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REWORKING THE STANDARD MODEL OF COMPETITIVE MARKETS: THE ROLE OF 
FUZZY LOGIC AND GENETIC ALGORITHMS  
IN MODELLING COMPLEX NON-LINEAR  

ECONOMIC SYSTEMS 

Peter Smith, Visiting Fellow1

 

Abstract 

 

Some aspects of economic systems (eg, nonlinearity, qualitative variables) 
are intractable when incorporated into models. The widespread practice of 
excluding them (or greatly limiting their role) produces deviations of unknown 
size and form between the resulting models and the reality they purport to 
represent. To explore this issue, and the extent to which a change in 
methodology can improve tractability, a combination of two techniques, fuzzy 
logic and genetic algorithms, was applied to the problem of how the sellers in 
a freely competitive market, if initially trading at different prices, can find 
their way to supply/demand equilibrium. A multi-agent model was used to 
simulate the evolution of autonomously- learnt rule-governed behaviour, (i), 
under perfect competition, and (ii), in a more commercially realistic 
environment. During the learning process, markets may lack a true 
equilibrium price, and therefore sellers in such a model cannot be price-takers 
in the conventional sense; instead, it was stipulated that they would set an 
asking price, buyers would shop around for cheap supply, and the sellers 
would revise their pricing policy according to its profitability. Each firm’s 
pricing policy was embedded in a fuzzy ruleset; the rulesets were improved 
over time by successive passes of the genetic algorithm, using profit level as 
a measure of Darwinian fitness. The simulated evolution was repeated over a 
random sample of 10 markets.  
  
Under perfect competition, sellers’ asking prices converged onto the 
theoretical equilibrium price. This performance was maintained when either 
uncertainty in demand or a more commercially realistic set of dynamics was 
introduced. However, when both these features were introduced 
simultaneously, different, substantially lower equilibrium prices were reached. 
In both cases, autonomous learning by the sellers suppressed the instability 
that might have been expected to result from the introduction of a number of 
nonlinearities. Other possible applications of the methodology are discussed, 
along with some of its implications. 
 
 

Keywords: competition, markets, Walrasian Crier, equilibrium, fuzzy logic, 
genetic algorithms, evolutionary algorithms   
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INTRODUCTION  
 
It is widely accepted that many aspects of economic (and socio- economic) systems are 

difficult to incorporate into models because of the mathematical intractability that results.  

These aspects include nonlinearity, the presence of inherently qualitative variables, and 

inconvenient statistical properties that make analysis and forecasting difficult. They 

contribute to a number of economic problems in which a static (but not necessarily stable) 

equilibrium can be shown to exist, but is either uncomputable, or there is no known 

mechanism by which it can be reached (Dosi et al, 1999; see also Stemp and Herbert, 

2003).  

 

Other disciplines have encountered similar problems, and a consensus has begun to build up 

across a number of fields – including control engineering, robotics, and computational 

biology and neurobiology – about how such problems should be addressed (Luger, 2001). 

This alternative consensus (on the investigation of complex systems) favours a switch from 

the axiomatic/ deductive approach, to one that relies on simulation and experimentation. 

Over the last few years, it has begun to infuse the more flexible fringes of economics, as 

shown by the special issue of Jou nal of Economic Dynamics and Control (Vol 24, see 

Dechert and Hommes, 2000) on complex nonlinear dynamics and computational methods. 

Many of its practitioners make extensive use of two techniques, fuzzy logic (FL), and various 

types of evolutionary algorithm (EAs), of which genetic algorithms (GAs) are most commonly 

used.  

r

 

FL can work with vaguely defined models, process qualitative propositions, and handle 

approximations; the latter ability is the basis of its usefulness in situations with nonlinearity 

and complex dynamics. FL is commonly applied in the form of a fuzzy system (FS), a ruleset 

that might, for example, determine the response of agents in a model to market conditions. 

Smithson (1987) discusses the validity of FL as a model of agents’ decision processes in 

complex situations; Ross (1995) gives a thorough review of the theory and methods; and 

Terano et al (1994) discuss a wide range of industrial and management applications. GAs 

can be used to improve rulesets of the kind just mentioned on the basis of their relative 

fitnesses; and they can be used to endow the agents in multi-agent simulations with the 

power to learn their own rules for survival and prosperity, independent of the experimenter's 

theories. The classic account of GA is in Goldberg (1989); Reeves and Rowe (2002) present 

a more complete and up-to-date account. 

 

 3



 

The main hypothesis of the current work is that a combination of FL and GA may render 

more realistic models of economic systems tractable; that, for example, it could give us the 

ability to handle models with non-linear responses to market conditions; actions whose 

effects are lagged over several periods; liquidity constraints (which imply the possibility of 

bankruptcy, and a varying aggregate supply function); and complex relations between 

buyers and sellers.  

 

The problem of the Walrasian Crier has been chosen as the entry-point for this study. This 

problem concerns process by which the firms in a market, if initially trading at disparate 

prices, can find their way to the perfect competition2 equilibrium point. (It is not a trivial 

problem, even in a dynamically simple model such as the standard microeconomic one.) It 

was originally identified by Walras, in his pioneering work on general equilibrium at the end 

of the 19th century (see Hunt, 1992: 340); Walras acknowledged that he was unable to 

resolve the need for such an agent, and the issue has remained with us.  

 

There is also a subsidiary hypothesis: that models of complex competitive markets may not 

share all the properties of the standard one (for example, they might not have stable 

attractors, or they might have stable attractors which do not allocate resources in an 

optimal, efficient way). However, investigation of the usefulness of the methodology 

remains the study's primary aim. 

 

Fuzzy Logic (FL) 

Often, it is possible to find a qualitative description of a complex system and base a 

management regime on that description, even when it is not possible to express that 

knowledge in a set of simultaneous partial differential equations that can be solved to yield a 

generally-applicable principle (see, for example, Terano et al, 1994). In such situations, FL 

can provide an alternative. In the current context, a firm in such a setting might manage its 

affairs through a set of conditional rules of the following kind: 

 

If the current profitability is low, and 

If inventory levels are low, 

Then set asking price high3. 

 

The convention is to write the last line of such a structure in the form "Then prices are 

high". The resemblance to a conventional syllogism is obvious; and, in a context in which 
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the rules are always operated, there is no real difference between a rule and a syllogism.  FL 

is a valid method for processing such syllogisms, provided certain conditions are met:  

 

i) The fuzzy terms (italicised in the example) must have a meaning that is generally 

understood within the relevant community, even if its members may disagree about 

the classification of borderline cases between, say, “low” and “moderate” levels of 

inventory.  (We have no difficulty in interpreting such terms – for example, “growth 

in the third quarter is likely to be only moderate” – when we encounter them in an 

economic commentary, and we know the context. However, without FL, we have no 

way of incorporating this ability into our theoretical analyses.) 

ii) The conclusions have to be based on valid theory or empirical evidence. 

iii) The syllogisms have to be part of a fuzzy system or ruleset, providing a response 

to every combination of levels of the input variables of interest (profit and inventory 

in the example). 

iv) It must be feasible to collect and analyse the data and generate responses in real 

time: FL copes with systems with difficult dynamics through repeated cycles of 

observation and reaction. 

v) The problem must be one for which FL’s hybridization approach to ambiguous or 

borderline cases is meaningful. When fuzzy logic outperforms classical methods in 

complex dynamical systems4, its advantage appears to derive from its ability to 

create hybrid solutions for time T, which are influenced by any elements of ambiguity 

in the data from time T-1; the method restrains over-commitment to a single 

interpretation of what was going on. This may be neither possible nor desirable in 

certain types of problem. 

 

FL uses the same theorems, rules, and inference mechanisms as conventional logic5, with 

only two exceptions. The exceptions are The Law of the Excluded Middle (which stipulates 

that things which are capable of being either X or not-X must be one or the other, with no 

intermediate state allowed); and The Law of Contradiction (which forbids anything from 

being both X and not-X)6. The reason for these exclusions is that fuzzy categories have to be 

allowed to overlap (see below). Logicians and philosophers have shown deep antipathy 

towards this change; even the philosopher Willard Quine, known for his work on self-

referential paradoxes, is quoted as saying “it is hard to face up to the rejection of anything 

so basic [as the above two laws]” (McNeill and Freiburger, 1994: 60). However, FL 
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underpins the normal human ability to deal with fuzzy, vague, and ambiguous knowledge; it 

is an equally rigorous but different calculus of propositions from conventional logic. 

 

The fundamental difference between FL and conventional logic is that FL uses membership 

functions, which say how good a member of a particular fuzzy set the case at hand is, rather 

than the truth values of conventional logic, which say whether or not it is a member of a 

crisp set. Figure 1 shows a set of membership functions, A, B, and C, each defining a fuzzy 

set, “low”, “moderate”, and “high”, respectively, covering the range 0.0 – 80.0 units of some 

hypothetical inventory. Each function gives the membership (in itself) of any level of 

inventory. Each function has a domain, ie, the range spanned by its base; inputs outside of 

this domain do not activate it, and it is irrelevant to them. Each function also has a core (in 

this case, a single value), with a membership value of 1.0; inputs that lie within (or at) the 

core value(s) are perfect, or typical members. The nature of individual rules in a fuzzy 

system are commonly determined by theoretical knowledge about the behaviour of these 

typical cases7. As drawn, the triangular function A, for example, implies that the type case of 

“low” is in fact zero inventory, but that somewhat higher values should be recognized as 

“low-ish”, and allowed a (declining) influence on decisions, all the way up to 40 units. (At 

the same time, the membership of the particular instance in B, “moderate inventory”, is 

increasing, and acquiring a growing influence.) Membership functions do not have to be 

triangular, or even segmentally linear; however, the triangular version is computationally 

convenient, and is widely used. 

 

 

Figure 1: Three Overlapping Numerically-based
Membership Functions, A, B,  & C.

A and C are right-angled triangles;  B is an isosceles triangle.
The shaded area represents a crisp alternative to A.
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The contrasting term to fuzzy is crisp.  Conventional logic uses crisp sets, which have 

precise boundaries, and allow no ambiguity about which set a particular case belongs to; for 

example, “low inventory” might be defined crisply as greater than zero, and less than or 

equal to 20 units – the area shown in grey in the Figure. 

 

In the models described in this study, each rule defines a response to a different 

combination of conditions (inputs). The membership functions for the two inputs used are 

both numerically-based, as in the above example. The commonest inference method for 

numerically-based fuzzy problems is illustrated in Figure 2. This is part of a 2-input, 1-output 

fuzzy system, which is composed of rules such as: 

 
RULE A … 

 

RULE B  

If <input 1 is moderate>   

and <input 2 is low>  

then <output is moderate> 

 

RULE C 

If <input 1 is moderately high>   

and <input 2 is moderately low>  

then <output is high> 

 

RULE D … etc. 

 

A given pair of inputs can have any combination of full-, partial-, or zero- membership in 

either rule. As in conventional logic, the truth of an AND  operation is the lesser of the truth 

values of its inputs. Figure 2(a) shows how this principle works. Because the values of the 

inputs lie within the domains of both B and C, both rules are activated (other, non-activated 

rules are not shown). In each case, AND selects the lower of the two membership values; 

this value, xm, measures how good a member of the rule (ie, of both its clauses, jointly) that 

particular combination of inputs is. If the inputs have less than perfect membership in the 

rule, this has to be reflected in that rule’s contribution to the overall response of the fuzzy 

system to those inputs; and this is achieved by truncating the profile of the output 

membership function at the level of xm. For a rigorous justification of this procedure, see 

Ross (1995: 239ff)8; note that truncation tends to affect the weight given to the rule’s 

contribution much more than its value. The aggregate effect of the two rules is obtained by 
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summing them algebraically (Fig 2(b)); and the summed profile is converted to a single crisp 

value (defuzzified, Fig 2(c)), by taking the location of its centroid as the representative 

value. (These are the options chosen for this study; Ross [op cit: 135 ff] discusses 

alternatives.) 

 

Applications of FL to the problem of rendering complex economic systems more tractable 

are few. Tay and Linn (2001) applied it to the Santa Fe artificial stock market (Arthur et al, 

1997), because they felt that the original formulation (described briefly below) had created a 

somewhat implausible model of the learning process in which agents (the traders on the 

market) had to apply a very large library of library of conditional rules. FL not only resolved 

this problem, but improved the match between the behaviour of the artificial market and its 

real-world counterparts.  

 

Evolutionary Algorithms 

EAs provide tools for studying the evolution of complex systems; the technique has been 

widely used for optimizing control variables in complex systems (see, for example, Terano et 

al, 1994), although in the current study the main focus is on the evolution and mutual 

adaptation of a population of firms. These techniques all rely on the fact that solutions to a 

wide range of problems can be coded as strings of digits. These strings may represent a 

single quantity (crisp or fuzzy), a vector of quantities, or a vector of variables specifying a 

choice among rules or strategies. For example, in this study, there were fifteen rules, arising 

from a combination of five levels of one input variable crossed with three levels of the other.  

Each rule might be specified by three sets of numbers, one for each of the two input 

membership functions, and one for the output membership function; and each set of 

numbers might consist of three numbers, specifying the ends of the domain, and the 

position of the peak (core). This would enable the ruleset of one firm to be encoded in a 

string of 135 real numbers. (A much simpler arrangement than this was eventually adopted, 

see below.) 
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Figure 2. Inference in Fuzzy Systems
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Such strings are analogous to the string of genetic information on a chromosome. This 

suggests that a population of such strings might be made to evolve in a manner closely 

similar to biological evolution, provided that the investigator can (i) define a suitable 

encoding scheme, (ii) identify a suitable fitness measure, and (iii) ensure that this influences 

the frequency of matings (better strings getting the opportunity to produce more 

“offspring”, of course) in an appropriate way. Once rulesets have been identified as parents 

of the next generation, their strings are paired up, material is exchanged between them in a 

process based on the crossover that happens in biological  (“wet”) genetics, and mutations 

are inserted. The offspring are used to replace either the whole or part of the existing 

population.  

 

 The chief variants on the basic genetic mechanism for stochastic search are: 

− Evolutionary Strategies, in which the problem is coded as a string of real numbers, 

and mutation is the primary method of search; 

− Genetic Algorithms, which are often (but not necessarily) binary-coded, and which 

use both crossover and mutation; 

− Classifiers, which breed conditional rules governing the responses of agents; and 

− Evolutionary Programming, where the genetic process produces segments of 

executable program governing their responses. 

 

In the specific form of GA, the technique became widely known after the publication of 

Goldberg’s (1989) book, although various members of the wider class of evolutionary 

strategies had already been in use for more than two decades (Back, 1996). Goldberg 

advocated using codings based on short alphabets (specifically, the binary one, [0,1]); and 

he attributed the success of this version of the algorithm to a feature called “implicit parallel 

processing”, and to the “building blocks” hypothesis. (The first is the alleged increased rate 

of progress resulting when the evaluation of one sub-string of a solution provides some 

information about related strings; for example, knowing the fitness of a substring 10001 

conveys some information about all strings with the format 1***1, where * is a wild-card 

character, representing either 1 or 0. The second is the ability of high-fitness substrings to 

persist through the generations, and contribute to the emergence of elite overall solutions. 

Reeves and Rowe (2002) discuss these points at length.) 

 

After Goldberg’s book, there was a huge growth in interest in the subject. The potency of 

the method was undoubtedly greatly exaggerated, to the point where – as Reeves and 
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Rowe (2002) point out – it was claimed to be a general-purpose method for solving complex 

problems, including even NP-hard ones9. This led to the pattern of activity described by 

Goldberg (2003), in which individual investigators and teams experimented with the method 

on simple problems; obtained encouraging results; but were then disappointed by the failure 

of the technique to work on scaled-up problems.  

 

There have been various responses to this state of affairs. One is to conclude that the whole 

approach is misguided; its advocates base their case on the No Free Lunch (NFL) Theorem, 

which asserts that (subject to some fairly restrictive conditions), the performance of any one 

evolutionary method is no better than random search, when averaged across all relevant 

problems (Reeves and Rowe, 2002). Another has been to re-analyse the core theory, often 

with particular emphasis on matching specific versions of the methodology with classes of 

problems; Back (1996) and Reeves and Rowe (op cit) are both examples of this school. A 

third response has been to examine the factors that make these larger problems less 

responsive to GA. Goldberg (2003) is a good example of this school; he and his co-workers 

have gone on to develop techniques such as Messy Genetic Algorithms (MGA), in which the 

length of the coded string and sequence of its sub-units are themselves genetically 

determined. A respected alternative view is that GA's prime role should be exploring the 

evolution of systems, rather than optimising functions (Holland, 1992).  

 

The FL/ GA Combination 

These two techniques work together quite well, and there is an extensive literature on the 

combination (see Cordon et al, 2001), although the combination has not been used much in 

economics applications. One of its main advantages it that it can be used to optimize – or 

study the evolution of – a set of natural-language rules, which can then be compared to 

alternative prescriptions for action in the particular arena (in this case, economics). This is 

not true of all approaches to machine learning; learning in neural networks, for example, 

results in a set of changes distributed across the network. Interpretability has been a 

significant issue in economic applications of the methodology: Tay and Linn’s (2001) fuzzy 

version of the Santa Fe Artificial Stockmarket is considerably easier to interpret than the 

mass of rules produced by the classifier algorithm which was used in the original study; and 

Dosi et al (1999) experienced some difficulty in interpreting the output of their evolutionary 

programming.  
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Applications in the Economic and Social Sciences 

There has been a wide range of applications of genetic approaches to analysing complex 

social and economic phenomena. The most significant of these focus on systems of 

heterogeneous agents, with substantial nonlinearities.  Published work includes the 

dynamics of attaining (or at least seeking) exchange rate equilibria in a nonlinear system of 

heterogeneous agents (Arifovic and Gencay, 2000); cobweb-type adjustments in populations 

of individually-motivated heterogeneous agents (Arifovic, 1994; Dawid and Koppel, 1998); 

pricing under oligopoly (Dosi et al, 1999); the problems for the rational expectations 

hypothesis of the coordination of expectations among agents in dynamically complex 

settings, in which expectations and system behaviour influence each other (Chiarella and 

He, 2003; Negroni, 2003); and investigations of the sources of deviations of the real 

behaviour of markets for financial assets from the predictions of the Efficient Market 

Hypothesis (Arthur et al 1997, Tay and Linn, 2001).  In addition to these strictly economic 

investigations, there have been a number of important studies of emergent institutions and 

behaviours, including collaboration (Casti, 1992); and the establishment of transaction 

networks within a range of markets, which indicate that it is rational – in complex systems – 

for buyers and sellers to form long-term relationships (these are outlined by Tesfatsion, 

2001). 

 

In those cases in which researchers have tested the genetic learning approach on a 

standard, simplified and linearised version of a problem, the agents have learned the 

standard solution (see, for example, Vriend, 2000; Dosi et al, 1999; Dawid and Koppel, 

1998; and Lettau, 1997). Performing such a test is not always easy, because of the 

incomplete nature of the standard model of perfectly competitive markets. In each of these 

cases, once a more complex set of conditions was imposed, the agents learned a different 

response; for example, the agents in the oligopolistic situation modeled by Dosi et al opted 

for a cost-plus pricing policy. These alternative, genetically-learned solutions are commonly 

stable; the major exception is provided by the work of Arifovic and Gencay on foreign 

exchange rate determination. This is a rather special case, because the model of the 

exchange rate process they used is indeterminate, providing a continuum of monetary 

equilibria, each with its corresponding rate; unsurprisingly, the rate fluctuates chaotically 

(sensu stricto). Dawid (1999) modeled learning (of asking and offer prices) in a sealed 

double-auction, with two separate populations of learners, the suppliers and the buyers; this 

also stabilized. 
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With very few exceptions (e.g., the Sandia model of the USA economy, Basu et al, 1996), 

the transformation of genetic information about the constitution of agents is converted into 

fitness via a very small set of rules, representing all the dynamics of the technical and 

economic domain – Negroni’s (2001) study is based on a one-dimensional economy, for 

example.  In some cases (such as the study by Arifovic and Gencay exchange rate 

determination), this has allowed continuity of analysis with older non-genetic, analytic 

studies of the same model; however, in others it may represent a missed opportunity to 

represent real systems more fully, and the cost may be a very substantial loss of generality, 

since it will usually be impossible to say much about the range of applicability of the results 

of ultra-simple models. It is difficult to believe that, in all such cases, the simplification has 

had no consequences for the behaviour of the systems being modeled; it is also unclear why 

this strategy has been so widely adopted, given the level of awareness that agent-based 

models with autonomous learning implemented through evolutionary algorithms offer a 

route away from excessive simplification, and towards enhanced realism. The additional 

computation – of a very straightforward kind – is scarcely a plausible reason. 

 

In addition, the models have mostly been genetically very simple, often searching for a 

value of a single parameter. The majority of studies have relied on GA (generally with binary 

coding and overlapping generations). Exceptions to this statement include Dosi et al (1999), 

who used evolutionary programming; the Santa Fe artificial stock market, whose agents 

operated through a system of classifiers (crisp in the case of the original work by Arthur et 

al, 1997; fuzzy in the case of the later work by Tay and Linn, 2001); and  Beltratti and  

Margarita (1996), who used neural networks. Vriend (2000) used both GA and classifiers in 

his comparison of the outcome of different learning processes. 

 

Initially, in the mid- to late- 1990s, there was considerable enthusiasm for evolutionary 

approaches in general (and genetic algorithms in particular) as potential means of handling 

models of complex heterogeneous and nonlinear systems (see, for example, Tesfatsion, 

2001, LeBaron, 2000, or Bullard and Duffy, 1998). From this, and the ambitious choice of 

topics in many of the earlier studies, one might have expected a growth of a wide range of 

increasingly realistic studies of complex economic systems which would pose a challenge to 

the capacity of the underlying genetic computing methodology.  

 

This has not happened. Although there is a small number of studies in which agents in 

complex settings directly adapt their strategies in the light of experience, without a formal 
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GA, such as Westerhoff’s (2003) work on the effects of a Tobin tax in a population of 

heterogeneous traders, the general tendency has been to focus on theoretical analyses (eg, 

Reichmann, 1999, 2001), and more philosophical studies with a social-darwinist or 

Schumpeterian background. The latter include Loasby (2000) on the evolution of 

institutions; Guth and Peleg (2001) on the linkage between increasing complexity and the 

validity of the standard (economic) assumption that maximizing the short-run payoff to self 

always pays (and, indeed, defines “economic rationality”); Knudsen (2002) on the semantic 

problems associated with the use of the “survival of the fittest” metaphor in economics; and 

the study by Berninghaus et al (2003) of the relationship between rational choice and 

evolutionary models.   

 

It is not clear how far this represents a temporary hiatus in the flow of publications, and 

how far it reflects Goldberg’s crisis of expectations. However, it may be significant that there 

has been little or no discussion of the problems of epistasis and genetically deceptive 

problems in the economics literature – this would have been expected as a prelude to any 

significant increase in the complexity of the problems being addressed. 

 

The Standard Model of Perfectly Competitive Markets10

It is useful at this point to review the case which underpins the influence of the standard 

model of perfect competition on the imaginations of both economists and policymakers, to 

the exclusion of more complex representations of socio- economic systems; at the same 

time, this will give us the opportunity of identifying some of the deficiencies of that model, 

which are critical to the experimental details of the current work. The standard model is 

usually introduced graphically, by way of a diagram in which quantity is on the x-axis, price 

is on the y-axis, and in which the supply function increases monotonically, and the demand 

function decreases in the same fashion (see, for example, Samuelson and Nordhaus, 1992, 

Chapter 4). The demand function represents an aggregation of the demand functions of 

individual consumers. The supply function is an aggregation (summed parallel to the 

quantity axis) of firms’ individual supply functions, which reflect the law of diminishing 

returns; individual supply curves also express each firm’s marginal cost function. An 

equilibrium point exists where the graphs of the supply and demand functions intersect; this 

defines the true price of the commodity, at which demand and supply are in balance. The 

supply/ demand structure of the model used in the current work adheres to this intuitively 

appealing structure, avoiding “peculiar” features (such as backward-bending supply curves, 

and extreme elasticities11).  
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Within this structure, the diminishing-returns effect ensures that profit-maximizing firms will 

set their production level so that the cost of the marginal (ie, the last incremental) unit of 

production is equal to the price, since a lower level of production sacrifices some potential 

profit, and a higher level will incur losses. Firms are price-takers: they are sufficiently 

numerous to be unable (individually, and without collusion) to influence the market price by 

their production decisions, and can only accept the established price as it is manifested in 

the market. The model is silent on what happens before that price is established; it is also 

generally silent on all issues of how firms and markets adjust to change, and other dynamic 

issues, including decisions on plant renewal and replacement. The cobweb theorem, of 

course, addresses the issue of how markets home in on the equilibrium price, but assumes 

that “ … the market price is always set at a level which clears the market”  (Chiang, 1984: 

562), ie, that the market functions as a single-minded entity, motivated by a primary need 

to ensure that demand and supply balance. 

 

The most powerful form of this model is an axiomatic system (see, for example Eckert and 

Leftwich, 1988: 44ff ), which can be used to show that a general equilibrium exists, at which 

all markets in an economy are at equilibrium; and to show that that equilibrium (although 

driven entirely by self-interest) has a number of optimal, socially attractive features. (In this 

context, optimality is judged by the Pareto criterion: according to this, an economic 

arrangement is optimal if no one can be made better off without making someone else 

worse off.) If we accept the claim that the Pareto criterion is valid and value-free, and some 

implicit assumptions about system dynamics, then it can be shown that freely competitive 

markets will ensure that everyone is as well off as possible, given the available resources 

and technology; and that the system of prices generated will ensure that resources are 

allocated in the unique way that makes this possible.  Under these conditions, it is 

reasonable to maintain that the prices of goods and services are valid measures of their 

value to society.  It can also be shown that there is no possibility of exploitation within such 

a system, since competition will ensure that the prices of all goods and services are made up 

of only the prices of the inputs used in producing them – and those prices are themselves 

both just and optimal. In such a system, there is no surplus of the kind envisaged by Marx 

(Hunt, 1992: 270) for any of the parties to appropriate.  

 

Like all models, this has limitations. The optimality of the end-results of free competition – 

as envisaged in the standard model – has been disputed on various grounds. These include 

the model’s weak treatment of dynamic processes (in a change-prone environment, 
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optimality should refer to the quality of the adjustment process, as well as to equilibrium 

states that may only exist for short periods), and some well-known problems concerned with 

the impact of time and risk on the nature and attainability of equilibrium. (These are 

summarized by Ormerod, 1994 and 2000.) Others have challenged the Pareto criterion 

itself; Cullis and Jones (1998: 1) discuss whether it is value-free, in the context of 

alternative ideas on economic justice.  

 

METHODS 
 
General 

The experimental study consisted of a series of simulations, in which the evolution of firms’ 

rules of behaviour – driven by the profit motive – was followed under a variety of 

treatments. In the main study, these consisted of three methods of bargaining – each giving 

rise to a distinct set of dynamics – between buyers and sellers, crossed with three levels of 

statistical noise (the latter was applied to the level of demand, affecting the reliability of the 

signal firms receive about their price levels, relative to the state of the market). The 

resulting 3x3 factorial design was repeated in each of 10 blocks, each block being a different 

market, with its own supply and demand functions. The levels for the first factor 

(bargaining) represented (i), the standard micro-economic model of perfect competition 

(“standard”); (ii), a more commercially realistic one (“fully dynamic”), and (iii) an 

intermediate treatment. The latter two are described below, but the standard model 

presented a difficulty mentioned earlier: it does not specify what firms should do before 

there is a well-established market price – at which stage, they cannot be price-takers, of 

course. It was decided to build the model around the real situation in which firms set an 

asking price. In the fully dynamic and intermediate treatments, consumers then shop around 

for the best bargain, on a best-of-three-quotes basis.  For reasons that are explained below, 

this provides sellers with a very uninformative signal about their relative price level; this is 

so far from what the standard model envisages for non-equilibrium situations that an 

alternative mechanism for demand allocation was sought.  In the standard treatment only, 

each firm was allocated what would have been its share of the aggregate demand, if all 

firms had been trading at its asking price. This at least preserves the idea that firms get 

consistent and informative signals from the market. In the other two treatments, the 

shopping process allocates demand among firms.  
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The fundamental entities in the models used are the sets of rules that determine its asking 

price in the light of its current state; these take the form of fuzzy systems, each of which is 

embedded in a firm. The capacity for learning and improving these rulesets – is provided 

through a GA. The firms have no permanent existence outside of the major period in which 

they were created – it is the rulesets which continue and grow through the successive major 

periods; each has a numbered slot, into which the firms which will embody it are placed. 

Initially, each market has 50 firms, and 1000 consumers; the latter number is fixed, but, 

under the fully dynamic treatment, the number of firms in can vary over time, because of 

the possibility of bankruptcy and incomers. The fitness of a ruleset is measured by the 

cumulative profit that it generates for the firm in which it is embedded. Rulesets interact, 

because the firms compete in the market. The primary focus of the investigation is the 

evolution of the system of rulesets as a whole, rather than the finding of some optimal set 

of rules; it is assumed that firms would continue to adjust their pricing policies as long as 

some of their neighbours make greater profits than themselves.  

 

Evolution occurs across two sorts of time periods: major periods (effectively, generations, 

although only one member is replaced at each, see below), and, nested within them, minor 

(trading) periods. Nine minor periods were used per generation. During minor periods, firms 

carry out normal commercial activities, including production and re-investment in plant; at 

the end of each sequence of minor periods, one pass of the genetic algorithm is executed, 

bringing that major period to an end. Events happen in real time. All events (including, for 

example, consumers soliciting quotes from firms) happen in some sequence, even if that 

sequence is randomly determined. Minor periods are equated with a year for interest and 

depreciation purposes, but otherwise the duration of the periods has no particular 

significance. Firms have to learn on-line, taking in data as it arises, and producing responses 

at the appropriate time.  

 

Some parameters were held constant for the whole series of studies: the return on capital 

and the main interest rates (deposit, ordinary loans, and emergency finance); the blockiness 

factor for capital investment; the level of overheads, as a fraction of total gross margin; and 

the proportion of profit retained as a reserve to finance operations and plant replacement. 

Two other parameters are used to drive the noise generator which creates a stationary 

autoregressive moving-average (ARMA) sequence; this is used to impose the three levels of 

uncertainty on demand: nil; sufficient to give the demand a coefficient of variation (CoV) of 

5%; and sufficient to give it a CoV of 10%.  
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The sequence12 of events as the behaviour of firms evolves, in one market, is as follows: 

 

i) Randomly-chosen supply and demand functions are generated. These define the particular 

market, and are used to calculate a number of quantities for the “typical” firm under the 

standard conditions, starting with the equilibrium price and output level which would be 

expected under perfect competition. (The former are referred to below as the nominal price, 

nominal quantity, etc.) The two functions are disaggregated to give the corresponding 

functions for individual firms and consumers. (Consumers are identical, but firms are not – 

see below.) It is now possible to combine nominal price, the individual firm’s revenue, and 

(through the relationship between the individual supply curve and variable costs) to estimate 

the typical firm’s total variable costs and gross margin at equilibrium. The total and per-

period cost of capital equipment is set at such a level that a pre-determined figure for return 

on capital is achieved; this calculation assumes a fixed depreciation life (5 minor periods). 

Capital equipment is blocky: each firm has enough to produce its share of the nominal 

aggregate output, and does this with 10 units of plant. Nominal profit is calculated next, by 

deducting capital costs, depreciation, and overheads.  

ii) The software loops in sequence through the 9 treatments (3 levels of noise, crossed with 

3 methods of bargaining). 

iii) Within each treatment, the first major cycle is started, with the generation of a sufficient 

number of random but well-formed rulesets for each of the initial population of firms.  

iv) The first minor cycle is started. A population of firms is generated, in such a way that 

each firm is a stochastic variant of the “typical” firm, with all the data it needs to function: 

the coefficients for its individual supply function, its commercial history (eg, levels of debt 

and inventory), and a defined stock of productive plant. (The variation in each data item is 

controlled by a single parameter, set at a value which ensured a 5% CoV in the prices of the 

firms generated.). The firms set their asking prices using their fuzzy rulesets, and then 

interact with consumers and – indirectly, through the relevant competitive process – with 

other firms, according to the trading procedures defined for the current treatment. As part 

of this, the incomers procedure may allow the actual population to expand above the core 

number; these additional firms are assigned rulesets from the current core population at 

random, to minimize distortion of the dynamics of the system; however, only data from the 

core population itself are included in the reported averages. 

v) The required number of minor cycles is completed; the fitness of each ruleset is 

measured by the cumulative profit it has generated. 
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vi) At the end of the major period, one pass of the genetic algorithm is executed; this leads 

to the replacement of one of the existing rulesets; with this amendment, the process loops 

back to step (iii), and steps (iii), (iv), and (v) are repeated until the defined number of major 

periods is completed (1000). 

vii) At the completion of step (vi) the process returns to step (ii), until all the treatment 

combinations have been dealt with. 

viii) The process is then repeated from step (i), until the required number of sample markets 

has been processed. 

 

Sampling 

The sample markets (described in Table 1) are based on a random sample of all possible 

pairs of supply and demand functions which: 

− have an equilibrium point in the box defined by an aggregate demand greater than 

zero and less than 100,000 arbitrary units; and a price greater than zero and less 

than 100 arbitrary units;  

− in the case of the demand function, are linear, with quantity monotonically 

decreasing with increasing price, and, in the case of the supply function, are 

quadratic, monotonically increasing with price; 

− have (absolute) price elasticities of demand and supply that, at equilibrium,  lie in 

the range 0.5 to 1.5.  

 
Table 1. Summary Description of Sample Markets 

Market  Equilibrium  
Price 

Equilibrium 
Quantity  

Price Elasticity 
of Demand 

Price Elasticity 
of Supply 

A 68.38 33067 -1.29 1.06 

B 35.88 55160 -1.37 0.74 

C 83.88 67266 -0.52 0.59 

D 35.23 57335 -1.35 0.68 

E 72.56 45570 -0.70 1.44 

F 85.53 65783 -1.23 0.88 

G 25.05 35154 -1.48 1.18 

H 8.81 51846 -1.25 0.91 

I 24.37 69421 -0.98 1.26 

J 91.12 46506 -0.94 1.34 
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Pricing, Production, Investment, and Trading Procedures for the Treatments 

Procedures Common to All Treatments 

The first action of a minor period is processing the input data from the preceding one; this 

consists of the firm’s previous profit level, and its inventory level. Firms are expected to 

know enough about the market to appreciate that half the nominal profit is very low, and 

150% of it is very high. (In fact neither of these limits is approached after the first few 

major periods.) They have no knowledge of the position of where the nominal price lies 

within these limits (and, under some treatments, the stable price that develops is not half-

way between them). Similarly, firms recognize a level of inventory equal to one period’s 

nominal production as very high. These ranges are divided into 5 and 3 overlapping fuzzy 

domains respectively; both are of the form shown in Figure 1. (Values outside these limits 

are treated as being at the nearest limit.) These inputs fire one or more rules in the firm’s 

fuzzy system, producing an asking price; this sets its production level (by back-calculation 

from the marginal pricing relationship), and the target level for production capacity used in 

replacing superannuated plant. From here on, the three models diverge.  

 

The Fully Dynamic Treatment (D) 

In the fully dynamic treatment, consumers engage in competitive shopping: each in turn 

calls individual firms, gets three quotations from suppliers who still have stock available, and 

buys from the cheapest; the level of this price determines the quantity purchased13. (A 

consumer always contacts its previous cheapest supplier first, but the other contacts are 

randomly selected.) Each firm’s asking price and sales level (plus interest on holdings of 

working capital, see below) determine its revenue; and its variable, capital, and general 

overhead costs are derived from the disaggregated, stochastic versions of the corresponding 

functions/ quantities for the typical firm of the sample market. If the calculated production 

level exceeds the capacity of the existing plant, it is reduced accordingly. A defined fraction 

of profit is retained as working capital (large accumulations of which may be released as 

extraordinary dividends).  

 

Profit is calculated in normal accounting terms, with actual expenditures on plant converted 

to depreciation; each firm has a working capital account, which is used to monitor its 

cashflow/liquidity position; retained profits are placed in this account. Losses drain down the 

working capital account. A firm can survive one trading period of serious losses, but then 

has to borrow at an increased rate to fund its operations; a second successive period of 

losses results in bankruptcy. This is lenient in that it implies that bills are, in effect, settled 
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only once in each minor period – in reality, firms can face debilitating cashflow problems 

within the production cycle, of course.  

 

If the firm survives the bankruptcy test, the tranche of its plant that has reached the end of 

its depreciation life is retired, and new plant is purchased to bring the complement up to 

what is needed to match the current price level (but it does not contribute to productive 

capacity until the next period). Cash-rich firms can buy new plant outright, others must 

borrow, the amortization costs forming part of the capital costs mentioned earlier. New firms 

can come in at the end of any minor period: the probability of any vacant slot being filled by 

a newcomer is (1.0 – fraction of consumers whose demand was completely satisfied in that 

period). 

 

Standard (S) and Intermediate (I) Treatments 

By contrast, the standard treatment imposes a fixed population of firms, each always 

provided with a suitable complement of plant. To implement the standard treatment, the 

shopping, cashflow/ bankruptcy, plant replacement, and incomers mechanisms are disabled. 

Profit accounting is, of course, retained so that the fitness calculation can be completed (for 

this treatment, profit excludes capital costs, but the fitnesses of all firms/ rulesets are 

affected to the same extent). The intermediate treatment is identical with the standard one, 

except that the competitive shopping mechanism remains enabled, and is used to allocate 

demand between firms. 

 

Treatment Codes. 

In what follows, the treatments are identified by the following two-character codes: the first 

character (N, M, or H) denotes the noise level; the second one (S, I, or D) denotes the 

bargaining mechanism. An asterisk is used in either position indicates that the code applies 

across all levels of that treatment, eg, *S refers to all standard treatments, regardless of 

noise level. In addition, the two treatment combinations of special interest, NS and HD, are 

referred to as representing “standard” (microeconomic) and “commercial” conditions, 

respectively. 
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RESULTS  
 
Preliminary Experimentation 

Coding and Genetics 

At the beginning of the study, an attempt was made to apply the binary coding approach 

originally advocated by Goldberg (9189) to convex, trapezoidal input and output 

membership functions.  The resulting strings were very long; this – combined with an 

attempt to include the optimization of the choice of input variables – prevented 

convergence. A number of changes were therefore made:   

(i) The choice of variables was established by manual experimentation; this also provided 

some understanding of the broad features of the dynamics of the system14. 

(ii) Binary coding (and digital mutation) was dropped in favour of real number coding and 

gaussian mutation.  

(iii) The coding of the membership functions (MFs) was drastically simplified, to reduce the 

size and dimensionality of the search space. A fixed grid of input MFs was adopted, and the 

action of the GA was restricted to the output MFs; with the previous change, this reduced 

the length of the strings considerably.  

-  The fixed, orthogonal, input grid consists of three levels of inventory, and five 

levels of profitability. As a result, the MFs are 3-dimensional, consisting of 15 

intersecting tetragons, constructed so that their profile, viewed parallel to the y-axis 

(inventory), consists of 5 triangular MFs of the form illustrated in Fig. 1; and, viewed 

parallel to the x-axis (profit), 3 triangular MFs of that same form. (The membership 

level is on the z-axis.) 

-  For the output MFs, a range for the output (asking price) was set at 50% to 150% 

of the nominal price; one-fifth of this range was adopted as the width of the base of 

a standard, two-dimensional isosceles-triangular MF, and only the position of the 

central peak of the triangle was coded. With five price levels and three inventory 

levels (overlapping, in both cases), this means that each firm’s ruleset can be 

encoded in only 15 real numbers. Each of these numbers specifies the response to 

one of the 15 cells of the input grid, in the form of the location of the peak (core) of 

the corresponding output MF. (The justification for this apparently crude procedure is 

that fuzzy systems are, by definition, insensitive to the fine detail of the placing of 

the ends of the domains of membership functions.) 

 

(iv) Instead of complete replacement of generations, tournament selection was used in the 

GA. At each pass, 3 pairs of potential “parents” was selected at random, and the fittest of 
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each of these subgroups were paired up for crossover. In the latter process, two random 

numbers, n1 and n2, between 1 and the total number of loci (n3) were generated. If (n1 + 

n2) < (n3 - 1), the n2  loci following the locus numbered n1 were exchanged between the 

strings encoding the rulesets of the two parents; otherwise, all the loci after n1 were 

exchanged. (This procedure avoids the situations in which crossover either always disrupts a 

particular combination of first and last elements, or else never disrupts it.) One resultant 

string from the first subset of parents was then subjected to a small amount of mutation (1 

locus per chromosome was selected at random, and altered by adding a random normal 

variate, generated with zero mean and variance equal to 2 ½ % of the equilibrium price), 

and substituted for the rule with the lowest fitness. This combination appeared to be 

effective, and was used throughout the main investigation.  

