
R-Cockpit manual
A Tool for Graphical Analysis of Representativity

Work package 8
Deliverable 12.2

Jelke Bethlehem
Centraal Bureau voor de Statistiek, The Netherlands

March 21, 2010

1

1. Introduction

The program Cockpit is a tool to conduct a graphical analysis of the representativity of the survey response.
It shows in various ways how representativity is related to auxiliary variables.

The program was developed as a demonstration tool that shows some of the possibilities for graphical
analysis of representativity. Sections 3 to 7 describe and show graphs that can be generated by the program.
It is likely that use of representativity indicators, either to monitor the field work or to analyse the collected
data, requires more extensive and/or tailor-made software.

This program does not compute response probabilities. It is assumed that an input file has been created by
SPSS, Stata, SAS, an R program or another software tool. This input file must contain the values of
auxiliary variables and the estimated response probabilities. A description of the required input files is
given in section 8. Other software tools for the R-indicator can be found on the website of the RISQ-
project: www.risq-project.eu.

The GPS survey data set has been used in this document to illustrate the possible output of the program.
This data set is based on a Dutch survey that has been carried by Statistics Netherlands. To avoid the
disclosure of sensitive individual information, the data set has been anonymised. The sample size was a
little over 32,000 persons. The response rate was almost 60%.

2. Starting the program

The program is simply started by double-clicking its name or icon. The first step is to read a data set. This
is accomplished by clicking on the Read file button and selecting a file. Such a file must always have the
extension rin. Section 8 gives more information about the contents of such a file. After reading the data, the
program will display some general information about the file. Figure 2.1 gives an example.

Figure 2.1. General information about the data file

File: gps.rin
Records: 32019
Response: 58.7%
R-indicator: 0.783940

The data file contains 32019 records. This is the sample size. The response rate is equal to 58.7%. This
quantity is usually equal to average response probability. The value of the R-indicator is equal to 0.783940.
Since this value is lower than 1, there is some lack of representativity.

Suppose, the (estimated) response probabilities for the n elements in the sample are denoted by ρ1, ρ2, …,
ρn. Then the R-indicator is computed as

()∑
=

−
−

−=−=
n

i
in

)(SR
1

2

1
12121 ρρρ (1.1)

Note that no bias correction has been applied for the computation.

3. The overall box plot

The overall box plot shows the variation of the values of the (estimated) response probabilities in the input
file. The box plot is automatically produced after reading the input file. Figure 3.1. contains an example.

http://www.risq-project.eu/

2

Figure 3.1. An overall box plot

The red box represents the values between the first and third quartile. It is the middle half of the response
probabilities. According to figure 3.1 the middle 50% of the response probabilities are approximately
between 0.55 and 0.65. The black line in the box represents the median. The lines stretching out from both
sides of the box extend to values that are just not considered outliers. The are the outmost values lying
within a distance of 1.5 times the length of the box from the box. So, the ‘regular’ part of the distribution
covers an interval from approximately 0.32 to 0.76. This shows there is considerable variation in response
probabilities.

The horizontal red dashed line represents the mean of the response probabilities. If median and mean are
different, this may be seen as an indication that there are substantial outliers.

The minimum value of the response probability (0.186612) is given below the plot, and the maximum value
(0.762231) above the plot.

A plot like this can always be generated by the program by selecting Boxplot as the graph type and
selecting no variable.

4. Box plots for the categories of a variable

For the analysis and correction of nonresponse it is important to find variables that are strongly related to
response behaviour. The strongest form of relation is that in which the response probabilities only vary
between the categories of a variable and not within the categories. There is no relationship between a
variable and response behaviour if the response probabilities only vary within the categories of the variable
and not between its categories.

The relationship between a variable and response behaviour can be explored by drawing box plots of the
response probabilities for each category of the variable. Figure 4.1 shows an example of such a plot for the
variable PNonNat1. This is the percentage of non-natives living in the neighbourhood (in 8 categories).

