

What are Bayesian Methods

Simon French simon.french@mbs.ac.uk

My background

- Took my first statistics course in 1970
 - No data; I thought Anova was a Russian mathematician!
- Introduced to Bayesian Statistics in 1971 by Adrian Smith and Mike Dempster
 - Morrie DeGroot (1970) Optimal Statistical Decisions
- Doctoral research on Bayesian Statistics in Protein Crystallography 1972-75
- Attended the first Valencia Conference in 1979
 - And have attended all since including the last in 2010
- Have worked on Bayesian *decision* analysis rather than statistical analysis ever since
 - But hey! its the same philosophy

The Bayesian paradigm

- explicitly models judgements and explores their implications
 - probabilities to represent beliefs and uncertainties
 - utilities to represent values
- is based upon a model of an idealised (consistent, rational) scientist
- focuses first on the individual scientist
- then by varying the scientist's beliefs enables the exploration of potential consensus.

For a Bayesian, knowledge is based on consensus

A philosophy ...

Bayesian analysis is an approach to inference and decision so it applies across all the interests of Methods@Manchester

- Visual/Sound
- Survey related
- E-Science/Data management
- Ethnographic methods
- Qualitative/interviewing

- Mixed methods
- Experimental methods
- Collaborative methods
- Quality assessment
- And probably any new ones that are introduced

Rev. Thomas Bayes

- 1701?-1761
- Main work published posthumously:
 T. Bayes (1763) An essay towards solving a problem in the doctrine of chances.
 Phil Trans Roy. Soc. 53 370-418
- Bayes Theorem inverse probability

$p(\theta \mid x) \propto p(x \mid \theta) \times p(\theta)$

Posterior probability

 \propto likelihood \times prior probability

$p(\theta \mid x) \propto p(x \mid \theta) \times p(\theta)$

Posterior probability

 \propto likelihood \times prior probability

There is a constant, but 'easy' to find as probability adds (integrates) to one

$p(\theta \mid x) \propto p(x \mid \theta) \times p(\theta)$

Posterior probability

\propto likelihood \times prior probability

Probability distribution of parameters $p(\theta)$

$p(\theta \mid x) \propto p(x \mid \theta) \times p(\theta)$

Posterior probability

\propto likelihood \times prior probability

likelihood of data given parameters *p*(*x*/θ)

$p(\theta \mid x) \propto p(x \mid \theta) \quad \times \ p(\theta)$

Posterior probability

∞ likelihood \times prior probability

Probability distribution of parameters given data $p(\theta|x)$

Toss a biased coin 12 times; obtain 9 heads

Bayesian Estimation

Toss a biased coin 12 times; obtain 9 heads

Bayesian confidence interval

Toss a biased coin 12 times; obtain 9 heads

Original Thinking Applied

13

Bayesian hypothesis test

Toss a biased coin 12 times; obtain 9 heads

Original Thinking Applied

14

But why do any of these?

Just report the posterior. It encodes all that is known about θ_1

Bayesian decision analysis

MANCHESTER

Evaluation of Bayes update and of expected utilities

- Analytic approaches
 - conjugate families of distributions
 - Kalman filters
- Numerical integration
- Markov Chain Monte Carlo (MCMC)
 - Gibbs Sampling
 - winBUGS
 - www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml

Subjectivity vs Objectivity

- Bayesian statistics is explicitly subjective
- Science is (thought to be) objective

 \Rightarrow controversy!

• 1950s to 1980s

MANCHESTER

The University of Manchester Manchester Business School

Controversial

"I have lamented that Bayesian statisticians do not stick closely enough to the pattern laid down by Bayes himself: if they would only do as he did and publish posthumously we should all be saved a lot of trouble."

M.G. Kendall (1968)

Tea, Haydn and a right 'Tosser'

Three experiments:

- Tea tasting
- Music score recognition
- Tossing a coin

The data and first analysis

Data: '10 out of 10'

- H₀ the expert is right no more than would be expected by chance.
- H_1 the expert performs better than chance.
- Significant evidence against H₀ in each case

Same evidence, same conclusion?

But a Bayesian analysis recognises differences

Recognises different prior knowledge

The Tea Taster

The Haydn Expert

The Drunk

Importance of prior

- Different priors lead to different conclusions
 - \Rightarrow subjective
 - \Rightarrow not scientific?
- Can use:
 - ignorant (vague, non-informative) prior to 'let data speak for themselves'
 - precise prior to capture agreed common knowledge
 - Sensitivity analysis to explore the importance of the priors
- Indeed can use sensitivity analysis to explore agreements and disagreements on many aspects of the model not just the prior

BUGS Software

- Bayesian inference Using Gibbs Sampling
- Lunn, D.J., Thomas, A., Best, N., and Spiegelhalter, D. (2000) WinBUGS -- a Bayesian modelling framework: concepts, structure, and extensibility. *Statistics and Computing*, **10**:325— 337
- <u>http://www.mrc-bsu.cam.ac.uk/bugs/</u>

ISBA

- International Society for Bayesian Analysis
- <u>www.bayesian.org</u>
- Many resources and guide to software, literature, etc.
- Newsletter
- Open journal: **Bayesian Analysis**

MANCHESTER

Reading

W.M. Bolstad (2004). *Introduction to Bayesian Statistics*. Hoboken, NJ, John Wiley and Sons.

R. Christensen, W. Johnson, A. Branscum and T.E. Hanson (2011) *Bayesian Ideas and Data Analysis*. Boca Raton, CRC/Chapman and Hall

P. Congdon (2001) *Bayesian Statistical Modelling*. Chichester, John Wiley and Sons

S. French and D. Rios Insua (2000). *Statistical Decision Theory*. London, Arnold.

A. O'Hagan and J. Forester (2004). *Bayesian Statistics*. London, Edward Arnold.

J.M. Bernardo and A.F.M. Smith (1994). *Bayesian Theory*. Chichester, John Wiley and Sons.