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Indicators for representative response based on population totals 

1. Introduction 
The RISQ (Representativity Indicators for Survey Quality) project, funded by the European 
7th Framework Programme, is a joint effort of the NSI’s of Norway, The Netherlands and 
Slovenia, and the Universities of Leuven and Southampton to develop quality indicators for 
survey response. These indicators may serve three goals (Bethlehem and Schouten 2008): to 
enable the comparison of different surveys or of a single survey in time, to assist in 
monitoring survey data collection, and most ambitiously to guide survey data collection. 
Indicators may also be of help in monitoring and evaluating the completion of a register. The 
application to registers is especially useful when registers have a time lag and fill gradually in 
time. 
 
RISQ deliverable 2.1, Shlomo et al (2009), is devoted to the construction of indicators for 
representativity indicators, or R-indicators, and the evaluation of their statistical properties. 
They assume that the survey sample is available and can be linked to a set of external data 
sources like registers and administrative data. The variables from these data sources are 
known for both respondents and non-respondents to the survey, and function as auxiliary 
variables for the prediction of response behaviour. Shlomo et al (2009) propose two 
indicators; an indicator based on the variation in estimated response propensities and an 
indicator based on the variation in adjustment weights. The second indicator is based on work 
by Särndal and Lundström (2008). Both indicators are biased and have standard errors. In the 
paper analytic approximations to the bias and standard errors are given. 
 
RISQ deliverable 3, Schouten et al (2009), applies the R-indicator based on the variation of 
response propensities, to a number of simulated and real data sets. The sample sizes and sets 
of auxiliary variables are varied in order to assess the dependence on the survey size and 
response model. Schouten et al (2009) conclude that it is imperative that R-indicator values 
are accompanied by the set of auxiliary variables and by confidence intervals. Confidence 
intervals can be rather wide for small samples but the size of these intervals is only mildly 
affected by the number of variables selected in the response models. 
 
During the RISQ project it was recognized that the presumption of linked survey samples is in 
many settings not a valid one. While national statistical institutes often do have access to a 
number of government registrations, university and market researchers usually do not. For 
indicators to become useful for these researchers, they must be based on different forms of 
auxiliary information. The only form of auxiliary information that is generally accessible are 
the sets of statistics produced by the national statistical institutes. These institutes disseminate 
tables about a wide range of population statistics. This paper is about R-indicators that are 
based completely on such population statistics and that can be computed without any 
knowledge about the non-respondents. We do, however, assume that the survey questionnaire 
contains the questions that correspond to the population characteristics employed in the 
assessment of the representativity of survey response. 
 
We adapt the two indicators developed in Shlomo et al (2009) to population tables and 
population counts. We replace sample covariances and sample means by population 
covariances and population means. We will call the resulting indicators population-based R-
indicators. To our knowledge there is no record in the literature about models for response 
propensities that employ population information only. In this respect the current paper is 
innovative and may be applicable to other statistical areas as well. As a consequence, 
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however, we feel this paper is just a first start. More research is likely to be necessary in order 
to refine estimators and estimation strategies. 
 
Population-based R-indicators allow for weaker conclusions about the nature of response than 
their counterparts, the sample-based R-indicators. The population-based R-indicators will in 
general have a larger bias as they cannot completely discern sampling variation from response 
variation. Consequently it must be remarked that population-based indicators will not be very 
useful for small surveys. Nevertheless, the indicators may be helpful for large surveys. 
 
In this paper, we propose a generic approach to the use of population statistics and will not 
discuss or investigate the quality of the survey questions and the population information 
themselves. However, there is an imminent risk of measurement errors when comparing the 
representativeness of survey questions to population statistics. It must be ascertained that the 
survey questions that are employed have the same definitions and classifications as the 
population tables. Furthermore, it is best to avoid questions that are prone to measurement 
errors, like questions that require a strong cognitive effort or that may lead to socially 
desirable answers. Finally, it is strongly recommendable to use population statistics that are 
based on registrations or administrative data. The population-based R-indicators can be used 
for population statistics that are based on survey, but these statistics may be biased themselves 
and may not reflect the true population distribution accurately. One would draw erroneous 
conclusions about the representativeness of the response when the population statistics are 
biased. 
 
We apply the proposed population-based indicators to various country data sets. The data sets 
are documented in RISQ deliverable 1 (RISQ 2008). For comparison we also compute the 
sample-base R-indicators. 
 
With the simulated data sets and the survey data sets we investigate three research questions: 

• How to extend sample-based R-indicators to population-based R-indicators? 
• What are the statistical properties of population-based R-indicators? 
• Are the population-based R-indicators practicable in real survey settings? 

 
In section 2 we briefly refresh the definitions and methodology behind R-indicators. In 
section 3 we then move to the estimation of R-indicators, i.e. the sample-based estimators and 
their population-based analogues. In section 4 we describe the data sets from the various 
countries that participate in RISQ. In section 5, we give an overview of the application of 
sample-based and population-based indicators to simulated and real data sets. In section 6 we 
end with a discussion. 
 

2. R-indicators  
 
In this section we briefly repeat the definition and concepts of R-indicators. Details can be 
found in Shlomo et al (2009). 

2.1 General notation 
 
We suppose that a sample survey is undertaken, where a sample s is selected from a finite 
population U . The sizes of s and U are denoted n and N , respectively. The units in U are 
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labelled 1,2, ,i N= K . The sample is assumed to be drawn by a probability sampling design 
(.)p , where the sample s is selected with probability ( )p s . The first order inclusion 

probability of unit i is denoted iπ and 1−= iid π is the design weight.  In some cases, we shall 
assume simple random sampling without replacement.  

 
We suppose that the survey is subject to unit non-response. The set of responding units is 
denoted . Thus, we have r s U⊂ ⊂ . We denote summation over the respondents,  sample 
and population by rΣ , sΣ and UΣ , respectively.  We let  iR be the response indicator variable 
so that 1iR = if unit i responds and 0iR = , otherwise. Hence, { ; 1}ir i s R= ∈ = . We shall 
suppose that the typical target of inference is a population mean 1

iUY N y−= ∑ of a survey 
variable, taking value iy for unit i .