 

Behaviour of  Manually-adjusted Models 

In these models, the GA was disabled, and the models tuned manually. The greatest 

difficulty in constructing stable models in this way arose from the poor quality of the market 

signal: the cheapest-of-3-quotes shopping method used is surprisingly efficient at 

channelling demand to the firms offering the cheapest goods: most firms are either sold out, 

or left with their entire production unsold.  As a result, most firms “know” only that they are 

above the equilibrium, or below it, but not by how much, because of the lack of any graded 

response by their customers. This creates a potential trap: adjusting rulesets to attempt to 

find the price that maximizes profits can push firms over the hidden divide – defined by 

position in the price ranking, rather than absolute price level – between high profits and 

massive losses resulting from a collapse in sales. Firms are vulnerable in this way not only to 

their own errors, but to adjustments in pricing policy by other firms. The resulting instability 

of individual firms’ prices was so great (compared to what the perfect competition model 

leads us to expect) that it seemed unreasonable to use it as the basis for the standard 

treatment.  Alternatives were tried (including one in which firms spied on competitors' prices 

and inventory levels), but these were no better; this is why the mechanism described above 

was adopted. 

 

All this suggested that the firm's current level of profit and its inventory level might be 

useful input variables in the construction of an asking price. With low (or zero) inventory 

levels, low profit levels suggest prices are much too low; moderate profits suggest there is 

room for increasing prices somewhat; and high profits suggest that the firm may be 

approaching the vulnerable position just described, and, at most, should only increase its 
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prices cautiously. (Large losses accompanied by high inventory indicate that the firm's 

relative price is too high, of course.) A range of fuzzy systems was constructed on this basis, 

and adjusted manually; while none of these showed long-term stability (after 20-30 trading 

periods, the number of live firms in any one period tended to become unstable), the results 

were sufficiently encouraging to use this choice of input variables in the main study. During 

this phase, it was noted that rules (within firms) could interact to produce consequences 

that took more than 1 minor period to become apparent (eg, a rule which led to very low 

profits in one period might invoke another rule in the next period which made an excessive 

compensatory change, leading to further repercussions). 

 

During these preliminary explorations, it also became apparent that, while firms’ prices 

might converge fairly rapidly, their profit levels much converged more slowly; it was decided 

to run each evolution for 1000 “generations” (at each of which only one member-ruleset 

was replaced).  

 

The Main Trial 

Average Final Converged Prices  

An analysis of variance was carried out for the main factorial design of three bargaining 

mechanisms and three levels of noise. There were no significant effects of sample market, 

nor were there any significant interactions between market and any of the treatments; 

dynamics, noise, and the interaction between them were all significant at the 0.001 level. 

These treatments and their interaction accounted for 78% of the total variance; there were 

no obvious irregularities in the residuals. 

  

The pattern of the results can best be seen by examining the effect of the bargaining 

treatments at each level of noise, see Table 2A. With no noise, all three types of dynamics 

lead to price convergence at a level very close to the nominal value; the same is true for 

standard dynamics, at all three levels of noise. However, with the other combinations of 

dynamics and noise, there is a progressive warping of the response surface: with 

intermediate dynamics, as the noise level increases, the converged price falls in two 

approximately equal steps to approximately 95% of nominal (ie, the perfect competition 

equilibrium price); while, under fully dynamic conditions, the corresponding decreases are to 

95% and 92%, respectively. This suggests that the demand-allocation process itself 

contributes substantially to the price depression. 
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Table 2A. Average Converged Price Levels by Treatment 

(as percentage of nominal). 

 Dynamics 

Noise Standard Intermediate Fully Dynamic 

Nil 99.44 100.71 100.41 

Moderate 99.55 97.53 95.60 

High 100.1 95.50 92.28 

 

 

The bargaining/noise interaction appears to arise from the effect noted during the 

preliminary investigations: any firm operating at the upper end of the price range is 

vulnerable to downward price adjustments made by other firms (which can leave it with 

high production and of variable costs, and no sales), so that the top of the price-ranking is a 

dangerous location. Under the *D treatments, the number of firms was free to find its own 

level under the combined influence of the bankruptcy and incomers mechanisms. In the 

case of HD, the final number averaged approximately 1% more than the fixed population 

size of 50 used for the *I and *S treatments. An examination of the (static) aggregate 

supply and demand curves suggested this was too small to explain the price depression as a 

supply effect. To exclude this possibility in the dynamic situation of the evolving markets, 

the HD treatment was repeated with the addition of a constraint to prevent the incomers 

mechanism from raising the number of firms above the core level of 50. This produced the 

same average depression (to 3 significant figures) as in the original HD series, and the prob-

value for a t-test of difference between the two series was over 0.99. 

 

Average Final Converged Profit levels 

Profits 

Similar effects were found when the analysis was repeated for profit, see Table 2B, although 

the picture is affected by two factors: the role of fixed overheads in profit exaggerates the 

effect of price changes; and the profit level in the standard and intermediate treatments is 

raised, because they do not bear the cost of plant replacement (see 2.3 above), and use the 

options for financing plant replacement differently. 
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Table 2B. Average Converged Profit Levels by Treatment 

(as percentage of nominal). 

 Dynamics 

Noise Standard Intermediate Fully Dynamic 

Nil 105.35 115.01 132.54 

Moderate 104.32 89.52 85.28 

High 100.10 63.55 48.35 

 

 

Probability Distribution of Firms’ Profits 

Individual firms’ profit levels within any one minor period tend to have a distribution that is 

far from normal. For example, when the standardized profit levels from each market in the 

5th minor of generation 500 were grouped together, the distribution differed significantly 

from normal (p<0.001), and appeared to be generated by 3 distinct processes with different 

means and variances, the switch between processes being a stochastic function of the 

individual firm’s place in the price-ranking. The three processes were:  

− a mid-range process, generating typical profits;  

− a low range process, resulting from activation of the trap for high-asking prices, 

which was responsible for about 1% of events spread across the -3σ to -7σ15 

range; and  

− a high-range process was responsible for about 0.4% of events, spread across +3σ 

to +7σ range. This arose where, for various reasons (eg, a positive demand 

disturbance from the noise generator), the trap was not activated, and firms got 

away (temporarily) with a high asking-price. 

 

As a result, the graph of individual firms’ profits against price-ranking is extremely variable 

in form between periods: it can have a high peak or a deep trough at the highest prices; in 

either of those cases, it can fall away at the low end of the price range, or it can be either 

approximately level or very rough across the whole range.  

 

Learning the Rules 

The correlation (across markets) between the nominal prices and final average prices under 

the NS treatment is over 0.99; there is no significant difference between the levels of the 

learned prices and the corresponding nominal prices as judged by paired-sample t-tests. The 
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correlation between nominal prices and the converged prices is equally high (and the bias 

equally low) for all the treatments with nil noise, N*, or standard bargaining, *S. 

 

Once both noise and a more complex bargaining regime are in place, the situation changes 

markedly, with the substantial depressions of price and profits noted. Under conditions in 

which firms set asking prices, buyers shop for the cheapest supplies, events happen in real 

time, plant depreciates and has to be renewed, and liquidity constraints bite, the standard 

model of competitive markets ceases to be a close approximation to reality when the market 

signal becomes noisy. Then, the system does still achieve equilibrium, but the equilibria are 

quantitatively different from the theoretical ones. 

 

A sub-sample of three randomly selected sample markets (D,F and I) were re-run five times 

each, primarily to examine the form of the rules (see below); however, they also supplied 

some data on the consistency of the results of the GA/FL combination.  Closely similar 

results were obtained in each case; the coefficient of variation of the depression of the 

equilibrium price under the HD treatment was small in each case, varying between 1 and 3 

percentage points. The learning process operated consistently. 

 

The Form of the Rules 

By quite early in the simulations, the majority of hits were focused on a small sub-set of 

rules; in the case of the commercial treatment, HD, Rule 4 (activated by low profit and low 

inventory), and Rule 7 (moderate profit and low inventory) accounted for 85% of the total 

hits in the final major period.  

