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Abstract 

 
This paper provides an empirical analysis of the relationship between R&D 
intensity, rate of innovation and the growth rate of output in four 
manufacturing sectors from 17 OECD countries. The findings suggest that the 
knowledge stock is the main determinant of innovation in all four 
manufacturing sectors and that R&D intensity increases innovation in the 
chemicals and the electrical and electronics sector. In addition, the rate of 
innovation has a positive effect on the growth rate of output in all sectors 
except for the drugs and medical sector. These results lend strong support for 
the non-scale endogenous growth models.   
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INTRODUCTION 
 
This paper examines the relationship between R&D intensity, rate of innovation, and the 

growth rate of output in four manufacturing sectors of 17 OECD countries for 1981-1997. 

The empirical analysis is based on the non-scale endogenous growth models of Young 

(1998), Aghion and Howitt (1998) and Dinopoulos and Thompson (2000), (hereinafter called 

the Y/AH/DT model),1 which state that technological innovation is driven by the knowledge 

stock and R&D intensity, and that the long-term growth rate of output is determined by the 

rate of innovation, physical and human capital saving rate, and population growth. The 

findings of the system GMM analysis show that there is a positive relationship between 

knowledge stock and innovation in all sectors, while the effect of R&D intensity on innovation 

is significant only in the chemicals and the electrical and electronics sectors. In addition, the 

rate of innovation and the degree of openness have a positive effect on the growth rate of 

output in the majority of the sectors. Overall, these results lend strong support for non-scale 

endogenous growth models. 

  

The main advantage of sector level analysis over aggregate analysis is that it provides more 

reliable results as the sectoral data have less noise than aggregate data. However, if the 

analysis is restricted to one country, which is the case in many sector level studies, the 

results might be biased and cannot be generalized. To enhance the explanatory power of 

sector level analysis, some recent studies have used international sectoral data to examine 

endogenous growth models. For example, Frantzen (2003) employs R&D data from 22 

manufacturing sectors in OECD countries and finds that R&D has a positive impact on TFP. 

Zachariadis (2004) shows that the effect of R&D intensity on productivity and output growth 

is positive both in the aggregate economy and manufacturing sector of 10 OECD countries. 

Similarly, Griffith, Redding and Reenen (2001) provide evidence that R&D intensity, human 

capital and trade have a positive impact on the TFP of the manufacturing sector of 14 OECD 

countries. Meliciani (2000) examines the relationship between patent and R&D using 

international sector level patent and R&D data and concludes that R&D is more effective in 

generating patents in science based industries, while physical investment is more important 

in production intensive industries.2  
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This study extends previous research in a few important ways. First, we estimate both the 

innovation function and the growth rate of output by utilizing sector level international patent 

and R&D data. To the best of our knowledge, there are no sector level studies that estimate 

both the innovation function and the growth rate of output using R&D and patent data. The 

main advantages of using patent data are that they allow us to estimate the innovation 

function of endogenous growth models, and they are better proxy for innovation than R&D 

intensity that is commonly used in the literature. Second, we conduct our empirical analysis 

for four main manufacturing sectors separately, which allows us to compare the results 

across sectors and check the robustness of our analysis. Also, by pooling similar industries in 

four manufacturing sectors we take into account the effect of knowledge spillovers across 

similar industries on innovation and the growth rate of output. Finally, we employ system 

GMM regression technique that has many advantages over difference GMM and fixed effects 

analysis. The findings of our analysis provide strong support for the non-scale endogenous 

growth models. 

 

The remainder of the paper is organized as follows: section two presents the model briefly, 

section three describes data and documents the descriptive statistics of the variables, section 

four reports the stylized facts, section five presents the empirical analysis and the results, 

and section six concludes. 

 

MODEL  
 
The empirical analysis is based on the non-scale endogenous growth model of Y/AH/DT. The 

Y/AH/DT model eliminates the scale effect of the first generation endogenous growth models 

of Romer (1990), Grossman and Helpman (1992) and Aghion and Howitt (1992), (hereinafter 

called R/GH/AH), by using the R&D intensity rather than the level of R&D in the innovation 

function. The elimination of the scale effect from the endogenous growth models invalidates 

the implication of these models that the long-term growth rate of output is determined solely 

by the growth rate of population, which has been rejected by Jones (1995).  The innovation 

function in Y/AH/DT takes the form  

 

       .,1,
Qit

itR
itnwhereitnitAitA === φγδφ&                (1) 
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A& , A, and n are innovation, knowledge stock, and R&D intensity, respectively; R is the total 

amount of output invested in R&D, and Q is the total output.3 This specification of the 

innovation function leads to the balanced growth rate of per capita output that depends on 

the rate of technical progress, physical and human capital saving rate and population growth 

(Dinopoulos and Thompson, 2000). The short form of the function for the steady state 

growth rate of output can be written as  

 

                                       nLkh ggssg ψγαβ +++=                                      (2) 

 

where α,β,γ and ψ are the parameters of the model to be estimated, Sh, Sk are saving rate of 

physical and human capital, respectively, gL is the growth rate of population, and  gn  is the 

rate of innovation (technical progress)4. In our empirical analysis, we estimate equation (1) 

and (2) for four manufacturing sectors from 17 OECD countries. Different from the previous 

literature, we utilize international panel data of sectoral R&D intensity, patent and trade 

series from four main manufacturing sectors. Furthermore, we employ system GMM 

regression technique that allows us to obtain more reliable results. 

 

DATA AND METHODOLOGY 
 
Data are obtained from the following sources: patent applications made to U.S. Patent Office 

(NBER Patent Citation Database); sector level business enterprise R&D expenditure (BERD) 

(ANBERD-OECD, 2003); sector level output, investment, employment, import and export 

(STAN-OECD, 2003); GDP deflator and exchange rate (OECD, 2003); population (WDI, 

2003); GDP in current $U.S. (WEO, 2003), imports and exports of U.S. from the partner 

countries (IMF-Direction of Trade, 2003). Each country’s GDP share of the U.S. trade is 

calculated adding up the absolute value of total exports and imports of the U.S. to and from 

each partner country, and dividing this total by each country’s GDP. To control for the 

openness of the sectors to international trade, a variable called “openness” is constructed by 

adding up the absolute values of sectoral exports and imports and dividing the total by 

sectoral output. 

 

The construction of four manufacturing sectors, namely chemicals (excluding drugs and 

medicals), drugs and medical, electrical and electronics and machinery and transport for 
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patents and the remaining variables are documented in appendix II, Table 4A. Construction 

of the series from OECD database was straightforward, as they all have unified SIC codes. 

The corresponding sectors for the patent data have been constructed using the technology 

codes reported in Hall, Jaffe and Trajtenberg (2001). When matching the technology 

classification for patents to industrial classification of the other variables from OECD we also 

made use of the information from more disaggregated classification. All series, except for the 

patents, are deflated using the GDP implicit price deflator with 1995 base year, and 

converted to US dollars using current exchange rate obtained from OECD database. Patent 

and capital stock is calculated using perpetual inventory method with 0.2 and 0.1 

depreciation rates, respectively.5  

 

The patent data include all utility patents from 1960-1997 in manufacturing sector issued to 

inventors residing in different countries.6 Of the categories in the NBER database we use 

chemicals, drugs and medical, electrical, electronics and communication and machinery 

sectors. The main reasons for using international patent data from the U.S. is that: first, the 

data are readily available; they have both disaggregated and aggregated technology codes 

and a detailed information on data can easily be obtained from Hall, Jaffe, Trajtenberg 

(2001). Second, using patent applications made in one country ensures that the patent 

applications of all countries are subject to the same laws and regulations thus decreases the 

heterogeneity in the data. The potential disadvantages of using the U.S. patent applications 

such as the distance from the U.S., or the economic alliance with the U.S. have been taken 

into account throughout the analysis. In addition, we use successful patent applications 

instead of granted patents, as the time lag between the application and the grant year can 

be very long.  Although some disadvantages of using patent data to measure innovation 

have been cited in the literature, such as the variation in the intrinsic value of patents and 

inability of patents to capture the whole range of innovation, these problems can be 

accounted for in the econometric models.7  

  

We include all OECD countries in the analysis that have yearly data on the main variables of 

the model for more than or equal to 3 consecutive years. The only exception to this rule is 

the U.S., which is not included in the regression analysis as the patent applications are 

obtained from the U.S. Patent Office. The sample size and the number of countries change 
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across sectors and the regression models depending on the variables included in the analysis 

(appendix II, Table 5A).  

 

We also check the statistical properties of the series and find that there is no 

heteroskedasticity and the unit root in the data for most of the countries and the variables, 

while there is first order autocorrelation (appendix II, Table 6A-8A)8. The first order 

autocorrelation is taken into account by employing system GMM and Prais-Winsten fixed 

effects regression analyses.9 The diagnostic tests of the system GMM, namely sargan and 

second order autocorrelation tests, and the Prais-Winsten analyses have been reported at 

the end of each regression column. All regression analyses include year dummies, and the 

country fixed effects have been taken into account either by including country dummies 

(Prais-Winsten) or using differenced series and instruments (system GMM). The outliers in 

each regression model are eliminated using a standard procedure embodied in STATA.  

 

STYLIZED FACTS  
 
This section documents the average R&D and patent intensity and the growth rate of real 

output for four manufacturing sectors across 15 OECD countries (Figures 1-4).  In each 

figure we rank the countries according to their average patent intensity. As the patent 

applications used in the analysis are from the U.S. Patent Office, the U.S. ranks the first in 

patent intensity in all sectors. Therefore, one should not compare the U.S. performance on 

patent intensity with the rest of the countries in the analysis. All countries that have data on 

patents, R&D and the growth rate of output for more than 5 years are included in the 

figures. 

  

A common feature of the figures in all four sectors is that, Italy and Spain always have the 

lowest patent and R&D intensity (Figures 1 to 4). Moreover, Japan, Finland and Sweden 

always rank in the first four (the first being the U.S. in all sectors), except for the drugs and 

medical sector, in which Japan and Sweden are in the lower rank. Among these three 

countries, Sweden and Finland continue to be in the high rank in terms of the R&D intensity 

in all sectors, with the exception that Sweden’s R&D intensity is lower in the chemicals, while 

Finland’s R&D intensity is lower in the machinery and transport sector. Japan, on the other 
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hand, in spite of its exceptional performance in the patent intensity in all but the drugs and 

medical sector, has lower R&D intensity in all but the chemicals sector.  

 

Among the remaining countries that perform well in patent intensity, Germany is one of the 

leading countries in the chemicals sector and among the high-ranking countries in the 

machinery and transport, and the drugs and medical sectors. As for its R&D performance, it 

is still in the high rank in the chemicals, and the machinery and transport sector, while in the 

low rank in the drugs and medical sector. Furthermore, Denmark and UK are among the 

leading countries in the drugs and medical sector in both patent and R&D intensity. In the 

remaining sectors, UK is among the average performers in both patent and R&D intensity, 

while Denmark performs very poorly in the electrical and electronics sector in terms of both 

patents and R&D, and average in the other two sectors. 

 

Canada is another country that performs well in terms of its patent intensity in two of the 

sectors for which it has data. It ranks the highest in the drugs and medical sector (after the 

U.S.), and among the high-ranking countries in the chemicals sector. However, a surprising 

observation is that, Canada is among the poorest performers in terms of R&D intensity in 

both sectors. This is unusual, as the countries in the analysis do not exhibit big discrepancy 

between their performances in the patent and R&D intensity. One explanation for Canada’s 

exceptional performance in patents in spite of its low R&D intensity could be its geographic 

and economic proximity to the U.S., where the patent applications have been made.  

  

The Figures 1 through 4 also document the growth rate of real output for each sector. A 

quick look at these figures reveals that there is a notable positive correlation between patent 

intensity and the growth rate of output in the machinery and transport, and the electrical 

and electronics sector, while a positive but modest correlation in the chemicals and the drugs 

and medical sector.     

 

Overall, the simple statistics reported in figure 1 through 4 indicate a positive association 

between R&D and patent intensity and the growth rate of output across OECD countries in 

all main manufacturing sectors, as suggested by the non-scale endogenous growth models. 
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The next section carries out a more comprehensive analysis of the interrelationships between 

these variables.  

 
 
 

Figure 1. Average R&D, Patents and Real Output Growth 
in Chemicals Sector (Excludes Pharmaceuticals), 1987-1997
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Figure 2. Average R&D, Patents and Real Output Growth 
in Drugs & Medical, 1987-1997
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Figure 3. Average R&D, Patents and Real Output Growth 
in Machinery & Transport Sector, 1987-1997
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Figure 4. Average R&D, Patents and Real Output Growth 
in Electricals & Electronics Sector, 1987-1997
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EMPIRICAL ANALYSIS  
 
The estimations of the innovation function and the growth rate of output for four 

manufacturing sectors are carried out using system GMM regression technique proposed by 

Arellano and Bover (1995). The main difference between system GMM and difference GMM is 

that the former estimates the system of the level and difference equations using the lagged 

levels of the series as instruments for the first-difference series, and lagged first-differences 

of the series as instruments for the level series, while the latter estimates only the first-

difference equation using the lagged levels as instruments. We choose system GMM over 

difference GMM, as the latter has finite sample bias and poor precision when the series are 

persistent. As shown in Monte Carlo simulations in Blundell and Bond (1998), when the 

number of time series observations is small, as it is in our case, there are dramatic efficiency 

gains in using a system rather than difference GMM.10  

 
In addition, unlike the difference GMM, the system GMM estimators are consistent even in 

the presence of unit root, Binder, Hsiao and Pesaran (2003). Furthermore, since the system 

GMM utilizes the lags of both the difference and level series of all variables in the model, it 
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reduces the potential endogeneity problem. To avoid making discretionary choices in 

choosing the set of instruments, we include in the matrix of instruments the whole set of the 

lags of the regressors and we treat them as predetermined variables.11 To further increase 

the precision of our results, we remove the outliers from the model by using a standard 

procedure embodied in STATA.12 We include year dummies in all regressions to eliminate the 

unobserved time fixed effects. As a robustness check, we also report the results of the Prais-

Winsten fixed effects analysis in the appendix.  

 
Estimation of Innovation Function  

We estimate the innovation function presented in equation (1) in section 2 

   

                                                  )/( itit QRitAitA γφ=&                                             (3) 

 

where,  is innovation, A is knowledge stock, R  is R&D expenditure and Q is output. The 

regression model is constructed by taking the natural log of equation (3) and including 

control variables and time fixed effects into the model 

A&

         
          ,             (4) tittixLogitQitRLogtAtiALog ,),()/()(,)( εµψφ ++++=&

  
where i and t are country and time subscripts, respectively; x is a matrix of control variables, 

µ  is time fixed effects and ε  is regression residuals. We measure , A, R and QA&  for each 

sector using patent flows, patent stock, business R&D expenditure, and output, respectively. 

The control variables include the trade share of output in each sector, referred to as 

openness, and the U.S. trade share of GDP. The openness is assumed to capture the 

international knowledge spillovers between relevant sectors, and the U.S. trade share of GDP 

is included to control for the effect of the economic alliance with the U.S. on the patent 

applications made in the U.S. Patent Office.  

 
We first estimate the innovation function in equation (4) without knowledge stock variable. 

The results of the system GMM analysis for each sector are reported in Table 1.13 As the 

table shows, the elasticity of R&D intensity is positive and significant in all four sectors with 

an elasticity of over one in the chemicals and the machinery and transport sectors, close to 
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one in the drugs and medical sector and 0.5 in the electrical and electronics sector. 

Surprisingly, the degree of the openness of the sectors to international trade is negatively 

related to patent flows in all sectors. This implies that the negative effect of the openness on 

innovation resulting from increased competition overcomes its positive effect resulting from 

increased knowledge spillovers. It might also be capturing the fact that the more open the 

sectors to international trade, the more likely they will have patents in countries other than 

the U.S. The U.S. trade share of output has a positive effect on the patents in all sectors, 

which implies that the economic alliance with the U.S. is an important determinant of the 

patent applications in this country. It might also mean that the knowledge spillovers from the 

U.S. have a positive impact on countries’ sectoral innovation.  

 
The next regression model includes knowledge stock variable measured by patent stock of 

each sector. The results are reported in Table 3. As expected, the coefficient of patent stock 

is positive and significant in all sectors with the magnitude of around 0.95. However, after 

we control for the effect of knowledge stock on innovation flows, the elasticity of R&D 

intensity becomes insignificant in the drugs and medical sector and the machinery and 

transport sector.14 This might imply that in these sectors, increases in R&D intensity 

promotes innovation through its contribution to knowledge stock rather than its direct impact 

on innovation. It also suggests that the time lag between increases in R&D intensity and 

innovation might be longer in the drugs and medical and the machinery and transport 

sectors. 

 
 

Table 1. System GMM Estimation of the Sectoral Patent Flows, 1987-1997 
 

Sectors Chemicals Drugs and 
Medical 

Machinery 
and 
Transport 

Electrical and 
Electronics 

R&D/output 1.381 0.905 1.104 0.523 
 (13.91)*** (7.34)*** (10.91)*** (2.31)** 
Openness -1.517 -1.454 -2.443 -2.720 
 (13.95)*** (15.08)*** (22.61)*** (16.18)*** 
U.S. trade/GDP 0.633 0.379 0.796 1.809 
 (8.21)*** (4.65)*** (5.96)*** (6.98)*** 
Constant 1.524 -0.194 1.075 -2.332 
 (4.26)*** (0.42) (2.26)** (2.61)** 
Sargan-p valuesa 0.58 0.58 0.64 0.64 
AR(2)-p valuesb 0.90 0.97 0.58 0.78 
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Observations 142 142 112 112 
Number of 
country1 

14 14 12 12 

Absolute value of t statistics in parentheses * significant at 10%; ** significant at 5%; *** 
significant at 1% Note: All series are in natural logs. All series are sector level, except for the U.S. 
trade share of GDP. All regressions include year dummies. 
b/  H0: regressors are not correlated with the residuals. 
c/  H0: errors in first difference regression exhibit no second order serial correlation. 
 
 

Table 2. System GMM Estimation of the Sectoral Patent Flows, 1987-1997 
     
Sectors Chemicals Drugs and 

Medical 
Machinery 
and 
Transport 

Electrical and 
Electronics 

Patent stock 0.954 0.952 0.945 0.950 
 (62.76)*** (57.20)*** (43.77)*** (52.88)*** 
R&D/output 0.055 -0.004 -0.039 0.092 
 (1.94)* (0.14) (1.11) (2.04)** 
Openness -0.077 -0.013 -0.190 -0.221 
 (2.53)** (0.40) (3.31)*** (3.84)*** 
U.S. trade/GDP 0.017 0.031 0.024 0.052 
 (1.00) (1.76)* (0.67) (0.86) 
Constant -1.257 -1.475 -1.172 -1.471 
 (15.66)*** (14.45)*** (9.36)*** (8.57)*** 
Sargan-p valuesa 0.78 0.78 0.84 0.84 
AR(2)-p valuesb 0.77 0.73 0.07 0.31 
Observations 142 142 112 112 
Number of 
countries 

14 14 12 12 

Absolute value of t statistics in parentheses * significant at 10%; ** significant at 5%; *** 
significant at 1% Note: All series are in natural logs. All series are sector level, except for 
the U.S. trade share of GDP. All regressions include year dummies. 
Note: The regression model for machinery sector has second order autocorrelation. 
However, the coefficients of the variables do not change much even after correcting for AR 
(2).  
b/  H0: regressors are not correlated with the residuals. 
c/  H0: errors in first difference regression exhibit no second order serial correlation. 
 
 
 
 
In the chemicals and the electrical and electronics sector the elasticity of R&D intensity with 

respect to patent flows is around 0.06 and 0.10, respectively. This means that in these two 

sectors innovation has constant or increasing returns to scale with respect to knowledge 

stock and R&D intensity, as suggested by non-scale endogenous growth models. The 

inclusion of patent stock variable in the regression does not change the coefficient of the 
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openness variable in any of the sectors, except for the drugs and medical sector in which it 

becomes insignificant. In addition, the coefficient of the U.S. trade share of output becomes 

insignificant in all sectors except for the drugs and medical sector, which shows that the 

countries’ previous years’ patents in the U.S. is more important determinant of their current 

patents than their economic relationship with the U.S.   

 
To sum up, these results are in line with the first postulation of the R&D based growth 

models that the knowledge stock is the engine of innovation flows. The results also provide 

strong evidence for the non-scale endogenous growth models in the chemicals and the 

electrical and electronics sector, in that both knowledge stock and R&D intensity have 

positive effect on innovation and their combined elasticity is over one. 

 

Estimation of the Growth Rate of Output 

The growth rate of output is estimated for each sector using the model from Dinopoulos and 

Thompson (2000) presented in section 3 

 

                           nLkh ggssg ψγαβ +++=                                                  (5) 

 

where g is the steady state growth rate of output, Sh, Sk are saving rate of physical and 

human capital, respectively, gL is the growth rate of population, and  gn  is the rate of 

innovation (technical progress). The panel data regression equation of the above model is  

 

              (6) tiittixLogitAtiALoglgkshstig ,),()/,(, εφµψγαβ +++++++= &

 

where i, t are country and time subscripts, /A is the innovation rate measured by the ratio 

of patent flows to patent stocks; x is a matrix of control variables, 

A&

µ  is time fixed effects, ф 

is country fixed effects, and ε  is regression residuals. In the estimation of equation (6), we 

employ sector level data for all variables except for the population growth. The saving rate of 

physical capital and human capital are measured as the ratio of capital stock to output and 

ratio of employment to population, respectively; the rate of innovation is measured as the 

log of the ratio of the patents to patent stock, and the growth rate of output is measured as 
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the log differenced real output in each sector. The degree of the openness of the sectors to 

international trade, the control variable for international knowledge spillovers, is measured as 

the sum of the sectoral imports and exports divided by sectoral output. 

 

We first estimate equation (6) with respect to the rate of innovation and the degree of 

openness only, and then with respect to all variables of the model. The results of the first 

estimation using system GMM are reported in Table 3. As seen from the table, the innovation 

rate is positive and significant in all sectors. The highest return to the rate of innovation in 

terms of the growth rate output is in the machinery and transport sector (0.13%), which is 

followed by the electrical and electronics sector (around 0.9%), the chemicals sector 

(0.08%) and the drugs and medical sector (0.06%). The degree of openness of the sectors 

is not significant in any sectors, except for the drugs and medical sector.   

 
 

Table 3: System GMM Estimation of the Growth Rate of Sectoral Real Output, 1981-1997 
 
Sectors Chemicals Drugs and 

Medical 
Machinery and 
Transport 

Electrical and 
Electronics 

Patent rate 0.084 0.057 0.162 0.088 
 (2.48)** (1.98)** (3.71)*** (2.56)** 
Openness -0.003 0.015 0.008 -0.005 
 (0.37) (2.05)** (0.60) (0.35) 
Constant -0.007 0.212 0.112 -0.011 
 (0.11) (5.59)*** (1.42) (0.18) 
Sargan-p valuesa 0.72 0.43 0.45 0.78 
AR(2)-p valuesb 0.28 0.96 0.31 0.45 
Number of 
Observations 

233 257 187 183 

Number of countries 15 17 13 12 
Absolute value of t statistics in parentheses * significant at 10%; ** significant at 5%; *** significant 
at 1% 
Note: All series are in natural logs and sector level. 
b/  H0: regressors are not correlated with the residuals. 
c/  H0: errors in first difference regression exhibit no second order serial correlation. 
 
 
 
Table 5 reports the results of the system GMM regression analysis that includes all the 

variables in equation (6).15 The first observation from the table is that the inclusion of the 

other variables does not affect the coefficient of the rate of innovation in any sectors, except 

for the drugs and medical sector. With the inclusion of other variables in the model, the 
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degree of openness becomes positive and significant in all sectors except for the chemicals 

sector, implying that the international knowledge spillovers have a positive effect on the 

growth rate of output in the three main manufacturing sectors. In addition, the saving rate 

of physical capital is positive and significant only in the chemicals sector, while the saving 

rate of human capital is insignificant in all sectors except for the electrical and electronics 

sector in which it has a positive coefficient with the elasticity of 0.19. Finally, the population 

growth is insignificant in all sectors. 

 

Overall, these results indicate that the innovation rate is an important determinant of the 

steady state growth rate of output in all sectors except for the drugs and medical sector. The 

insignificant coefficient on the rate of innovation in the drugs and medical sector might be 

due to the fact that the time lag between the patent applications and the realization of the 

output in this sector might be longer compared to the other sectors, as they need to be 

approved by Drug Administration Office. The reason for insignificant or negative coefficient 

on the saving rate of physical capital stock might be due to the fact that these sectors are 

knowledge intensive. However, that the saving rate of human capital does not have a 

significant effect on the long-term growth rate of output in any of the sectors, except for the 

electrical and electronics, is surprising. This could be closely related with the fact that here 

human capital is measured using sectoral employment data rather than the number of 

researchers and scientists, as the sectoral data on later is not available. 

  

These results are similar to the findings of Dinopoulos and Thompson (2000), which estimate 

the same model using aggregate cross-sectional data. In particular, both analyses find that 

the innovation rate and the knowledge spillovers are important determinants of the growth 

rate output. However, different from Dinopoulos and Thompson (2000), our results do not 

indicate a significant relationship between the saving rate of the physical capital and the 

growth rate of output.  In summary, the estimation results provide strong evidence that the 

rate of innovation and the degree of the openness of the sectors to trade are two important 

determinants of the growth rate of output in the majority of the sectors. these findings are 

inline with the implication of the non-scale growth models that the long-term growth rate of 

output is driven by the rate of innovation. 
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Table 4: System GMM Estimation of the Growth Rate of Sectoral Real Output, 1981-1997 
 
Sectors Chemicals Drugs and 

Medical 
Machinery and 
Transport 

Electrical and 
Electronics 

Patent rate 0.072 0.014 0.134 0.065 
 (1.82)* (0.39) (2.37)** (1.86)* 
Openness 0.009 0.063 0.065 0.090 
 (0.51) (4.25)*** (2.68)*** (3.74)*** 
Capital stock/output 0.035 -0.035 -0.032 -0.203 
 (1.60) (2.26)** (1.06) (5.70)*** 
Employment/population -0.017 0.028 0.046 0.191 
 (0.64) (1.07) (1.08) (6.27)*** 
Population growth 1.288 2.268 2.206 -2.368 
 (0.86) (1.07) (0.71) (0.79) 
Constant -0.220 0.441 0.794 3.013 
 (0.58) (1.13) (1.48) (6.42)*** 
Sargan-p valuesa 0.99 0.99 0.99 0.99 
AR(2)-p valuesb 0.82 0.81 0.28 0.59 
Observations 139 143 86 86 
Number of country1 10 11 7 7 
Absolute value of t statistics in parentheses * significant at 10%; ** significant at 5%; *** 
significant at 1% 
Note: All series are in natural logs. All series are sector level except for the population growth. 
All regressions include year dummies. 
b/  H0: regressors are not correlated with the residuals. 
c/  H0: errors in first difference regression exhibit no second order serial correlation. 
 
 
CONCLUSION 
 
The objective of this paper was to utilize international sector level patent and R&D data to 

examine the main implications of the R&D based non-scale endogenous growth models that 

the long-term growth rate of output is driven by the rate of innovation, which is in turn 

determined by the knowledge stock and R&D intensity. Though several empirical studies that 

use aggregate cross-country or micro level country specific data lend support for non-scale 

endogenous growth models, there has not been a study that utilizes international sector level 

patent and R&D data to estimate both the innovation function and the growth rate of output 

in these models. 

 
The findings of our empirical analysis provide strong support for non-scale endogenous 

growth models. In particular, the results show that the knowledge stock is the most 

important determinant of innovation in all four sectors, and that R&D intensity has a positive 

impact on innovation in the chemicals and the electrical and electronics sector. In addition, 

 18



the innovation rate appears to be the main determinant of the growth rate of output in all 

sectors except for the drugs and medical sector. Although the degree of openness of the 

sectors to international trade has a negative effect on innovation in all sectors, apart from 

the drugs and medical sector, it has a positive effect on the growth rate of output in all 

sectors except for the chemicals sector. However, some limitations of our analysis should 

also be noted. First, we employ only the patent applications from the U.S. Patent Office, 

which might not represent the true patenting propensity of the sectors and countries. 

Second, the R&D data covers only the business enterprise R&D leaving out higher education 

and the government R&D that might play an important role especially in the drugs and 

medical and the chemicals sectors.    
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Appendix I. Regression Tables 
 

Table 1A. Prais-Winsten Fixed Effects Estimation of the Patent Flows, 1987-1997 
 Chemicals Drugs and 

Medical 
Machinery 
and 
Transport 

Electrical and 
Electronics 

R&D/output 0.388 0.208 0.232 0.199 
 (3.01)*** (2.65)*** (2.80)*** (1.51) 
Openness -0.072 -0.287 -0.717 -0.819 
 (0.45) (1.17) (4.83)*** (3.48)*** 
U.S. trade/GDP -0.041 0.339 -0.177 0.574 
 (0.43) (2.50)** (2.21)** (4.71)*** 
R-squared 0.99 0.99 0.99 0.99 
Observations 142 142 112 112 
Number of countries 14 14 12 12 
z statistics in parentheses * significant at 10%; ** significant at 5%; *** significant at 
1% 
All variables are in logs. All regressions include year and country dummies. 
 

     Table 2A. Prais-Winsten Fixed Effects Estimation of the Patent Flows, 1987-1997 
 Chemicals Drugs and 

Medical 
Machinery 
and Transport 

Electrical and 
Electronics 

Patent stock 1.067 1.206 1.277 1.327 
 (4.77)*** (10.15)*** (6.53)*** (5.67)*** 
R&D/out 0.193 0.019 0.162 -0.204 
 (1.96)* (0.35) (2.10)** (2.61)*** 
Openness 0.268 0.152 -0.636 0.139 
 (2.03)** (1.08) (7.18)*** (0.43) 
U.S.trade/GDP -0.170 0.061 -0.114 -0.223 
 (2.19)** (0.55) (1.72)* (1.32) 
R-squared 0.99 0.99 0.99 0.99 
Observations 142 142 112 112 
Number of countries 14 14 12 12 
z statistics in parentheses * significant at 10%; ** significant at 5%; *** significant at 1% 
All variables are in logs. All regressions include year and country dummies.  

 
 
 
     Table 3A. Prais-Winsten Fixed Effects Estimation of the Patent Flows, 1981-1997 

 Chemicals Drugs and Medical Machinery 
and 
Transport 

Electrical and 
Electronics 

Patent rate 0.135 0.038 0.089 -0.023 
 (3.79)*** (1.18) (1.36) (0.54) 
Openness -0.105 -0.074 0.175 0.456 
 (1.88)* (1.03) (1.46) (5.52)*** 
Capital stock/output -0.015 -0.028 -0.293 -0.402 
 (0.41) (1.16) (2.71)*** (4.73)*** 
Employment/population 0.144 -0.120 0.283 0.222 
 (1.39) (0.81) (2.00)** (2.43)** 
Population growth -3.366 -3.110 -1.329 -1.588 
 (1.48) (0.88) (0.34) (0.76) 
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R-squared 0.99 0.99 0.99 0.99 
Observations 139 143 86 86 
Number of country1 10 11 7 7 
z statistics in parentheses * significant at 10%; ** significant at 5%; *** significant at 1% 
All variables are in logs. All regressions include year and country dummies. 

 
 
Appendix II: Data, Statistical Analysis of the Series and Descriptive Statistics 

Table 4A: Industry Classifications for Four Manufacturing Sectors 
 
     Sectors 

Construction of Sectoral R&D, Output, Investment, 
Employment, Export and Import Data Using SIC codes a

Construction  of Sectoral Patent 
Datab  (Numbers indicate technology 
codes) 

Chemicals  
Sector 

24-Chemicals (Excludes 2423- Pharmaceuticals) 
       241-Basic chemicals 
              2411-Basic chemicals, except fertilizers 
              2412-Fertilizers and nitrogen compounds 
              2413-Platstics in primary forms; synthetic 
              rubber 
       242-Other chemicals 
              2421-Pesticides and other agro-chemical 
              products 
              2422-Paints, varnishes, printing ink and 
              mastics 
              2424-Soap, cleaning and cosmetic  
              preparations 
              2429-Other chemical products, n.e.c. 
              2430-Man-mad fibers 
25- Rubber and Plastics Products 
       251- Rubber and Plastics Products 
              2511-Rubber tiers and tubes 
              2529-Other rubber products 
              2520-Plastic products 

1-Chemicals 
    11-Agriculture, food, textiles 
    12-Coating 
    13-Gas 
    14-Organic compounds 
    15-Resins/organic rubbers 
    19-Misellanous-chemicals 

 
Drugs &  
Medical Sector  2423-Pharmaceuticals, medicinal chemicals etc. 

3. Drugs and Medical 
    31-Drugs 
    33-Biotechnology 
    39-Miscellaneous-drugs and 
    medical 

Electrical, 
Electronics 
&Communication 
Sector 
 

30-Office, Accounting and Computing Machinery 
        3000-Office Accounting and Computing Machnery 
31-Electrical Machinery and Apparatues 
        3110-Electric motors, generators and 
        transformers 
        3120-Electricity distribution and control  
         apparaturs 
        3130-Insulated wire and cable 
        3140-Accumulators, primary cells and batteries 
        3150-Lightning equipments and electric lamps 
        3190-Other electrical equipment, n.e.c 
32-Radio Television and Communication Equipment 
       3210-Electronic valves, tubes, etc. 
       3220-TV/radio transmitters; line communications, 
       apparat. 

4. Electrical and Electronics 
    41-Electrical devices 
    42-Electrical lightning 
    43- Measuring and testing 
    44-Nuclear and x-rays 
    45-Power systems 
    46-Semi- conductor devices 
    49-Misellaneous-electrical 
2. Computers and Communication 
    21-Communications16

    23-Computer peripherals 
    24-Information storage  
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       3230-TV and radio receivers and associated goods 
 

Machinery & 
Transport 
Sector 

29-Machinery and Equipment, n.e.c. 
33-Medical, precision and optical instruments 
34-35-Transport Equipment 

5. Mechanical 
51. Material processing and 
handling 
52. Metal working 
53. Motors, engines and parts 
54. Optics 
55. Transportation 
32-Surgery and medical 
instruments 
59. Miscellaneous-mechanical 

a. Industry classification for output, investment and labour obtained from The OECD Stan database; and the 
industry classification for R&D is obtained from OECD-ANBERD database.  These two databases have the same 
industry codes.  
b. Industry classification for patent data is obtained from Hall, Jaffe and Trajtenberg (2001).  

 
 
 

Table 5A. Data in the Regression of Innovation Function 
 Data in the Regression of Patent Rate  Data in the Regression of Output Growth 
 Chemic

als 
Drugs & 
Medicine 

Mach. & 
Transp. 

Elect,& 
Electronic  Chemi

cals 
Drugs & 
Medicine 

Mach. & 
Transp. 

Elect,& 
Electronic 

Australia 11 11 11 11  17 17 17 17 
Austria .. .. .. ..  17 17 17 17 
Belgium 11 11 3 3  .. 17 .. .. 
Canada 11 11 .. ..  17 17 .. .. 
Denmark 11 11 11 11  17 17 17 17 
Finland 11 11 11 11  17 17 17 17 
France 11 11 11 11  17 17 17 17 
Germany 3 3 3 3  6 6 6 6 
Italy 7 7 7 7  17 17 7 7 
Japan 11 11 11 11  17 17 17 17 
Mexico .. .. .. ..  6 6 .. .. 
Netherlands 11 11 .. ..  17 17 .. .. 
Norway 11 11 11 11  17 17 17 17 
Portugal .. .. .. ..  .. 8 4  
Spain 11 11 11 11  17 16 17 17 
Sweden 11 11 11 11  17 17 17 17 
UK 11 11 11 11  17 17 17 17 
17 Countries 142 142 112 112  233 257 187 183 
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Table 6A. Levin-Lin-Chu Panel Data Unit Root Test 

H0: Series Are Nonstationary17

 

 Chemicals 
Drugs &  
Medicine 

Machinery & 
Transport 

Electrical &  
Electronics 

 t-star p t-star p t-star p t-star p 
Output growth -6.33 0.00 -6.41 0.00 -1.91 0.02 -3.07 0.00
Patent rate -5.78 0.00 -3.51 0.00 -4.33 0.00 -6.73 0.00
Patent -3.04 0.00 -3.34 0.00 -1.78 0.04 -3.48 0.00
Patent stock -2.90 0.00 -4.46 0.00 -2.05 0.02 -1.74 0.04
Capital stock/output -2.76 0.00 1.96 0.97 -1.22 0.11 -2.02 0.02
Openness -3.57 0.00 -2.15 0.02 -2.30 0.01 -2.54 0.01
Employment/pop. 1.94 0.97 -2.44 0.01 -1.78 0.04 1.12 0.87
Population growth -2.41 0.01 -2.89 0.00 -2.47 0.01 -3.23 0.00
U.S.trade/GDP -2.85 0.00 -3.49 0.00 -2.58 0.00 -3.65 0.00

Note: All variables except for the U.S. trade/GDP and population growth are sector level. All variables are in 
natural logs. In the computation of the Levin-Lin panel data unit root test only one lag of the variables is 
included in the regression, except for the capital stock/output in the machinery sector and the 
employment/population in the electrical and electronics sector, which have 3 lags.  
 

 
Table 7A. Durbin Watson and Heteroskedasticity Tests for Patent Regressiona,b

 
Chemicals 

 
Drugs & 
Medical 

Machinery & 
Transport 

Electrical & 
Electronics 

Countries 
Durbin-
Watsona

Het. 
Testb

Durbin-
Watson 

Het. 
Test 

Durbin-
Watson 

Het. 
Test 

Durbin-
Watson 

Het. 
Test 

Australia 0.99 1.00(0.32) 2.09 0.04(0.84) 2.17 0.52(0.47) 1.54 1.18(0.28)
Belgium 1.47 1.71(0.19) 1.85 1.13(0.29) .. .. .. .. 
Canada 1.23 1.02(0.31) 1.00 6.4(0.01) .. .. .. .. 
Denmark 2.01 1.20(0.27) 2.73 2.03(0.15) 1.81 0.04(0.85) 2.56 0.46(0.50)
Finland 1.71 0.03(0.86) 1.33 0.27(0.61) 2.01 0.01(0.92) 2.31 1.81(0.18)
France 1.98 2.51(0.11) 2.00 4.36(0.04) 1.70 0.35(0.55) 2.23 0.10(0.75)
Italy .. .. 1.69 0.01(0.90) 2.04 0.08(0.78) 1.64 0.71(0.40)
Japan 1.50 0.05(0.83) 2.74 3.49(0.06) 2.61 0.06(0.80) 1.58 1.85(0.17)
Netherlands 1.51 1.20(0.27) 2.22 0.23(0.27) .. .. .. .. 
Norway 2.89 0.01(0.90) 1.63 0.11(0.74) 2.70 8.41(0.00) 1.80 0.38(0.54)
Spain 2.14 0.32(0.57) 2.56 0.23(0.63) 1.98 0.26(0.61) 2.05 1.42(0.23)
Sweden .. .. 1.37 0.56(0.45) 2.86 0.56(0.46) 2.07 0.10(0.76)
UK .. .. 1.33 3.10(0.08) 1.45 0.08(0.77) 1.90 0.10(0.75)

a. The values of d-statistics below or above 2 indicate the presence of first order autocorrelation. 
b. Breusch-Pagan / Cook-Weisberg test for heteroskedasticity. Ho: Constant variance. 
Note: The numbers of countries vary across sectors. DW test could not be computed for Germany and 
Sweden as they had only 3-year observations.  
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Table 8A. Durbin Watson and Heteroskedasticity Test for the Output Growth Regression 

