

outline

- Measuring representativeness: R-indicators
- Monitoring representativeness during the course of the fieldwork: application of TQM
- Example: ESS3 Belgium

R-indicator

- RISQ 7th framework programme
- www.r-indicator.eu
- Response rate is weak indicator for survey quality
- Also focus on sample composition (representativity)

R-indicator

Representative response:

$$\rho_i = P(r_i = 1 \mid s_i = 1) = \overline{\rho}, \quad \forall i$$

- Basic idea: variance of response propensities
- Use auxiliary variables (age, gender, ...) to estimate response propensities

Strong & weak representativity

- Strong representativity:
 - Auxiliary variable \(\text{is capable of fully explaining} \)

 response
- Weak representativity:
 - Response set is representative with respect to available variables x1, x2, ...

Estimation of propensities

Use generalized linear model:

$$\rho_i = g^{-1}(x_i '\beta)$$

- Logit, probit or identity link
- Only for categorical data

Representativity Indicators for Survey Quality for Survey Quality

From propensities to R-indicator

Variance of propensities:

$$\hat{S}(\hat{\rho}_X) = \sqrt{\frac{1}{N-1} \sum_{s} d_i (\hat{\rho}_X(x_i) - \hat{\overline{\rho}}_X)^2}$$

R-indicator:

$$\hat{R}(\hat{\rho}_X) = 1 - 2\hat{S}(\hat{\rho}_X)$$

Value between 0 and 1

Nonresponse bias

 R-indicator can directly be related to nonresponse bias:

$$Bias(y_{dr}) \le \frac{1 - R(\rho)}{4\overline{\rho}}$$

 R-indicator can be interpreted as contrast component of nonresponse bias

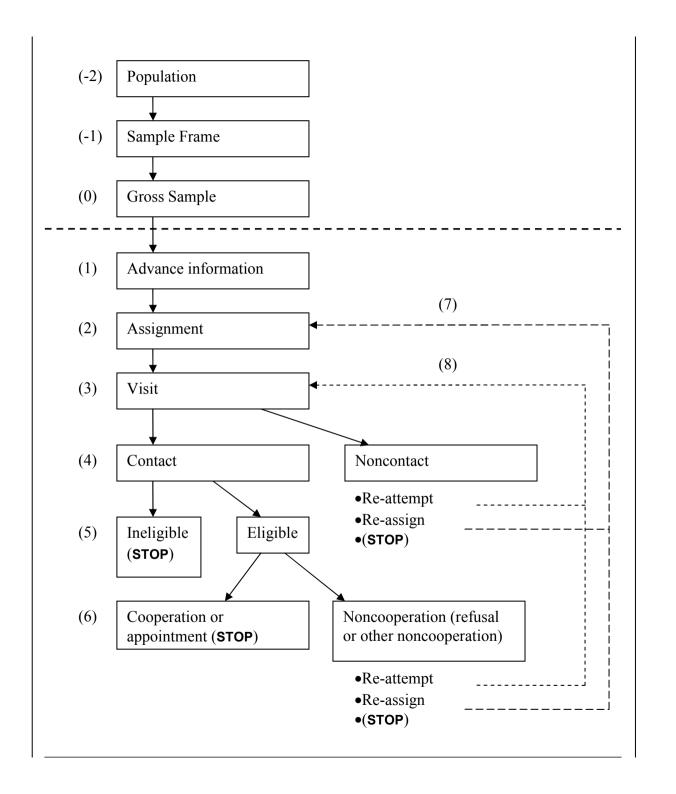
Pros & cons

Pros:

- Univariate measure
- Convenient for fieldwork monitoring
- Variance decomposition to obtain partial R-indicators (attributable to auxiliary variables & strata)

Cons:

- Dependence on auxiliary variables
- May be too complex for non-statisticians



R-indicators & monitoring

- Final quality depends on process quality (TQM)
- Importance of process data or paradata
 - Relatively new
 - Quality of paradata
 - Integrate paradata in process flow

Different variables

- Quality variables (R-indicators)
 - Measured at different subprocesses (e.g. contact representativity, eligible representativity)
- Auxiliary variables
 - Available for all sample units
 - Are constant during fieldwork
- Treatment variables
 - Under control of specific survey agent

Treatment variables

(key process variables)

Fieldwork related

More under control of fieldwork management:

- Allocation, training and briefing of interviewers
- Assignment (and replacement) of addresses to interviewers

More under control of interviewer:

- Interviewer skills
- Hold period between attempts
- Timing (morning, weekend, evening)
- Contact modes
- Number of contact attempts

intervention

R-indicators

(Critical quality characteristics)

Sample related

- Coverage R-indicator
- Sampling R-indicator
- Ineligible R-indicator
- Contact R-indicator
- Cooperation R-indicator
- Refusal R-indicator
- Other nonresponse R-indicator

calculation

Auxiliary data

Sample unit related

- Age
- Gender
- Type of dwelling
- Neighbourhood characteristics
- ..

