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R-INDEXES FOR THE COMPARISON OF DIFFERENT FIELDWORK 

STRATEGIES AND DATA COLLECTION MODES 

Summary: Many survey organisations focus on the response rate as being the 
quality indicator for the impact of non-response bias. As a consequence they 
implement a variety of measures to reduce non-response or to maintain 
response at some acceptable level. However, in general response rates are 
not good indicators of non-response bias. Response rates only relate to the 
accuracy of estimators and also limits the maximal impact of non-response 
under the worst case scenario. In that respect it is worthwhile to keep non-
response as small as possible. It is not true in general that higher response 
rates imply smaller non-response bias. The literature gives various 
counterexamples. 

We introduce a number of concepts and indicators to assess the similarity 
between the response and sample of a survey. Such quality indicators, which 
we call R-indexes, may serve as counterparts to survey response rates and are 
primarily directed at evaluating the non-response composition. These indexes 
may facilitate analysis of survey response over time, between various 
fieldwork strategies or data collection modes. 

We apply the R-indexes to practical examples for illustrational purposes. 
However, the main objective of this paper is to outline directions for future 
research. 

 

1. Introduction 

It is a well-developed finding in the survey methodological literature that response 
rates by themselves are poor indicators of non-response bias, see e.g. Curtin, Presser 
and Singer (2000), Groves and Heeringa (2005), Groves, Presser and Dipko (2004), 
Keeter et al. (2000), Merkle and Edelman (2002), Schouten (2004). However, the 
field has not proposed alternative indicators of non-response that may be more 
useful indicators of survey quality.  

Non-response has two main consequences for survey estimates. First, it reduces the 
sample size, i.e. it decreases the precision of the estimates. Second, it deteriorates 
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the sampling design. The inclusion probabilities that were chosen in the design do 
not longer hold as the propensity to response is not known. As a consequence non-
response may also introduce bias to the estimates. The decreased precision can be 
dealt with by an increased sample size. Without any auxiliary information about the 
sample units, not much can be done, however, about the bias that is introduced. One 
needs to assume that non-respondents are on average the same as respondents when 
it amounts to the key survey topics. In case auxiliary information can be linked from 
administrative data or in case good auxiliary population statistics are available, then 
the corresponding auxiliary variables can be used to calibrate the response to sample 
or population totals. The auxiliary information can also be employed to analyze and 
measure the impact of the non-response as we will propose. 

The survey literature contains a vast and still growing amount of analyses into non-
response error. For general overviews see Groves et al. (2002) and Stoop (2005). 
These analyses make use of auxiliary population or sample totals of demographic 
and socio-economic characteristics of households. Although response behaviour 
depends on the topic of the survey, a number of characteristics has been identified 
that relate to lower response rates. Age, type of household and degree of 
urbanisation usually have a composition in the response that is different from the 
original sample.  

With the analysis of non-response came the concept of a continuum-of-resistance, 
see e.g. Fitzgerald and Fuller (1982) and Lin and Schaffer (1995). Households are 
thought to behave along two dimensions, ease-of-contact and ease-of-participation. 
Attached to those dimensions are individual contact and response probabilities, and 
when combined overall individual response probabilities. Clearly, these probabilities 
are unknown but can be modelled using the available auxiliary information. 
Associated with the continuum-of-resistance is the level of effort of the survey 
organisation. The more effort the survey researcher invests in contacting households 
and converting reluctant respondents, the higher the response rate. It seems that the 
level of effort has increased during the past decades in order to maintain acceptable 
response rates. The level of effort represents costs and can be balanced to response 
rates, see Kalsbeek et al. (1994). One may also attempt to differentiate the level of 
effort between households to get a balanced composition of the response, see Groves 
and Heeringa (2005), Biemer and Link (2006) and Van der Grijn, Schouten and 
Cobben (2006).  

The question arises whether increased efforts, apart from a higher response rate, also 
help enhancing the response, or in other words lead to a response that is more 
‘representative’ of the sample. This has been investigated by e.g. Lynn et al (2002) 
and Stoop (2005). However, we, first, have to ask ourselves the question how we 
can assess an enhancement of response. What do we mean by representative? It is 
this question that we will focus attention on in this paper. 

We propose indicators, which we will call R-indexes (‘R’ for representativity), for 
the similarity between the response to a survey and the sample or the population 
under investigation. This similarity can be referred to as representative response. 
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However, in the literature there are many different interpretations of the concept 
representativity. See Kruskal and Mosteller (1979 a, b and c) for a thorough 
investigation of the statistical and non-statistical literature. Some authors explicitly 
define representativity. Hajèk (1981) links “representative” to the estimation of 
population parameters. Following Hajèk’s definition, calibration estimators are 
representative for the auxiliary variables that are calibrated. Bertino (2006) defines a 
so-called univariate representativeness index for continuous random variables. This 
index is a distribution free measure based on the Cramér – Von Mises statistic. 

We disconnect the concept representativity from the estimation of population 
parameters as we like to make indicators independent of the survey topics under 
investigation. By making indicators independent we hope they can be used as tools 
for comparing different surveys and surveys over time, and for a comparison of 
different data collection strategies and modes. Also, we want to define a measure 
that gives a multivariate perspective of the dissimilarity between sample and 
response. 

The R-indexes that we propose are either directly or indirectly based on estimated 
response probabilities. They differ in the way the response probabilities are 
estimated and employed. The estimation of response probabilities implies that R-
indexes themselves are random variables, and, consequently, have a precision and 
possibly a bias. The sample size of a survey, therefore, plays an important role in the 
assessment of the R-indexes as we will see. 

