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Outline

Background
* Human growth is unique
* The interaction between growth, the environment and development
* Whatis ‘omic data
* Network models

Age-dependent gene expression & the effect of the environment on child growth
* Age-related changes in gene expression — defining networks of gene interactions
e The effect of latitude & summer daylight exposure on growth
e Evolutionary age of a gene is related to growth and metabolism

Growth trajectories and links to health in later life
* Network models of rate of growth
e Age of puberty and health
* Leukaemia as an example

Conclusions



Human Growth
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Human growth pattern is unique
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W = weaning, *P = puberty (Tanner 1962 redrawn by Bogin 1999) | = Infancy, C = Childhood, P = puberty (from Bogin 1999)

* Age-related, tissue-independent
gene expression shown in mice

Finkielstain GP et al. Endocrinology 2009;150(4):1791-800



Genes interact with the environment

....and the developmental process

Genes
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How do genes effect development?
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....is @ metaphor for how gene regulation modulates development




What is ‘Omic Data

“big data” - a complete set of information about a feature of cell

Genes to messenger to proteins

DNA —>mRNA—>Protein Central Concept of Molecular Biology

Biological information flow
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What is ‘Omic Data
‘Omic data sets include:
* Genetic ]‘ Fixed
* Transcriptomics — Gene Expression
_ Gene:Environment:

e Proteomics Development
e Metabolome

~ 22 000 genes in humans

How is ‘omic data analysed?




Network Analysis

Clusters of genes Causal Pathways
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Waddington’s Differentiation Landscape

C.H. Waddington 1905-1975
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Evolutionary conserved growth pathways are associated with the
the phases of childhood growth

@ Human Growth Evolutionarily Conserved Growth Pathways
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Stevens et al. BMC Genomics 2013, 14547
Genomics L]
EDITED BY MARIA CRUZ AND SACHA VIGNIER

RESEARCH ARTICLE Open Access o
SCIENCE VOL341 20 SEPTEMBER 2013
Human growth is associated with distinct
patterns of gene expression in evolutionarily
conserved networks




The evolutionary age of genes is associated with network properties

1— Ancestral proteins
— Metazoan-specific
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Number of tissues in which
protein is expressed

Recently evolved proteins make few protein
interactions.

Bossi A, Lehner B: Tissue specificity and the human protein interaction network. Mol Syst Biol 2009, 5:260



The Effect of Latitude and Summer Daylight Exposure on Growth
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Catch-Up Growth in SGA children

Small for Gestational Age Children
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ORIGINAL ARTICLE
Insights into the pathophysiology of catch-up compared with
non-catch-up growth in children born small for gestational age:
an integrated analysi% of metabolic and transcriptomic data
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Catch-Up Growth in SGA children
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Catch-Up Growth in SGA children
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Female age and embryonic gene expression
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Figure 1. A) Boxplots displaying the variance of gene expression within individual blastocyst embryos Maternal age of individual embryos
Figure 2. Genes highly correlated with maternal age within the blastocyst embryo. A) Genes

with different maternal ages. B) Spearman’s rank correlation co-efficient calculated for every gene,
in relation to maternal age. Red dotted line represents correlation threshold cut-off of 0.75 C) Figure positively correlated (R>0.76) with maternal age. B) Genes negatively correlated (R> 0.74) with
maternal age. Yellow represents higher levels of expression and red represents lower levels of

depicting positive and negative correlation analysis patterns. expression.

Human blastocysts (n=10)
329 genes correlated with maternal age: 139 positively, 190 negatively
Tipping point at female age = 35, maps onto decline in female fertility

Helen Smith Epigenetic regulators overrepresented (11 ZFPs, HIST1H2AE, METTL2B, L6)



Conclusions

* Human growth has features that are unique in
the animal kingdom

* ‘omic data and network modelling gives us the
tools to relate gene:environment:development

 The evolutionary age of a gene can act as a
marker to relate growth and metabolic function

* Changes of growth rate in early life are related
to health in later life
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