Figure 4.1. shows that the response probabilities vary both between and within the categories of PNonNat.
The between category response probabilities show a clear pattern: the response probabilities decrease as the
percentage of non-natives increases. This is an indication there is relationship between PNonNat1 and the
response behaviour. Therefore, this variable should, for example, be considered for inclusion in a weighting
adjustment model.

3

Figure 4.1. Box plots for the percentage of non-natives in the neighbourhood

A plot like this can always be generated by the program by selecting Boxplot as the graph type and
selecting a variable from the list.

5. Unconditional partial indicators at the variable level

The partial R-indicator measures how large the variation of the response probabilities between the
categories of a variable is. The larger the between-category variation is, the stronger the relationship is.

Suppose a variable X has L categories. Let nh denote the sample size in category h, for h = 1, 2, .., L. Then
n1 + n2 + … + nL = n. Furthermore, let ρ be the mean response probability in the sample, and let hρ the
mean of the response probabilities in category h of X.

The unconditional partial indicator for variable X is now defined as

()∑
=

−=
L

h
hhU n

n
)X(P

1

21 ρρ . (5.1)

Note that PU(X) ≤ S(ρ) ≤ 0.5. i.e. the total variation between categories is smaller than the total variation.

By computing and comparing the unconditional partial indicators for a set of variables it can be established
for which variables the relationships are strongest.

Figure 5.1 shows an example of the plot containing the unconditional partial indicators for all variables in
the GSP data set. The values of the indicators may vary between 0 and 1. Note that the scale of the
horizontal axis is adapted to make the differences between the indicators of variables clearer.

Apparently, the variables Urban (degree of urbanization) and Phone (has a listed phone number) show the
strongest relationship with response behaviour. The relation is weakest for Gender and Age3 (age in three
categories).

A plot like this can be generated by the program by selecting Unconditional R-indicator as the graph type,
and selecting no variable form the list of variables.
 .

4

Figure 5.1. Unconditional partial indicators

6. Unconditional partial indicators at the category level

The partial R-indicator can give more information about the relationship of a variable X and response
behaviour if this indicator is compute for each category of X separately. It is clear from expression 5.1 that
each category h contributes an amount

()2ρρ −h
h

n
n (6.1)

to PU(X). The unconditional partial indicators within categories are obtained by taking the square root of the
quantities in (6.1). The unconditional partial indicator for category h is denoted by

()ρρ −= h
h

U n
n)h,X(P . (6.2)

PU(X, h) can assume positive and negative values. A positive value means that the particular category is
over-represented. A negative value means that the particular category is under-represented.

Figure 6.1 shows the unconditional indicators for the categories of the variable degree of urbanisation in the
GPS data set. Negative values are presented by red bars and positive values by blue bars. A plot like this
can be generated by the program by selecting Unconditional R-indicator as the graph type and selecting a
variable from the list.

It is clear from the plot that particularly people from very strongly urbanised areas (the big cities) are under-
represented. The response probabilities are higher than average in the rural (not urbanised) areas.

5

Figure 6.1. Unconditional partial indicators by category

7. Conditional partial indicators at the variable level

Conditional partial indicators can only be computed for variables that are included in the model for
estimating the response probabilities. These indicators measure the relative importance of these variables.

The conditional partial indicator for a variable X is obtained by cross-classification all model variables, but
with the exception of X. Suppose, this cross-classification results in L cells U1, U2, …, UL. Let nh denote the
sample size in cell h, for h = 1, 2, .., L. Then n1 + n2 + … + nL = n. Furthermore, let hρ the mean of the
response probabilities in cell h.

The conditional partial indicator for variable X is now defined as

()∑∑
= ∈

−=
L

h Ui
hiC

h
n

)X(P
1

21 ρρ . (7.1)

To say it in words: PC(X) is the remaining within cell variation of the response probabilities if the variable X
is removed from the cross-classification. If, one the one hand, the remaining variation is small, the other
variables are capable of explaining the variation. It can be concluded that there need not be a role for X in
reducing the lack of representativity. If, on the other hand, the remaining variation is large, this can
apparently not be accounted for by the other variables. So, there is an important role for X.