Three kinds of propensities

- Raw response propensities
- Equal selection propensities
 - Introduce weights to correct for systematic selection of particular profiles
- Equal selection and treatment propensities
 - Introduce treatment variable to control for systematic assignment of particular profiles to particular treatment
 - Don't use treatment variables for propensities.

Three kinds of propensities

- Discrete time hazard model
 - Visits on micro-level
 - Individuals on macro-level

$$g(h(\rho_{ij})) = [\alpha_1 V_{1ij} + \alpha_2 V_{2ij} + ... + \alpha_J V_{Jij}]$$

$$+ [\beta_1 A_{1i} + \beta_2 A_{2i} + ... + \beta_P A_{Pi}]$$

$$+ [\beta_{T1} T_{1i} + \beta_{T2} T_{2i} + ... + \beta_{TP} T_{Pi}]$$

person _i	visit _i	gender	mode	response	(re)visit
1	1	M	F2F	0	1
1	2	M	TEL	1	1
1	3	M			
1	4	M			
2	1	F	F2F	1	1
2	2	F			
2	3	F			
2	4	F			
3	1	M	F2F	0	1
3	2	M	F2F	0	1
3	3	M			0
3	4	M			0
4	1	F	F2F	0	1
4	2	F	TEL	1	1
4	3	F			
4	4	F			
5	1	M	F2F	0	1
5	2	M	F2F	0	1
5	3	M	TEL	0	1
5	4	M	F2F	1	1