We suppose that the data available for estimation purposes consists first of the values 
{ ; }iy i r∈ of the survey variable, observed only for respondents. Secondly, we suppose that 
information is available on the values of T

iKiii xxxx ),,,( ,,2,1 K= , a vector of auxiliary 
variables. We shall usually suppose each ,k ix is a binary indicator variable, where ix
represents one or more categorical variables, since this will be the case in the applications we 
consider, but our presentation allows for general ,k ix values.  We assume that values of ix are 
observed for all respondents.  
 
We distinguish two settings. One in which ix is known for all sample units, i.e. for both 
respondents and non-respondents, and one in which ix is known only at the aggregate level, 
i.e. the population total∑U ix and/or the population cross-products ∑U

T
ii xx . We refer to the 

two types of information as sample-based auxiliary information and aggregate population-
based auxiliary information. The first setting appears if the variables making up ix are 
available on a register. However, in many countries and surveys the availability of auxiliary 
information on non-respondents may be very limited, e.g. because of the absence of a register. 
In those cases the second setting holds. 
 

2.2 Response propensities and response influences 
 
We define the response propensity as a conditional expectation of the response indicator 
variable iR given the values of specified variables and survey conditions (Little, 1986, 1988): 

( ) ( | )X i i ix E R xρ = , where the vector of auxiliary variables is defined as in section 2.1.  For 
simplicity, we shall write ( )i X ixρ ρ= and hence denote the response propensity just by iρ . A
detailed discussion of the notion of response propensities and their properties is presented in 
Shlomo, et al. (2009). In this discussion it was argued that it is desirable to select the auxiliary 
variables constituting ix in such a way that the missing at random, denoted MAR (Little and 
Rubin, 2002) holds as closely as possible and that our definition of  ( )i X ixρ ρ= relates to a 
specific choice of auxiliary variables ix . A different choice would generally result in a 
different iρ . We note also that we define the response propensity conditional on the survey 
conditions that apply when the data are collected in order to be able to compare the 



5

representativeness of different surveys. Following Särndal and Lundström (2008), we refer to 
1

iρ
− as the response influence and denote it iφ .

2.3 R-indicators 
 
Let 1 2( , ,..., ) 'Nρ ρ ρ=ρ denote the vector of response propensities in the population. The 
representativity of the response mechanism may be measured by the variation between the iρ
and in particular by the standard deviation of the response propensities given by:  

 
21( ) ( )

1 i UUS
N

ρ ρ= −
−
∑ρ , (1) 

 

where     /U iU Nρ ρ=∑ . It may be shown that: 1( ) (1 )
2U US ρ ρ≤ − ≤ρ . Hence, 

transforming ( )S ρ to:  
 

( ) 1 2 ( )R S= −ρ ρ (2) 

ensures that 0 ( ) 1R≤ ≤ρ and, as discussed by Schouten et al. (2009), ( )R ρ defines an R-
indicator which takes values on the interval [0,1] with the value 1 indicating the most 
representative response, where the iρ display no variation, and the value 0 indicating the least 
representative response, where the iρ display maximum variation. 
 
The rationale behind the R-indicator defined by (2) is the following definition of 
representative response. 
 
Definition: The response to a survey is representative with respect to X when the response 
propensity function )(xXρ is constant in x .

It can easily be shown that the standard deviation of response propensities corresponds to the 
Euclidean distance function which is a natural choice in measuring deviations from 
representative response. 
 

)(ρR can be related to the maximal absolute non-response bias of the response mean of any 
target variable Y . Shlomo et al (2009) show that 
 

Y

Y

Y

Y

Y

Y
r

RYSSYSY
yB

ρ
ρ

ρ
ρ

ρ
ρ

2
))(1)(()()(),cov(

|)ˆ(|
−

=≤= . (3) 

 
The upper bound in (3) is unknown, but we may use as a surrogate  
 

X

XRYS
ρ

ρ
2

))(1)(( − (4) 

 
and divide by )(YS to make it independent of any specific Y .



6

Särndal and Lundström (2008) define the following measure for the selection of weighting 
variables in calibration: 

 
2 1 2( ) [ ] [ ( ) ]i i Ui UU UQ ρρ ρ φ φ−= −∑ ∑ρ (5) 

 
where Uρφ is the iρ - weighted mean of the Uiφ given by 

 
1( ) ( )U i i UiU Uρφ ρ ρ φ−= ∑ ∑ . (6) 

 
This measure is, as Särndal and Lundström argue, the proportion of the relative nearbias (see 
Särndal and Lundström 2005) that is independent of survey target variables. Measure (5) is 
large whenever a candidate variable leads to strongly deviating calibration weights. Although 
the original motivation and objective of the measure is different, we regard it as a candidate 
R-indicator. 
 
This quantity is a weighted variance of the approximate response influences. We may expect 
its magnitude to be inversely related to the magnitude of  ( )R ρ . Thus, in very rough terms, we 
expect ( )R ρ to decrease and 2 ( )Q ρ to increase as the variability of the iρ increases. 
 

3. The estimation of R-indicators based on population totals 
 

3.1 Sample-based R-indicators 
 
Let us for the moment assume we have estimators iρ̂ and  iφ̂ of the response probability iρ
and the response influence iφ , respectively, based on sample-based auxiliary information. iρ̂

and iφ̂ may be computed for each i s∈ .

We first look at the estimation of indicator )(ρR . An estimator of Uρ is given by 
 

ˆ ˆ( ) /U i is d Nρ ρ= ∑ , (7) 
 
and we estimate ( )R ρ by 
 

21ˆ ˆˆ( ) 1 2 ( )
1 i i UsR d

N
ρ ρ= − −

−
∑ρ . (8) 

 
In (7) and (8) we could replace N by is d∑ . Hence, the estimated R-indicator is based on the 
design-weighted sample variance of estimated response propensities. 
 