Also here it can be remarked that PC(X) ≤ S(ρ) ≤ 0.5. i.e. the total variation within categories is smaller
than the total variation.

Figure 7.1 shows the conditional partial indicators for the GPS data set. The variables shown are the
variables included in the logit model for estimating the response probabilities. The plot shows both the
unconditional (dark red) and conditional partial indicators (light red). The unconditional indicators are
explained in section 5. The conditional indicators are always smaller than the unconditional indicators. It is
clear that for the auxiliary variable Urban and Phone substantial within variation remains. Therefore, these
are important variables for the treatment of the lack of respresentativity. Age3 seems to be a less important
variable.

A plot like this can be generated by the program by selecting Conditional R-indicator as the graph type and
selecting no variable from the list of variables.

6

Figure 7.1. Conditional partial indicators

8. Conditional partial indicators at the category level

The conditional partial indicators as described in section 7 can give even more insight if they are computed
for each category of a variable separately. The remaining within cell variation of the response probabilities
after removing a variable X from the cross-classification, is computed for each category of X separately.

Figure 8.1 gives an example for the variable Urban in the GPS set data. It shows the conditional partial
indicators for each category of Urban.

Figure 8.1. Conditional partial indicators within categories of a variable

The indicator has the largest value for the category FstGenNonWest (first generation non-western non-
natives). For the treatment of the lack of representativity one should first look at this category.

Note that a large value does not necessarily means under-representation. It can also mean over-
representation. So adjusting the fieldwork may mean do more or do less observations.

7

A plot like this can be generated by the program by selecting Conditional R-indicator as the graph type and
selecting a variable from the list.

9. Input files

The program requires two files to be able to conduct an analysis:
• A data file. This file must contain the values of the variables for each sample element;
• A metadata file. This file must contain the names and value labels of the variables.

Figure 9.1 contains an example of a part of the sample data file gps.dat. The first 10 records of the GPS
data are shown. Each line represents the record of a sample element. There are 14 variables: 13 auxiliary
variables and a variable for the response probabilities. The response probability must always be the last
value in the record.

Values of variables must be separated by one or more blanks. The values of the auxiliary variables must
integers. The program can handle data sets with at most 20 variables. Each variable may have at most 20
categories. The maximum number of records that can be handled by the program, is 33,000.

Figure 9.1. Example of part of a data file

4 1 1 0 2 0 1 22 3 0 1 2 1 0.618489
1 1 1 0 4 0 1 25 4 0 0 3 1 0.527253
4 2 1 1 5 0 1 23 1 0 1 3 1 0.725618
4 3 1 1 4 0 1 24 1 0 1 3 1 0.685431
5 1 1 1 4 0 1 21 1 0 1 3 1 0.737672
4 2 1 0 4 0 2 23 5 0 1 4 1 0.636217
5 3 1 0 2 0 2 23 2 0 0 2 1 0.609066
5 2 1 0 1 0 1 21 1 0 1 1 1 0.618256
2 2 1 0 3 0 2 23 4 0 1 4 0 0.556704
1 3 0 0 1 0 1 21 2 0 0 1 1 0.328382

The metadata file describes the contents of the data file. Figure 9.2 contains part of the metadata file gps.rin
for the GPS. Appendix A contains the complete contents of the file.

Figure 9.2. Example of part of a metadata file

Data
 gps.dat
Variables:13
 Urban:5,1
 1:Very
 2:Strong
 3:Fairly
 4:Little
 5:Not
 Age3:3,1
 1:18-34
 2:35-54
 3:55+
 Phone:2,1
 0:No
 1:Yes

The file must start with a line containing the keyword Data. Line 2 must contain the name of the data file.
In this case, the name is gps.dat. Note that the indentation shown is not compulsory, but it enhances
readability of the file,

8

Line 3 must contain the keyword Variables, followed by a colon, and the number of auxiliary variables.
Note that the variable containing the response probabilities is excluded from this number. The GPS data set
contains 13 auxiliary variables.

