The 'history' of the R-indicator

Jelke Bethlehem Fannie Cobben Barry Schouten

르

First RISQ-meeting, 7-8 April 200

In this presentation...

Statistics Netherlands

Research programme

R-indicators; theoretical background

R-indicators in practice

Discussion and future research

Primary data collection

Data collection modes:

- Face-to-face (CAPI)
- Telephone (CATI)
- Web
- Paper
- All surveys based on probability samples from municipality registers
- Registered land-line phone numbers are linked from commercial databases (70% coverage)
- Web data collection only in pilot studies using letters + logins to secured website (80% coverage)
 At present no household survey employs a mixedmode design

Secondary data collection

Statistics Netherlands Act: By law 'allowed' to use government registers and administrative data as input to the production of statistics

Examples:

먙

Municipality registers (Population register)
 Tax Board registers on wages, VAT, profits, incomes

Registers for various goverment allowances

Register on value of real estate

Population register functions as backbone to both probability samples and other government registers

Strategic Programme Nonresponse, Difficult Groups and Mixed-mode

Research projects:

- 1. Nonresponse reduction
- 2. Nonresponse adjustment
- 3. Difficult groups
- 4. Mixed-mode data collection

Response enhancement

Differentiated data collection protocols
 Responsive/adaptive designs

Indicators for representative response (R-indicators)

Indicators as tools to:
compare surveys in time
compare different data collection strategies
monitor and control data collection

Consequence: Focus on response behavior, i.e. independent of survey items.

Important: Auxiliary information and paradata are crucial to any indicator. An indicator must always be published together with the available external information.

Representativity; what?

Stoop (2005):

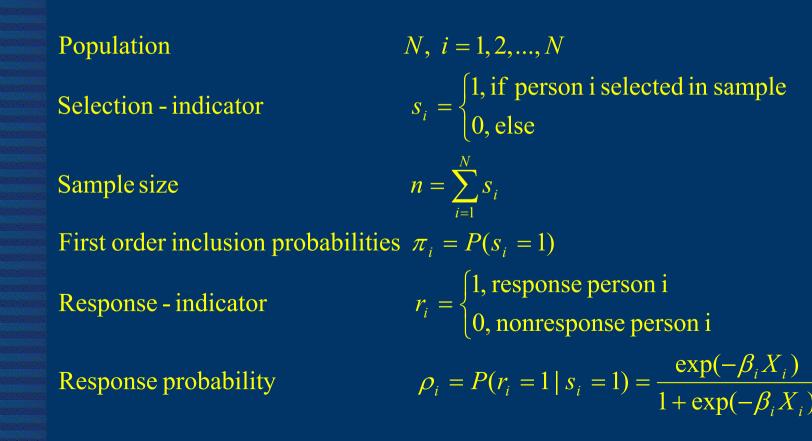
> There is no such thing as a representative sample

Schnell (1997):

'Representative sampling' is an immeasurable, nonscientific concept, without any specific meaning

Kruskal en Mosteller (1979):

- > 9 definitions of representativity
- Recommendation: do not use the word 'representative', but specify what you mean by it


R-indicators: Definition and Concept

Definition (strong): A response subset is representative with respect to the sample if the response propensities are the same for all units in the population and if the response of a unit is independent of the response of all other units.

Definition (weak): A response subset is representative for a categorical variable X if the average response propensity over the categories of X is constant.

Notation

Response propabilities:

R-indicators – Example

Variation of response propensities in population

$$R(\widetilde{\rho}) = 1 - 2\sqrt{\frac{1}{N-1}\sum_{i=1}^{N}(\rho_i - \overline{\rho})^2}$$

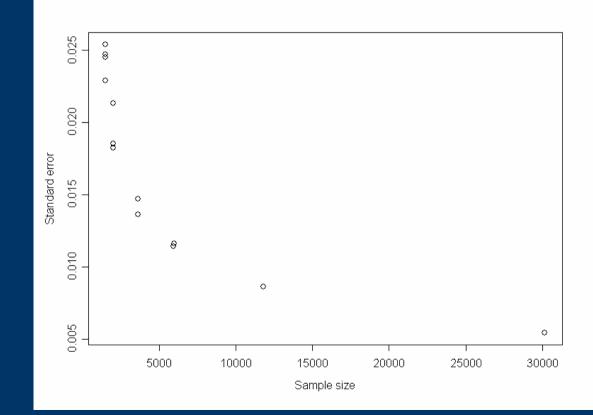
Estimated variation of response propensities

$$\hat{R}(\tilde{\rho}) = 1 - 2\sqrt{\frac{1}{N-1} \sum_{i=1}^{N} \frac{S_i}{\pi_i} (\rho_i - \overline{\rho}_{HT})^2}$$

Estimated variation of estimated response propensities

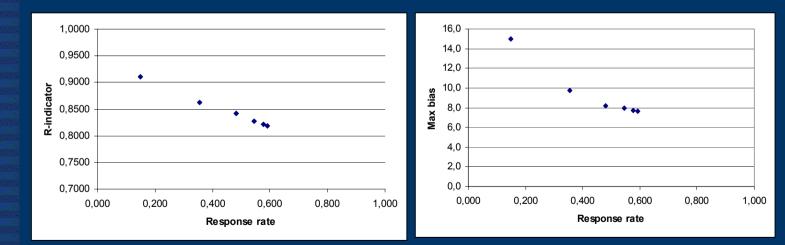
$$\hat{R}(\hat{\tilde{\rho}}) = 1 - 2\sqrt{\frac{1}{N-1}\sum_{i=1}^{N}\frac{s_i}{\pi_i}(\hat{\rho}_i - \hat{\bar{\rho}}_{HT})^2}$$

R-indicators – Features


Interpretation: Dependence on X's and n Normalization of R-indicators: Relate to non-response bias an RMSE under worst case scenario

$$|B(\hat{\bar{y}}_{HT})| \leq \frac{S(\tilde{\rho})S(y)}{\hat{\bar{\rho}}} \leq \frac{S(y)(1-R(\tilde{\rho}))}{2\hat{\bar{\rho}}}$$
$$R(\tilde{\rho}) \geq 1 - 2\frac{\hat{\bar{\rho}}\gamma}{S(y)}$$

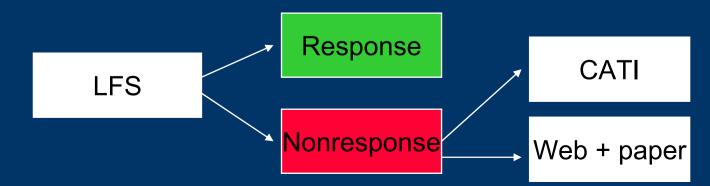
$$RMSE(\hat{\bar{y}}_{HT}) = \sqrt{B^2(\hat{\bar{y}}_{HT}) + Var(\hat{\bar{y}}_{HT})}$$
$$\leq \sqrt{B^2(\hat{\bar{y}}_{HT}) + (1 - \frac{n\overline{\rho}}{N})\frac{S^2(y)}{n\overline{\rho}}}$$


$$R(\widetilde{\rho}) \ge 1 - \frac{2\overline{\widetilde{\rho}}}{S(y)} \sqrt{\gamma^2 - (1 - \frac{n\overline{\widetilde{\rho}}}{N})} \frac{1}{4n\overline{\widetilde{\rho}}}$$

R-indicators – Features

Example – Contact Attempts

Survey POLS 1998, sample size n = 35.893 CAPI in first month, CATI in second month *X*= *Age, ethnic group, region*



Example: Call Back & Basic Question

Survey LFS July – October 2005 Call-back approach (Hurwitz 1949)