Next we turn to the estimation of 2 ( )Q ρ in (5). Särndal and Lundström (2008) propose the 
following estimator: 
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2 1 2ˆ[ ] [ ( ) ]i i i rr rq d d φ φ−= −∑ ∑ , (9) 
 
where ˆ( ) /( )r i i ir rd dφ φ= ∑ ∑ . In words, we estimate the indicator by the design-weighted 
response variance of estimated response influences. φ can be re-expressed as  
 

( ) /( )r i is rd dφ = ∑ ∑ . (10) 
 

In the sample-based setting, the response propensities and influences may be modelled by 
generalized linear models. Shlomo et al (2009) use a logistic link function for the response 
propensities and a reciprocal link function for the response influences. Schouten et al (2009) 
compare logistic and identity link functions for the response propensities. They conclude that 
the resulting R-indicators depend only very mildly on the type of link function. 
 
In section 4 we will show that it is straightforward to extend the identity link function to the 
population-based setting. We, therefore, restrict ourselves to the identity link function for the 
sample-based R-indicators. The identity link function leads to the ‘linear probability model’ 

 
'i ixρ β= . (11) 

 
Following Särndal and Lundström (2008) we employ the reciprocal link function  
 

λφρ '1
iii x=≡− . (12) 

 
They assume that the vector ix is defined in such a way that there exists a constant vector c
such that ' 1ic x = for all i U∈ . This restriction will in most practical situations be met and is 
effectively equivalent to assuming that a constant intercept term is included in the auxiliary 
information. Särndal and Lundström (2008) view (12) as a hypothetical model which will not 
hold in practice and they instead focus on a finite population approximation to this model. 
This approximation is obtained by first defining a value Uλ of λ which achieves the best fit 
of model (12) in the finite population. For mathematical convenience, they define the fit as the 
weighted sum of squared differences 1 2( ' )i i iU xρ ρ λ− −∑ and this is minimised when 

 
1( ')U i i i iU Ux x xλ ρ −= ∑ ∑ , (13) 

 
provided ix is defined so that the inverted matrix in (13) is non-singular. This implies that a 
finite population approximation to  iφ is given by: 

 
1'( ')Ui i i i i iU Ux x x xφ ρ −= ∑ ∑ . (14) 

 
The linear probability model in (11) can be estimated in closed form by ordinary least squares 
or by weighted least squares, where the weights are the design weights. For the reciprocal link 
function model in (12), Särndal and Lundström (2008) approximate the model by  

Uii x λρ ′≈−1 , where Uλ is defined in (13) and estimate this approximate model by estimating 

Uλ from the sample data by: 
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1ˆ ( ')U i i i i ir sd x x d xλ −= ∑ ∑ . (15) 
 
In the case of the linear probability model in (11), if β is estimated by (design-) weighted 
least squares, the implied estimator of iρ is given by 
 

1ˆ '( ')OLS
i i i i i i i is sx d x x d x Rρ −= ∑ ∑ , (16) 

 
which may also be expressed as 
 

1ˆ '( ')OLS
i i i i i i is rx d x x d xρ −= ∑ ∑ . (17) 

 
In the approach of Särndal and Lundström (2008), with the reciprocal link function, iφ is 
estimated by  

 
ˆ ˆ'i i Uxφ λ= , (18) 

 
where Ûλ is defined in (12), so that:  

 
1ˆ '( ')i i i i i i ir sx d x x d xφ −= ∑ ∑  (19) 

 
and the resulting estimator of  iρ is 1

îφ
− .

Shlomo, et. al. (2009) describe bias adjustments for ˆ ( )R ρ and 2q as well as confidence 
intervals for the two R-indicators. We do not repeat them here. 
 

3.2 Population-based R-indicators 
 
In the population-based setting we have ix for respondents and there is population aggregated 
auxiliary information. We distinguish two types: 
 

1. Full aggregate population-based auxiliary information (type 1); the population cross-
products are available, i.e.∑U

T
ii xx or ∑ −−

U
T
U

T
iUi xxxx ))(( .

2. Marginal aggregate population-based auxiliary information (type 2); the  population 
marginal counts are available, i.e. ∑U ix .

The first type implies that we have available of all two by two tables, e.g. age times gender, 
age times marital status and age times marital status. The second type is much more restrictive 
as we have only the frequency counts, e.g. age, gender, marital status, without any knowledge 
about the interactions. For the estimation of the R-indicators the two types do not make a 
difference. However, for the estimation of response propensities the two types lead to 
different estimators with very different properties. 
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In the population-based setting iρ̂ is available only for respondents ( i∈ ). A natural 
candidate estimator of ( )R ρ that makes use of the estimated propensities is  

 
1 21ˆ ˆˆ ˆ( ) 1 2 ( )

1r i i i rrR d
N

ρ ρ ρ−= − −
−
∑ρ (20) 

 
where ˆ ( ) /r ir d Nρ = ∑ . The propensity-weighting by 1ˆ iρ

− adjusts for the non-response bias. 
As for standard non-response weighting, the validity of this correction depends on the validity 
of the estimates iρ̂ .

We like to remark that any adjustment technique for non-response can be applied to construct 
estimators for ( )R ρ , e.g. calibration estimators like linear or multiplicative weighting 
(Särndal and Lundström 2005) or weighting class adjustments (Little 1986). It is generally 
known that propensity weighting may lead to large standard errors. It may, therefore, be more 
efficient to use parsimonious models to estimate the R-indicator. This can for instance be 
done by stratifying on response propensity classes. We did, however, not explore such 
estimators, and restricted ourselves to the propensity-weighted estimator (20). This is a topic 
for future research. 
 
For the estimation of response propensities, types 1 and 2 are very different. In the case of 
population-based auxiliary information, we first note that i is d x∑ and 'i i is d x x∑ are unbiased 
for iU x∑ and 'i iU x x∑ , respectively and that in large samples we may expect that 

∑ ∑≈s U iii xxd and ∑ ∑ ′≈′
s U iiiii xxxxd . It follows from (17) that in type 1, we may 

approximate ˆ OLS
iρ by 

 
1'( ')OLS

i i i i i iU rx x x d xρ −= ∑ ∑% . (21)  
 

The estimator in (21) requires knowledge of the population sums of squares and cross-
products 'i iU x x∑ of the elements of ix .

