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Summary: Recently, various indicators have been proposed as indirect measures of 

nonresponse error in surveys. They employ auxiliary variables to detect non-

representative or unbalanced response. A class of survey designs known as adaptive 

survey designs maximizes these indicators by applying different treatments to different 

subgroups. The natural question is whether the decrease in nonresponse bias caused 

by adaptive survey designs could also be achieved by nonresponse adjustment 

methods. We discuss this question and provide theoretical and empirical 

considerations, supported by a range of household and business surveys. We find 

evidence that balancing response reduces bias more than adjustment does. 

Keywords: Adaptive survey design; Adaptive treatment regime; Missing data mechanism; 

Poststratification; Survey nonresponse 

1. Introduction 

This paper is a follow-up to Schouten and Cobben (2012). In the current paper, we 

extend the theoretical and empirical evidence of Schouten and Cobben (2012) and 

further motivate balancing of survey response by design. The number of data sets is 

substantially increased and broadened by including surveys from Statistics Sweden and 

the University of Michigan. Furthermore, we perform an extensive simulation study 

and construct a rank test to find consistent patterns in rankings of representativeness 

indicators over different designs. In order to maintain a coherent paper, the paper 

overlaps in parts with Schouten and Cobben (2012). Throughout the paper, we use the 

terms representative and balanced response interchangeably. The terms are defined 

by Schouten, Cobben and Bethlehem (2009) and Särndal (2011), respectively. 

Representative response is defined as equal response propensities whereas balanced 

response is defined as equal nonresponse adjustment weights. Although they are 

slightly different, the two features are very similar in nature and indicators based on 

the two definitions usually rank designs the same. Balancing response refers to data 

collection efforts that lead to more representative or less unbalanced response. 

The main research question to this paper is: Does balancing of data collection effort on 

auxiliary variables lead to less nonresponse bias on survey target variables, even after 

adjustment using the same auxiliary variables? If we choose survey design features 

differently, like the survey mode or the timing and number of interviewer calls, for say 

different age and income groups with the goal of balancing response, would the 

reduction of nonresponse bias be larger than achieved by nonresponse adjustment of 
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data collected under a uniform treatment design using age and income as weighting 

variables. 

The context of this paper is survey data collection. However, the research question and 

discussion can be applied to any setting where different candidate treatments exist 

with varying amounts of missing data and where external data or covariates are 

available about population units. 

To date, the confluence of declining survey budgets, the rise of web as a data collection 

mode, and the changing survey climate in which it is harder to obtain survey response, 

urge statistical institutes and market research companies to make difficult decisions 

regarding trade-offs between costs and accuracy of survey statistics. Survey 

organizations are forced to efficiently allocate resources to attract respondents. As a 

result in the survey methodology literature, two closely linked trends are emerging: 

looking in more depth and detail into the survey process itself, and tailoring and 

adapting treatment to the potential respondent. The first trend relates to the analysis 

of process data, termed “paradata” (Couper, 2000; Couper and Lyberg, 2005) in the 

survey literature. See Kreuter (2013) for an extensive overview of recent 

developments. The second trend refers to adaptive and responsive survey designs in 

which different population subgroups receive different treatments, see Groves and 

Heeringa (2006), Wagner (2008) and Schouten, Calinescu and Luiten (2013) as relevant 

examples of this trend. These adaptive or responsive designs may be viewed as an 

extension of traditional sampling designs, which allow for only two options – either in 

the sample or not. These new designs may select from multiple strategies for each unit. 

This paper is about the second trend and discusses the question whether it is 

worthwhile in terms of nonresponse bias reduction to adopt such designs. 

Adaptive and responsive survey designs perform an adjustment by design as a 

supplement to adjustment afterwards in the estimation. The adjustment by design is 

conjectured to be useful for two reasons: First, it is inefficient to have a highly 

unbalanced response; a large variation in adjustment weights is to be avoided and may 

inflate standard errors. Second, and more importantly, the adjustment by design 

originates from the rationale that stronger imbalance on relevant, auxiliary variables is 

a signal of even stronger imbalance on survey target variables. 

Adaptive and responsive survey designs resemble adaptive treatment regimes in 

medical statistics. In survey data collection terminology, the treatments are called 

survey design features. The most prominent feature is the survey mode (web, mail, 

telephone, face-to-face) because of its large cost-quality differential, but many other 

design features may be varied during the course of a survey. Different population 

subgroups are identified in the sample based on covariates from registry data, 

sampling frames, and paradata that become available during data collection. An 

example of paradata is interviewer observations that relate to the main topics in the 

survey. In clinical trials, the outcomes of interest are unknown to the researcher in 

advance. Hence, decisions about continuing or altering treatment are based on proxy 

measures. This is analogous to the survey setting where the answers that respondents 

will give are not known before they respond. Recently, there have been developments 
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in research on proxy measures of the outcome variables in the survey setting. 

Indicators that have recently been proposed are representativeness indicators and the 

strongly related coefficient of variation of survey response propensities (Schouten, 

Cobben, Bethlehem 2009), balance indicators (Särndal 2011) and the fraction of 

missing information (Wagner 2010, Andridge and Little 2011). In this paper we focus on 

representativeness indicators, abbreviated to R-indicators, and the coefficient of 

variation which are very similar to balance indicators. The fraction of missing 

information is part of a very different class of indicators, see Wagner (2012), which we 

do not consider here.  

Adapting a design to optimize R-indicators or the coefficient of variation comes down 

to reducing variation in response propensities on available auxiliary variables, i.e. to 

equalizing response propensities. One of the criticisms to the use of these indicators 

for adapting survey design is that any utility gained by adaptation of the design during 

data collection may be achieved as well, and more cheaply, by post-hoc adjustment 

using the same auxiliary information. Hence, reducing bias on survey target variables 

by balancing response on auxiliary information could also be done through adjustment 

methods afterwards. However, since the validity of a model for the association 

between auxiliary variables and survey target variables may change during data 

collection, it is not necessarily true that adjustment based on such a model performs 

the same with or without any adaptation of the design. This paper discusses the 

question whether balancing response does reduce bias regardless relative to post-hoc 

adjustments. 

There is no easy way to answer the main research question, as in most cases 

nonresponse biases on survey target variables are unknown. We circumvent this 

complication by dividing available auxiliary variables into two groups: a group to be 

used in the assessment and improvement of indicators and a group to be used in the 

evaluation of nonresponse bias. We do this in two ways. First, we apply indicators to 

models estimated with increasing numbers of auxiliary variables as predictors and 

investigate whether patterns emerge, i.e. whether worse indicator values based on 

models with few predictors are associated with worse values on models with many 

predictors. Second, we perform nonresponse adjustment using increasing numbers of 

weighting variables and search for consistency in the biases remaining after each 

adjustment, i.e. whether larger biases on models with few predictors coincide with 

larger biases on models with many predictors. In both cases we search for patterns by 

means of a rank test. The auxiliary variables held out of the adjustment models 

function as surrogates of survey target variables, or “Pseudo-Y” variables. 

It is important to stress that the research question of this paper is mostly an empirical 

question. One can easily construct examples where balancing response does not 

reduce nonresponse bias. If we do find evidence in survey data that balancing helps, it 

does not, therefore, imply that the indicators have the feature that they detect 

nonresponse bias on other variables. It merely means that lower quality survey data 

collection, in the majority of cases, tends to affect the full range of potential variables 

and that the indicators successfully signal this tendency. This issue has also been 
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debated by Särndal (2011). Nonetheless, we show that there are also theoretical 

considerations that support balancing response through a combination of adaptive 

survey design and post-hoc adjustment.  