 
Chemicals 

 
Drugs 

 & Medical Machinery & Transport Electrical & Electronics 

Country 
Durbin-
Watsona

Het. 
Testb

Durbin-
Watson 

Het 
Test 

Durbin-
Watson 

Het  
Test 

Durbin-
Watson 

Het 
Test 

Australia 1.62 0.28(0.60) 2.03 0.00(0.99) 1.99 2.05(0.15) 2.11 1.24(0.26) 
Austria 2.23 0.43(0.51) 2.12 2.10(0.15) 1.76 0.11(0.75) 1.41 1.72(0.19) 
Belgium 2.45 2.40(0.12) 1.44 2.37(0.12) .. .. .. .. 
Canada 1.96 2.22(0.14) 2.07 0.40(0.53) .. .. ..  
Denmark 1.47 0.23(0.63) 1.73 0.00(0.98) 1.53 0.00(0.99) 1.38 2.47(0.12) 
Finland 2.27 0.20(0.65) 1.61 6.92(0.01) 1.56 0.11(0.74) 1.82 0.32(0.57) 
France 2.47 3.17(0.08) 0.78 0.23(0.63) 2.26 0.96(0.33) 2.07 1.87(0.17) 
Germany .. 0.04(0.84) .. 0.00(0.97) .. 0.64(0.42) .. 0.77(0.38) 
Italy 2.17 0.25(0.62) 1.70 0.01(0.91) 2.43 0.22(0.64) 3.45 3.29(0.07) 
Japan 2.12 1.13(0.29) 1.79 1.97(0.16) 1.95 0.90(0.34) 2.17 0.67(0.41) 
Mexico .. 2.59(0.11) .. 1.06(0.30) .. .. ..  
Netherlands 1.67 1.47(0.23) 1.14 0.01(0.91) .. .. ..  
Norway 1.72 0.30(0.58) 1.50 1.53(0.22) 1.61 1.24(0.27) 2.01 2.23(0.14) 
Portugal 2.39 .. 1.54 0.01(0.91) 1.55 0.07(0.79)  .. 
Spain 1.64 0.20(0.16) 1.22 0.19(0.66) 1.27 0.67(0.41) 1.16 0.11(0.74) 
Sweden 2.08 1.30(0.25) 1.23 0.24(0.62) 1.69 1.58(0.21) 1.41 1.55(0.21) 
UK .. 1.84(0.17) 1.55 0.55(0.46) 2.32 0.02(0.88) 2.34 0.79(0.37) 

a. The values of d-statistics below or above 2 indicate the presence of first order autocorrelation. 
b. Breusch-Pagan / Cook-Weisberg test for heteroskedasticity. Ho: Constant variance. 
Note: The numbers of countries vary across sectors. DW test could not be computed for Germany as it had 
only 3-year observations.  

 
 
 

Table 9A. Summary Statistics of the Variables for Each Sector 
 Chemicals Sector  Drugs and Medical Sector 
Variable Obs Mean S.Dev Min Max  Obs Mean S.Dev. Min Max 
Output Growth 299 -0.03 0.11 -0.47 0  318 0.02 0.13 -0.45 0 
Patents 262 512 929 4 4493  288 133 196 1 1098 
Patent Stock 262 2314 4055 29 19755  288 543 808 6 4126 
Patent Rate 262 -1.54 0.16 -2.12 -1  288 -1.40 0.26 -2.31 -1 
R&D/output 166 1.52 0.89 0.36 4  180 11 6 2 25 
Openness 311 0.77 0.35 0.15 2  331 0.90 0.52 0.10 3 
Capital 
stock/output 195 41 11 10 61  218 39 21 8 141 

Employment/pop. 261 0.66 0.15 0.41 1  266 0.11 0.04 0.04 0 
 Machinery and Transport Sector  Electrical and Electronics Sector 
 Obs Mean S.Dev Min Max  Obs Mean S.Dev. Min Max 
Output Growth 231 0.00 0.14 -0.46 0.38  237 0.01 0.14 -0.30 0.47 

Patents 271 639 1248 2 6515  270 709 1804 1 1123
8 

Patent Stock 271 2845 5295 9 28103  270 2881 6984 14 4524
6 

Patent Rate 271 -1.55 0.16 -2.41 -1.18  270 -1.49 0.23 -2.72 -0.89 
R&D/output 138 2.95 1.35 0.86 6.21  138 6.00 2.70 2.06 16.35
Openness 244 1.03 0.41 0.26 2.21  250 1.18 0.50 0.26 2.48 
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Capital 
stock/output 137 35 14 12 79  138 35 12 14 69 

Employment/pop. 200 1.82 0.57 0.67 4.02  206 0.75 0.38 0.30 1.96 
Population growth 328 0.01 0.00 -0.00 0.03  -- -- -- -- -- 
U.S.trade/GDP 328 6.61 9.99 1.06 56  -- -- -- -- -- 

Notes: All variables except for the population and the U.S. trade share of GDP are sector specific. All 
ratios are in  percentage.  
 
 

Table 10A.Correlation Table of the Variables in the Chemicals Sector 

 
Output 
growth Patent 

Patent 
stock 

Patent 
rate 

R&D/ 
output 

Open- 
ness 

Cap.St. 
/output 

Emp./ 
pop. 

Pop. 
growth 

Output growth 1.00         
Patent 0.21* 1.00        
Patent stock 0.16* 0.99* 1.00       
Patent rate 0.46* 0.14* 0.04 1.00      
R&D/output 0.01 0.56* 0.56* -0.07 1.00     
Openness 0.06 -0.48* -0.47* -0.09 -0.14* 1.00    
Capital stock/output 0.13* 0.38* 0.37* 0.00 0.61* 0.51* 1   
Employment/pop -0.04 0.20* 0.22* -0.18* 0.13 0.17* 0.18* 1  
Population growth -0.05 -0.23* -0.23* -0.02 -0.35* -0.17* -0.01 0.04 1 
U.S.trade/GDP 0.01 0.00 0.00 -0.03 -0.36* -0.03 -0.03 -0.03 0.51* 

All variables are in natural logs. 
 

Table 11A.Correlation Table of the Variables in the Drugs and Medical Sextor 

 
Output 
growth Patent 

Patent 
stock 

Pate
nt 
rate 

R&D/ 
output 

Open
- 
ness 

Cap.St. 
/out. 

Emp./ 
pop. 

Pop. 
growth 

Output growth 1.00         
Patent 0.11* 1.00        
Patent stock 0.07 0.98* 1.00       
Patent rate 0.24* 0.24* 0.09 1.00      
R&D/output 0.09 0.04 0.05 -0.03 1.00     
Openness 0.04 -0.40* -0.42* 0.06 0.38* 1    

Capital stock/output 0.00 0.01 -0.02 
0.15

* 0.48* 0.30* 1   
Employment/pop 0.06 0.36* 0.38* -0.04 0.17* -0.02 -0.04 1.00  

Population growth -0.03 -0.17* -0.17* 0.01 -0.27* 
-

0.20* -0.05 
-

0.31* 1.00 

U.S.trade/GDP -0.01 0.02 0.02 0.01 -0.0471 -0.08 -0.1339* 
-

0.26* 0.49* 
All variables are in natural logs. 
 