In type 2, the cross-products are unknown. We can estimate  ∑ ′
s iii xxd in (17) by rewriting 

 
sssis siis iii xxNxxxxdxxd ′+′−−=′ ∑∑ ))(( ,                             (22) 

 
where ∑= s is nxx / . sx can be replaced by  UX . The covariance matrix 
 

))((1 ′−−= ∑−
sis siixx xxxxdNS (23) 

 
may be replaced by the observed covariance matrix 
 

))(()( 1 ′−−= ∑∑ −
ris riiis iixxr xxxxRdRdS , (24) 
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where ∑ ∑=
s s iiir RxRx )/()( . The estimator in (24) only requires knowledge of the 

population total of each of the elements of ix . Combining (21), (22) and (24) we get the 
following estimator for type 2 
 

∑−+=
r iissxxri

OLS
i xdxxNNSx 1'' )(~ρ . (25)  

 
Remarkably for the 2 ( )Q ρ indicator it does not make a difference if type 1 or 2 holds. The 
estimator in (9) is based only upon respondent data, and the îφ in (19) depend only on 

i is d x∑ . Hence, it is sufficient to have the population totals. We replace îφ by 
 

1'( ')i i i i i ir Ux d x x xφ −= ∑ ∑% . (26) 

3.3 Bias and standard error of population-based R-indicators 
 
Shlomo et al (2009) derive analytic approximations for the bias and standard errors of the 
sample-based estimators (8) and (9).  The bias in these estimators arises mostly from plugging 
in estimated response propensities and response influences in the sample variances. A much 
smaller and usually negligible contribution to the bias, originates from using sample means 
rather than population means. Even if the response would be representative, i.e. has equal 
response propensities, some variation in estimated response propensities is found. The bias is 
inversely proportional to the sample size. The larger the sample, the smaller the bias. 
Schouten et al (2009) investigated the bias for different sample sizes. From their analyses it 
follows that the bias is relatively small for usual sample sizes with respect to the standard 
error of the R-indicators. Also, the bias adjustment is successful in removing the bias. 
 
The statistical properties of population-based R-indicators are, however, quite different from 
their sample-based counterparts. As these estimators use less information, we first expect 
larger standard errors. We will show in section 5 that the increase in standard errors is modest 
in many cases. However, the standard errors are larger which leads to weaker conclusions 
about the representativeness of the response. 
 
Second the bias of the population-based estimators is relatively much larger. The estimators 
have additional bias that stems from the estimation of the sample means and covariances and 
from the restriction to (propensity-weighted) response means in case of )ˆ(ˆ ρrR . As no 
knowledge is available about the non-respondents, the estimators cannot discern sampling 
variation from response variation. For example, if the population consists of 50% males and 
50% females and the response of 45% males and 55% females, part (or all) of the difference 
in gender distribution may be the result of sampling variation. Hence, even if the response is 
representative, the estimated response propensities will show some variation that is 
attributable to sampling. Clearly, this bias will diminish when the sample size is increased as 
the sample distribution will grow relatively closer to the population distribution. The response 
variance of the response propensities is another potential cause of  bias because of the 
selectiveness of the response. For this reason the response means are propensity-weighted. 
However, the propensity-weighting may not be effective in removing the bias. Note that when 
response is representative, the propensity-weighted response means of estimated propensities 
will have more bias than the sample means of estimated propensities because of the non-linear 
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nature of the weights that tends to attenuate the quadratic differences between propensities 
and their mean. 
 
In the previous subsection, we distinguished two types of population-based R-indicators 

)ˆ(ˆ ρrR ; one based on population cross-products and one based on population counts. Clearly, 
the second type of estimators may provide very poor estimators for the response propensities 
when there are strong interactions between the components of the auxiliary vector ix .

In appendix A we give an analytic approximation of the bias of the type 1 )ˆ(ˆ ρrR estimator.  
 
In this paper we will, however, restrain from bias adjustments for the type 2 estimators. The 
results in section 4 show that most of the bias for these types of estimators comes from the 
approximation with population counts. Type 2 estimators may be considerably more biased 
than type 1 estimators. Bias-adjustment of the type 2 estimators is not possible without any 
knowledge of the population (or sample) interactions.  
 
Analytic standard errors for )ˆ(ˆ ρrR are provided in Appendix B. However, in section 4, we 
will construct confidence intervals based on resampling methods. More specifically we 
employ bootstrap methods (Efron and Tibshirani 1993, Wolter 2007). 
 

4. Data 
 
We use three types of data: 1) survey data sets from each of the participating RISQ countries, 
2) simulated survey data sets based on the 1995 Israel Census Sample, and 3) samples drawn 
from the 2007 Dutch VAT records. We will describe each of the data sets before we move to 
the calculation of the sample-based and population-based indicators. 

4.1 Country data sets 
Extensive descriptions and documentation of the RISQ data sets can be found in RISQ (2008) 
and is available at www.R-indicator.eu. We apply indicators to the following selection of data 
sets: 

• Health survey 2005 (CBS-HS): The Consumer Sentiments Survey is a continuous 
survey of households with questions about general economic development, and the 
financial situation of the household. The survey is meant to provide insight into short 
term economic development, and early indicators of differences in consumer trends. 
The number of cases in the file is 17,908. The response rate was 66.9%. 

• Norwegian Level of Living Survey 2004 (SSB-LLS): The survey of living conditions 
has two main purposes. One is to throw light on the main aspects of the living 
conditions in general and for various groups of people. Another purpose is to monitor 
development in living conditions, both level and distribution. Over a three-year period 
the cross-sectional survey of living conditions will cover all main areas of the living 
conditions. The survey topics change during a three-year cycle. Housing conditions, 
participation in organisations, leisure activities, offences and fear of crime were topics 
in 2004.  It is a survey of individuals. The number of cases in the file is 4,837. The 
response rate was 69.1%. 

• Norwegian European Social Survey Norway 2006 (SSB-ESS): ESS is a biennial multi-
country survey of individuals covering over 30 nations. It is an academically-driven 
social survey designed to chart and explain the interaction between Europe's changing 

http://www.r-indicator.eu/
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institutions and the attitudes, beliefs and behaviour patterns of its diverse populations. 
The data set only contains the survey data of Norway. The number of cases in the file 
is 2,673. The response rate was 65.5%. 

• Belgian European Social Survey 2006 (KUL-ESS): As described for the Norwegian 
dataset, the ESS is an EU harmonized social survey. The data set contains the survey 
data of Belgium. The number of cases in the file is 2,927. The response rate was 
61.4%. 