The strength of the empirical evidence depends on the variety of surveys that are 

studied and the nature of the auxiliary variables that are input to the indicators. We 

have selected a wide range of survey data sets from three different countries to find 

empirical support. We compare the representativeness of response for growing sets of 

auxiliary variables over different surveys, over different waves of a survey, during data 

collection and after different survey process steps like establishing contact and 

obtaining cooperation. In each comparison the auxiliary variables are fixed, but 

different variables are used over different comparisons and different data sets. Some 

of the data sets that we have selected contain a relatively rich set of auxiliary variables 

that were linked from registry data. Our study is somewhat similar to that of Peytcheva 

and Groves (2009), who investigated whether biases on demographic variables covary 

with specialized studies of biases on survey target variables. They found little evidence 

for such an association. Our study, however, uses a variety of data sources from actual 

surveys and shows that there is consistency in biases for auxiliary variables, even after 

adjustment. We do not extrapolate to survey target variables, but do discuss how such 

a consistency may extend to these variables as well. 

In this paper, we focus on nonresponse bias, i.e. on external validity. We assume that 

sample sizes are large, so that precision is not an issue. The restriction to nonresponse 

bias may, however, be too naïve, especially when multiple survey modes or intensive 

refusal conversion procedures are considered. For such design features differences in 

measurement bias, i.e. in internal validity, may need to be accounted for. Calinescu, 

Schouten and Bhulai (2012) generalize adaptive survey designs to nonresponse and 

measurement bias. Since adjustment methods for measurement error are different 

from adjustment methods for nonresponse error, we leave a debate about balancing 

or adjusting measurement error to a future paper. 

Even if our results provide a rationale that adaptive and responsive survey designs are 

meaningful extensions of traditional survey sampling designs, implementation of such 

designs in survey practice is not straightforward or easy. It implies a different 

conceptual framework. We leave it to other papers to make recommendations on how 

to implement such designs, e.g. Wagner (2013) and Luiten and Schouten (2013). 

The paper is organized as follows. In section 2, we review the various indicators for 

representative response. Next, in section 3, we show that the indicators appear in the 

bias intervals for all standard estimators: the Horvitz-Thompson estimator, the 

generalized regression estimator, the inverse propensity weighting estimator and 

double robust estimators. In this section, we also show that if the indicators favour 

certain designs over others based on an arbitrary selection of variables, then the 

indicators would also favour these designs when indicators would be based on any 

other non-selected variable. Furthermore, biases on any other non-selected variable 

after post-hoc adjustment would also be larger for the designs that are favoured by the 

indicators. In section 4, we discuss a rank test to investigate whether indicator 
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preferences are random and perform an extensive simulation study to explore the 

properties of the test. In section 5, we apply the rank test to the various datasets 

collected in the Netherlands, Sweden and the USA. In section 6, we end with a 

summary and conclusion.  
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2. Indicators for representative or balanced response 

In this section, we review indicators that have recently been proposed in the survey 

methodology literature as indirect measures of nonresponse error. We discuss briefly 

how they are used as objective functions measuring quality in adaptive survey designs. 

We refer to Lundquist and Särndal (2013a), Särndal and Lundström (2010), Särndal 

(2011), Schouten, Cobben and Bethlehem (2009), Schouten, Shlomo and Skinner (2011) 

and Shlomo, Skinner and Schouten (2012) for detailed accounts of the indicators and 

their statistical properties. We also refer to Wagner (2012) for a comparison and 

taxonomy of indicators. 

We first introduce a notation and framework. Throughout the paper, it is not essential 

whether we would take a design-based-finite-population or model-based-

superpopulation approach. All theoretical and empirical results could be translated in a 

straightforward way from one approach to the other. For ease of notation, however, 

we adopt a model-based-superpopulation approach. Let niiii RYX 1)},,{(  be an 

independent, identically distributed vector of covariates iX , variables of interest iY  

and 0-1 response indicators iR , where 1iR  indicates response. We assume that 

missingness applies to iY  only and that  iX  is always observed. For the moment we do 

not model the joint distribution of ),,( iii RYX . We denote the conditional distribution 

],|1[ yYxXRP iii   by ),(, yxYX , which is usually termed the response propensity 

for x  and y . Similarly, we define response propensities )( xX  and )( yY . For 

convenience, we will shorten the notation for the response propensity for unit i , given 

its values on the covariates and variables of interest, to ),(, iiYXi yx  . Let Z  be 

some vector of variables formed out of the auxiliary variables and survey target 

variables. In the following, we will often not specify the value of Z but treat the 

response propensity )(ZZ  as a random variable. It is straightforward to show that the 

expectation )(ZE
Z

  is always equal to the (expected) response rate ]1[ iRP , which we 

denote simply by  . We use the notation   here rather than the more common   to 

avoid confusion with the shorthand notation for the response propensity on  the 

combined set of variables ),( YX . We will denote variances by 2
S  and standard 

deviations by S .  

The representativeness indicator or R-indicator for a variable Z  is defined as the 

transformed standard deviation of the response propensity function Z  

                                                            ))((21)( ZSZR
Z

 .                                              (1) 

The R-indicator takes values between 0 and 1, where a value close to 1 corresponds to 

representative response. It corresponds to the Euclidean distance to the response 

propensity function that is constant over all values of  Z . Schouten, Cobben and 

Bethlehem (2009) introduce this indicator in a design-based context and propose an 

estimator using logistic regression on the iR ’s. The estimator itself is usually referred 

to as the R-indicator. If one would use linear regression instead of logistic regression, 
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then the R-indicator is equal to the balance indicator 
3

BI , proposed by Särndal (2011). 

In practice, the choice of link function is, however, rarely influential, see Bethlehem 

(2012). The rationale behind the indicators is that an absence of variation implies that 

response is a random subsample of the full sample with respect to the predictors in the 

model.  

Two indicators have a close similarity to the R-indicator and balance indicator. The first 

is the coefficient of variation of the response propensity function 

                                                              


 ))((
)(

ZS
ZCV

Z
 .                                                       

(2) 

The coefficient was labelled as the maximal bias for Z  by Schouten, Cobben and 

Bethlehem (2009), because it limits the standardized absolute bias of any function of 

Z  restricted to respondents (where standardization is done by the standard deviation 

of Y ). The indicator (2) can be estimated in a manner similar to (1) by dividing over the 

observed response rate. If the identity link function is used then the estimator has a 

close similarity to the coefficient of variation of the nonresponse adjustment weights 

proposed by Särndal and Lundström (2010), which they denote as 3H . Nonresponse 

adjustment weights can be viewed as smoothed inverse response propensities. A 

Taylor expansion of the coefficient of variation of inverse response propensities shows 

that for large samples it is proportional to the coefficient of variation of response 

propensities. The second indicator that links to the R-indicator and balance indicator is 

the standardized contrast 

                                                           
)1(

))((
)(








ZS
ZC

Z ,                                                              (3) 

which is equal to the standardized difference in the expectations of Z  for respondents 

and nonrespondents. Traditionally, the impact of nonresponse on the locations of 

distributions is decomposed as the product of the contrast and the nonresponse rate 

1  (e.g. Bethlehem, Cobben and Schouten 2011). This product equals the 

coefficient of variation (2). Also the contrast has a counterpart in the Lundquist and 

Särndal paper (2013a), where it is denoted by nrrdist | . 

