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Abstract  
 
The RISQ (Representativity Indicators for Survey Quality) project, funded by the 
European 7th Framework Programme,  is a joint effort of the NSI’s of Norway, The 
Netherlands and Slovenia, and the Universities of Leuven and Southampton to develop 
quality indicators for survey response. The response rate alone is insufficient  to measure 
the potential impact of non-response. These Representativity Indicators (R-indicators)
are developed to be used as tools at different stages of the data collection process: 
monitoring field strategies, targeting field resources and comparing strategies for 
increasing response rates. The auxiliary information for these indicators depend on prior 
information about respondents and non-respondents and paradata that becomes available 
during fieldwork. In many countries, prior auxiliary information for non-respondents 
may be limited. However, marginal distributions at the population level are often 
available through registers and population estimates. In this talk, we present and 
compare possible R-indicators and evaluate their sampling properties. We also propose 
R- indicators that are based entirely on population totals and the respondent set, and 
compare their properties to sample-based R-indicators through a simulation study.   
 
Keywords: response rate, non-response bias, quality indicators   

1. Introduction 

One of the largest source of non-random error in surveys is due to non-response. 
Research has shown, see e.g. Bethlehem (1988) that the non-response bias of 
estimates is determined by two factors: 
 
• The amount to which respondents and non-respondents differ, on average, with 

respect to the target variable. The more they differ, the larger the bias will be. This 
is sometimes called the contrast between response and non-response; 

 
• The amount of response in the survey. The response rate sets a bound to the 

maximal impact of non-response; the lower the response rate of the survey, the 
larger the potential impact of bias.  

 
To assess the effects of non-response on the quality of estimators, one needs to 
measure both the response rate and the contrast between response and non-response. 
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The response rate alone is an insufficient quality indicator to measure the potential 
impact of non-response. Statistical indicators of the contrast should measure the 
degree to which respondents and non-respondents differ from each other.  
 
The project RISQ (Representativity Indicators for Survey Quality), funded by the 
European 7th Framework Programme,  is a joint effort of the NSI’s of Norway, the 
Netherlands and Slovenia, and the Universities of Leuven and Southampton to 
develop quality indicators for survey response. These indicators measure the degree to 
which the group of respondents of a survey resembles the complete sample. When this 
is the case, the response is called representative. In survey practice, response rates are 
almost always computed. However, an indication of the contrast is seldom given 
explicitly since information is needed on characteristics of households or enterprises 
that did not respond to the survey. Nonetheless, when information is available that is 
auxiliary to the survey one can indirectly measure part of the contrast. It is the 
objective of the RISQ project to translate auxiliary information to Representativity 
Indicators, to develop these quality indicators, to explore their characteristics and to 
show how to implement and use them in a practical survey.  
 
In this paper, we describe briefly two  Representativity Indicators (henceforth called 
R-indicators). More discussion and theory of these R-indicators is provided in 
Shlomo, Skinner, Schouten, Bethlehem and Zhang (2008).  
 
We focus on two R-indicators:

1. a measure based upon the variance of estimated response probabilities, as 
discussed in the papers by Cobben and Schouten (2005, 2007) and  Schouten et al. 
(2008). 

2. a related measure proposed by Särndal and Lundström (2008), in the context of 
selecting auxiliary variables for weighting adjustment. 
 

The estimation of the R-indicators is very much dependent on the nature of available 
auxiliary information. We initially assume that  auxiliary information is available at 
the sample level. In many cases, however, auxiliary information may only be 
available in aggregated form at the population level. We introduce theory for 
estimating R-indicators when aggregated auxiliary information is known and compare 
them to the sample level indicators in a simulation study.  

 
Section 2 contains a formulation of the theoretical framework for the R-indicators.
The two R-indicators are defined formally at the population level  in Section 3 and 
their estimation is discussed in Section 4. Section 5 contains a simulation study on the 
properties of sample based and population based estimated R-indicators and we 
conclude in Section 6 with future work.  
 
2.  Theoretical Framework for R-Indicators 

2.1 General notation and nature of available information 
 

We suppose that a sample survey is undertaken, where a sample s is selected from a 
finite population U . The sizes of s and U are denoted n and N , respectively. The 
units in U are labelled 1,2, ,i N= K . The sample is assumed to be drawn by a 
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probability sampling design (.)p , where the sample s is selected with probability 
( )p s . The first order inclusion probability of unit i is denoted iπ and 1−= iid π is the 

design weight.  In some cases, we shall assume simple random sampling without 
replacement.  

 
We suppose that the survey is subject to unit nonresponse. The set of responding units 
is denoted . Thus, we have r s U⊂ ⊂ . We denote summation over the respondents,  
sample and population by rΣ , sΣ and UΣ , respectively.  We let  iR be the response 
indicator variable so that 1iR = if unit i responds and 0iR = , otherwise. Hence, 

{ ; 1}ir i s R= ∈ = . We shall suppose that the typical target of inference is a population 
mean 1

iUY N y−= ∑ of a survey variable, taking value iy for unit i .

We suppose that the data available for estimation purposes consists first of the values 
{ ; }iy i r∈ of the survey variable, observed only for respondents. Secondly, we 
suppose that information is available on the values of T

iKiii xxxx ),,,( ,,2,1 K= , a vector 
of auxiliary variables. We shall usually suppose each ,k ix is a binary indicator 
variable, where ix represents one or more categorical variables, since this will be the 
case in the applications we consider, but our presentation allows for general ,k ix
values.  We assume that values of ix are observed for all respondents. For the 
majority of this document we shall also assume that ix is known for all sample units, 
i.e. for both respondents and non-respondents. We refer to this as sample-based 
auxiliary information. This is a natural assumption if, for example, the variables 
making up ix are available on a register. However, in many countries and survey 
settings the availability of auxiliary information on non-respondents may be very 
limited, e.g. because of the absence of a register. In such circumstances, aggregate 
population-based auxiliary information may be available. This might take the form of 
a (finite) population total and/or mean and/or covariance matrix of ix .

2.2   Response propensities 
 

We define the response propensity as a conditional expectation of the response 
indicator variable iR given the values of specified variables and survey conditions 
(Little, 1986, 1988): ( ) ( | )X i i ix E R xρ = , where the vector of auxiliary variables is 
defined as in section 2.1.  For simplicity, we shall usually write ( )i X ixρ ρ= and hence 
denote the response propensity just by iρ . A detailed discussion of the notion of 
response propensities and their properties is presented in Shlomo, et al. (2008). In this 
discussion it was argued that it is desirable to select the auxiliary variables 
constituting ix in such a way that the missing at random, denoted MAR (Little and 
Rubin, 2002) holds as closely as possible and that our definition of  ( )i X ixρ ρ=
relates to a specific choice of auxiliary variables ix . A different choice would 
generally result in a different iρ . We note also that we define the response propensity 
conditional on the survey conditions that apply when the data are collected in order to 
be able to compare the representativeness of different surveys.  



4

2.3 Non-response models 

In order to estimate R-indicators, we shall first estimate the response propensities, 
where these are defined as ( | )i i iE R xρ = as discussed in the previous section. In this 
paper, we shall use parametric modelling assumptions about how iρ depends on ix .
In Shlomo, et. al, 2008, we also discuss non-parametric models and some implications 
of the complexity of the model for the variability of the iρ .

A general class of models representing the dependence of iρ on ix may be expressed 
in the form:   

g( ) 'i ixρ β= , (1) 
 

where g(.) is a specified link function, β is a vector of unknown parameters to be 
estimated, and ix may involve the transformation of the original auxiliary variables 
(e.g. by including interaction terms) for the purpose of model specification.  A 
standard choice of link function is the logit function, leading to the logistic regression 
model:  

log[ /(1 )] 'i i ixρ ρ β− = (2) 
 

Another link function with similar behaviour to the logit is the probit function. We 
shall also consider the use of the identity link function, which gives the ‘linear 
probability model’: 

'i ixρ β= , (3) 
 

since this will offer particular simplifications in the case of population-based auxiliary 
information.  

 
Särndal and Lundström (2008) consider the reciprocal link function, which gives:  

1 'i ixρ λ− = , (4) 
 

and they refer to  1
iρ
− as the influence and denote it iφ . They assume that the vector ix

is defined in such a way that there exists a constant vector c such that ' 1ic x = for all 
i U∈ . This restriction will in most practical situations be met and is effectively 
equivalent to assuming that a constant intercept term is included in the auxiliary 
information. 

 
Särndal and Lundström (2008) view (4) as a hypothetical model which will not hold 
in practice and they instead focus on a finite population approximation to this model. 
This approximation is obtained by first defining a value Uλ of λ which achieves the 
best fit of model (4) in the finite population. For mathematical convenience, they 
define the fit as the weighted sum of squared differences 1 2( ' )i i iU xρ ρ λ− −∑ and this 
is minimised when: 

1( ')U i i i iU Ux x xλ ρ −= ∑ ∑ , (5) 
 



5

provided ix is defined so that the inverted matrix in (5) is non-singular. This implies 
that a finite population approximation to  iφ is given by: 

1'( ')Ui i i i i iU Ux x x xφ ρ −= ∑ ∑ . (6) 
 

We refer to these quantities as the approximate influences.

3. Definition of R-Indicators at Population Level 
 

Let 1 2( , ,..., ) 'Nρ ρ ρ=ρ denote the vector of response propensities in the population. 
Following Schouten et al. (2008), the representativity of the response mechanism may 
be measured by the variation between the iρ and in particular by the standard 
deviation of the response propensities given by:  

21( ) ( )
1 i UUS

N
ρ ρ= −

−
∑ρ , (7) 

 

where     /U iU Nρ ρ=∑ . It may be shown that: 1( ) (1 )
2U US ρ ρ≤ − ≤ρ . Hence, 

transforming ( )S ρ to:  
( ) 1 2 ( )R S= −ρ ρ (8) 

ensures that 0 ( ) 1R≤ ≤ρ and, as discussed by Schouten et al. (2008), ( )R ρ defines an 
R-indicator which takes values on the interval [0,1] with the value 1 indicating  the 
most representative response, where the iρ display no variation, and the value 0 
indicating the least representative response, where the iρ display maximum variation. 

 
Särndal and Lundström (2008) define the following R-indicator:

2 1 2( ) [ ] [ ( ) ]i i Ui UU UQ ρρ ρ φ φ−= −∑ ∑ρ (9) 
 
where Uρφ is the iρ - weighted mean of the Uiφ given by 

1( ) ( )U i i UiU Uρφ ρ ρ φ−= ∑ ∑ . (10) 
 

This quantity is a weighted variance of the approximate influences. We may expect its 
magnitude to be inversely related to the magnitude of  ( )R ρ . Thus, in very rough 
terms, we expect ( )R ρ to decrease and 2 ( )Q ρ to increase as the variability of the iρ
increases.  

 
4. Estimation 

 
4.1 Estimation of population totals from sample and respondent data 

 
In the following sections, we shall use the fact that, for a given variable iz , the 
design-weighted sample total i is d z∑ is a design-unbiased estimator of the population 
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total iU z∑ and the design-weighted respondent total i ir d z∑ is an unbiased estimator 
of the iρ - weighted population total i iU zρ∑ .

4.2 Estimation of non-response models 
 

The estimation of the models in section 2.3 depends on the nature of the auxiliary 
information. For sample-based auxiliary information, the model in (1) can be 
estimated from the data on respondents and non-respondents by maximum pseudo 
likelihood (Skinner, 1989) i.e. the parameter vector β in this model may be estimated 
by the value β̂ , which solves: 

 1[ ( ' )] 0i i i is d R g x xβ−− =∑ (11) 
 

where 1(.)g− is the inverse of the link function. One reason for using the design 
weights here is because the objective is to estimate an R-indicator which provides a 
descriptive measure for the population.  
 
The linear probability model in (3) can be estimated in closed form by ordinary least 
squares or by weighted least squares, where the weights are the design weights. 

 
For the reciprocal link function model in (4), Särndal and Lundström (2008) 
approximate the model by  Uii x λρ ′≈−1 , where Uλ is defined in (5) and estimate this 
approximate model by estimating Uλ from the sample data by: 

1ˆ ( ')U i i i i ir sd x x d xλ −= ∑ ∑ . (12) 
 

Note that this estimation follows the strategy in section 4.1 and that it also assumes 
sample-based auxiliary information. 

 
4.3 Estimation of response propensities 

 
For the generalized linear model in (1), the usual estimator of the response 
propensity iρ is: 

1 ˆˆ ( ' )i ig xρ β−= , (13) 
 
where β̂ is the estimator of β obtained as discussed in the previous section.  
 
In the case of the linear probability model in (3), if β is estimated by (design-) 
weighted least squares, the implied estimator of iρ is given by:  

1ˆ '( ')OLS
i i i i i i i is sx d x x d x Rρ −= ∑ ∑ , (14) 

 
which may also be expressed as:   
 1ˆ '( ')OLS

i i i i i i is rx d x x d xρ −= ∑ ∑ . (15) 
 
In the approach of Särndal and Lundström (2008) with the reciprocal link function, iφ
is estimated by:  
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ˆ ˆ'i i Uxφ λ= , (16) 
 
where Ûλ is defined in (12), so that:  

1ˆ '( ')i i i i i i ir sx d x x d xφ −= ∑ ∑  (17) 
 
and the resulting estimator of  iρ is 1

îφ
− .

For the logit or probit link function, the estimator ˆiρ obtained from (13) must fall in 
the feasible interval [0,1].  This is not necessarily the case for either the estimator 
based on the linear probability model in (14) or the estimator 1

îφ
− of iρ based on (17). 

 
In the case of population-based auxiliary information, we note that i is d x∑ and 

'i i is d x x∑ are unbiased for iU x∑ and 'i iU x x∑ , respectively and that in large 

samples we may expect that ∑ ∑≈s U iii xxd and ∑ ∑ ′≈′
s U iiiii xxxxd . It follows 

from (15) that we may approximate ˆ OLS
iρ by: 

1'( ')OLS
i i i i i iU rx x x d xρ −= ∑ ∑% , (18)  

 
and from (17) that we may approximate îφ by: 

 1'( ')i i i i i ir Ux d x x xφ −= ∑ ∑% . (19) 
 

Expressions (18) and (19) provide estimators of the response propensity for 
respondents when ix is not available for individual non-respondents but aggregate 
population-level information  is available. The estimator in (18) requires knowledge 
of the population sums of squares and cross-products 'i iU x x∑ of the elements of ix .

If this is unknown, we can estimate  ∑ ′
s iii xxd in (15) by rewriting: 

sssis siis iii xxNxxxxdxxd ′+′−−=′ ∑∑ ))(( ,                         (20) 
 

where ∑= s is nxx / . sx can be replaced by  UX . The covariance matrix: 

))((1 ′−−= ∑−
sis siixx xxxxdNS may be replaced by the observed covariance 

matrix:                                                                
))(()( 1 ′−−= ∑∑ −

ris riiis iixxr xxxxRdRdS , (21) 
 

where ∑ ∑=
s s iiir RxRx )/()( .  The estimator in (19) only requires knowledge of the 

population total of each of the elements of ix .
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4.4 Estimation of R-indicators 
 
Let iρ̂ be an estimator of the response probability iρ , as discussed in the previous 
section. Assuming that sample-based auxiliary information is available,  iρ̂ may be 
computed for each i s∈ . An estimator of Uρ is then given by 

ˆ ˆ( ) /U i is d Nρ ρ= ∑ . (22) 
 

Alternatively, we could replace N in the denominator by is d∑ . We estimate the R-
indicator ( )R ρ by: 

 21ˆ ˆˆ( ) 1 2 ( )
1 i i UsR d

N
ρ ρ= − −

−
∑ρ (23) 

 
Again, we could replace 1N − in this expression by is d∑ .

If iρ̂ is only available for respondents ( i∈ ), as in the case of aggregated 
population-level auxiliary information described at the end of the previous section, a 
possible estimator of ( )R ρ is:  

1 21ˆ ˆˆ ˆ( ) 1 2 ( )
1r i i i rrR d

N
ρ ρ ρ−= − −

−
∑ρ

where ˆ ( ) /r ir d Nρ = ∑ . This corrects for non-response bias using 1ˆ iρ
− - weighting. The 

validity of this correction depends on the validity of the estimates iρ̂ .

We now turn to the estimation of 2 ( )Q ρ in (9). Särndal and Lundström (2008) 
propose the following estimator: 

2 1 2ˆ[ ] [ ( ) ]i i i rr rq d d φ φ−= −∑ ∑ , (24) 
 
where îφ is defined in (17) and ˆ( ) /( )r i i ir rd dφ φ= ∑ ∑ . They note that in fact φ can 
be re-expressed as ( ) /( )r i is rd dφ = ∑ ∑ .

The estimator in (24) is based only upon respondent data. However, îφ in (17) does 
depend on i is d x∑ which may not be available in the case of aggregated population 

level information. In such cases, we may replace îφ in (24) by iφ% from (19). Shlomo, 
et. al. (2008) describe bias adjustments for ˆ ( )R ρ and 2q as well as confidence 
intervals for the R-indicators.

5.   Simulation Study of the Properties of the Estimated R-indicators  
 
5.1   Design of Simulation Study 
 
In this section, we carry out simulation studies to assess the sampling properties of the 
two R-indicators: ˆ ( )R ρ defined in (23) and 2q defined in (24). The simulation study 
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is based on samples drawn from Census data from the 1995 20% Israel Census 
Sample containing 753,711 individuals aged 15 and over in 322,411 households. The 
sample design is similar to a standard household  survey  carried out at NSIs. The 
sample units are households and all persons over the age of 15 in the sampled 
households are interviewed. Typically a proxy questionnaire is used and therefore 
there is no individual non-response within the household. In this study, we assume 
that every household has an equal probability to be included in the sample.  

 
We carry out a two-step design to define response probabilities in the Census data. In 
the first step, we determine probabilities of response based on explanatory variables 
that typically lead to differential non- response based on our experiences of working 
with survey data collection. A response indicator was then generated for each unit in 
the Census from these probabilities. In the second step, we fit a logistic regression 
model, as in (2), to these Census data and thus determined a ‘true’ response 
propensity for each unit as predicted by this model fitted to the population. The 
dependent variable of the model is the response indicator and the independent 
variables of the model the explanatory variables used in the first step. This two-step 
design ensures that we have a known model generating the response propensities and 
therefore we can assess model misspecification besides the sampling properties of the 
indicators.   

 
The explanatory variables used to generate the response probabilities are Type of 
locality  (3 categories),   number of persons in household (1,2,3,4,5,6+),  children in 
the household indicator (yes, no).  Samples of size n are drawn from the Census 
population of size N at different sampling fractions 1:50, 1:100, and 1:200. For each 
sample drawn, a sample response indicator is generated from the ‘true’ population 
response probability. The overall response rate is 82%. Response propensities and R-
indicators are then estimated from the sample. 
 
5.2 Results 
 
Throughout this simulation we examine the sampling properties of the R-indicators as 
well as the impact of model misspecification on their properties. Because smaller 
sample sizes generally lead to the selection of a less complex model, we shall consider 
that misspecification is represented by a simpler model.  
 
In Table 1, we examine samples drawn at different sampling rates, estimate response 
propensities for each sample and calculate the measure  ˆ ( )R ρ (defined in (23)) for 
both sample and population based auxiliary variables.  We present results for  both  
the true model and  a less complex model. 
 