For each variable, there must be a line containing the name of the variable, followed by a colon, the number
of categories, a comma, and a value 1 (if the variable is included in the model for the response probabilities)
or 0 (the variable is not used in the model). So, the variable Urban has five categories and is included in the
model.

The name of each variable is followed by a description of its categories. For each category, there is a line
with the category code (as used in the data file), followed by a colon and a category label.

The program can handle data sets with at most 20 variables. Each variables may have at most 20 categories.

There is a tool for creating a data and metadata file from an SPSS file. This is an R program. It is described
in appendix B and C. The program R must be installed in order to run the export tool.

There is a tool for creating a data and metadata file from a Stata file. This is an R program. It is described in
appendix D and E. The program R must be installed in order to run the export tool.

9

Appendix A. Complete contents of the metadata file gps.rin.

Data
 gps.dat
Variables:13
 Urban:5,1
 1:Very
 2:Strong
 3:Fairly
 4:Little
 5:Not
 Age3:3,1
 1:18-34
 2:35-54
 3:55+
 Phone:2,1
 0:No
 1:Yes
 Married:2,1
 0:No
 1:Yes
 HHsize:5,1
 1:1
 2:2
 3:3
 4:4
 5:5+
 Ethnic:5,1
 0:Native
 1:FstGenNonWes
 2:FstGenWes
 3:SecGenNonWes
 4:SecGenWes
 Gender:2,0
 1:Male
 2:Female
 Region:5,0
 21:Greenfields
 22:Woodlands
 23:Lowlands
 24:Highlands
 25:Metropolis
 PNonNat1:8,0
 1:<5
 2:5-10
 3:10-15
 4:15-20
 5:20-30
 6:30-40
 7:40-50
 8:50+
 Allowan:2,0
 0:No
 1:Yes
 HasJob:2,0
 0:No
 1:Yes
 HHtype:5,0
 1:Single
 2:Couple
 3:CoupleChil
 4:SinglePar
 5:Other
 Response:2,0
 0:No
 1:Yes

10

Appendix B. Exporting data from SPSS to Cockpit

There is a tool available for exporting data and metadata from SPSS to files that can be read by Cockpit.
This tool is written in R. It is called export-spss.r. Appendix C contains the code of this tool. This appendix
describes how to adapt the code for a particular situation.

To apply the R program export.r in a specific situation some lines of the program have to be changed.

Step 1:
Specify the name of the SPSS file under the heading “Read SPSS file”.:

spss.data = read.spss('d://cockpit/export/gps.por', use.value.label=FALSE)

Note that in the example in appendix A the SPSS file is not a standard SPSS system file (with extension
sav), but a file in portable format (with extension por). This is because the R function read.spss sometimes
has problems reading sav-files.

Step 2:
Specify the model variables, i.e. the variables used in the model for the response probabilities, under the
heading “Specify variables to export”:

model = c("URBAN", "AGE3", "PHONE", "MARRIED", "HHSIZE", "ETHNIC")

The names of these variables must be exactly equal to the SPSS variable names. The names are case-
sensitive.

Step 3:
Specify the rest of the variables, i.e. the variables not used in the model for the response probabilities, under
the heading “Specify variables to export”:

rest = c("GENDER", "REGION", "PNONNAT1", "ALLOWAN", "HASJOB", "HHTYPE", "RESPONSE")

The names of these variables must be exactly equal to the SPSS variable names. The names are case-
sensitive. Note that not all other variables have to be specified, but just those that will be used in the
graphical analysis.

Step 4:
Specify the variable containing the estimated response probabilities under the heading “Specify
variables to export”:

probs = "RESPROB"

The name of this variables must be exactly equal to the SPSS variable name. The name is case-sensitive.