In order to be able to use R-indexes as tools for monitoring and comparing survey 
quality in the future, they need to have the features of a measure. That is we want the 
R-indexes to be interpretable, measurable and normalizable and also to satisfy the 
mathematical properties of a measure. Especially, the interpretation and 
normalization are no straightforward features. With this paper we have two 
objectives: 

1. Identify a number of promising R-indexes 

2. Outline the main issues for future research 

In section 2, we start with a discussion of the concept representative response. Next, 
in section 3, we pose a number of R-indexes and so-called marginal R-indexes. 
Section 4 is devoted to the features of R-indexes. Finally, section 5 contains a 
discussion and plans for future research. We refer also to Cobben and Schouten 
(2005), Heerwegh and Loosveldt (2006) and Schouten and Cobben (2006). 

2. The concept of representative response 

We, first, discuss what it means that a survey respondent pool is representative of 
the sample. Next, we make the concept representativity mathematically rigorous by 
giving a definition.  
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2.1 What does representative mean? 

Literature warns us not to single-mindedly focus on response rates as an indicator of 
survey quality, e.g. Groves (1989) or Biemer and Lyberg (2003). This can easily be 
illustrated by an example from the 1998 Dutch survey POLS (short for Permanent 
Onderzoek Leefsituatie or Integrated Survey on Household Living Conditions in 
English). 

Table 2.1.1 contains the one and two month POLS survey estimates for the 
proportion of the Dutch population that receives a form of social allowance and the 
proportion that has at least one parent that was born outside the Netherlands. Both 
variables are taken from administrative data and are artificially treated as survey 
questions. The sample proportions are also given in table 2.1.1. After one month the 
response rate was 47%, while after the full period of interview of two months the 
rate was 60%. In the 1998 POLS the first month was CAPI (Computer Assisted 
Personal Interview). Non-respondents after the first month were allocated to CATI 
(Computer Assisted Telephone Interview) in case they had a registered, land-line 
phone. Otherwise, they were allocated once more to CAPI. Hence, the second month 
of interview gave another 12% of response. However, from table 2.1.1 we can see 
that after the second month the survey estimates have a larger bias than after the first 
month.  

 

Table 2.1.1: Response means in POLS for the first month of interview and the full 
period of interview of two months. 

Variable After 1 month After 2 months Sample 
Receiving social allowance 10,5% 10,4% 12,1% 
Non-native 12,9% 12,5% 15,0% 
Response rate 47,2% 59,7% 100% 

From the example it seems clear that the increased effort led to a less representative 
response with respect to both auxiliary variables. But what do we mean by 
representative in general? 

It turns out that the term representative is often used with hesitation in the statistical 
literature. Kruskal and Mosteller (1979 a, b and c) show that it is a garbage can for a 
lot of different interpretations. They make an extensive inventory of the use of the 
word in the literature and identify nine interpretations. A number of interpretations is 
omnipresent in the statistical literature. The interpretations that Kruskal and 
Mosteller named ‘absence of selective forces’, ‘miniature of the population’, and 
‘typical or ideal cases’ relate to probability sampling, quota sampling and purposive 
sampling. In the next section we will propose a definition that corresponds to the 
‘absence of selective forces’ interpretation. First we will motivate why we make this 
choice. 

The concept of representative response is also closely related to the missing-data-
mechanisms Missing-Completely-at-Random (MCAR), Missing-at-Random (MAR) 
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and Not-Missing-at-Random (NMAR) that are often referred to in the literature, see 
Little and Rubin (2002). A missing-data-mechanism is MCAR in case the 
probability of response does not depend on the survey topic of interest. The 
mechanism is MAR if the response probability depends on observed data only, 
which is, hence, a weaker assumption than MCAR. If the probability depends on 
missing data also, than the mechanism is said to be NMAR. These mechanisms in 
fact find their origin in model-based statistical theory. Somewhat loosely translated, 
with respect to a survey topic, MCAR means that respondents are on average the 
same as non-respondents, MAR means that within known subpopulations 
respondents are on average the same as non-respondents, and NMAR is all but 
MAR. The addition of the survey topic is essential. Within one questionnaire some 
survey items can be MCAR, while other items are MAR or NMAR. Furthermore, 
the MAR assumption for one item holds for a particular stratification of the 
population. A different item may need a different stratification. 

Conforming to the missing-data-mechanisms, Hajèk (1981) lets representativity be a 
feature of a sampling design and with respect to a variable, rather than letting 
representativity be a feature of the sampling method alone. He calls the couple 
sampling method and estimator representative with respect to some variable X if the 
estimator applied to X is equal to the population parameter almost surely. This 
definition can easily be extended to surveys with non-response and it implies that a 
calibration estimator is representative in conjunction with any sampling method with 
respect to the calibration variables. One may relax Hajèk’s definition by replacing 
the almost sure equality by equality in expectation. 

From the perspective that we wish to monitor and compare the response to different 
surveys in topic or time, it is not interesting to define a representative response as 
dependent on the survey topics itself nor as dependent on the estimator used. We 
focus on the quality of data collection and not on the estimation. We, therefore, 
compare the response composition to that of the sample. Clearly, the survey topics 
influence the probability that households participate in the survey, but the influence 
cannot be measured or tested and, hence, from our perspective this influence cannot 
be the input for an assessment of response quality. We propose to judge the 
composition of response by pre-defined sets of variables that are observed external 
to the survey and can be employed for each survey under investigation. We want the 
respondent selection to be as close as possible to a ‘simple random sample of the 
survey sample’, i.e. with as little relation as possible between response and 
characteristics that distinguish units from each other. The latter can be interpreted as 
that selective forces are absent in the selection of respondents or as MCAR with 
respect to all possible survey variables. 

