     | Nested mesoscale model<br>(MM5). Building energy<br>consumptions modelled using<br>DoE-2 simulations. | Coupled mesoscale urban<br>climate – building simulation<br>(DOE) model                                        |                                                                                                                      | 3-d microscale model                                                                                                              |
| Spatial-scale              | City                                                                                                  | Building                                                                                                       | Neighbourhood                                                                                                        | Neighbourhood/city?                                                                                                               |
| Inputs                     | Proportional change in<br>albedo/vegetation                                                           | Meteorological data,<br>urban/building design data,<br>surface land cover, HVAC<br>systems data                | Building polygons w dwelling<br>occupancies, road/path/ pavements<br>polylines, existing trees points<br>shapefiles. | Building/plant locations and heights.<br>Plant types and charateristics, soil<br>type/saturation, emissions sources               |
| Outputs                    | Change in temp, ozone levels,<br>energy consump                                                       | Numerical output data –<br>air/surf T, radiative flux,<br>waste heat etc.                                      | Methods of incorporating<br>greenspace, benefits of<br>greenspace quantified in lay<br>terms                         | Atmospheric, surface, soil variables                                                                                              |
| Location                   | NS                                                                                                    | Tokyo                                                                                                          | Developed for US but could be<br>applied elsewhere?                                                                  | Anywhere (given input data)                                                                                                       |
| Comments                   | Modelled buildings: residential,<br>office, retail; pre/post-1980                                     | Also contains results of<br>simulations under various<br>conditions to allow basic<br>analysis of heat island. | 1-2 month customisation<br>process. Only works with<br>ArcGIS 3.2 or earlier                                         | This is a very detailed model and<br>produces large amounts of data.<br>The Clim-bot add-on might help<br>with the visualisation. |
| Available for<br>Download? | Y<br>(http://www.heatislandmitigatio<br>ntool.com/)                                                   | Y<br>( <u>http://ktlabo.cm.kyushu-</u><br><u>u.ac.jp/</u>                                                      | Y<br>http://www.eng.mcmaster.ca/civi <u>l/s</u><br>ustain/downloads.html#ng                                          | Y<br>http://www.envi-met.de/index.html                                                                                            |

#### **References**

Bernard, L., Schmidt, B., Streit, U. and Uhlenküken, C. (1998). Managing, Modeling and visualising high-dimensional spatio-temporal data in an integrated system. GeoInformatica 2: 59-77.

Bruse, M. and Fleer, H. (1998). Simulating surface-plant-air interactions inside urban environments with a three dimensional numerical model. Environmental Modelling and Software 13: 373-384.

Herrod-Julius, J. and Scheraga, J. D. (1999). The TEAM model for evaluating alternative adaptation strategies. US EPA.

Randall, T. A., Churchill, C. J. and Baetz, B. W. (2003). A GIS-based decision support system for neighbourhood greening. Environment and Planning B: Planning and Design 30: 541-563.

Sailor, D. J. and Dietsch, N. (2007). The urban heat island Mitigation Impact Screening Tool (MIST). Environmental Modelling and Software 22: 1529-1541.

Schlumpf, C., Pahl-Wostl, C., Schönborn, A., Jaeger, C. C. and Imboden, D. (2001). IMPACTS: An information tool for citizens to assess impacts of climate change from a regional perspective. Climatic Change 51: 199-241.

Tanimoto, J., Hagishima, A. and Chimklai, P. (2004). An approach for coupled simulation of building thermal effects and building climatology. Energy and Buildings 36: 781-793.

Van Voris, P., Millard, W. D., Thomas, J. And Urban, D. (1993). TERRA-Vision: the integration of scientific analysis into the decision-making process. International Journal of GIS 7: 143-164.

Willows, R. and Connell, R. (2003). Climate Adaptation: Risk, uncertainty and decision-making. UKCIP Technical Report, Oxford.

## APPENDIX 3: Results from the Decision Support Tool Format and Function Questionnaire

A2. Information on the following topics is of interest to me:







A4. Information at the following spatial scales is of interest to me:

A5. Information covering the following time periods is of interest to me:

