

A candidate gene approach to understanding the role of the cortisol pathway associated genes with the Frailty Phenotype in a population sample of older adults from England

Krisztina Mekli¹, James Nazroo¹, Neil Pendleton²

¹Cathie Marsh Centre for Census and Survey Research, The University of Manchester ²Institute of Brain, Behavior and Mental Health, The University of Manchester E-mail: Krisztina.Mekli@manchester.ac.uk

Introduction

- The term frailty refers to an age related, reduced functional reserve and consequent decrease in adaptation (resilience) to any sort of stressors. The overall consequence is that frail elderly are at higher risk for accelerated physical and cognitive decline, disability and death.
- Much research has been focused on distinguishing those with and without frailty. The Frailty Phenotype (FP) is a widely accepted method of five performance related factors for assessing frailty (Fried et al. 2001). The outcome categories are: robust, pre-frail and frail.
- To assess the frailty status of individuals 60 over of a population based sample in England, using the Frailty

Aims

The mechanistic pathophysiological pathways of frailty are not known, but higher cortisol/dehydroepiandrosteronesulphate(DHEAS) ratio in frail individuals is a consistent finding in the literature, indicating the involvement of the cortisol pathway (Collerton *et al.* 2012).

Phenotype and

To explore possible associations between genetic variants within genes of the cortisol Frailty pathway the and Phenotype

Method	Results

Phenotypic results

Frailty outcome	AII	Males	Females
Robust (0 frailty items present)			
Number and percentage	1703 (62.13%)	790 (62.26%)	913 (62.02%)
Age [years]	67.4	67.4	67.4
SD	5.36	5.41	5.33
Pre-frail (1-2 frailty items present)			
Number and percentage	942 (34.37%)	437 (34.44%)	505 (34.30%)
Age [years]	69.8	70.0	69.7
SD	5.60	5.43	5.75
Frail (3-5 frailty items present)			
Number and percentage	96 (3.50%)	42 (3.30%)	54 (3.68%)
Age [years]	70.5	69.5	71.2
SD	5.75	5.74	5.70

- 3117 participants' with available phenotype and genotype measures were selected from the English Longitudinal Study of Ageing (ELSA) database
- Their frailty status was assessed by using the 5 items of the Frailty Phenotype:
 - Sarcopenia (measured)
 - Exhaustion (self-reported)
 - Low physical activity (self-reported)
 - Slowness (measured)
 - Weakness (measured)

- Phenotypes were:
 - Not frail: positive for 0 items
 - Pre-frail: positive for 1-2 items
 - Frail: positive for 3-5 items
 - Positive for the individual items
- Candidate genes were selected from the ELSA database of genotyped genes, with MAF \geq 0.01 and HWE \geq 0.005, 198 SNPs in total
- Single marker association analysis by logistic and linear regressions and Bonferroni correction for multiple testing were performed by using software Plink (Purcell *et al.* 2007)

Demographic results

	Males	Females
Number of participants	1438	1679
Age span [years]	60-79	60-79
Average age [years] SD	68.3 5.53	68.3 5.62

SD: standard deviation

Association analysis results, most significant p-values for each phenotype analysed

Phenotype	Gene	SNP	MAF	Function	Effect	P value* (uncorrected)
Frailty (3 categories)	APP	rs2830029	0.31	intronic	β = -0.04	0.013
Positive for weight loss item	CETP	rs820299	0.37	intronic	OR = 0.75	0.004
Positive for exhaustion item	CETP	rs11508026	0.44	intronic	OR = 0.82	0.021
Positive for low physical activity item	APP	rs2830046	0.28	intronic	OR = 0.71	0.008
Positive for slowness item	CETP	rs9923854	0.11	intronic	OR = 1.3	0.017
Positive for weakness item	CYP19A1	rs3751592	0.33	intronic	OR = 0.80	0.002

SD: standard deviation

* None of these results remained significant after correction for multiple testing (Bonferroni correction) APP: Amyloid β precursor protein, *CETP*: Cholesteryl ester transfer protein CYP19A1: Cytochrome 450, family 19, subfamily A, polypeptide 1 SNP: single nucleotid polymorphism

MAF: minor allele frequency

Conclusions

References

- This study supports the possible role of APP, CETP and CYP19A1 genes in frailty, assessed by the Fried method in a population sample of individuals over 60 from England.
- However, these association results were weak and did not survive the Bonferroni corrections.
- Investigating genes involved in the inflammatory pathways, and other approaches, such as pathway analysis with more comprehensive coverage of this genomic area are required in future studies.
- 1.Fried, L. et al. (2001). J Gerontol A Biol Sci Med Sci. 56(3):M146-56.
- 2. Collerton, J et al. (2012). Mech Ageing Dev. 133(6):456-66.
- 3. Purcell, S et al. (2007). Am J Hum Genet. 81(3):559-75.

Acknowledgement

We are very grateful for all volunteers taking part in the English Longitudinal Study of Ageing and for researchers at the University College London, Department of Epidemiology and Public Health for providing us with the phenotypic and genotypic data. The authors report no conflict of interest.