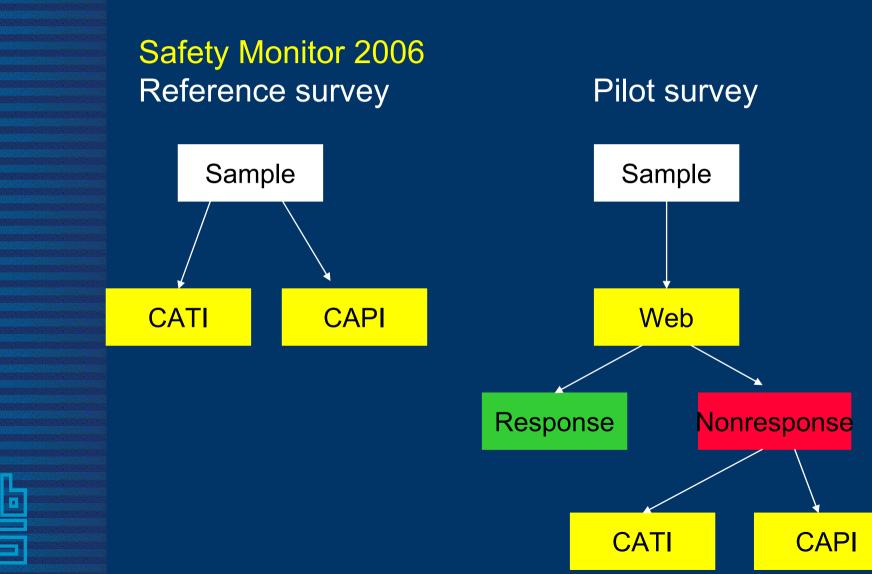
- Selection of best performing interviewers
- Additional training of interviewers
- Incentives
- Paper summaries of household characteristics

Basic-question approach (Kersten & Bethlehem 198 Condensed questionnaires in CATI, paper, web