• Slovenian Labour Force Survey 2007 (SURS-LFS): The Slovenian Labour Force 
Survey is an EU harmonized rotating panel survey conducted continuously through the 
year. The data contains employment related characteristics and demographic 
characteristics of all individuals 15 years or older living in selected households. The 
number of households varies between 7,010 and 7,160 households which is around 
16,900 responding individuals. The response rate is around 80%. 

 
To all country data sets a minimal set of auxiliary variables was linked comprising of age, 
gender and region/degree of urbanisation. The R-indicators are computed for these minimal 
sets. Each country additionally also linked auxiliary variables that are available in their 
sampling frame or registrations. 
 

4.2 Simulations based on the 1995 Israel Census Sample 
 
The 1995 20% Israel Census Sample contains 753,711 individuals aged 15 and over in 
322,411 households. The sample design is similar to a standard household  survey  carried out 
at National Statistical Institutes. The sample units are households and all persons over the age 
of 15 in the sampled households are interviewed. Typically a proxy questionnaire is used and 
therefore there is no individual non-response within the household. In this study, we assume 
that every household has an equal probability to be included in the sample.  

 
We carry out a two-step design to define response probabilities in the Census data. In the first 
step, we determine probabilities of response based on explanatory variables that typically lead 
to differential non- response based on our experiences of working with survey data collection. 
A response indicator was then generated for each unit in the Census from these probabilities. 
In the second step, we fit a logistic regression model to these Census data and thus determined 
a ‘true’ response propensity for each unit as predicted by this model fitted to the population. 
The dependent variable of the model is the response indicator and the independent variables 
of the model the explanatory variables used in the first step. This two-step design ensures that 
we have a known model generating the response propensities and therefore we can assess 
model misspecification besides the sampling properties of the indicators.   

 
The explanatory variables used to generate the response probabilities are Type of locality  (3 
categories), number of persons in household (1,2,3,4,5,6+), children in the household 
indicator (yes, no). Samples of size n are drawn from the Census population of size N at 
different sampling fractions 1:50, 1:100, and 1:200. For each sample drawn, a sample 
response indicator is generated from the ‘true’ population response probability. The overall 
response rate is 82%. Response propensities and R-indicators are subsequently estimated from 
the sample. 

4.3 Simulations based on the 2007 Dutch VAT records 
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Statistics Netherlands is considering to replace the Short Term Statistics (STS or KS in 
Dutch) surveys by the VAT records collected by the Dutch Tax Board as the main data source 
for statistics about business turnover. The VAT records are submitted to the Tax Offices by 
all business on an annual, quarterly or monthly basis and contain reported turnover and VAT. 
Reporting is obligatory by the Dutch law. The frequency of reporting is determined by the 
size of the business in the previous calendar year. Large businesses need to report every 
month, while very small businesses have to submit annual reports only. Mid-size businesses 
report every quarter.  
 
STS provides monthly and quarterly statistics. Because of the high frequency of the STS 
statistics, responses need to be available ultimately 25 days after the end of the reference 
month. Statistics are produced approximately 30 days after the end of the reference month. As 
a consequence there is only a very small time span for the processing of the responses. 
 
The VAT reports are collected for very different purposes and do not share the 30 day 
deadlines of the STS surveys. This holds especially true for the quarterly and annual reporting 
businesses. Nonetheless, part of the reports is available before the 30 day deadline and may 
form the input to the STS. The availability of reports depends strongly on the month. For the 
final months of each quarter part of the quarterly reports is available, and for December 
additionally part of the annual reports becomes accessible. Hence, we expect strong 
differences between the representativeness of submitted reports for each month of the year. 
 
In the analysis of section 5 we will look at the reports for all businesses in retail for the 
months January, June and December and derive their responses for 25 days and 30 days after 
the end of the month (January 31st, June 30th and December 31st). The deadline of 25 days 
provides the ideal time point, while the deadline of 30 days corresponds to the ultimate time 
point. 
 
Quarterly VAT reports contain the quarterly turnover and annual VAT reports have the total 
annual turnover. To be useful in the production of statistics, the quarterly and annual turnover 
need to be divide over, respectively, three and 12 months. In this paper we take a simple 
approach and make equal distributions over the months. As such we ignore seasonal 
influences in retail. 
 
As auxiliary vector ix we have the type of business according to the Tax Board taxonomy of 
businesses, the VAT, if reported, of the previous month, the VAT, if reported of the same 
month in the previous year, and the total wages reported by the business in  the same month. 
Businesses also need to report their monthly labour costs and wages to the Tax Board. These 
reports are available much faster than the turnover and may provide good predictors. Rather 
than using the actual turnover or wages, we recode all variables into categorical variables. 
 
A complicating factor is that businesses do not have to report wages and turnover under the 
same Tax Number and at the same aggregated level. As a consequence the total sum of wages 
may not be attributable at the desired level. For these cases we classify the total wages as 
missing/unknown. 
 
The list of all businesses that have to report in a specific month form the population. From 
month to month there are small differences in the population frame, because of businesses that 
are starting or finishing activities. When a business was non-existent in the previous month or 
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the same month of the previous year, we classify the corresponding turnover as non-active. 
The population size is approximately equal to 125,000. 
 
From the January, June and December Tax Board population frames we took 1:2 (n = 
60,000), 1:8 (n = 15,000) and 1:18 (n = 6,700) simple random samples without replacement.  
 

5. Results 
 
In this section we describe the results for each type of data sets separately. 

5.1 Simulations based on the 1995 Israel Census Sample 
 
Throughout the simulation we examine the sampling properties of the R-indicators as well as 
the impact of model misspecification on their properties. Because smaller sample sizes 
generally lead to the selection of a less complex model, we shall consider that 
misspecification is represented by a simpler model.  
 
In table 5.1, we examine samples drawn at different sampling rates, estimate response 
propensities for each sample and calculate the measure  ˆ ( )R ρ for both sample and population 
based auxiliary variables. We present results for both the true model, number of persons + 
locality type + child indicator, and  a simple model with number of persons only. 
 
Table 5.1:  Simulation means of ˆ ( )R ρ for sample and population-based auxiliary variables 
for 500 samples, (‘true’ R-indicator = 0.8780). 