2.2 Definition of a representative response subset 

Let Ni ,,3,2,1 K= be the unit labels for the population. By is we denote the 0-1-

sample indicator, i.e. in case unit i is sampled it takes the value 1 and 0 otherwise. 
By ir we denote the 0-1-response indicator for unit i . If unit i is sampled and did 
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respond then 1=ir . It is 0 otherwise. The sample size is n . Finally, iπ denotes the 

first-order inclusion probability of unit i .

The key to our definitions lies in the individual response propensities. Let iρ be the 

probability that unit i responds in case it is sampled.  

The interpretation of a response propensity is not straightforward by itself. We 
follow a model-assisted approach, i.e. the only randomness is in the sample and 
response indicators. A response probability is a feature of a labelled and identifiable 
unit, a biased coin that the unit carries in a pocket so to say, and is, therefore, 
inseparable from that unit. With a little effort, however, all concepts can be 
translated to a model-based context. 

First, we give a strong definition. 

 

Definition (strong): A response subset is representative with respect to the sample if 
the response propensities iρ are the same for all units in the population 

 isrP iii ∀==== ,]1|1[ ρρ , (1) 

and if the response of a unit is independent of the response of all other units. 

 

This definition is similar to simple random sampling without replacement, except 
that the size of the response is not fixed but random. If a missing-data-mechanism 
would satisfy this definition then the mechanism would correspond to Missing-
Completely-at-Random (MCAR) with respect to all possible survey questions. 
Although the definition is appealing the validity of it can never be tested in practice. 
We have no replicates of the response of one single unit. We, therefore, also 
construct a weaker definition that can be tested in practice. 

 

Definition (weak): A response subset is representative for a categorical variable X
with H categories if  the average response propensity over the categories is 
constant 

 Hhfor
N

hN

k
hk

h
h ,,2,1,1

1

K=== ∑
=

ρρρ , (2) 

where hN is the population size of category h , hkρ is the response propensity of 

unit k in class h and summation is over all units in this category.  

 

The weak definition corresponds to a missing-data-mechanism that is MCAR with 
respect to X as MCAR states that we cannot distinguish respondents from non-
respondents based on knowledge of X .
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3. R-indexes and marginal R-indexes 

In the previous section we defined strong and weak representative response. Both 
definitions make use of individual response probabilities that are unknown in 
practice. First, we start with the situation where these probabilities are known. Next, 
from there on we base the same R-indexes on estimated response propensities. Since 
we are not only interested in overall indicators of representativity, we also discuss 
so-called marginal R-indexes. However, we will only give the basic ideas behind 
marginal R-indexes and leave this topic to future papers. The section ends with 
illustration of the R-indexes to survey datasets. 

3.1 R-indexes in case the individual response propensities are known 

We, first, consider the hypothetical situation where the individual response 
propensities are known. Clearly, in that case we can even test the strong definition 
and we simply want to measure the amount of variation in the response propensities; 
the more variation the less representative in the strong sense. Let 

/
21 ),,,(~

Nρρρρ K= be a vector of response propensities,  let 1 /)1,,1,1( K= be the 

N-vector of ones, and let ρρ ×= 10 be the vector consisting of the average 

population propensity. 

Any distance function )~,~( 21 ρρd in N]1,0[ would suffice in order to measure the 

deviation from a strong representative response by calculation of ),~( 0ρρd . Note 

that the height of the overall response does not play a role. 

A distance function or metric )~,~( 21 ρρd must satisfy three properties: 

1. 0)~,~( 21 >ρρd and 0)~,~( 21 =ρρd if and only if  21
~~ ρρ = ,

2. )~,~()~,~( 1221 ρρρρ dd = ,

3. )~,~()~,~()~,~( 233121 ρρρρρρ ddd +≤ or triangle inequality. 

The Euclidean distance is a straightforward distance function. When applied to a 
distance between ρ~ and 0ρ , this measure is proportional to the standard deviation 

of the response probabilities 

 .)(
1

1)~(
1

2∑
=

−
−

=
N

i
iN

S ρρρ (3) 

It is not difficult to show that 

 .
2
1)1()~( ≤−≤ ρρρS (4) 

The first inequality in (4) follows by letting Nρ of the propensities be equal to 1 

and all other N)1( ρ− propensities be equal to 0. This gives a maximum variation 
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of the propensities when fixing the average propensity. The second equality in (4) 
follows from taking .4/1=ρ

We want the R-index to take values on the interval [0,1] with the value 1 being 
strong representativity and the value 0 being the maximum deviation from strong 
representativity. A candidate R-index is 

 

Note that the minimum value of (5) depends on the response rate, see figure 3.1.1. 
For 5,0=ρ it has a minimum value of 0. For 0=ρ and 1=ρ , clearly, no variation 

is possible and the minimum value is 1. Paradoxically, the lower bound increases in 
case the response rate decreases from 0,5 to 0. For a low response rate there is less 
room for individual response propensities to have a large variation. 

 

Figure 3.1.1: Minimum value of R-index (5) as a function of the average response 
propensity. 

 

Instead of the standard deviation one may use the variance of the response 
propensities. This was an R-index originally proposed by Cobben and Schouten 
(2005).  

 

We will show that 1R has a close relation to the well-known 2χ -statistic that is 

often used to test independence and goodness-of-fit. Suppose that the response 
propensities are only different for classes h defined by a categorical variable X .
Let hρ and hf be, respectively, the response propensity and the population function 

of class h , i.e. 

Alternative 1: R-index based on standard deviation of response propensities 

 )~(21)~(1 ρρ SR −= . (5)

Alternative 2: R-index based on variance of response propensities 

 )~(41)~( 2
2 ρρ SR −= . (6) 
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Hhfor
N
N

f h
h ,,2,1, K== . (7) 

Hence, for all i with hX i = the response propensity is hi ρρ = .

Since the variance of the response propensities is the sum of the ‘between’ and 
‘within’ variances over classes h , and the within variances are assumed to be zero it 
holds that 

 ∑∑∑
===

−≈−
−

=−
−

=
H

h
hh

H

h
hh

H

h
hh ff

N
NN

N
S

1

2

1

2

1

22 )()(
1

)(
1

1)~( ρρρρρρρ . (8) 

The 2χ -statistic measures the distance between real and expected proportions. 

However, only for fixed marginal distributions hf and ρ it is a true distance 

function in the mathematical sense. We can apply the 2χ -statistic to X in order to 

‘measure’ the distance between the true response behaviour and the response 
behaviour that is expected in case response is independent of X . In other words we 
measure the deviation from weak representativity with respect to X .

We can rewrite the 2χ -statistic to get 

)9().~(
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1
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ρ
ρρ

ρ
ρρχ

SN

fN

NfNf

N
NN

N
NN

H

h
hh

H

h

hh
H

h

hh

H

h h

hhh
H

h h

hhh

−
−=

−
−

=
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An association measure, see e.g. Agresti (2002), that transforms the 2χ -statistic to 

the [0,1] interval is Cramèr’s V  

 ,
)1},(min{

2

−
=

RCN
V χ (10) 

where C and R are, respectively, the number of columns and rows in the 
underlying contingency table. Cramèr’s V attains a value 0 if observed proportions 
exactly match expected proportions and it’s maximum is 1. In our case the 
denominator equals N , since the response indicator has only two categories, 
response and non-response. As a consequence, (10) changes into 

 ).~(
)1(

12

ρ
ρρ

χ S
N

N
N

V
−
−== (11) 

From (11) we can see that for large N Cramèr’s V is approximately equal to the 
standard deviation of the response propensities standardized by the maximal 
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standard deviation )1( ρρ − for a fixed average response propensity ρ . It 

becomes clear from a simple example that (11) is not a distance function unless we 
fix ρ . For  

• 5,021 == ff , 9,01 =ρ and 12 =ρ ,

• 5,021 == ff , 45,01 =ρ and 55,02 =ρ ,

the standard deviation (3) is the same, but (11) is bigger in the first case. Since we 
do not want an R-index to depend on the average response probability, we work 
with either (5) or (6). 

3.2 R-indexes in practice 

In the previous section we assumed that we know the individual response 
propensities. Of course, in practice these propensities are unknown. Furthermore, in 
a survey we only have information about the response behaviour of sample units. 
We, therefore, have to find alternatives to the indicators 1R and 2R . An obvious 

way to do this, is to use response-based estimators for the individual response 
propensities and the average response propensity.  

We let iρ̂ denote an estimator for iρ that uses all or a subset of the available 

auxiliary variables. Methods that support such estimation are for instance logistic or 
probit regression models (Agresti 2002) and CHAID classification trees (Kass 

1980). By ρ̂ we denote the weighted sample average of the estimated response 

propensities, i.e. 

 ∑
=

=
N

i i

i
i

s
N 1

ˆ1ˆ
π

ρρ , (12) 

where we use the inclusion weights. 

We replace  1R and 2R by the estimators 1R̂ and 2R̂ , where iπ denotes the 

inclusion probability of unit i :

Alternative 1: The R-index based on the estimated standard deviation of the 
response propensities 

 ∑
=

−
−

−=
N

i
i

i

is
N

R
1

2
1 )ˆˆ(

1
121)~(ˆ ρρ

π
ρ . (13)

Alternative 2: The R-index based on the estimated variation of the response 
propensities 

 ∑
=

−
−

−=
N

i
i

i

is
N

R
1

2
2 )ˆˆ(

1
141)~(ˆ ρρ

π
ρ . (14)
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Note that in (13) and (14) there are in fact two estimation steps based on different 
probability mechanisms. The response propensities themselves are estimated and the 
variation in the propensities is estimated. We return to the consequences of the two 
estimation steps in section 4. 

We add a third alternative R-index that relates to measures for the proportional 
reduction of error, see e.g. Goodman and Kruskal (1979). In linear regression a 
measure that is often used is the proportion of variance explained by the model, the 

2ℜ -statistic. Analogous to this statistic so-called pseudo 2ℜ -statistics have been 
developed for categorical dependent variables. Many of them are based on the 
likelihood function. We assume that a logit or probit model is used for the 
estimation of response propensities and that inclusion probabilities are equal for all 
units. The case of unequal inclusion probabilities can be dealt with, but complicates 
the analysis. 

Let 0L be the likelihood of the ‘empty’ regression model with only an intercept and 

1L be the likelihood function of the regression model that is used to estimate 

response propensities. One of the measures that is often used, is Nagelkerke’s 

pseudo  2ℜ . It is defined as 

 
( )

2

/2
0

/2

1

0

2

1

1





















−







−

=ℜ n

n

L

L
L

. (15) 

From the perspective of representativity, we want a regression model to be unable to 
reduce the prediction error of the individual response propensity. This is a paradox, 
as in analysis one aims at the opposite. However, we want the response propensities 

to be equal, and, hence, want to find a ‘constant’ error. R-index 3R̂ , therefore, has 

the following form 

 

R-index (16) is somewhat different from the other two R-indexes in that it is not 
directly related to a distance function for the response propensities. 