 

To make interpretation of the rules easier, the output value (asking price) for each rule, for 

each market, was converted to a percentage of the corresponding the normal price. For the 

commercial treatment, the output values for Rules 4 and 7 were 94% and 89% of the 

nominal price, respectively. For the core rules, these values were quite stable across 

markets, the coefficient of variation being approximately three percentage points. These 

results are consistent with the behaviour observed in the preliminary investigation, and can 

be expressed in the following form16: 

 

if <profit is low> and if < inventory is low> then < asking price is moderate> 

if <profit is moderate> and if <inventory is low> then <asking price is low-moderate> 
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The other rules are much more variable, with coefficients of variation in the range of 20-

30%; given the consistency of final converged prices across repeats, there are two possible 

explanations for this.  Firstly, it may be that the overall behaviour of the fuzzy system is 

insensitive to any but the most frequently-fired rules; and secondly, that the two high-

impact rules are fixed relatively early in the evolution (which is true), that one or more of 

the other rules acquires a random bias, and other rules are then adjusted over time to 

compensate for this. There is some evidence the latter: if the HD treatment is repeated with 

only one minor period per generation, learning is severely disrupted, and there are very few 

hits on any rules other than the core ones; this suggests that these other rules do 

collectively exert an important influence on the quality of the fuzzy system developed. 

 

Rates of Convergence 

The convergence rates for the two treatments whose contrast is of greatest interest (NS and 

HD, the standard and commercial models) are shown in Table 3, using the range between 

the second-lowest and second-highest observation as a measure of convergence17. This 

trimmed range corresponds to the 2nd - 98th percentile range (exactly in the case of NS, and 

approximately in the case of HD and MD, where the size of the population of firms can 

fluctuate from the initial size of 50). The patterns for the intermediate mode of price setting 

lie between those shown, and the patterns for the other noise levels are similar. 

Convergence is somewhat slower in the more challenging environment of the HD treatment. 

The convergence onto a common level of profitability is much less regular, see Table 4; in 

the more challenging dynamic environment (HD), this range falls from  

 

Figure 3. Price Convergence 

(difference between 2nd and 98th percentiles, as % of 

final mean) 

Generation HD NS 

10 50.1 78.5 

50 38.0 46.0 

100 25.1 15.3 

200 18.3 8.9 

500 18.5 5.0 

1000 7.6 4.3 
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Table 4. Profit Convergence 

(difference between 2nd and 98th percentiles, as % of 

final mean) 

Generation HD NS 

10 783 487 

50 860 256 

100 444 111 

200 412 95.7 

500 461 64.5 

1000 108 54.3 

 

 

about 800 percent of the final mid-range point in the early generations, to 100 percent at 

the 1000th generation.  The corresponding figures for the standard treatment are 500% and 

50%, respectively.  The difference between these rates of convergence and those for price 

is due to the complex relationship between price and profit. (Price affects the total variable 

costs and demand; both relationships are nonlinear, the demand one markedly so.)   

 

SUMMARY AND DISCUSSION 
 
Summary of Findings 

A combination of fuzzy logic and genetic algorithms was used to give an autonomous 

learning capability to each member population of producers in a multi-agent model of a 

competitive market; the agents were heterogeneous in terms of their supply functions and 

asset profiles. The rules specified an asking price for each vendor firm, in the light of its 

profit and inventory levels in the previous period. The initial rulesets were random but well-

formed, so that the firms in which they were embedded started off trading at different 

prices; the genetic algorithm then honed these rulesets over a number of generations, using 

profit (taken over a fixed period) as the measure of the relative fitness of the different 

rulesets. During this process, rulesets and the resulting prices converged in the manner 

described below.  

 

The software with which the evolution of firms' rules was simulated could be set to provide 

an environment very close to that of the standard model of competitive markets, or to 

provide a trading environment much more like commercial reality. (There was also an 
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intermediate option, included for exploratory purposes.) In all three cases, firms had to set 

an asking price, and learn from buyers’ responses how to improve their pricing policy. Under 

the standard treatment, demand was allocated on a basis which ensured that their level of 

demand reflected the relationship between their asking-price and the theoretical market-

clearing one; this basis was somewhat artificial, but this reflects the absence of any 

corresponding mechanism in the standard model. In the commercial case, demand was 

allocated by a shopping process, in which buyers sought out the cheapest sources of supply, 

and had to deal with persistent inventory, a liquidity constraint, and the possibility of 

bankruptcy. These software settings were used, together with a facility for injecting 

statistical noise into the level of demand, to impose a 3 x 3 factorial combination of 

treatments on the evolution of the simulated market systems, consisting of the three types 

of market dynamics (standard, intermediate, or commercial) crossed with three levels of 

noise. The simulated evolution was repeated for 10 sample markets, each a random sample 

from a population of markets with straightforward supply and demand functions.  

 

Under the standard conditions, the evolution of the rulesets caused firms' prices to converge 

onto the theoretical equilibrium point, ie, the equilibrium that would have been expected 

under pure competition, given the aggregate supply and demand functions in the particular 

sample market. However, even when prices had converged quite tightly (the range of 

individual firms’ prices was some 4% of the final value, across all markets), profits remained 

distinctly more unstable (range some 55% of the final value); this is because of the complex 

and unstable relationship between price and profit.  

 

Neither the introduction of noise into the level of demand or the imposition of the 

commercial pattern of dynamics, singly, affected the model’s ability to locate the theoretical 

equilibrium. However, with both noise in the demand signal and commercial dynamics, the 

position of the equilibrium changed, the price being depressed below the theoretical 

equilibrium one. In the case of the high-noise, fully dynamic commercial treatment, the 

depression was approximately 8%; profit was reduced much more sharply, by over 50% for 

the treatment mentioned, largely because of the effect of overhead costs. Convergence was 

also poorer, with the final converged ranges for price and profit being approximately 8% 

and 100%, respectively. The position of this equilibrium is determined by the balance 

between the upward pull of unsatisfied demand and the downward drag of firms’ reluctance 

to bear the risks associated with higher prices, rather than between demand and the 

marginal equalization principle. 
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The price depression appears to be a response to the poor quality of the information 

obtainable from the market: even the fairly crude method used here to link buyers to the 

best bargains works well enough to ensure that, in any one period, most firms are either 

totally sold-out, or make no sales at all. This means that the great majority of firms know 

only that they are above or below the current market-clearing price (which, in a turbulent 

situation, may not be the theoretical equilibrium). This will be true of any reasonably 

efficient bargaining mechanism, of course. As a result, firms which are high in the price 

rankings, but still selling all of their goods, are in a vulnerable position: the watershed – 

between those firms that are sold out and those that are not – can shift (eg, as a result of 

adjustments made by other firms), leaving them with high costs and no revenue. In these 

circumstances, it pays firms to frame their aspirations about prices cautiously.  

 

This risk-evasion strategy is rather different from risk-discounting in the normal sense: the 

size of the hazard is not proportional to the amount of some activity undertaken (such as 

undertaking a particular line of production, or holding a particular type of asset). Also, a 

market for this sort of risk would face the problem that the relevant probability distribution 

is fat-tailed, and very far from normally-distributed; such distributions have played a 

significant part in a number of financial debacles –see, for example, Lowenstein (2002: 71) 

on the part that they played in the Long Term Capital Management affair.  

 

The results reported here fit into the wider pattern of studies of evolutionary algorithms in 

the socio- economic arena.  Where there is a model embodying with naïve dynamics (such 

as the standard model of perfect competition) which has a static equilibrium, agents readily 

learn to find that equilibrium, even in cases where specifying a route or a mechanism to that 

point has been a substantial theoretical conundrum. Relaxing the simplifying assumptions in 

favour of a more complex and realistic set of conditions introduces the potential for 

interaction between agents’ individual choices, and the possibility of costly instability. Under 

these circumstances, agents typically learn some pattern of mutual accommodation, and 

their choices lead to a different equilibrium from the naive one.  It does of course follow that 

these alternative equilibria do not have the optimising properties ascribed to perfect 

competition, etc. However, this is unsurprising, given that it is very unlikely that a complex 

system will have the same attractor as a heavily linearised version of itself; and that 

concerns about the Pareto optimality of the equilibria associated with dynamically naive 

models of markets, or of economic reform, have been around for a long time (see, for 

example, Newbery and Stiglitz (1982), and Lancaster and Lipsey, 1956). 
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Issues and Implications  

Related Problems 

A number of questions (all concerning environments with commercially-realistic dynamics) 

need to be investigated before the general significance of the findings can be properly 

assessed.  The most important of these appear to be: 

- What other sorts of bargaining mechanisms produce deviations from the theoretical 

equilibrium price?  