Step 5:
Specify the names of the cockpit files to be created under the heading “Specify variables to export”:

filename = "gps"

Two files will be created: a data file with the extension dat, and a metadata file with the extension rin.
So, in this case there will be two files: gps.dat and gps.rin.

11

Appendix C. The program export-spss.r

#---
Export SPSS file to Cockpit file
export-spss version 1.0, 10 May 2010, by Jelke Bethlehem
source("d://cockpit/test-export/export-spss.r")
#---

rm(list=ls())

 library(foreign)

#---
Read SPSS file
#---

spss.data = read.spss('d://cockpit/test-export/gps.sav', use.value.label=FALSE)

 n = length(spss.data[[1]])

#---
Specify variables to export
#---

model = c("URBAN", "AGE3", "PHONE", "MARRIED", "HHSIZE", "ETHNIC")

 rest = c("GENDER", "REGION", "PNONNAT1", "ALLOWAN", "HASJOB", "HHTYPE", "RESPONSE")
 probs = "RESPROB"
 filename = "d://cockpit/test-export/gps"

#---
Read data
#---

cat("Preparing data ...\n")

 f1 = paste(filename, ".dat", sep="")
 p1 = length(model)
 p2 = length(rest)
 p = p1 + p2
 p3 = p + 1
 data = matrix(rep(0, n * p3), n, p3)
 prob = rep(0, n)

for (i in 1:p1)

 { col = spss.data[[model[i]]]
 data[,i] = as.integer(col)
 }
 for (i in 1:p2)
 { col = spss.data[[rest[i]]]
 data[,p1 + i] = as.integer(col)
 }
 prob = spss.data[[probs]]
 data[, p3] = as.real(prob)
 cat("Writing data ...\n")
 write(t(data), file=f1, ncolumns=p3)

#---
Export metadata
#---

cat("Writing metadata ...\n")

 f2 = paste(filename, ".rin", sep="")
 cat("Data", "\n", sep="", file=f2, append=FALSE)
 cat(" ", f1, "\n", sep="", file=f2, append=TRUE)
 cat("Variables:", p, "\n", sep="", file=f2, append=TRUE)
 for (i in 1:p1)
 { col = spss.data[[model[i]]]
 nam = model[i]
 lev = attr(col, "value.labels")
 lev = sort(lev)
 lab = names(lev)
 cod = as.integer(lev)
 cts = length(lev)

12

cat(" ", nam, ":", cts, ",1" , "\n", sep="", file=f2, append=TRUE)
 for (j in 1:cts)
 { cat(" ", cod[j], ":", lab[j], "\n", sep="", file=f2, append=TRUE) }
 }
 for (i in 1:p2)
 { col = spss.data[[rest[i]]]
 nam = rest[i]
 lev = attr(col, "value.labels")
 lev = sort(lev)
 lab = names(lev)
 cod = as.integer(lev)
 cts = length(lev)
 cat(" ", nam, ":", cts, ",0" , "\n", sep="", file=f2, append=TRUE)
 for (j in 1:cts)
 { cat(" ", cod[j], ":", lab[j], "\n", sep="", file=f2, append=TRUE) }
 }

#---
End of program
#---

13

Appendix D. Exporting data from Stata to Cockpit

There is a tool available for exporting data and metadata from Stata to files that can be read by Cockpit.
This tool is written in R. It is called export-stata.r. Appendix E contains the code of this tool. This appendix
describes how to adapt the code for a particular situation.

Note since SAS can store its data and metadata in a Stata file, this tool can also be used to export data and
metadata from SAS to Cockpit.

To apply the R program export-stata.r in a specific situation some lines of the program have to be changed.

Step 1:
Specify the name of the Stata file under the heading “Read Stata file”.:

stata.data = read.dta('d://cockpit/test-export/gps.dta')

Step 2:
Specify the model variables, i.e. the variables used in the model for the response probabilities, under the
heading “Specify variables to export”:

model = c("URBAN", "AGE3", "PHONE", "MARRIED", "HHSIZE", "ETHNIC")

The names of these variables must be exactly equal to the State variable names. The names are case-
sensitive.

Step 3:
Specify the rest of the variables, i.e. the variables not used in the model for the response probabilities, under
the heading “Specify variables to export”:

rest = c("GENDER", "REGION", "PNONNAT1", "ALLOWAN", "HASJOB", "HHTYPE", "RESPONSE")

The names of these variables must be exactly equal to the Stata variable names. The names are case-
sensitive. Note that not all other variables have to be specified, but just those that will be used in the
graphical analysis.

Step 4:
Specify the variable containing the estimated response probabilities under the heading “Specify
variables to export”:

probs = "RESPROB"

The name of this variables must be exactly equal to the Stata variable name. The name is case-sensitive.

Step 5:
Specify the names of the cockpit files to be created under the heading “Specify variables to export”:

filename = "gps"

Two files will be created: a data file with the extension dat, and a metadata file with the extension rin.
So, in this case there will be two files: gps.dat and gps.rin.

14

Appendix E. The program export-stata.r

#---
Convert Stata file to Cockpit file
convert-stata version 1.0, 10 May 2010, by Jelke Bethlehem
source("d://cockpit/test-export/export-stata.r")
#---

rm(list=ls())

 library(foreign)

#---
Read Stata file
#---

stata.data = read.dta('d://cockpit/test-export/gps.dta')

 n = length(stata.data[[1]])

#---
Specify variables to export
#---

model = c("URBAN", "AGE3", "PHONE", "MARRIED", "HHSIZE", "ETHNIC")

 rest = c("GENDER", "REGION", "PNONNAT1", "ALLOWAN", "HASJOB", "HHTYPE", "RESPONSE")
 probs = "RESPROB"
 filename = "d://cockpit/test-export/gps"

#---
Export data
#---

cat("Preparing data ...\n")

 f1 = paste(filename, ".dat", sep="")
 p1 = length(model)
 p2 = length(rest)
 p = p1 + p2
 p3 = p + 1
 data = matrix(rep(0, n * p3), n, p3)
 prob = rep(0, n)

for (i in 1:p1)

 { col = stata.data[[model[i]]]
 data[,i] = as.integer(col)
 }
 for (i in 1:p2)
 { col = stata.data[[rest[i]]]
 data[,p1 + i] = as.integer(col)
 }
 prob = stata.data[[probs]]
 data[, p3] = as.real(prob)
 ddd = t(data)

cat("Writing data ...\n")

 write(ddd, file=f1, ncolumns=p3)

#---
Export metadata
#---

cat("Writing metadata ...\n")

 f2 = paste(filename, ".rin", sep="")
 cat("Data", "\n", sep="", file=f2, append=FALSE)
 cat(" ", f1, "\n", sep="", file=f2, append=TRUE)
 cat("Variables:", p, "\n", sep="", file=f2, append=TRUE)
 for (i in 1:p1)
 { col = stata.data[[model[i]]]
 nam = model[i]
 lev = levels(col)
 lab = lev
 cts = length(lev)

15

cod = 1:cts
 cat(" ", nam, ":", cts, ",1" , "\n", sep="", file=f2, append=TRUE)
 for (j in 1:cts)
 { cat(" ", cod[j], ":", lab[j], "\n", sep="", file=f2, append=TRUE) }
 }
 for (i in 1:p2)
 { col = stata.data[[rest[i]]]
 nam = rest[i]
 lev = levels(col)
 lab = lev
 cts = length(lev)
 cod = 1:cts
 cat(" ", nam, ":", cts, ",0" , "\n", sep="", file=f2, append=TRUE)
 for (j in 1:cts)
 { cat(" ", cod[j], ":", lab[j], "\n", sep="", file=f2, append=TRUE) }
 }

#---
End of program
#---