The likelihoods in (15) can be written as functions of estimated response 
propensities 

 ,)ˆ1(ˆ )ˆ1(ˆ
0

ρρ ρρ −−= nnL (17) 

and 

Alternative 3: The R-index based on the proportional reduction of error 

 2
3 1)~(ˆ ℜ−=ρR (16)
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,)ˆ1(ˆ
1

)ˆ1(ˆ
1 ∏

=

−−=
H

h

n
h

n
h

hhhhL ρρ ρρ (18) 

with hρ̂ the average estimated response propensity in class h of variable X .

3.3 Marginal R-indexes 

The three indicators defined in section 3.2 give overall views. We are, however, 
especially interested in the groups in the population that relate to the perceived 
dissimilarity between the response subset and the sample. We, therefore, need 
indicators that measure dissimilarity of single auxiliary variables conditional on the 
other auxiliary variables. We call such indicators marginal R-indexes. 

We let X be an auxiliary variable, possibly but not necessarily an element of the set 
of auxiliary variables used to estimate response propensities. We restrict ourselves to 
categorical X and let X have H classes.  

We propose two marginal R-indexes: 

 

The indicator (19) is proposed by Heerwegh and Loosveldt (2006) and corresponds 
directly to the non-response bias of the proportion of the population falling in class 
h , denoted by hf . It does not account for the dependence between auxiliary 

variables. It can, however, be computed for any auxiliary variable. 

The second marginal R-index that we propose attempts to account for the 
dependence between auxiliary variables, i.e. it adjusts for dissimilarity caused by 
auxiliary variables other than the variable X under investigation.  

 

Marginal R-index 2MR  makes use of so-called centralized regression parameters. In 

logistic regression the first or last category is usually taken as the reference category. 
This choice is arbitrary. However, from the viewpoint of statistical inference it is 
good practice to take a large category as the category of reference. In our case we do 
not want to choose a reference category as we want to give a picture of all categories 
simultaneously. Hence, we want the regression parameters to be free of a reference 
category. In other words we want to centralize the parameters so that on average 

Alternative 1: Marginal R-index 1MR  for X is based on estimated deviations 
from the average response propensity of the subclasses defined by X

)1ˆ
ˆ

()~,(1 −=
ρ
ρρ h

hfhMR for Hh ,,3,2,1 K= . (19) 

Alternative 2: The marginal R-index 2MR  for X is the estimated centralized 
regression parameter for the subclasses defined by X in logistic regression 

 =)~,(2 ρhMR centralized regression parameters for category h . (20) 
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they are zero. In the appendix we describe in detail how this transformation can be 
done. Here we only give an example. 

 

Table 3.3.1: An example of the transformation of regression parameters to 
centralized regression parameters for a logistic regression model containing an 
intercept and the main effects of three covariates age, region and ethnic background 

Variable and category Regression parameter Centralized parameter 
Age   

0-34 years 0 0,05
35-54 years -0,02 0,03 

> 55 years -0,14 -0,01 
Ethic background   

Native 0 0,42 
Moroccan -0,82 -0,40 

Turkish -0,73 -0,32 
Surinam -0,28 0,14 

Dutch Antilles -0,34 0,08 
Other non-western -0,67 -0,25 

Other western -0,10 0,32 
Region   

Groningen 0 0,21 
Friesland 0,15 0,36 

Drenthe 0,11 0,32 
Overijssel 0,22 0,43 
Flevoland -0,01 0,20 

Gelderland 0,04 0,25 
Utrecht -0,26 -0,05 

Noord-Holland -0,17 0,04 
Zuid-Holland -0,19 0,02 

Zeeland 0,11 0,32 
Noord-Brabant 0,02 0,23 

Limburg 0,15 0,36 
Amsterdam -1,04 -0,83 
Rotterdam -0,72 -0,51 
Den Haag -0,81 -0,60 

Utrecht -0,96 -0,75 
Intercept 0,59 -0,10 

Suppose that response propensities are estimated using a logistic regression model 
containing an intercept and three covariates: age in three categories, region in 16 
categories and ethnic background in 7 categories. We will use the same covariates in 
section 3.4. Table 3.3.1 shows the regression parameters and the centralized 
regression parameters. 

For indicators (20) it is implicitly assumed that X is used as an explanatory variable 
in the estimation of the response propensities. If it is not, than we assume that X
does not give a significant contribution to the regression model and, hence, does not 
cause a selective response and 0)~,(2 =ρhMR for all categories. 
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3.4 Example 

We applied the proposed R-indexes and marginal R-indexes to the survey data from 
the 1998 POLS that we described in section 2.1. Recall that the survey was a 
combination of face-to-face and telephone interviewing in which the first month was 
CAPI only. The sample size was close to 40.000 and the response rate was 
approximately 60%. We linked the fieldwork administration to the sample and 
deduced for each contact attempt whether it resulted in a response. This way we can 
monitor the traces of the R-indexes during the fieldwork period. 

 

Figure 3.4.1: R-indexes for first six contact attempts in POLS 1998. 1R̂ , 2R̂ and 3R̂
are depicted as ‘*’, ‘O’ and ‘+’. 

 

For the estimation of response rates we used a logistic regression model with region, 
ethnic background and age as independent variables. Region was a classification 
with 16 categories, the 12 provinces and the four largest cities Amsterdam, 
Rotterdam, The Hague and Utrecht as separate categories. Ethnic background has 
seven categories: native, Moroccan, Turkish, Surinam, Dutch Antilles, other non-
western non-native and other western non-native. The classification is based on the 
country of birth of the parents of the selected person. The variable age has three 
categories: 0 – 34 years, 35 – 54 years, and 55 years and older. 