Groves and Heeringa (2006), Wagner (2008), Lundquist and Särndal (2013a) and 

Schouten, Calinescu and Luiten (2013) propose to differentiate level and type of effort 

in surveys for different population subgroups in order to maximally reduce bias of 

estimators based on the survey response within the available survey budget. These 

designs are termed adaptive or responsive survey designs and resemble adaptive 

treatment regimes (Collins, Murphy, and Bierman 2004 and Murphy, Lynch, Oslin, 

McKay, Tenhave 2007) in other areas of statistics. The rationale is that different 

population subgroups may prefer or react differently to different treatments. The 

indicators in this section are proposed by some of the authors as quality objective 

functions in these optimal quality-cost trade-offs. They are applied to a number of 
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candidate designs and the design that has the best indicator value is favoured. 

Adaptation to the sampled units can be done prior to data collection based on previous 

waves of the same survey or similar surveys, or during data collection based on 

observations made on the sampled units. Schouten, Shlomo and Skinner (2011) 

propose partial R-indicators to identify population subgroups that should be targeted 

in order to reduce variation in response propensities. Essentially, the variance of 

response propensities is decomposed into between and within components and the 

subgroups that have the largest within variances are prioritized. The authors define 

unconditional partial R-indicators, denoted by )|( XZPU , and conditional partial R-

indicators, denoted by )|( XZPC , where Z  is an element of the auxiliary vector X . 

)|( XZPU  is defined as the between variance for Z  of the response propensity 

function X . )|( XZPC  as the within variance attributable to Z  given a stratification 

on X  without Z , again of X . For exact definitions, we refer to Schouten, Shlomo and 

Skinner (2011). Lundquist and Särndal (2013b) define partial imbalance indicators in a 

comparable fashion. 

We now return to the main research question of this paper. Can these indicators 

usefully be applied to improve survey design? We first note that the division of the 

indicators by the response rate in (2) and by the product of the response rate and the 

nonresponse rate in (3) implies that the indicators generally lead to different design 

preferences. Only if the response rate is equal for different designs, it is true that the 

indicators rank designs identically. Hence, although they may be interesting in their 

own right, the three indicators cannot be used simultaneously in design decisions. 

More importantly, however, the indicators are criticized for two main deficits. 

Recently, Beaumont and Haziza (2011) rightfully remarked that the early adaptive and 

responsive survey design papers restrict attention to bias and ignore variance. Also, in 

this paper we will focus mostly on bias, because we want to address the other alleged 

deficit. Although the indicators have subtle differences, they share one important 

feature: They can be estimated only for auxiliary variables X  and not for the variables 

of interest Y , unless a model is formulated. This feature is the second deficit; 

balancing response on X  may not be meaningful or useful because the missingness on 

these variables can be accounted for through an adjustment procedure and the real 

variables of interest remain unaffected. This discussion links strongly to the paper by 

Andridge and Little (2011) in which missingness is modelled as a function of YXY )( , 

where )( XY  is the projection of Y  on X  and   is a moderating parameter.   cannot 

be estimated but allows for a sensitivity analysis. Andridge and Little (2011) do this by 

computing the fraction of missing information (FMI) for different choices of  . The FMI 

cannot be easily used in adaptive and responsive survey designs since it is specific to 

the Y and we might make different modeling assumptions across different Y ’s.  

In the following sections we provide both a theoretical and empirical discussion on this 

key question for adaptive and responsive survey designs. 
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3. Components of nonresponse bias 

In this section, we provide theoretical considerations that support a focus on improving 

indicator values through adaptive design. We, first, derive approximations for the bias 

of four estimators in the context of survey nonresponse: the (unweighted) response 

mean, the generalized regression estimator, the inverse propensity weighting 

estimator and the double robust estimator. We show how the biases relate to the 

indicators of the previous section. Second, we give a statistical argument why they may 

be seen as measures of the quality of the data collection process, i.e. as opposed to 

product quality measures. 

3.1 Bias of unweighted and weighted response means 

We start by deriving expressions for the bias of four estimators of the location of the 

distribution of a survey target variable that are used in the context of survey 

nonresponse. These estimators are the Horvitz-Thompson or expansion estimator 

(Horvitz and Thompson 1952), the generalized regression estimator (e.g. Bethlehem 

1988), the inverse propensity weighting estimator (e.g. Hirano, Imbens and Ridder 

2003) and the double robust estimator (e.g. Bang and Robins 2005). For an excellent 

discussion on the various estimators see Schafer and Kang (2008). We restrict ourselves 

to the estimation of the location of distributions of interest. See Brick and Jones (2008) 

for derivations of the bias of other properties of distributions. The double robust 

estimator derived its name from the simultaneous modelling of a survey target variable 

and nonresponse using auxiliary variables X ; if either one of the models is correctly 

specified then the estimator is unbiased, i.e. it is doubly robust. The Horvitz-Thompson 

estimator does not employ a model. Essentially, the generalized-regression estimator 

models the survey target variable and the inverse propensity weighting estimator 

models the nonresponse. In our simplified framework, the Horvitz-Thompson 

estimator amounts to the response mean (RM), since the probability of being sampled 

does not depend on X  or Y . 

Since the indicators of the previous section are not specific to any survey target 

variable Y , any population parameter of that survey variable or any estimator, it can 

be stated beforehand that the indicators cannot be ideal indicators in any specific 

setting. The indicators do allow for flexibility in choosing different covariates X  for 

each estimand, but for specific variables, parameters and estimators, other indicators 

may be preferred. Nonetheless, we show that the variance of response propensities 

and the response rate are important components of the bias of the four estimators. 

We focus on bias of estimators. This is too simple a focus in general. We want to 

evaluate whether it is possible to reduce bias of nonresponse-adjusted estimators on 

variables of interest by altering the design. Future work should include the impact of 

design choices on variances of these estimators, or alternatively on variances of 

posterior distributions when adopting a Bayesian viewpoint. Furthermore, we do not 

discuss the selection of auxiliary variables, but treat them as given and fixed. From a 
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bias point of view, it is irrelevant whether auxiliary variables are selected that do not 

relate to variables of interest nor to nonresponse, but for the precision of estimators it 

is a crucial choice that has been much debated in the literature, see e.g. Little and 

Vartivarian (2005) and Huber, Lechner and Wunsch (2013). 

We assume an outcome model and a selection model of the following form 

                                                          
iii

XY   ,                                                       (4a) 

                                                         )()( iiX XhX   ,                                                       (4b) 

where  ,  ,   and   are parameters, h  is a link function and i  is an iid residual 

with zero expectation. The combined model (4a and b) is often referred to as a sample-

selection model or Heckman model. The model specifications may not be correct and 

the auxiliary vectors in (4a) and (4b) may be taken to be different, but this will not be 

problematic in the following. Assume for the moment that the parameters  ,  ,   

and   are known. 

The response mean and inverse propensity weighting (IPW) estimators have the 

following form 

                                             







n

i i

n

i ii

RM

R

YR
y

1

1 ,                                                                          (5) 
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

n

i
i

ii
n

i
iX

ii

IPW
Xh

YR

nX

YR

n
y

11 )(

1

)(

1


,                              (6) 

and the generalized regression (GREG) and double robust (DR) estimators are 

                                          )(
RMnRMGREG

xxyy   ,                                                          (7) 

                                          )( IPWnIPWDR xxyy   .                                                              (8) 

In this section, we make frequent use of the fact that any correlation between two 

variables, say 1X  and 2X , can be bounded from below and above by the correlations 

with a third variable, say 3X ,  

       

]),(1),(1),(),(

,),(1),(1),(),([),(

32

2

31

2

3231

32

2

31

2

323121

XXcorXXcorXXcorXXcor

XXcorXXcorXXcorXXcorXXcor




            (9) 

It follows directly that  

 

)]),(1),(1),(),()(()(

),),(1),(1),(),()(()([

),cov(

32

2

31

2

323121

32

2

31

2

323121

21

XXcorXXcorXXcorXXcorXSXS

XXcorXXcorXXcorXXcorXSXS

XX







          (10) 

For convenience, we use the following notation to describe the interval in (10) 
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             ,),(1),(1),,(),(),()( 32

2

31

2

323121 






 XXcorXXcorXXcorXXcorXSXS  

where the first entry is the scaling constant, the second entry the centre point of the 

interval and the third entry the term determining the width of the interval. 

Approximations to the bias of the four estimators are given by 

                              


 ),cov(
)(

Y
yB

RM
 ,                       






),cov(

)(
X

IPW

Y

yB  ,  

                              


 ),cov(
)(

XY
yB GREG


 ,            






 ),cov(

)( X
DR

XY

yB



 , 

where ),(
,

YX
YX

   and )( X
XX

  . 

Now, we use two random variables to assess bias intervals, )( XX  and XXY )( . It 

is relatively straightforward to derive pairs of approximate bias intervals for the 

absolute bias of the response mean and IPW and GREG estimators 

,),(1),(1|,),(||),(|,
)()( 22










 XXXX corYcorcorYcor

SYS





                 (RM1) 

,),(1),(1|,),(||),(|,
)()( 22










 XcorXYcorXcorXYcor

SYS





                   (RM2) 

,),(1),(1,0,
)()( 22










 XX corYcor

SYS





                                                          (IPW1) 

,),(1),(1,0,
)()( 22










 XYcorcor

SYS
X 




                                                          (IPW2) 










 ),(1),(1,0,

)()( 22

XcorXYcor
SYS





                                                         (GREG1)                                                  

.),(1),(1,0,
)()( 22










 XcorXYcor

SYS





                                                        (GREG2) 

In the derivation of the bias intervals, we used that    (   ⁄    )    and 

   (       )   . Furthermore, we used that   (  ( ))
  
   (   )  so that it 

follows that   (    )    ( )      (    )   (  )⁄    ( )(  

    (    )). Finally, we used that from Taylor approximations it holds that 

approximately   (   ⁄ )    ( )      (    )  
 (  )⁄    ( )(      (    )). 

The two choices of auxiliary variables lead to the same bias interval for the DR 

estimator 
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which can be rewritten as 
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Hence, the IPW, GREG and DR estimators transfer the centre point of the bias interval 

for the response mean to zero. A closer look at the width of the intervals reveals that 

(RM1) and (IPW1) are the same as well as (GREG2) and (RM2). Hence, the IPW and 

GREG estimators only shift these bias intervals. Interval (IPW2) is equal to (GREG1) and 

they are smaller than (IPW1) and (GREG2). Thus, taking intersections of the bias 

intervals leads to smaller intervals for both estimators with respect to the response 

mean. However, (DR1) has the same width as (IPW2) and as (GREG1), so that the DR 

estimator does not lead to a further reduction of the width of the bias interval. 

There are two messages from the bias intervals. First, all intervals have a scaling 

constant that is proportional to the coefficient of variation of the response propensity 

 . Second, the width of the bias interval for the estimators depends on the squared 

difference of the coefficients of variation applied to   and X , respectively, 

                                               )()(
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Schouten (2007) proposes to use the width of interval (GREG2) to select auxiliary 

variables for the GREG estimator. The derivations here show that, when fully ignoring 

variance, it is superior to choose X  such that ),(1),(1
22

XcorXYcor    is 

minimal. However, correlations need to be large in order to get small bias intervals.  

In practice, the parameters  ,  ,   and   are unknown. Consistent estimators for 

the parameters   and   exist, provided the outcome model is valid. However, the 

parameters   and   cannot be estimated without a potential bias. If, instead of the 

true  , we would use the slope parameter for the respondents, say 
~

, the bias 

intervals for the GREG and DR estimators change to 
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The bias intervals for the GREG estimator are now not centered around zero, and the 

two intervals for the DR estimator are different. Without further assumptions it is not 

possible to state whether (GREG3) is smaller than (GREG4) or vice versa. The same 

applies to the (DR2) and (DR3) intervals, Since (DR3) is always smaller than (GREG4), 

the DR estimator always has intervals that are equal in width or smaller. If we do not 

consider a specific Y  variable, then ),
~

(1
2

XXYcor   can be made arbitrarily large 

and the important term again is (11).  

In the following section, we motivate why a larger )(
X

cv   may also indicate a larger 

difference between the squared )(cv  and )(
X

cv  . 

3.2 The indicators as measures of process quality 

In this section, we formalize the utility of the indicators as process quality indicators. 

More specifically, we formalize the intuition that a larger variation of response 

propensities for X  corresponds to a larger variation of the true individual response 

probabilities. Doing so, we capitalize on the existence of an individual response 

probability. 

In section 3.1, we view the vector X  as fixed and given. All derivations and conclusions 

that we have made so far, do apply, however, to any arbitrary vector. Here, we view 

auxiliary variables themselves as being sampled from the population of all possible 

random variables. 

Suppose a large population consists of G  fully homogeneous and equally sized groups, 

labelled by Gg ,,2,1  . All units in group g  behave exactly the same in every way, 

and they have the same response probability for any given survey design. The 

stratification into the groups itself is not observed, but we do observe categorical 

variables kX , Kk ,,2,1  , that cluster groups into smaller numbers of groups.  

Let us for simplicity look at a 0-1 indicator variable X . Assume that X  was constructed 

by a simple random sample without replacement of size XG  from the set of G  groups. 

Let gs  be the 0-1 indicator that group g  was selected. We then have the following 

definition of X  

                                                        









,0,0

,1,1

g

g

sg

sg
X                                                     (12)  

i.e. X  is one for all selected groups g  and zero otherwise. Since the groups have equal 

size, the probability that 1X  is equal to GG X / . 
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Now, let g  be the response probability of group g , so that the response propensity 

function )( xX  for X  is defined as 
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In order to investigate the relation between the indicators based on X  and those 

based on the full stratification with the G  groups, we consider the expected mean and 

the expected variance of the response propensity function X . 

The mean response propensity can be derived as 

        
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From (14) we can conclude that the mean response propensity X  is always equal to 

the mean individual response probability  . Clearly, the expected mean response 

propensity is then also equal to  . Hence, regardless of the choice of X , the mean 

response propensity is the mean of the individual probabilities. 

The variance of X , )(
2

XS  , is equal to 

                                     222
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The expectation of )( xX  is always equal to  , and, hence, the expectation of (15) 

equals 

                                       ))0(()1())1(()(
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where ))(( xVar X  is the variance of X  with respect to the subgroup sampling design. 

Since X  is constructed using a simple random sample without replacement, 

))(( xVar X  is equal to 
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Combining (16) and (17) gives 
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so that the expected variance of response propensities is equal to the variance of the 

individual response probabilities times the population diversity constant G/1 .  

With similar arguments, it can be reasoned that if X  is a categorical variable with C  

categories, then  

                                                      )(
1

)(
22
 S

G

C
ES

X


 .                                                  (19) 

So for all X , the expected variance of the response propensity function X  is 

proportional to the variance of the underlying variance of individual response 

probabilities. This is a very useful finding as it implies that, if for some survey design 

the R-indicator is smaller or the coefficient of variation is larger than for another survey 

design, then also the variance of the individual response probabilities is expected to be 

larger. As a consequence, the expected variance of the propensity function resulting 

from any other random draw of subgroups g  would be larger too. Although it would 

not be true that the variance of all propensity functions is larger, there may in fact be 

various variables that lead to a smaller variance, it must hold that for an randomly 

selected variable on average the variance is larger. This conclusion supports the 

intuition that for surveys with many target variables, one would prefer larger R-

indicators or smaller coefficients of variation. It also shows that for single topic surveys, 

it may actually be the survey target variable itself that is one of the exceptional 

variables. 

When it comes to the bias of the RM and IPW, GREG and DR estimators, introduced in 

the previous section, the square root of the difference of the squared )(cv  and 

)(
X

cv   in (11) can be derived from (19) as 

                          
1

1)(1)()()(

2

2

2

2









C

CGS

G

CGSSS XX
















,                      

(20) 

which is the omnipresent term in the bias intervals. From (20) we can conclude that 

when X  is drawn at random from all possible 0-1 variables then a larger coefficient of 

variation corresponds to a larger (expected) maximal remaining bias after adjustment 

with X  for any other arbitrary variable. 

When 0-1 auxiliary variables X  are drawn using unequal inclusion probabilities for the 

population subgroups, then their expected variances of response propensities are 

proportional to a weighted variance of the individual response probabilities. The 

weights are equal to the inverse inclusion probabilities, normalized to one. This 

important result implies that if we consider a subset of all 0-1 auxiliary variables, then a 

larger coefficient of variation on an arbitrary variable from that subset indicates a 

larger expected coefficient of variation and remaining bias for any other arbitrary 

variable from that subset. One such subset are all variables that relate to the survey 

topics in a specified way, including the survey variables. 
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If we could assume that the set of auxiliary variables kX , Kk ,,2,1  , consists of 

independent random draws of subgroups, then we could estimate G  and )(
2
S . 

Estimation of these parameters is, however, beyond the scope of this paper. Of course, 

the discussion in this section is conceptual, auxiliary variables cannot be considered as 

independent, random draws of population subgroups. However, models for 

nonresponse are often criticized for the lack of relevant, explanatory variables; 

standard variables like age or gender may have proved to be indicative of homogeneity 

in the population, they were certainly not picked for the specific purpose of modelling 

response. 
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4. Testing the reduction of nonresponse bias 

Even when some theoretical considerations, as laid out in the previous section, would 

suggest that improving indicator values through changes in the survey design would be 

likely to control nonresponse bias, it would make a much stronger case if empirical 

results support such an endeavour. For this reason, we explore a wide range of survey 

data. We evaluate the validity of the preferences of the indicators using a rank test. In 

the test, we randomly divide the set of auxiliary variables into two groups: an 

evaluation group and a validation group. We test the null hypothesis that indicator 

values and nonresponse biases for evaluation variables are not indicative of indicator 

values and nonresponse biases for validation variables. If the test rejects this 

hypothesis, then designs are preferred by multiple variables simultaneously. 

We describe the details of the rank test in appendix B. We developed the rank test but 

it has a strong resemblance to multiple sample location rank tests described in the 

literature (e.g. Van der Vaart 1998). Here, we provide only the necessary background 

to the test, discuss its assumptions and perform a simulation study. In the study, we 

manipulate the amount of collinearity between auxiliary variables, the amount of 

variability in response propensities over designs and the sample size, and we 

investigate the impact of these parameters on the type 1 and 2 errors of the test. 

4.1 A rank test for indicator preferences 

Assume there are V comparative data sets, i.e. different surveys, different designs of 

the same survey or different levels of effort, labelled by Vv ,,2,1  . In the following, 

we will simply refer to different designs. Let vD  be the number of different designs in 

comparative data set v  and vM  be the number of auxiliary variables.  

The test statistic that we apply is based on the number of pairwise inversions that 

result when ranking the different designs according to the indicators and to remaining 

bias. A small number of pairwise inversions implies the indicator shows a consistent 

picture when different variables are considered. For each indicator we rank the designs 

within a data set while increasing the number of auxiliary variables used in the model. 

The included auxiliary variables function as the evaluation variables and the omitted 

auxiliary variables as the validation variables. The evaluation set of variables grows 

with each step, while the validation set of variables shrinks. If we assume that 

indicators computed on evaluation variables are not predictive of indicators based on 

validation variables, then it holds that the different rankings are independent. We 

derive the probability distribution of the number of pairwise inversions under 

independence in appendix B.  It is possible to test all comparative data sets 

simultaneously. We will do both – that is, test datasets individually and jointly.  
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4.2 Assumptions underlying to the rank test 

There are two basic assumptions underlying the rank test: 1) the ranks do not produce 

any ties, and 2) auxiliary variables are independent. In this section, we discuss both 

assumptions. 

The rank test assumes that the indicators and biases have a continuous measurement 

level and do not produce ties. The indicators and biases are continuous but they are 

random variables and are subject to imprecision. As a result, two indicator values and 

two biases may not be statistically different at a certain significance level. Given a 

particular significance level, the indicators and biases could produce ties. In general, 

the number of ties increases with decreasing sample sizes of the surveys under study. 

Ignoring the standard errors in the rankings leads to more noisy and, hence, less 

consistent patterns and to a more conservative rank test. In fact if sample sizes were 

very small, then the indicators would not be able to detect any signal at all. There is, 

however, no straightforward method to account for the standard errors of the 

indicators and biases in the rank test without making assumptions about the 

probability distributions of the indicators and biases over the variables. We, therefore, 

accept that the tests will be conservative and we select survey data sets that have 

modest to large sample sizes, which holds for many surveys in official statistics. 

The second assumption is more fundamental as it links to the independence 

assumption in the rank test. It is not true that the auxiliary variables are independent, 

and any dependence between the auxiliary variables may lead to spurious consistency 

in the rankings of indicator values. If we would take two copies of the same variables, 

then the indicator values would be exactly the same and would be fully consistent. 

Dependencies between the auxiliary variables, therefore, lead to smaller numbers of 

pairwise inversions and to more rejections of the null hypothesis. The probability of 

false rejections of the null hypothesis is larger and the power is smaller than 

anticipated. There are three options to reduce or remove the impact of dependent 

variables. First, the auxiliary variables can be made orthogonal or uncorrelated by 

performing a principal components analysis. One may also use the factors that have 

sufficiently large eigenvalues in a factor model. These solutions are unattractive, as, in 

practice, data collection monitoring and strategies are based on identifiable subgroups 

in the population. The second option is to adjust indicators themselves for correlations 

between variables. A possible choice is to rank conditional partial R-indicators rather 

than R-indicators themselves. Conditional partial R-indicators, see Schouten, Shlomo 

and Skinner (2011), compute the within variance in response propensities attributable 

to one auxiliary variable. In doing so, they adjust for any collinearity with other 

auxiliary variables. This option is attractive as it employs the untransformed auxiliary 

variables. However, for the other indicators there is not (yet) a conditional counterpart, 

so that we cannot apply it to these indicators. Alternatively, we can apply the test to 

remaining nonresponse bias after adjustment for some estimator, say the GREG 

estimator, adding variables to the adjustment one by one. The third option is to choose 

auxiliary variables in such a way that they are diverse and show little collinearity.  
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In section 5, we will apply the rank tests to R-indicators, coefficients of variation, 

contrasts, conditional partial R-indicators and to biases of GREG estimator. First, in the 

next section we investigate the performance of the rank test in a simulation study. 