Table 1 shows that the sample based estimator ˆ ( )R ρ increases as the sample size 
increases. If the specified model is correct, there is some downward bias and this 
tends to increase  as the sample size increases. This is as expected. Sampling error 
tends to lead to overestimation of the variability of the estimated response 
propensities and this leads to underestimation of the R-indicator. The degree of 
underestimation is, however, small. Under the less complex model, estimation of 
response propensities results in a ‘smoothing’ of the propensities and hence an  
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Table 1:  Simulation Means of ˆ ( )R ρ for Sample and Population Based Auxiliary 
Variables for 500 Samples   ( ‘True’ R-Indicator = 0.8780) 
 

‘True’ Model (Number of Persons, 
Locality Type, Child Indicator) 

ˆ ( )R ρ

Less Complex Model  
(Number of Persons)  

ˆ ( )R ρ
Population Based Population Based 

Sampling 
Fraction 

Sample 
Based Covariance 

Matrix 
Known 

Covariance 
Matrix 

Unknown 

Sample 
Based Covariance 

Matrix 
Known 

Covariance 
Matrix 

Unknown 
1:200 
(n=1,612) 

0.8714 0.8251 0.8290 0.8791 0.8477 0.8456 

1:100 
(n=3,224) 

0.8741 0.8531 0.8524 0.8801 0.8684 0.8652 

1:50 
(n=6,448) 

0.8761 0.8683 0.8652 0.8810 0.8729 0.8680 

overestimation in ˆ ( )R ρ . Results of ˆ ( )R ρ with the bias correction (not shown here) 
have produced a more stabilized indicator across different sample sizes under the 
correct model, but for the less complex model with overestimation of ˆ ( )R ρ , the bias 
correction can exacerbate the overestimation. Comparing ˆ ( )R ρ when using sample 
based auxiliary variables and population based auxiliary variables, Table 1 shows that  
the R-indicator is underestimated when using population based auxiliary variables. 
The variation of response propensities is larger than the  variation under sample based 
auxiliary variables. Since we used simple random samples and assumptions of MAR,
there seems to be little difference between the two population level indicators of  
ˆ ( )R ρ based on a  known population covariance matrix and an estimated covariance 

matrix from the response set.   

In Table 2,  we examine the properties of  2q based on the variance of the estimated 
response influences. For this indicator, we expect low values to reflect good quality 
and  small non-response bias.  We compare the full set of explanatory variables in the 
model used in this simulation to a less complex model as before.  
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Table 2:  Simulation Means of 2q for Sample and Population Based Auxiliary 
Variables for 500 Samples 
 
Sampling 
Fraction 

‘True’ Model 
(Number of Persons, Locality 

Type, Child Indicator) 
 00870(2 .Q =ρ)

Less Complex   Model  
(Number of Persons) 

 
00820(2 .Q =ρ)

Sample Based Population 
Based 

Sample Based Population  
Based 

1:200 
(n=1,612) 

0.0102 0.0171 0.0092 0.0132 

1:100 
(n=3,224) 

0.0096 0.0129 0.0088 0.0109 

1:50 
(n=6,448) 

0.0089 0.0107 0.0083 0.0095 

Results from Table 2 show the decrease in 2q as the sample sizes increase. Shlomo, et 
al. (2008) discuss a  bias correction for this indicator as well. The less complex model 
produces ‘smoother’ estimated influences and hence less variation. This is expected 
since the indicator was developed to assess the effectiveness of auxiliary variables on 
bias reduction. Using population based auxiliary variables have increased the 
variation of the estimated influences.  

6.   Future Work  
 
From these initial simulations, we continue to develop theory for using population 
based auxiliary information. In particular, we will investigate an iterative  OLS 
algorithm for the estimation of iρ̂ and β̂ , and use propensity weighted totals in the 
estimation process. The final iρ̂ can also be used to calculate propensity weighted 
totals for estimating  2q . We will also examine using a GLM model instead of the 
OLS model, although we have found no departures from the expected interval of [0,1] 
using the OLS model.   
 
Other areas of work for the R-indicators are to apply bias corrections and consider the 
variances of the estimators, potential variance estimators and confidence intervals. In 
addition, we can calculate maximum bounds on the non-response bias through the use 
of these R-indicators. We will focus on more practical aspects of implementation, 
such as the choice of auxiliary variables and the specification of the model and 
compare  the quality of  surveys in various respects: subsequent surveys on the same 
topic within a country, different surveys within a country, and surveys on the same 
topic in different countries. The results of these comparisons will help to build a better 
European Statistical System. 
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