In figure 3.4.1 1R , 2R and 3R are plotted against the response rate for the first six 

contact attempts in POLS. The leftmost values correspond to the respondent pool 
after one attempt was made. For each additional attempt the response rate increases, 
but all three indicators show a drop in representativity. This result confirms findings 
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in Schouten (2004). The paths of R-indexes 2R and 3R are close to each other, but 

they cross each other after the first contact attempt. 

Figures 3.4.2 - 3.4.5 depict the marginal R-indexes 1MR  and 2MR  for the variables 

age and ethnic background. Marginal R-index 1MR  does not account for cross-

effects between variables, marginal R-index 2MR  does account for these effects. 

Again the marginal R-indexes are plotted for the first six contact attempts. 

Figures 3.4.2 and 3.4.3 both show that at the first attempt persons of 55 years and 
older are overrepresented, while the other two age groups are underrepresented. This 
is not a surprising result as elderly people are easier to contact. From the first to the 
fourth attempt both marginal R-indexes become gradually smaller and they almost 
disappear at the fourth attempt. The last two attempts show growing marginal R-
indexes. 

 

Figure 3.4.2: Marginal R-index 1MR  for age in three categories (<34, 35-54, >54) 
and for the first six contact attempts 
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Figure 3.4.3: Marginal R-index 2MR  for age in three categories (<34, 35-54, >54) 
and for the first six contact attempts. 
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Figure 3.4.4: Marginal R-index 1MR  for ethnic background (native, Moroccan, 
Turkish, Surinam, Dutch Antilles, other non-western, other western) and for the first 
six contact attempts. 
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Figure 3.4.5: Marginal R-index 2MR  for ethnic background (native, Moroccan, 
Turkish, Surinam, Dutch Antilles, other non-western, other western) and for the first 
six contact attempts. 
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The picture for ethnic background is different. Marginal R-index 1MR  does not 

show large changes when the number of contact attempts is increased and is rather 
constant. However, marginal R-index 2MR  leads to the conclusion that, when 

corrected for cross-effects, the marginal R-indexes become more diffuse as the 
number of contact attempts grows. Also both marginal R-indexes give different 
views to persons that are over or underrepresented. 1MR  indicates that all non-native 

groups are underrepresented, while the 2MR  shows that only Moroccans, Turkish 

and other non-western non-natives are underrepresented. These observations can be 
explained by the correction for cross-effects and by the relative small sizes of all 
non-native ethnic groups. As we are interested in the marginal impact of auxiliary 
variables, we prefer the use of  2MR .

4. Features of R-indexes 

In the previous section we identified a number of candidate indicators for 
representativity either overall or conditional on other variables. As literature shows 
there is a vast number of association measures, e.g. Goodman and Kruskal (1979). 
Association measures have a strong relation to R-indexes. Essentially, R-indexes 
attempt to measure in a multivariate setting the lack of association. In this section we 
discuss the desired features of R-indexes. 
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4.1 Features in general 

We want R-indexes to be based on a distance function or metric in the mathematical 
sense. The triangle inequality property of a distance function allows for a partial 
ordering of the variation in response propensities which enables interpretation. A 
distance function can easily be derived from any mathematical norm. In section 2 we 
chose to use the Euclidean norm as this norm is commonly used. The Euclidean 
norm led us to an R-index that uses the standard deviation of response propensities. 
Other norms like the supremum norm would lead us to alternative distance 
functions. In section 4.3 we will show, however, that the Euclidean norm based R-
indexes have interesting normalization features. 

The third R-index that we proposed in section 2 employs the likelihood functions of 
regression models and as far as we can see it is not directly related to a mathematical 
distance function for response propensities themselves. Nonetheless, it is interesting 
as it is based on an indicator for the proportion of error reduction. 

We must also make a subtle distinction between R-indexes and distance functions. 
Distance functions are symmetric while an R-index measures a deviation with 
respect to a specific point, namely the situation where all response propensities are 
equal. If we change the vector of individual propensities, then this point is in most 
cases shifted. However, if we fix the average response propensity then the distance 
function facilitates interpretation. 

Apart from a relation to a distance function, we want to be able to measure, interpret 
and normalize the R-indexes. In section 2 we already derived estimators for 
‘population’ R-indexes that are not measurable in case response propensities are 
unknown and all we have is the response to a survey. Hence, we made R-indexes 
measurable by switching to estimators. The other two features are discussed 
separately in the next two sections. 

4.2 Interpretation 

The second feature of R-indexes is the ease with which we can interpret their values 
and the concept they are measuring. We moved to estimators for R-indexes that are 
based on the samples of surveys and on estimators of individual response 
probabilities. Both have far-reaching consequences for the interpretation and 
comparison of R-indexes. 

Since the R-indexes are estimators themselves, they are also random variables. This 
means that they depend on the sample, i.e. they are potentially biased and have a 
certain accuracy. But what are they estimating? 

Let us, first, assume that the sample size is arbitrarily large so that accuracy does not 
play a role and that the selection of a model for response propensities is no issue. In 
other words, we are able to fit any model for any fixed set of auxiliary variables. 