4.3 A simulation study on the impact of collinearity, response variation 
and sample size 

In the simulation study the sample size, the amount of collinearity and the variation of 

response probability variances over designs are varied. The aim of the study is an 

analysis of type 1 and type 2 errors of the rank test as a function of these three 

parameters. The simulation study consists of repeated draws of: 1) M  auxiliary 

variables on a population with G  homogeneous subgroups, 2) response probabilities 

for D  designs on these subgroups drawn from Beta distributions in which a parameter 

  is used to manipulate variation between designs, 3) samples of n  units from the 

population, and 4) responses to each design for each sampled unit given the response 

probabilities. The parameter G  regulates the collinearity; the smaller the number of 

subgroups, the more the auxiliary variables will covary because they are based on the 

same selection of subgroups. The parameter   takes values in the interval [0,1], where 

0  implies that response probabilities are drawn from the same distribution for all 

designs and 1  correspond to a maximal variation in drawing response probabilities 

over different designs. Parameter n  regulates the sample size. One draw in the 

simulation thus consists of four steps, which are described in the following.  

First, a set of M  auxiliary variables is constructed. Each auxiliary variable is a simple 0-

1 variable, which reflects the categorical nature of many of the auxiliary variables 

available on sampling frames and registry data. Each of the M  auxiliary variables is 

constructed independently as follows: 

1. Draw XG  uniformly from the set }1,,3,2,1{ G  

2. Draw a simple random sample without replacement of size XG  from the set of 

subgroups },,3,2,1{ G  

3. The candidate m th variable is constructed by assigning the value one for 

elements in the subgroups that are selected and zero otherwise. 

4. If the candidate variable is not a linear combination of the 1m  previously 

constructed variables and the unit variable taking on the value one for all 

subgroups, then it is accepted as the m th variable, otherwise it is rejected. 

Second, for each subgroup g  and design d  a response probability is drawn. This is 

done in two steps: each design first gets a beta distribution where the two shape 

parameters d  and d  are drawn independently over designs, and, second, from this 

beta distribution design response probabilities are drawn for the subgroups. In the 

random draws of d  and d , one other parameter is involved that can be varied. The 

probabilities are drawn as follows: 
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1. For each design d , a variance 2

d  is drawn from a uniform distribution on the 

interval [ 4/)(,4/)(   ]. 2

d  is the expected variance of the response 

probabilities for the design. Parameter   moderates the amount to which 

different designs can have different variances. Parameter   moderates the 

variance of response probabilities over subgroups, independent of the design. 

Both parameters must be elements of the interval [0,1]. Only if 0 , it holds 

that all designs have equal response probability distributions (in expectation). 

2. For each design d , an expectation d  is drawn from a uniform distribution on 

the interval [ )415.05.0,415.05.0
22

dd   ]. d  is the (expected) response 

rate of the design. The range of the uniform distribution depends on 2

d  

through 2
)1( ddd   . 

3. The expectation d  and variance 2

d  are transformed to 

)1/)1((
2
 ddddd   and )1/)1()(1(

2
 ddddd   and subgroup 

response probabilities are independent draws from the Beta( dd  , ) 

distribution.  

The last two steps consist of drawing a sample of n  units and their 0-1 response 

indicators for each of the designs. This is done by drawing first a simple random sample 

with replacement of size n  from the G  subgroups, linking the constructed auxiliary 

variables and response probabilities, and then drawing responses from Bernoulli 

distributions. 

In each iteration of the simulation, the R-indicator, partial R-indicators, coefficient of 

variation, contrast and remaining biases after adjustment are computed as follows: 

 R-indicators, coefficients of variation, contrasts are computed by adding one by 

one the auxiliary variables to the response model. A md   matrix results with entry 

),( ji  the indicator value with the first j  variables included in the model for design 

i . 

 Partial R-indicators are computed by taking the unconditional partial R-indicator 

for the first variable and taking conditional partial R-indicators for the other 

variables that are added one by one. A md   matrix results with entry ),( ji  the 

indicator value for variable j  with the first j  variables included in the model for 

design i . 

 GREG biases are computed by taking the response mean for the first variable and 

for each new variable taking remaining biases after GREG adjustment on the 

previous variables. A md   matrix results with entry ),( ji  the remaining bias for 

variable j  calibrated on the first 1j  variables for response to design i . 
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Figure 4.1: a) (top-left) maximal absolute correlation when six auxiliary variables are 

available as a function of population diversity G , b) (top-right) R-indicator for one 

auxiliary variable as a function of   for 50G  (bottom), 100G  (middle) and 200G  

(top), c) (bottom-left) maximal absolute unadjusted nonresponse bias for six auxiliary 

variables for 50G  (top), 100G  (middle) and 200G  (bottom), and d) (bottom-

right) maximal absolute nonresponse adjustment for six auxiliary variables for 50G  

(top), 100G  (middle) and 200G  (bottom). 

 

The values of the different indicators are computed and stored when none of the 

categories of the auxiliary variables has zero respondents. If at least one category has 

no respondents, then the iteration is not further evaluated and used.  

For each draw and for each indicator, the rank test is applied to the resulting matrix 

with indicator values and leads to a rejection or not. The type 2 error for an indicator is 

estimated by the proportion of draws that did not lead to a rejection for a specified 

significance level. The type 1 error for an indicator is estimated by the proportion of 
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draws that did lead to a rejection for a specified significance level under 0 . Hence, 

each indicator is evaluated separately. 

Before performing the simulation, we have to choose realistic values of the parameters 

G ,  ,   and  . Although we will vary G  in the study, we have to choose a range of 

values that fits to real survey data sets. We will vary   based on realistic values for   

and the sample size from 2000n  to 10000n . Figure 4.1 shows four plots that 

provide insight into the choice of the parameters. Figure 4.1a shows the maximal 

absolute correlation between the auxiliary variables when six auxiliary variables are 

available, 6m , as a function of G . The maximal correlation shows a hyperbolic shape 

and decreases strongly for small values of G . For 100G , the maximal correlation is 

approximately equal to 0.18, which is close to values we find for the datasets that we 

have investigated. For a realistic choice of  , we simulated the R-indicator for a single 

auxiliary variable for 50G , 100G  and 200G . Figure 4.1b shows the decrease of  

the R-indicator as a function of   for the three values of G . Based on the R-indicators 

we typically find in survey datasets, we choose 3.0 . 

Figure 4.1c and d show, respectively, the maximal absolute bias of the response mean 

and the maximal absolute size of the adjustment produced by the GREG estimator for 

50G , 100G  and 200G . The biases and adjustments are based on a Monte Carlo 

simulation using 200 iterations, so that the plots still show some lack of smoothness. 

For figure 4.1c, the number of auxiliary variables was 6m . For figure 4.1d, the 

number was 9m  and the first three variables were used to perform the GREG 

estimators for the other six. The figures show that the larger the variance of response 

propensities and the larger the collinearity, the larger the bias and adjustments. 

However, as expected the remaining bias also increases with increasing   and 

decreasing G . 