Table 12A.Correlation Table of the Variables in the Machinery and Transport Sector 

 
Output 
growth Patent 

Patent 
stock 

Patent 
rate 

R&D/ 
output 

Open
- 
ness 

Cap.St. 
/out. 

Emp./ 
pop. 

Pop. 
growth 

Output growth 1.00         
Patent 0.01 1.00        
Patent stock -0.03 0.99* 1.00       
Patent rate 0.38* 0.19* 0.10 1.00      
R&D/output -0.08 0.55* 0.57* -0.31* 1     
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Openness 0.00 -0.71* -0.69* -0.23* -0.19* 1    
Capital stock/output -0.13 0.73* 0.75* -0.36* 0.78* 0.01 1   

Employment/pop 0.05 0.57* 0.58* 0.00 0.62* 
-

0.31* 0.74* 1.00  

Population growth -0.05 -0.29* -0.28* -0.10* -0.21* 
-

0.21* -0.10 0.08 1.00 

U.S.trade/GDP -0.15*  -0.07 -0.07 -0.03 0.36* 
-

0.39* 0.06 0.20* 0.54* 
All variables are in natural logs. 
 

Table 13A.Correlation Table of the Variables in the Electrical and Electronics Sector 

 
Output 
growth Patent 

Patent 
stock 

Patent 
rate 

R&D/ 
output 

Open
- 
ness 

Cap.St. 
/out. 

Emp./ 
pop. 

Pop. 
growth 

Output growth 1.00         
Patent 0.13* 1.00        
Patent stock 0.11 0.99* 1.00       
Patent rate 0.27* 0.27* 0.16* 1.00      
R&D/output 0.05 0.14 0.14 0.07 1     
Openness 0.04 -0.59* -0.58* -0.17* -0.01 1    
Capital stock/output -0.13 0.44* 0.45* -0.10 0.27* 0.01 1   

Employment/pop 0.21* 0.71* 0.71* 0.11 0.39* 
-
0.51* 0.64* 1.00  

Population growth -0.06 -0.35* -0.34* -0.12* 0.09 -0.04 0.03 0.00 1.00 

U.S.trade/GDP -0.04 -0.09 -0.09 -0.06 0.22* 
-
0.22* -0.19* 0.39* 0.54* 

All variables are in natural logs. 
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Notes 
                                                           

)/(1 δ+=− rPP tt
s
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1 The main difference between the first generation growth models, Romer (1986, 1990), Grossman 
and Helpman (1991) and Aghion and Howitt (1992), and Y/AH/DT is that the latter eliminates the 
scale effect prediction of the first generation models that the long term growth rate of output is 
determined solely by the growth rate of population, which has been rejected by Jones (1995).  
2 The aggregate level cross country studies, such as Dinopoulos and Thompson (2000), Frantzen 
(2000), Guellec and Potterie (2001), Gong, Greiner, Semmler (2004), and the micro level studies 
covering one country, such as Griliches (1986, 1990), Jaffe (1986, 1988), Aghion and Howitt (1998), 
and Zachariadis (2003) also provide strong support for non-scale endogenous growth models.  
3 Dinopoulos and Thompson (2000) model is the same as Y/AH model in spirit. The only difference in 
DT model is that instead of R&D intensity they use the share of human capital in the R&D sector in 
total population.   
4 See Dinopoulos and Thompson (2000) for more details on the derivation of the PEG model. 
5 The initial level of patent stock is calculated using  formula, where is the 
initial patent stock, r  is the average growth rate of patent flows and δ is the depreciation rate. Patent 
stock for the following years are calculated using perpetual inventory method: . 
Capital stock has been computed using the same method. 

1)1( −−+= t
s

tt
s PPP δ

6 In the NBER database, the total number of utility patents for the period 1961-1999 is 2,699,606. The 
last two years are not included in the analysis as the patent data in those years were not complete.   
7 See Comanor and Scherer (1969), Griliches (1990, 1994) for in depth analysis of the statistical 
properties of patent and R&D data and their applications in endogenous growth models.  
8 We test the stationarity of the panel series using Levin-Lin-Chu unit root test developed by Levin, Lin 
and Chu (2002). 
9 The main regression technique of the empirical analysis is system GMM. The Prais-Winsten fixed 
effects results are reported in the appendix as benchmark results. 
10 In the Monte Carlo simulation Blundel and Bond (1998) compares the difference and system GMM 
results using samples with 100 and 500 observations. Their results show dramatic efficiency gains in 
the system GMM analysis compared to the difference GMM in both samples. See also Blundell, Bond 
and Windmeijer (2000) for more details on the efficiency comparisons of the system GMM and 
difference GMM analyses. See Levine and Beck (2000) and Hansen and Tarp (2001) for the 
applications of system GMM in the growth regressions.  
11 Two assumptions are necessary for GMM estimators to be consistent. The original errors should not 
be serially correlated with the regressors and the series should not have second order autocorrelation. 
To address these issues, sargan test and second order autocorrelation test are reported in the 
regression tables. First order autocorrelation in the level series does not present a problem for the 
GMM analysis as it uses the first difference series.  
12 This procedure, referred to as “hadimvo” in STATA, is developed by Hadi (1992).   
13 See appendix I, Tables 1A-2A for the results of Prais-Winsten fixed effects regression. Prais-Winsten 
analysis corrects for AR (1) by transforming the series using AR(1) coefficient (Prais and Winsten, 
1954). Though the estimators of fixed effects analysis are more likely to be biased due to endogeneity 
problem, they are only reported as benchmark results. 
14 The correlation between patent stock and R&D intensity is not high in any of the sectors. Thus the 
fact that the R&D intensity becomes insignificant in the drugs and medical and the machinery and 
transport sector after the inclusion of the patent stock is not related to the multicollinearity problem 
(see appendix II Tables 10A-13A for the correlation coefficients of the variables).  
15 See appendix I, Table 3A for the results of the Prais-Winsten fixed effects analysis. 
16 The subcategory ‘communications’ includes the following subcategories: Telegraphy, wave 
transmission lines and networks, electrical communications, radar and radio navigation, radio wave 
antennas, facsimile or television recording, electrical communications include acoustic wave systems 
and devices, dynamic information storage or retrieval, multiplex communications, error 
detection/correction and fault  
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detection/recovery, pulse or digital communications, telephonic communications and 
telecommunications. 
17 The test can be viewed as an Augmented Dickey-Fuller (ADF) test, with the null hypothesis that of 
nonstationarity (I(1) behavior). After transformation, the t-star statistic is distributed standard normal 
under the null hypothesis of nonstationarity, Levin, Lin and Chu (2002). 
 

 31