ˆ ( )R ρ
Model = number of persons +  
locality type, + child indicator 

Model = number of persons  

population based population based 
sampling 
fraction  

Sample 
based  

Type 1 Type 2 
 

Sample 
based 

Type 1 Type 2 

1:200 
(n=1,612) 

0.8714 0.8251 0.8290 0.8791 0.8477 0.8456 

1:100 
(n=3,224) 

0.8741 0.8531 0.8524 0.8801 0.8684 0.8652 

1:50 
(n=6,448) 

0.8761 0.8683 0.8652 0.8810 0.8729 0.8680 

Table 5.1 shows that the sample based estimator ˆ ( )R ρ increases as the sample size increases. 
If the specified model is correct, there is some downward bias and this tends to increase  as 
the sample size increases. This is as expected. Sampling error tends to lead to overestimation 
of the variability of the estimated response propensities and this leads to underestimation of 
the R-indicator.  The degree of underestimation is, however, small. Under the less complex 
model, estimation of response propensities results in a ‘smoothing’ of the propensities and 
hence an overestimation in ˆ ( )R ρ . Results of ˆ ( )R ρ with the bias correction (not shown here) 
have produced a more stabilized indicator across different sample sizes under the correct 
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model, but for the less complex model with overestimation of ˆ ( )R ρ , the bias correction can 
exacerbate the overestimation. Comparing ˆ ( )R ρ when using sample based auxiliary variables 
and population based auxiliary variables, Table 5.1 shows that the R-indicator is 
underestimated when using population based auxiliary variables. The variation of response 
propensities is larger than the  variation under sample based auxiliary variables. Since we 
used simple random samples and assumptions of MAR, there seems to be little difference 
between the two population level indicators of  ˆ ( )R ρ based on a known population covariance 
matrix and an estimated covariance matrix from the response set.   
 
Figure 5.1:  Boxplots for 500 estimated R-indicators for 0,5%, 1% and 2% samples for a) the 
(true) model = number of persons +  locality type, + child indicator, and for b) model = 
number of persons. (S) is the sample-based R-indicator, (PC) the type 1 population-based R-
indicator, and (PUC) the type 2 population-based R-indicator. 
a) 

 
b) 
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Figure 5.1 shows the boxplots for the sample-based and population-based R-indicators based 
on 500 samples of 0,5%, 1% and 2%. The boxplots are given for the true model and the 
reduced model. The boxplots clearly show the increase in bias and standard errors when the 
sample proportion is smaller. 
 
In table 5.2, we examine the properties of  )ˆ(2 ρq based on the variance of the estimated 
response influences. For this indicator, we expect low values to reflect good quality and  small 
non-response bias.  We compare the full set of explanatory variables in the model used in this 
simulation to a less complex model as before.  
 

Table 5.2:  Simulation means of )ˆ(2 ρq for sample and population based auxiliary variables 
for 500 samples, (‘true’  indicator is 0.0087). 

)ˆ(2 ρq
Model = number of persons +  
locality type, + child indicator 

Model = number of persons  

Sampling 
fraction Sample-based  Population-based Sample-based Population-

based 
1:200 
(n=1,612) 

0.0102 0.0171 0.0092 0.0132 

1:100 
(n=3,224) 

0.0096 0.0129 0.0088 0.0109 

1:50 
(n=6,448) 

0.0089 0.0107 0.0083 0.0095 

Results from table 5.2 show the decrease in )ˆ(2 ρq as the sample sizes increase. Shlomo, et al. 
(2009) discuss a  bias correction for this indicator as well. The less complex model produces 
‘smoother’ estimated influences and hence less variation. This is expected since the indicator 
was developed to assess the effectiveness of auxiliary variables on bias reduction. Using 
population based auxiliary variables have increased the variation of the estimated influences. 
 
Figure 5.2 again gives boxplots based on 500 samples of different sample proportion, 0,5%, 
1% and 2%. The boxplots again emphasize the dependence of bias and standard errors on 
sample size. 
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Figure 5.2: Boxplots for 500 estimated  )ˆ(2 ρq for 0,5%, 1% and 2% samples for a) the(true) 
model = number of persons +  locality type, + child indicator, and for b) model = number of 
persons.  (S) is the sample-based )ˆ(2 ρq , (P) population-based )ˆ(2 ρq .

a) 

b)  
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January is extremely low, only 20% of the businesses has submitted a tax report after 25 days. 
For June and December these rates are much higher. After 30 days more than 85% of the 
businesses has reported for December. 
 
There are remarkable differences between the true )(2 ρQ values for each of the three months. 
There seems to be a strong dependence on the completion rate. This effect has not yet been 
investigated thoroughly in other papers and needs more elaborate analysis. 
 
Table 5.3: The true values for )(ρR and )(2 ρQ for January, June and December after 25 and 
30 days of data collection. 

January June December 
Indicator 25 days 30 days 25 days 30 days 25 days 30 days 

)(ρR 82,1% 77,2% 85,4% 83,3% 91,5% 86,1% 
)(2 ρQ 13,77 6,86 0,11 0,05 0,12 0,03 

Completion 19,7% 26,2% 64,1% 81,5% 48,1% 86,1% 

Table 5.4: The unadjusted and adjusted sample-based )ˆ(ˆ ρR and the unadjusted )ˆ(2 ρq for 
January, June and December 2007 after 25 days and 30 days for the 1:2 subsample. 95% 
confidence intervals are given. 

)ˆ(ˆ ρR sample-based )ˆ(2 ρq sample-based 

25 days 30 days 
Sample 

raw adj raw adj 
 

25 days 
 

30 days 
January 82,1% 82,1% 77,2% 77,2% 13,57 6,86 
June 85,8% 85,8% 83,3% 83,3% 0,12 0,05 
December 91,3% 91,3% 85,9% 85,9% 0,12 0,03 

Table 5.4 contains the unadjusted and adjusted sample-based R-indicators. Tables 5.5 to 5.7 
give the various R-indicators for, respectively, January, June and December. For each month 
we give the indicators after 25 and after 30 days of data collection and for the 1:2, 1:9 and 
1:18 simple random samples. 
 