There is a strong relation between the R-indexes and the availability and use of 
auxiliary variables. In section 2 we defined strong and weak representativity. Even 
in the case where we are able to fit any model, we are not able to estimate response 
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propensities beyond the ‘resolution’ of the available auxiliary variables. Hence, we 
can only draw conclusions about weak representativity with respect to the set of 
auxiliary variables. This implies that whenever an R-index is used, it is necessary to 
complement its value by the set of covariates that served as a grid to estimate 
individual response propensities. If R-indexes are used for comparative purposes, 
then those sets must be the same. We must add that it is not necessary that all 
auxiliary variables are indeed used for the estimation of propensities, since they may 
not add any explanatory power to the model. However, the same sets should be 
available. The R-indexes then measure a deviation from weak representativity.  

Clearly, in practice the sample size is not arbitrarily large. The sample size affects 
estimation steps, the estimation of response propensities and the estimation of the R-
index using a sample. However, the consequences are only serious for the estimation 
of the response propensities. 

If we would know the individual response propensities, then the sample-based 
estimation of R-indexes would only lead to variance and not to bias. We would be 
able to estimate population R-indexes without bias. Hence, for small sample sizes 
the estimators would have a small accuracy but this could be accounted for by using 
confidence intervals instead of merely point estimators. 

The implications for the estimation of response probabilities are, however, different 
because of model selection and model fit. There are two alternatives. Either, one 
imposes a model to estimate propensities fixing the covariates beforehand, or one 
lets the model be dependent on the significant contribution of covariates with respect 
to some predefined level. In the first case, again no bias is introduced but the 
standard error may be considerable because of over fitting. In the second case, the 
model for the estimation of response propensities depends on the size of the sample; 
the larger the sample, the more interactions that are accepted as significant. 
Although it is standard statistical practice to fit models based on a significance level, 
model selection may introduce bias and variance to the estimation of R-indexes. 
This can be easily understood by going to the extreme of a sample of say size 10. 
For such a small sample no interaction between response behaviour and auxiliary 
characteristics will be accepted, leaving an empty model and an estimated R-index 
of 1. Small samples simply do not allow for the estimation of response propensities. 
In general, a smaller sample size will, thus, lead to a more optimistic view on 
representativity. 

We should make a further subtle distinction. It is possible that for one survey a lot of 
interactions contribute to the prediction of response propensities but only very little 
each, while in another survey there is only one but strong contribution of a single 
interaction. None of the small contributions may be significant, but together they are 
as strong as the one large contribution that is significant. Hence, we would be more 
optimistic in the first example even if sample sizes would be comparable. 

The potential bias of R-indexes puts the use of these indicators for comparison of 
surveys under pressure. This is especially true, whenever different surveys have very 
different sample sizes.  
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The bias and variance of R-indexes are topics of future research. We need to be able 
to compute confidence intervals for the R-indexes and we need to be able to account 
for sample size. Here, we identify two approaches to deal with the bias of R-indexes. 
In the first approach we do fit models incorporating only significant interactions 
between response and auxiliary variables. In case a single survey is evaluated, it may 
be key to fit models to response propensities and publish the R-index together with 
the set of covariates and the sample size. Empirical validation should lead to 
knowledge about reasonable values of the R-indexes for various sample sizes. In 
case a number of surveys is compared directly, one may subsample surveys in order 
to get similar sample sizes and then fit models to all subsamples. In the second 
approach one chooses a stratification beforehand and uses this stratification to 
estimate response propensities regardless of the sample size. 

4.3 Normalization 

The third important feature is normalizability. We want to be able to attach bounds 
to an R-index so that the scale of an R-index, and, hence,  changes in the R-index get 
a meaning. Clearly, the interpretation issues that we raised in the previous section 
also strongly affect the normalization of the R-index. Therefore, in this section we 
assume the ideal situation that we can estimate response propensities without bias. 
This assumption holds for very large surveys. We discuss the normalization of R-

indexes 1R̂ and 2R̂ . Normalization of 3R̂ may be a topic of future research.  

Let Y be some variable that is measured in a survey and let ŷ be the Horvitz-

Thompson estimator for the population mean based on the survey response, i.e. 

 

∑

∑

=

== N

i i

i

N

i i

i
i

r

r
y

y

1

1ˆ

π

π
. (21) 

From the literature it is known that the non-response bias of (21) is equal to   
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the quotient of the covariance between the response propensities and Y , and the 
average response propensity. 

Now, suppose, hypothetically, that in the survey we measure the individual response 
propensities iρ . From (22) it easily follows that the bias of the Horvitz-Thompson 

for the average population response propensity ρ equals the variance of the 

response propensities divided by that same average, i.e. 

 
ρ
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2SB = . (23) 



23

This result gives a direct opportunity to normalize R-indexes 1R̂ and 2R̂ by 

bounding the bias of the average response propensity in case we would observe it. If 

α=1R̂ , then 
ρ
αρ

4
)1()ˆ(

2−=B . If β=2R̂ , then 
ρ
βρ

4
1)ˆ( −=B .

As a consequence, if we choose an upper bound for the bias of the response 
propensity itself, then we get lower bounds for the R-indexes. The lower bound 
depends on the size of the average response propensity; the higher the response rate, 
the lower the lower bounds for the R-indexes. Instead, and somewhat analogous to 
p-values in statistical tests, one may compute the response propensity bias for the 
comparison of different surveys. 

An alternative normalization is found by the inequality of Cauchy-Schwarz. This 
inequality states that the covariance between any two variables is bounded in 
absolute sense by the product of the standard deviations of the two variables. We can 
translate this to bounds for the bias (22) of an arbitrary survey variable Y

.)()~(|)ˆ(|
ρ

ρ ySSyB ≤ (24) 

If the variable of interest is the proportion of units falling in some category z, i.e. 

izY ,δ= is the 0-1-indicator function for that category, then 2/1)( ≤yS and 
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Conversely, if we demand that  
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then (26) implies that 
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and 
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From (27) and (28) we can see that again the lower bounds go up in case the 
response rate also goes up. 

