

Representativity Indicators for Survey Quality

R-indicators and fieldwork monitoring

Koen Beullens & Geert Loosveldt K.U.Leuven

Outline

- Basic ingredients for R-indicators
- Basic ingredients for fieldwork monitoring using R-indicators
- R-indicators in action: sample unit re-selection for additional fieldwork efforts
 - Three selection strategies
 - Simple example
 - ESS3 Belgium

Basic ingredients for R-indicators

- 0 1 response indicator
- Auxiliary variables, usually (non)respondent related
- Determine response propensities ρ_i
- Determine $S(\rho)$ and R-indicator (and maximal absolute bias)
- E.g. ESS3 Belgium
 - Response rate: 0.62 (ineligibles excluded)
 - R-indicator: 0.79
 - Maximal absolute bias: 0.17
 - Auxiliary variables include age, gender, type and condition of dwelling and several indicators on municipality level
- But: only a result of a process

Basic ingredients for fieldwork monitoring using Rindicators

- We need to look inside the fieldwork process
- Fieldwork process is layered:
 - Making contact

•

- Assess eligibility
- Is target person able / available?
- Is target person willing to cooperate?
- During these fieldwork phases, many decisions have been made by fieldwork management and interviewers (=treatment variables)
 - Selection, training, allocation and remuneration of interviewers
 - Timing and modes of contact attempts
 - <u>Re-selection of sample units for renewed attempts</u>

Example flowchart of fieldwork ESS3 - Belgium

▶**RISQ**

Basic ingredients for fieldwork monitoring using Rindicators

- Flowchart inspires to deconstruct the fieldwork into basic building stones
 - Sub-processes
 - Treatment variables
 - Necessity of paradata
- Fieldwork can be monitored / evaluated
 - How did the combination of treatment variables affect the quality of the obtained sample?
 - During / at the end of process
- Inspire future quality improvements
 - During the current fieldwork (adaptive design)
 - For the next survey

R-indicators in action: sample unit re-selection for additional fieldwork efforts

- Renewed contact attempt require substantial efforts, usually at lower success rates
- Not all cases are reissued
- Who should be re-selected in order to improve sample quality
 - Random selection among initial nonrespondents
 - Selection of high propensity cases
 - Selection of low propensity cases
- Two applications:
 - Simple imaginary example
 - Real application: ESS3 Belgium

- Suppose a sample of n=10.000 cases
- Auxiliary variable X (mean = 0, stdev = 1)
- Every unit *i* has been attempted once
- Initial response propensities are determined by:

$$ln\left(\frac{response=1}{response=0}\right) = 0 + 0.5x$$

- Sample quality after initial attempt:
 - Response rate = 50%
 - R-indicator = 0.77
 - Maximal absolute bias = 0.23

- Of the 5.000 nonrespondents, 2.500 can be reissued
- For each nonresponding unit *i* we have an expectation about the conversion success, based on the initial attempt

• We assume:

$$ln\left(\frac{conversion = 1}{conversion = 0}\right) = -1 + 0.5x$$

Expectations about effect of purposive re-selection

Propensity selection	Response rate	R-indicator
Low	+	++
Random	++	?
High	+++	

After 50 replications

	Initial	High	Random	Low
Response rate	0.5012	0.5841 🙂	0.5646	0.5424 😕
R-indicator	0.7674	0.6575 😕	0.7540	0.8466 😊
Maximal absolute bias	0.2321	0.2932 😕	0.2178	0.1414 🕲

- Variety of quality arrangements, depending on the selection strategy.
- Low propensity selection → best return on investment
 - Less effort for same quality
 - Better quality for same effort
- Conditions
 - Auxiliary variables should be a good approximation of κ
 - Prior knowledge of auxiliary variables
 - Caution: low propensity selection can lead to inverse effects

Empirical validation: ESS3 - BE

- 2927 eligible cases
- Auxiliary information, known after the first contact attempt:
 - Age, gender, type of dwelling, housing conditions
 - Information on municipality level: average income, population density, percentage of foreigners
- Display evolution of sample quality as a function of total number of contact attempts (efforts)
- Then simulate according to three selection strategies
 - Propensities determined after first attempt
 - All other fieldwork conditions constant

Evolution of final (non)response, R-indicator and maximal absolute bias

Evolution of final (non)response, R-indicator and maximal absolute bias + random re-selection simulations

number of contact attempts

Evolution of final (non)response, R-indicator and maximal absolute bias + low propensity re-selection simulations

number of contact attempts

Evolution of final (non)response, R-indicator and maximal absolute bias + high propensity re-selection simulations

number of contact attempts

Empirical validation: ESS3 - BE

- Purposive selection can be cost-efficient, when selecting low propensity cases
 - Less efforts or
 - Better quality
- Part of the efforts that are saved can be invested in the collection of more auxiliary variables
 - Area information
 - Ask the neighbours
 - Google streetview
 - ...
 - Privacy restrictions!!!

Empirical validation: ESS3 - BE

- It is possible to disentangle contact and cooperation and evaluate both processes separately
 - Contact: until decision to cooperate / refuse
 - Cooperation: decision to cooperate / refuse
- Comparing low propensity selection to observed evolution
 - Both processes seem to leave some space for quality improvement
 - Particularly cooperation / refusal

Evolution of final (non)contact, R-indicator and maximal absolute bias + low propensity re-selection simulations

number of contact attempts

Evolution of final (non)cooperation, R-indicator and maximal absolute bias + low propensity re-selection simulations

▶**RISQ**

Fieldwork monitoring – concluding remarks

- R-indicator facilitates fieldwork monitoring
 - R-indicator is single-value
 - Response propensity is summary of multivariate distribution
- R-indicator inspires fieldwork improvement and efficiency
 - May save a lot of redundant efforts
 - Invest efforts in good auxiliary information
- Fieldwork monitoring as such is very complex process
 - Requires complex models
 - Requires good paradata