Table 5.4 reconfirms the conclusions of Shlomo et al (2009) that the sample-based R-
indicators give estimates that are close to the true value for both indicators. Bias corrections 
for the indicators are small and in the right direction. 
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Table 5.5: The R-indicators )ˆ(ˆ ρR based on, population cross-products and population 
frequency counts, and the R-indicator )ˆ(2 ρq for January 2007. Values are given for 25 days 
and 30 days after the end of the reference month and for the 1:2, 1:9 and 1:18 subsamples. 
95% confidence intervals are given.  

)ˆ(ˆ ρR - cross-products 
Type 1 

)ˆ(ˆ ρR - frequency counts 
Type 2 

)ˆ(2 ρq
Sample 

25 days 30 days 25 days 30 days 25 days 30 days 

1:2  69,2% 61,5% 62,6% 59,5% 13,51 6,83 
1:9 68,8% 61,1%  59,4% 13,51 6,66 
1:18 68,6% 83,4% 60,8% 47,6% 15,46 7,28 

Table 5.6: The R-indicators )ˆ(ˆ ρR based on, population cross-products and population 
frequency counts, and the R-indicator )ˆ(2 ρq for June 2007. Values are given for 25 days and 
30 days after the end of the reference month and for the 1:2, 1:9 and 1:18 subsamples. 95% 
confidence intervals are given. 

)ˆ(ˆ ρR - cross-products 
Type 1 

)ˆ(ˆ ρR - frequency counts 
Type 2 

)ˆ(2 ρq
Sample 

25 days 30 days 25 days 30 days 25 days 30 days 

1:2  74,0% 72,1% 69,4% 68,3% 0,12 0,05 
1:9 74,2% 72,6% 70,0% 69,1% 0,12 0,05 
1:18 74,5% 70,1% 71,5% 65,2% 0,11 0,06 

Table 5.7: The R-indicators )ˆ(ˆ ρR based on, population cross-products and population 
frequency counts, and the R-indicator )ˆ(2 ρq for December 2007. Values are given for 25 
days and 30 days after the end of the reference month and for the 1:2, 1:9 and 1:18 
subsamples. 95% confidence intervals are given. 

)ˆ(ˆ ρR - cross-products 
Type 1 

)ˆ(ˆ ρR - frequency counts 
Type 2 

)ˆ(2 ρq
Sample 

25 days 30 days 25 days 30 days 25 days 30 days 

1:2  84,2% 77,0% 83,0% 74,9% 0,12 0,03 
1:9 83,0% 75,5% 82,4% 74,4% 0,14 0,03 
1:18 80,9% 80,9% 75,5% 75,8% 0,17 0,03 

Table 5.5 to 5.7 shows clear patterns for the bias of the indicators. In general the population-
based )ˆ(ˆ ρR are much smaller than the sample-based )ˆ(ˆ ρR . The bias of the population-based 
indicators is large. The bias of the type 1 estimators is in most cases smaller than the bias of 
the type 2 estimators. There are, however, a few exceptions. There is a clear relation between 
the size of the bias and the completion rate. The January estimates are considerably more 
biased than the June and December estimates. Also, the bias is larger for the smaller samples.  
The differences between the sample-based and population-based )ˆ(2 ρq are much smaller. 
The same patterns are visible, i.e. dependence on sample size and completion rate, but to a 
much smaller extent. 
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5.3 Comparisons for survey data sets 
 
Table 5.8 gives the various R-indicators for the selected country data sets. The R-indicators 
are computed for models that contain gender, age and a coding of region or urbanisation of 
the dwelling of the sample units. The R-indicators for CBS-HS are also computed for a model 
containing additionally the variables ethnicity, type of household, house value, marital status 
and job status. 
 

Table 5.8: The unadjusted sample-based R-indicator )ˆ(ˆ ρR , the unadjusted population-based 
R-indicators )ˆ(ˆ ρR using population cross-products and population frequency counts, and the 
unadjusted sample-based and population-based R-indicator )ˆ(2 ρq for the country data sets.  
Data set )ˆ(ˆ ρR )ˆ(2 ρq

Sample-based Pop-based 
Cross-products 

Type 1 

Pop-based 
Frequencies 

Type 2 

Sample Pop 

CBS-HS             Small 
 Extended

89,2% 
86,4% 

79,2% 
72,9% 

73,7% 
54,6% 

0,03 
0,05 

0,06 
0,12 

SSB-LLS 91,2% 83,9% 92,4% 0,01 0,03 
SSB-ESS 88,7% 81,3% 89,2% 0,02 0,05 
KUL-ESS 83,1% 80,1% 60,0% 0,11 0,14 
SURS-LFS 89.5% 89,7% 90,2% 0,01 0,01 

In all cases the type 1 estimators are smaller than the sample-based R-indicators. The picture 
for the type 2 indicators is somewhat mixed. For the SSB and SURS data sets the type 2 
estimators produce values that are similar to the sample-based indicators. For the CBS and 
KUL data sets the type 2 estimators are smaller than the type 1 estimators and indeed seem to 
be outliers for the extended CBS-HS model and KUL_ESS model. The population-based 

)ˆ(2 ρq are all larger than their sample-based counterparts.

6. Discussion 
 
In this paper we have constructed population-based estimators for the two R-indicators 
selected in Shlomo et al (2009), i.e. the R-indicator based on the variation of response 
propensities and the R-indicator based on the variation in response weights. The estimators 
are applied to simulated data from the 1995 Israel Census Data, the samples from the  2007 
Dutch VAT records, and to a number of selected survey data sets from the countries that 
participate in the RISQ project.  
 
We posed three research questions at the beginning of the paper: How to extend sample-based 
R-indicators to population-based R-indicators?, What are the statistical properties of 
population-based R-indicators?, and Are the population-based R-indicators practicable in real 
survey settings? We consider each question separately. 
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The extension of sample-based to population-based estimators comprises of two steps: 1) the 
estimation of response propensities and response influences, and 2) the estimation of the R-
indicators based on these propensities and influences.  
 