Figure 4.3.1 contains lower bounds (27) and the observed R-indexes 1R̂ for the 

example of section 3.4. Two values of γ are chosen, 1,0=γ and 05,0=γ .Figure 6 

indicates that after the second contact attempt, the values of the R-index exceed the 
lower bound corresponding to 1,0=γ . However, the values never exceed the other 

lower bound that is based on 05,0=γ .
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In figure 4.3.2 the maximal absolute bias is derived from the observed R-indexes. 
After the third contact attempt the R-index converges to a value around 0.08. In 
other words, the maximal absolute bias of an estimated proportion cannot exceed 
8%. 

Figure 4.3.1: Lower bounds for R-index 1R̂ and observed values for the first six 

contact attempts of POLS 1998. Lower bounds are based on 1,0=γ and 05,0=γ .

Figure 4.3.2: Maximal absolute bias of an estimated proportion for the first six 
contact attempts of POLS 1998. 

It is important to remark that the proposed R-indexes are directed at measuring 
variation in response propensities and not at measuring non-response bias. However, 
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the proposed R-indexes lead to general bounds for the non-response bias. Although 
these bounds are very conservative, they offer an opportunity for the normalization 
of the R-indexes. 

5. Discussion and future research 

We had two main objectives in this paper: the construction of potential indicators for 
representativity and the identification of research issues for the near future. We 
proposed a number of R-indexes and marginal R-indexes and illustrated the 
indicators by application to a real data set. Furthermore, we discussed the features of 
R-indexes and their implications for the comparison of surveys. These implications 
are the main input for future research into R-indexes. 

R-indexes estimate the dissimilarity between the respondent and sample pool with 
respect to auxiliary variables that are available from other sources than the survey 
itself. We call a response to a survey representative with respect to those variables if 
we cannot distinguish the composition of the response from that of the survey in a 
statistical sense. In other words we investigate whether the response mechanism is 
similar to a simple random sample without replacement taken out of the survey 
sample. The R-indexes that we propose measure the deviation from this ideal 
situation. 

The R-indexes in this paper are promising because they can easily be computed and 
allow for interpretation and normalization in case response propensities can be 
estimated without error. The application to real survey data shows that the R-indexes 
confirm earlier analyses of the non-response composition. Other R-indexes can 
simply be constructed by choosing different distance functions between vectors of 
response propensities.  

The R-indexes and graphical displays that we showed in this paper can be computed 
using most standard statistical software packages. However, for the transformation 
of regression parameters to centralized regression parameters, an additional macro 
must be written. Hence, software packages that allow for easy programming of such 
syntax are to be favoured. 

The computation of R-indexes is sample-based and employs models for individual 
response propensities. Hence, R-indexes are random variables themselves and there 
are two estimation steps that influence their bias and variance. However, it is mostly 
the modelling of response propensities that has important implications. The 
restriction to the sample for the estimation of R-indexes, implies that those 
indicators are less accurate but this restriction does not introduce a bias. Model 
selection and model fit usually are performed by choosing a significance level and 
adding only those interactions to the model that give a significant contribution. The 
latter means that the size of the sample plays an important role in the estimation of 
response propensities. Bias may be introduced by the model selection strategy. 
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There are various obvious approaches to deal with the dependency on the size of the 
sample. One may restrain from model selection and fix a stratification beforehand. 
That way bias is avoided, but standard errors are not controlled and may be 
considerable. One may also let empirical validation be the input to develop ‘best 
practices’ for R-indexes.  

We identify the following areas for future research: 

• Search for other promising R-indexes 

• Empirical validation of the proposed (marginal) R-indexes  

• Estimators for the standard errors and confidence intervals of (marginal) R-
indexes 

• Interpretation and normalization of (marginal) R-indexes relative to sample 
size 
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Appendix: Centralized parameters in logistic regression 

Suppose that in the logistic regression there are K categorical explanatory 
variables. The number of categories of variable k we denote by km . We include an 

intercept α in the model and use the last category of each variable as the category 
of reference. Let klβ be the parameter for category l of variable k . Hence, 

0=
kkmβ by definition as the last category is the reference category. 

The logistic regression will produce estimates 

 0,ˆ,,ˆ,,0,ˆ,,ˆ,ˆ 1,11,111 1 −− KmKKm ββββα KKK

(with a zero for the last category). We want to transform these estimates in such a 
way that 

 k
km

l
kl ∀=∑
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and that the log-odds remain the same for all ∏
=

K

k
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1

cells. 

 

This can be achieved by the transformation 
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ˆ1ˆ ββ the average over the estimated parameters for variable k .

The above transformation can easily be written in matrix form, say θT with 
/

1,11,111 )0,ˆ,,ˆ,,0,ˆ,,ˆ,ˆ(
1 −−=

KmKKm ββββαθ KKK . The estimated covariance matrix Σ̂

needs to be transformed as well in case standard errors are needed. This can be done 

by /ˆ TTΣ .


	Discussion paper R-index.pdf
	1. Introduction
	2. The concept of representative response
	2.1 What does representative mean?
	2.2 Definition of a representative response subset

	3. R-indexes and marginal R-indexes
	3.1 R-indexes in case the individual response propensities are known
	3.2 R-indexes in practice
	3.3 Marginal R-indexes
	3.4 Example

	4. Features of R-indexes
	4.1 Features in general
	4.2 Interpretation
	4.3 Normalization

	5. Discussion and future research
	References
	Appendix: Centralized parameters in logistic regression