Tables 4.1 to 4.4 present the results of several simulations using different  choices of n

, G ,  , m  and d . Tables 4.1 and 4.3 give estimated type 1 errors for 0 , while 

tables 4.2 and 4.4 give estimated type 2 errors for 3.0 . In all cases, we use a 

significance level of 5% to construct critical values. The estimated rejection and 

acceptance rates are based on Monte Carlo runs of 250 iterations. As a result, the 

estimated rates are still subject to some standard error. We are, however, mostly 

interested in patterns as a function of the parameters: The R-indicator, coefficient of 

variation and contrast almost always reject independence of rankings, regardless of the 

value of  , and cannot be used to detect consistency of patterns over different 

designs. The partial R-indicator rejects less often than the R-indicator, coefficient of 

variation and contrast, but still has undesirable properties when the number of 

auxiliary variables m  and the number of designs gets large. The bias of the GREG 

estimator as an indicator has good type 1 error properties except when collinearity is 

very weak, but it has a low statistical power. If collinearity is weak, then large samples 

are required to detect differences between designs. Large numbers of auxiliary 

variables are required to get acceptable power levels. 
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Before we performed the simulation study, we did not anticipate the low acceptance 

rates on the R-indicator, coefficient of variation and contrast. A closer look reveals that 

these indicators tend to move with small shocks; only a few auxiliary variables produce 

larger shifts in the indicator values. These shocks make the indicator patterns look 

consistent, but this is spurious because the majority of auxiliary variables give small 

changes. It is true for 0  that design preferences change from one variable to the 

other, while for 3.0  they point more often at the design with the largest variation 

in response propensities, but the indicators require adjusted critical levels for the rank 

test. The observed phenomenon applies to the partial R-indicator as well, even though 

this indicator adjusts for collinearity between auxiliary variables. Again, this result is 

surprising as the bias of the GREG estimator does not suffer from this problem. We 

believe that it is the result of modelling the same 0-1 response indicator while adding 

variables whereas the bias of the GREG estimator applies to a new variable every time 

a variable is added.  

Table 4.1: Percentage of simulation runs that led to a rejection under 0  ( 3.0 ,

7m , 6d ). 

 

 

n=2000 n=5000 n=10000 

G=50 G=100 G=1000 G=50 G=100 G=1000 G=50 G=100 G=1000 

R 100% 100% 100% 100% 100% 100% 100% 100% 100% 

CV 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Contrast 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Partial R 33% 31% 37% 37% 32% 35% 34% 32% 35% 

NR bias 5% 15% 85% 9% 8% 51% 8% 6% 25% 

 

Table 4.2: Percentage of simulation runs that did not lead to a rejection under 3.0  ( 3.0 ,

7m , 6d ). 

 

 

n=2000 n=5000 n=10000 

G=50 G=100 G=1000 G=50 G=100 G=1000 G=50 G=100 G=1000 

R 0% 0% 0% 0% 0% 0% 0% 0% 0% 

CV 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Contrast 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Partial R 63% 58% 63% 57% 54% 60% 49% 52% 55% 

NR bias 66% 57% 10% 71% 65% 32% 71% 67% 43% 

 

Table 4.3: Percentage of simulation runs that led to a rejection under 0  ( 3.0 , 100G , 

5000n ). 

 

 

d=2 d=6 d=10 

m=4 m=8 m=12 m=4 m=8 m=12 m=4 m=8 m=12 

R 0% 48% 85% 92% 100% 100% 100% 100% 100% 

CV 0% 58% 91% 99% 100% 100% 100% 100% 100% 

Contrast 0% 60% 86% 93% 100% 100% 100% 100% 100% 

Partial R 0% 8% 16% 26% 32% 42% 50% 54% 67% 

NR bias 0% 1% 6% 8% 4% 6% 13% 8% 3% 
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Table 4.4: Percentage of simulation runs that did not lead to a rejection under 3.0  (

3.0 , 100G , 5000n ). 

 

 

d=2 d=6 d=10 

m=4 m=8 m=12 m=4 m=8 m=12 m=4 m=8 m=12 

R 100% 51% 9% 5% 0% 0% 0% 0% 0% 

CV 100% 45% 5% 2% 0% 0% 0% 0% 0% 

Contrast 100% 46% 5% 3% 0% 0% 0% 0% 0% 

Partial R 100% 89% 66% 72% 49% 39% 60% 29% 17% 

NR bias 100% 91% 77% 77% 65% 52% 66% 52% 47% 

 

Table 4.5: Percentage of simulation runs on 15 comparative datasets that did not lead 

to a rejection under 0.0  and 3.0  ( 3.0 , 100G , 5000n , 7m , 6d ). 

 R CV C Partial R NR bias 

0.0  0% 0% 0% 0% 76% 

3.0  0% 0% 0% 0% 0% 

 

Table 4.5 presents the estimated type 1 and type 2 errors, again for a significance level 

of 5%, when multiple comparative datasets are combined. We took 15 datasets and all 

datasets have seven auxiliary variables and six different designs for simplicity. As 

expected all indicators, except the indicator based on the remaining bias of the GREG 

estimator, always lead to a rejection of the null-hypothesis of independent rankings. 

The GREG bias indicator accepted 24% of the runs for 0.0  which is still much higher 

than the prescribed 5%.  

Although the main purpose of the simulation study was to gain insight into the error 

properties of the rank test, we found that with only three parameters, G ,   and  , 

the simulation model was able to produce realistic correlations and indicator patterns. 

This finding may be a starting point for estimating the diversity of a population. 
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5. Application to survey data sets 

We apply the rank test to a wide range of data sets collected by the Institute for Social 

Research of the University of Michigan, and the national statistical institutes of Sweden 

and The Netherlands. We present the various data sets and the linked auxiliary 

variables in appendix A. Table 5.1 gives the full names and labels of the surveys.  

The p-values are estimated for the 14 datasets separately and jointly. The number of 

pairwise inversions is a discrete random variable and p-values are taken as the average 

of the probability distribution at m-1 and m, when m is the observed number. Table 5.2 

contains p-values for the rank test applied to the partial R-indicator (Pc) and bias of the 

GREG estimator (B). We also computed p-values for the other indicators, and as 

expected from the simulation study they are small. Furthermore, we computed 

adjusted p-values for Pc and B based on the simulation study; for these indicators p-

values were robust for collinearity in the selected auxiliary variables.  

Table 5.1: Overview of data sets and number of designs and number of auxiliary 

variables. 

Label Survey 
v

D  
v

M  

HS Dutch Health Survey 3 6 

CVS  Dutch Crime Victimisation survey 3 4 

HS-CVS HS and CVS combined 6 4 

LFS Dutch Labour Force Survey 3 6 

SCS Dutch Survey of Consumer Sentiments 8 7 

SCSASD SCS adaptive design pilot study 2 5 

STS-IND Dutch Short Term Statistics survey Manufacturing 

Industry 

7 6 

STS-RET Dutch Short Term Statistics survey Retail Industry 3 4 

LISS Longitudinal Internet panel for the Social Sciences 3 4 

LCS Swedish Living Conditions Survey 6 7 

PPS Swedish Party Preference Survey May 6 7 

SCA USA Survey of Consumer Attitudes 4 8 

NSFG USA National Survey of Family Growth 2 8 

HRS USA Health and Retirement Survey 2 9 

 

For the partial R-indicator five out of the 14 datasets have an unadjusted p-value 

smaller than 0.05 and of these five values four are smaller than 0.01. For the 

nonresponse bias three values are smaller than 0.05 and these are also smaller than 

0.01. The adjusted p-values for the different indicators are not always consistent. For 

instance, the HS-CVS, SCA and NSFG datasets lead to very different p-values. This is a 

somewhat puzzling result. There is no strong link to the type of comparison that is 

made in the dataset, see table A.2 of the appendix, but the number of datasets is too 

small to make strong conclusions here. 
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Table 5.3 contains the observed numbers of inversions and corresponding p-values 

when multiple datasets are combined into one overall test. Three combinations of 

datasets are combined: all nine datasets from Statistics Netherlands, all five datasets 

from Stat Sweden and ISR Michigan, and all 14 datasets. In all cases the p-values are 

smaller than 0.05, and with one exception they are much smaller. For the conditional 

partial R-indicator we know from the simulation that the rank test is too optimistic, so 

that results should be interpreted with some care. For the nonresponse bias the 

performance of the test is better and still p-values are generally (much) lower than 5%. 