The population-based estimation of response propensities and response influences proved to 
be straight forward when linear models are assumed for response propensities and response 
influences. The sample-based estimators contain sample covariance matrices and sample 
frequencies that can be replaced by population covariance matrices or population frequencies. 
We identified two types: either population cross-products are available or auxiliary 
information is restricted to marginal population counts. We labelled the corresponding 
estimators as type 1 and type 2 estimators, respectively. The type 2 setting is much more 
restrictive than the type 1 setting. 
 
We did not consider population-based estimation for other types of models like logistic or 
probit regression. This would be a welcome extension to the theory of R-indicators as these 
models are often used in practice and avoid propensities outside the [0, 1] interval. In our 
analysis we encountered a number of cases where some of the estimated propensities were 
negative or above 1.  
 
There are many options for the estimation of R-indicators based on the response to the survey. 
We used propensity weighted response means as the propensities are available. However, any 
calibration method can be used like linear weighting or adjustment classes. In fact, the set of 
auxiliary variables used for the estimation of the R-indicators may be a subset of the auxiliary 
variables used for the estimation of propensities and influences. Parsimonious models may 
prove to be more efficient as it is known that propensity-weighting may seriously affect the 
precision of the estimators. Again this is a topic for future research.  
 
We looked at the bias and standard errors of the proposed population-based R-indicators. As 
expected the bias and standard errors are dependent on the size of the sample and the type of 
auxiliary information available. The smaller the sample, the larger the bias and the standard 
error. This is not at all surprising. When samples are smaller, it becomes more difficult to 
distinguish sampling variation from response variation. Clearly, the confidence intervals 
become larger as there is less information in small samples. 
 
Type 2 estimators (population marginal counts) have a stronger bias than type 1 estimators 
(population cross-products). Again this is not surprising as the type 2 estimators provide no 
information about interactions between auxiliary variables and make it more difficult to 
discern sampling variation from response variation. Part of the sampling variation is attributed 
to response variation. 
 
The simulations and the application to real survey data sets show that the bias of the 
population-based estimators can be considerable. It is not yet clear whether bias corrections 
are capable of removing this bias, but given the size of the bias it is likely that at least some 
part of the bias will remain.  
 
From the analyses it becomes apparent that the bias depends also on the number of auxiliary 
variables. When detailed models are used, containing many variables, in the estimation of 
response propensities, then the bias may increase considerably. The rationale behind this is 
that detailed models allow for more sampling variation to be picked up as bias.  
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Somewhat suprisingly, the bias of population-based estimators also depends on the response 
rate. The lower the response rate, the more bias.  
 
The research into population-based indicators is still in its infancy and it is too early to draw 
strong conclusions about the feasibility and practicability of R-indicators based on aggregate 
population auxiliary information. Nonetheless, the bias of the population-based indicators is 
considerable and may seriously hamper comparisons between the response to different 
surveys or even a single survey in time. This may be true especially for the type 2 estimators. 
Future research needs to find out whether bias corrections are feasible and whether 
parsimonious models for the estimation of the indicators themselves are fruitful in improving 
the properties of the indicators. 
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Appendix A: Analytic approximation to the bias of type 1 )ˆ(ˆ ρrR estimators 
 
In the following assume that 0>iρ for all units. 
 
The proposed population-based estimator equals 
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with iρ̂ an estimator for the response propensity based on population tables, and rρ̂ the 
estimated mean of the response propensities  
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If we for the moment ignore the form of the estimator iρ̂ and assume that iir sE ρρ =)|ˆ( , i.e. 
the response expectation of the estimated propensity given the sample is the true propensity, 
then it follows that 
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i.e. the expectation of rρ̂ is the weighted sample mean of the true propensities. 
 
In section 3.2 we have identified two estimators iρ̂ ; one based on all 2 x 2 population tables 
and one on all marginal population totals. They have the following forms 
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The difference between (A3a) and (A3b) lies in the estimation of the sample covariance 
matrix of the selected auxiliary variables. We restrict ourselves to the bias of (A3a). 
 
For the moment let us derive the bias )ˆ(RB for an arbitrary estimator iρ̂ . As for the sample-
base R-indicator we first look at the bias of the estimated variance of the response 
propensities )ˆ(ˆ 2
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The expectation in (A4) is with respect to the response probability mechanism and the 
sampling distribution. We start with the response distribution and linearize 

)|)ˆˆ(ˆ( 21 srE riiir ρρρ −− . It holds that  
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After rewriting and combining the variance and covariance terms in (A5) we get 
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The first term in (A6) can be expanded analogous to the derivation of bias for the sample-
based R-indicator 
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Now combining (A5) and (A6), we get for the bias 
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Without specifying the sampling distribution and the estimators for iρ̂ , we cannot simplify 
(A8). We will, however, decompose the third term for convenience 
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In (A8) and (A9) ∑= d is dN̂ is the sum of the sample design weights. 
 
In the following we will assume that the sampling design is a simple random sample without 
replacement and that NN ≈−1 . The bias simplifies to 
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and  
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Combining (A10) and (A11a) to (A11e) we get 
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The dominant terms in (A12) are the second and fifth term. We replace sρ by UssE ρρ = and 
ignore higher order terms. Furthermore, we simplify to a simple random sample with 
replacement, i.e. 2

2

N
nssE jis = . As a consequence (A12) reduces to 
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We estimate (A13) by replacing Uρ by rρ̂ , by replacing iρ by iρ̂ , and taking weighted sums 
over respondents instead of sums over population units. The estimator has the following form 
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where 

 ∑ −= −
r riin
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The population-based R-indicator in (A1) is replaced by a bias-adjusted indicator 
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Notice that (A16) may still have a small bias that is due to the square root transformation 
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We will, however, ignore this bias as for the sample-based R-indicator. 
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Appendix B: Analytic approximation to the standard error of )ˆ(ˆ ρrR

In the approximation of the standard error we ignore unequal design weights, but assume that 

n
Ndi = for all population units. Furthermore, we assume that 1−≈ NN . Let m be the 

number of responding units in the survey. 
 
We write 
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where  
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As a linear approximation we have 
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We now take a simple approach. We assume that the response is a simple random sample with 
replacement. Let us first define 
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i.e. propensity-weighted quadratic difference between a propensity and the response mean 
propensity. Now given that Nm << , we can use the approximation 
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Combining (B3) and (B5) we get the following estimator for the variance of the R-indicator 
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