Example: Call Back & Basic Questio

LFS n=18.076, CBA n=785

X=phone, region, ethnic group, household type, urbanity

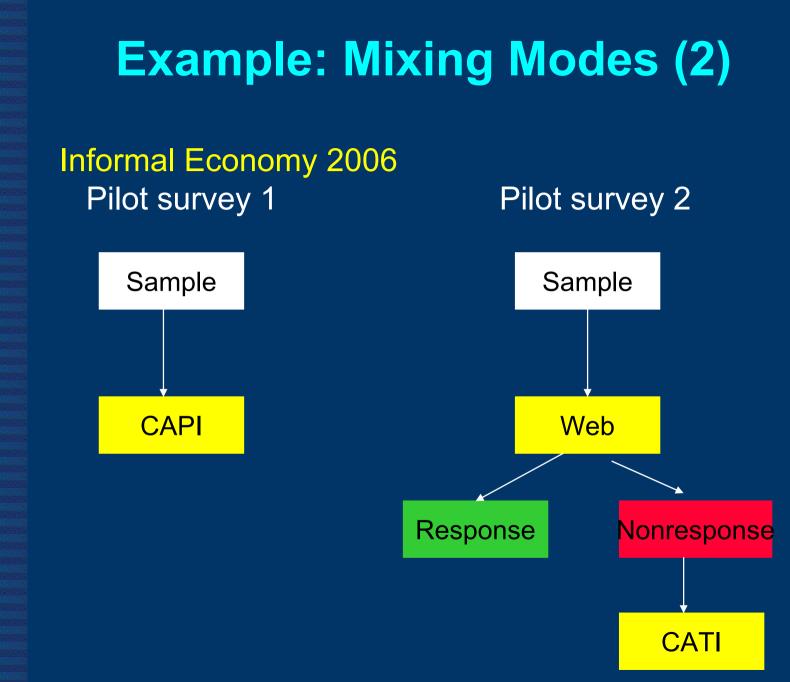

	Response	R-indicator	Max bias
LFS	62,2%	80,1%	8,0%
LFS + CBA	76,9%	85,1%	4,8%

LFS n=18.076, BQA n=942

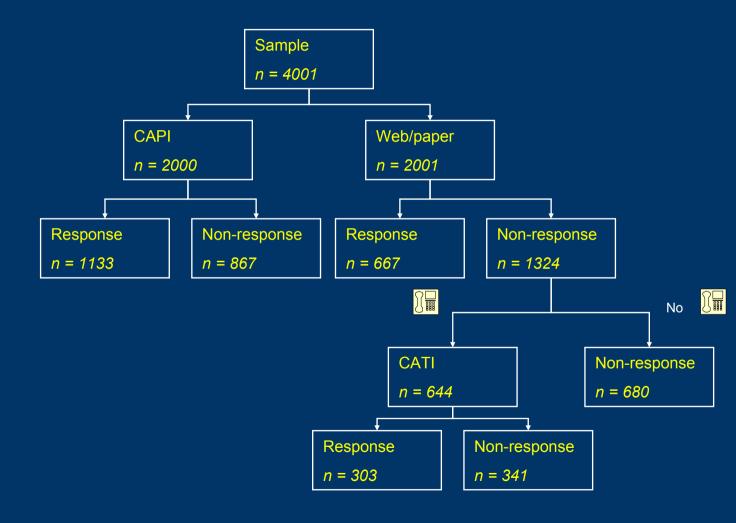
X=household type, urbanity, age, gender, job, allowance

	Response	R-indicator	Max bias
LFS	62,2%	80,1%	8,0%
LFS, phone	68,5%	86,3%	5,1%
LFS + CBA	75,6%	78,0%	7,3%
LFS + CBA, phone	83,0%	87,5%	3,8%

Example: Mixing Modes (1)



Example: Mixing Modes (1)


Safety Monitor 2006 X=urbanity, household type, ethnic group, age

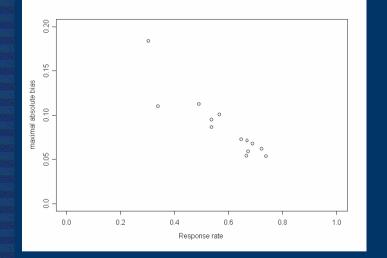
	n	Response	R-indicator	Max bias
Reference	30.139	68,9%	81,4%	6,8%
Pilot, web	3.615	30,2%	77,8%	18,4%
Pilot, total	3.615	64,7%	81,2%	7,3%

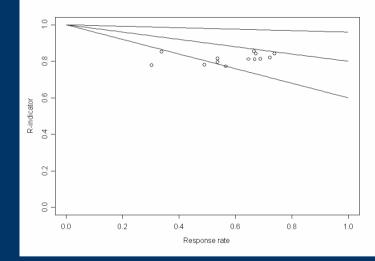
Pilot Informal Economy 2006

Example: Mixing Modes (2)

Informal Economy 2006 X= urbanity, household type, ethnic group, age

	n	Response	R-indicator	Max bias
CAPI	2.000	56,7%	77,2%	10,1%
Web	2.001	33,8%	85,1%	11,0%
Web + CATI	2.001	49,0%	78,0%	11,2%


Example: Incentives


Survey LFS 2005 Incentives: 1) no stamps, 2) 5 stamps , and 3) 10 stamps

X= urbanity, average house value, ethnic group, size of household

	n	Response	R-indicator	Max bias
No	11.774	66,6%	85,5%	5,4%
5	5.906	72,2%	82,1%	6,2%
10	5.982	73,8%	84,2%	5,4%

Example: Maximal bias

Discussion & future research

Can we ignore survey items?

Are there alternative R-indicators?

- Can R-indicators be tools in monitoring or even controlling survey data collection?
- Can R-indicators help in comparing different surveys (possibly over time)?

How to interpret the values of R-indicators?

Discussion & future research

Short term:

Extend theory to situation where only population

totals are available

Construction of R-indicator confidence intervals

Longer term:
RISQ
Responsive designs