- How would the existence of geographical or other allegiances within the market, between 

buyers and sellers, affect the results? 

- How does the observed depression of the equilibrium price compare with risk premiums 

derived in other ways? 

- Is it possible that a different pattern of behaviour would have emerged if the firms had 

been given the possibility of evolving niche strategies? (The niches might be different pricing 

policies, or different production methods.) This would increase the computational burden 

somewhat, but would add no difficulties of principle (Cordon et al, 2001: 63). 

- How do the deviations from the equilibrium price propagate through an interlinked set of 

markets, and how does this impact on the pricing of firms' resources? 

- How do they affect other areas of economic theory? (For example, are we safe in 

assuming that two economies, engaging in international trade, will operate at their 

respective production possibility frontiers?) 

- How well can autonomous learning models of the kind used here adapt to an environment 

characterized by continual change?  

 

Further Applications of the Methodology. 

A number of other problems can be re-framed in terms of how the responses of different 

groups of rational agents will co-evolve under different regimes. A selection would include 

extending existing models of the endogenous development of market institutions (see 

Tesfatsion, 2000), to learn more about their properties; and studying stability and growth in 

a structure such as the EC (an imperfect market, with geography and politics, and subject to 

regionally-differential shocks). Like the other studies cited above, this one has certainly not 

exhausted all the potential of the GA/ FL combination.  The problem addressed required only 

a fairly low-level application of GA principles, without recourse to any of the more advanced 

techniques available; and it did not make any explicit use of fuzzy logic’s ability to deal with 

hybrid cases, or its ability to address problems with important qualitative aspects.  
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Many problems concerning the provision of public goods and the management of common 

property natural resources are hybrid ones, that is, hybrid between some extreme pure 

cases, for which some theory exists (not necessarily exclusively within economics). In the 

public goods arena, for example, there is theory relating to the extremes of the rivality 

versus and non-rivality and excludable versus and non-excludable axes (Cullis and Jones, 

1998); and there is also relevant theory on the emergence of collaborative behaviour 

available from political science (see, eg, Casti, 1992b). The problem is making a synthesis of 

this knowledge which can be applied to practical cases. This is well within the scope of fuzzy 

logic (the aggregation phase of the normal inference mechanism – see Section 1.1 above – 

routinely deals with borderline cases as hybrids).  

 

Qualitative variables arise in situations where we have some theory which is in narrative 

rather than mathematical form, and which is difficult to apply to practical situations because 

of the lack of any accepted method of formalising it. This lack lies behind Stiglitz' (2004) 

appeal for a more sensitive and flexible application of macro economic theory to nations in 

crisis, where orthodox strategy has led to political instability, or unacceptable impacts on the 

poorer strata of society. With fuzzy logic, it is possible to specify derogations from strict 

orthodoxy in a way that is clear and transparent, and expresses some challengeable model 

of the processes whose effects are claimed to justify the derogation. Without it, the 

standard objection that such derogations will open the floodgates to particularism and 

corruption is probably valid. There is also a good deal of practical experience with fuzzy 

modeling of systems which are structurally or dynamically complex (see, eg, Terano et al, 

1994, or Ross, 1995),  and/or have important qualitative dimensions (such as "market 

sentiment", or "the level of political tension"). 

 

Free-Riding 

A key feature of the markets modeled in the main part of the current study is that would-be 

free-riders can only exploit the stable market created by the mutual restraint of others by 

moving to the top of the price-rankings – the very situation that is most exposed to the 

penalties for defection from the implicit charter of behaviour. A similar mechanism appears 

to operate in the extended tournaments of Prisoners Dilemma discussed by Casti (1992b): 

attempting to exploit the collaborative behaviour that spontaneously evolves ensures that – 

for the two leading strategies, TIT-FOR-TAT and PAVLOV – would-be exploiters suffer at 

least as badly as anyone else from their own mis-behaviour. In both cases, there is 

nonlinearity in the form of feedback. In this study, it takes the form of relatively impersonal 
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repercussions from the system, whereas in the case of the players in these tournaments, it 

is direct (but limited) personal retaliation. In strictly linear systems any such repercussions 

are excluded, by definition; there, rational conduct does not need to take account of 

repercussions, whether directed and personal, or delivered impersonally by the dynamics of 

the system. This is not true in the more general case. Smith (2001) examines the 

implications of system complexity for our concept of rationality in decision-making. 

 

Realism and  Stability 

Many critics – notably, Ormerod (2000) – have suggested (i), that economics is unrealistic to 

the extent that it excludes nonlinear phenomena, and (ii), that accommodating them will 

necessarily introduce a distressing degree of instability. The current findings suggest that 

the second link in this chain is a weak one: in this case at least, autonomous learning in a 

reasonably complex nonlinear situation has not given rise to the expected level of instability.  

  

These results presented above may be a special case of a more widely-applicable principle: 

that, in economic systems where the short-term self-interest of agents can precipitate costly 

instability, and where free-riding is difficult because the free-rider is among the agents most 

exposed to the resulting penalties, agents will learn to act with mutual restraint. We cannot 

(yet) say much about the rate of such learning, or how readily agents can transfer learning 

between contexts. If the period is long, and transfer is limited, then one would expect the 

sort of flip-flop instability that Ormerod anticipates. However, what he puts forward as part 

of the foundations for “A New General Theory of Social and Economic Behaviou  ”r 18 does 

seem very close to parts of Rene Thom's catastrophe theory (Thom, 1975). That, too, was 

proposed as an alternative model for a very wide range of social and economic phenomena  

– but its performance never matched it advocates’ promises, largely because it proved too 

difficult to produce plausible models which generated the mathematical surfaces required by 

the underlying theory. (See Thompson, 1982, on modelling social change, for example; and 

Casti, 1992: Chapter 2, discusses applications and criticisms of the concept.) With learning 

whose conclusions are transferable between contexts, it would be more reasonable to 

expect something of the kind found in this study.   
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t

Notes 
 
1 Address for correspondence: Springcott, Chittlehamholt, Devon EX37 9PD, UK. Email: 
manindev@yahoo.com 
2 “Perfect competition” describes markets in homogeneous goods, with enough agents to ensure that 
no-one can affect the price through production or purchasing decisions, with mobile resources, and 
with no “artificial” constraints. This differs from “pure” competition, in which all agents have 
complete, accurate, and instantaneous  knowledge of the market. 
3 Because the investigation addresses the actions of firms before there is a market price, its firms 
cannot, of course, be price-takers. The models use are variants on the situation in which firms set an 
asking price, and react to the consequences. 
4 Kosko (1992: 379ff), for example, discusses the improved performance of fuzzy controllers relative 
to the classic least-squares Kalman filter in aircraft landing systems. 
5 “Conventional logic” refers to all styles of logic that rely on crisp, unambiguous sets, and use two 
discrete truth values; this, of course, includes Boolean and Aristotelian logic. 
6Strategies – such as reduc io ad absurdum – that rely on these laws are also banned, of course. 
7 They may also be determined empirically, see Ross (op cit, pp 371ff). 
8 He also defines procedures for cases in which the input scales are qualitative. 
9 Some of the confusion may have resulted from the fact that there are genetic methods of finding 
good approximations for a number of well known NP-hard problems, including the Travelling 
Salesman Problem. 
10 This is a discussion paper, and some of the colleagues I hope to hear from may not be economists 
– hence this section. 
11 Percentage change in quantity in response to a (small) percentage change in price. 
12 This was implemented via a purpose-written set of software in FORTRAN. 
13 Where a selected firm has insufficient stocks, demand may be split among firms on a price-
weighted basis.  
14 Here, “system” refers to the combination of GA, a sample market, and a repertoire of commercial 
actions  for its firms defined by one or other of the main treatments. 
15 The standard deviation of the unpartitioned total population of profit levels. 
16 If these seem unduly cautious, it has to be remembered that they relate to a range of from 50% to 
150% of the nominal price; the realised price is below the midpoint of this range. 
 
17 The full range is much more unstable, largely as a result of the presence of newly-created rules 
from the GA. 
18 The full title of his book is Butterfly Economics: A New General Theory of Social and Economic 
Behaviour. 
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