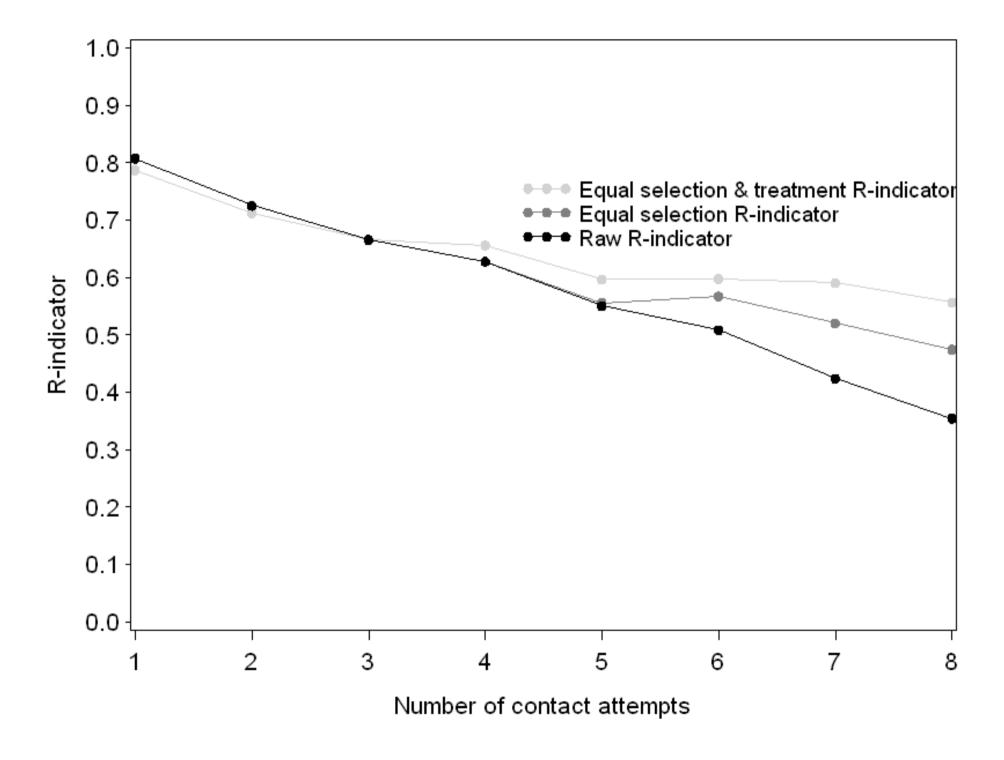
Example: ESS3 - Belgium

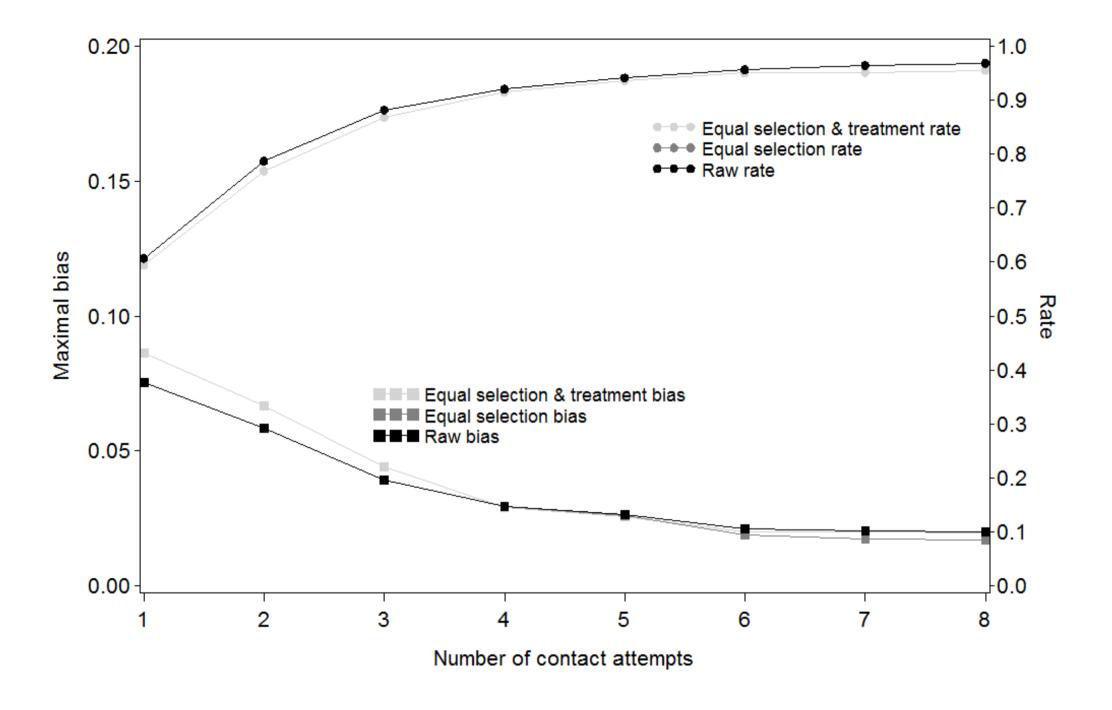
- N=3249
- Face-to-face
- Auxiliary variables:
 - Age, gender
 - Belgian regions (Flanders, Brussels, Wallonia)
 - Population density, average income, % foreigners
 - Type of dwelling, neighbourhood conditions

Example: ESS3 - Belgium

Treatment variables

- Interviewer skills (contact skills, persuasive skills)
- Mode of contact
- Elapsed time between visits
- Daily period (morning, afternoon, evening)
- Day of the week
- New interviewer
- Number of attempts
- Quality of process data!





Example: ESS3 - Belgium

- Contact representativity
 - As a function of number of contact attempt

Example: ESS3 - Belgium

- Noncontact become more atypical as contact rates increases
 - Reinforces by systematic selection
 - Also reinforced by systematic treatment
- Fieldwork seems to have prioritised the most promising cases

Partial indicators – equal treatment

Age		Non-Belgians in are	a
Age < 20	0,04	<2%	0,12
Age 21-40	-0,01	2-5%	0,08
Age 41-60	-0,03	5-15%	-0,05
Age >60	0,03	>15%	-0,15
Gender		Anual Income in are	а
Female	0,05	<12.000 €	-0,08
Male	-0,06	12.000-14.000 €	-0,01
		14.000-16.000 €	0,12
Region		>16.000 €	-0,09
Flanders	0,11		
Brussels	-0,15	Dwelling	
Wallonia	-0,06	No apartment	0,15
		Apartment	-0,31
Population density			
≤200 inh./km²	0,06	Neighbourhood qua	lity
201-400 inh./km ²	0,07	Poor	-0,18
401-700 inh./km²	0,10	Good	0,09
701-2500 inh./km ²	-0,08	Excellent	0,04
>2501 inh./km²	-0,16		

Conclusions

- R-indicator useful instrument for fieldwork monitoring
 - Variance function
 - Decomposition into partial R-indicators
- Fieldwork monitoring focuses on treatment variable
 - Can be used for simulation
- Still rather complex activity
 - Need massive amount of data
 - Paradata quality is an issue