The overall test, thus, indicates that the total observed numbers of inversions are much 

smaller than expected if design preferences per variable were random.  

Table 5.2: p-values for various comparative datasets for the partial R-indicator and bias 

after adjustment.  

 HS CVS HS-

CVS 

LFS SCS SCS-

ASD 

LISS STS 

IND 

STS 

RET 

LCS PPS SCA NSFG HRS 

Pc 0.32 0.97 0.96 0.82 0.00 0.06 0.03 0.72 0.50 0.00 0.00 0.81 0.01 0.36 

B 0.18 0.12 0.00 0.82 0.00 0.06 0.00 0.72 0.88 0.07 0.10 0.35 0.77 0.36 

 

Table 5.3: Expected numbers of inversions, observed numbers of inversions and p-

values for combined datasets from Statistics Netherlands, from Stat Sweden and ISR 

Michigan and from all institutes.  

 Number of inversions p-value 

Expected Pc B Pc B 

Stat Netherlands 189.5 142 97 <0.001 <0.001 

Stat Sweden/ISR 118.5 66 97 <0.001 0.02 

All 308 208 194 <0.001 <0.001 

 

Summarizing, while individual datasets do not point strongly at consistency in design 

preferences, their combination does clearly indicate that nonresponse affects multiple 

variables simultaneously, even when adjusting for collinearity. This is, in our view, a 

remarkable result. Our conclusion is based on 14 datasets with a specific selection of 

auxiliary variables. Nonetheless, given the wide range of surveys these results do 

provide empirical support for balancing response on auxiliary variables by design 

regardless of any adjustment based on these same variables afterwards. 

Our simulation study indicated that it is not meaningful to track the R-indicator and 

coefficient of variation when adding variables one by one. Still it turned out that these 

indicators can be viewed as process quality indicators. The rankings of different 

surveys/designs/time points or processing steps of these indicators after adding all 

variables are very similar to the average rankings produced by the conditional partial R-

indicator and nonresponse biases when adding variables one by one. Hence, when the 

value of the R-indicator is lower or the value of the coefficient of variation is higher, 

then the partial R-indicator and nonresponse biases tend to produce higher values for 

multiple variables. 
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6. Discussion 

This paper contributes in five ways to the existing literature: 1) it derives bias intervals 

for commonly used estimators and shows how recently proposed proxy measures 

appear in these intervals, 2) it provides a motivation for viewing these proxy measures 

as indicators of process quality, 3) it provides a rank test for evaluating patterns of the 

proxy measures, 4) it describes a simulation study that produces realistic proxy 

measure values with only a few parameters, and 5) it gives empirical evidence that 

balancing of survey response may on average be fruitful. 

With these contributions, we hope to have provided both a theoretical and an 

empirical rationale to balance survey response by design, regardless of adjustment 

afterwards. Such balancing allows for an efficient allocation of resources to different 

sample units, i.e. by minimising mean square error given a certain budget or vice versa 

minimize the required budget given restrictions on quality. Balancing by design does 

not mean that one should not apply adjustment afterwards nor that one should blindly 

assume that balancing response will always lead to a reduced bias, even after 

adjustment. First, it is easy to “trick” any indicator by simply subsampling response 

based on subgroup response propensities. This is what large web panels sometimes do; 

they take subsamples that resemble the overall population. It is clear that any 

subsampling cannot remove bias and will, generally, only increase variances (e.g. for a 

discussion, see Bethlehem 2014). Adaptive and responsive survey design are, however, 

not about subsampling; subsampling cases means removing them from the sample 

and, as a consequence, subsampling would not affect the value of proxy measures. 

These designs are about optimal allocation of resources. Adapting survey design 

focussing on the indicators that we considered in this paper, implies going for the 

subgroups that performed worst and attempting to equalize or balance response 

propensities. How to do this in practical settings is not at all straightforward. Second, a 

full balance of response will in most practical settings be infeasible and adjustment 

afterwards will always be necessary. Third, given that survey resources are finite, it is 

imperative that variances are taken into account when adapting survey designs. This is 

an important topic for future research. Fourth, our empirical evidence shows that only 

on average did nonresponse biases show consistency behaviour relative to the 

indicators; for some of the datasets this consistency was not apparent. For this reason 

we call on others to perform similar empirical studies, and, in practice, to monitor 

multiple indicators next to the response rate. 

We have shown that the coefficient of variation of response propensities appears in 

bias intervals for all commonly used estimators for the location of population 

distributions, i.e. design-weighted response means, inverse propensity weighting, 

generalized regression estimators and double robust estimators. Although, this was not 

the purpose of this paper, this result can be used to construct variable selection 

strategies for each of those estimators. 

Our theoretical result that less representative response on an arbitrary (auxiliary) 

variable translates to less representative response and more nonresponse bias after 
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adjustment on other arbitrary variables is intuitive. Still, as far as we know, there is no 

statistical literature that attempts to model the construction of random variables on a 

population itself. Such modelling is needed in order to make statements about the 

transfer of observed relations on one subset of variables to another subset of 

variables; in our case the relation between missingness and auxiliary information. It is 

obvious that the available auxiliary information in a survey cannot be viewed as a 

random selection from the universe of variables. However, observed correlations 

between available auxiliary variables and nonresponse are generally close to zero 

which one would indeed expect when sampling variables at random rather than 

selecting them based on their predictive power for missingness. In panels where there 

is usually a wide range of topics offered and in surveys that include a wide range of 

topics, there may be sufficient rationale to balance on available auxiliary information. 

In surveys with a small number of main survey variables, it is insufficient to do so 

because these variables may drive the missingness and may thus form the exception. In 

practice, therefore, it is important to protect against undue assumptions by sensitivity 

analyses and to monitor multiple statistics, including estimates, to protect against 

situations that do not fit the pattern described in this paper. 
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Appendix A: Survey documentation 

The empirical illustration in the paper is based on a wide variety of survey data sets 

from three countries. We distinguish four types of comparisons: 1) a comparison of 

different surveys or different survey designs with the same target population, 2) a 

comparison of the same survey with repeated administrations at different time 

periods, 3) an evaluation of a survey during data collection (such as comparisons based 

on time or numbers of visits or calls), and 4) an evaluation of a survey after different 

processing steps, where “processing steps” refers to obtaining contact, obtaining 

participation, recruitment for a panel. 

Table A.1 shows the various data sets with some important characteristics of each. The 

first column contains the label of the data set that we will use in the remainder of this 

section. The survey data sets and their auxiliary variables were taken as they are 

regularly produced by the statistical subject-matter departments. In the social survey 

data sets, the potential number of auxiliary variables is usually larger, as various 

additional registry data exist. The LFS, STS and SCSASD data sets contain auxiliary 

variables that are closely related to the survey topics. The SCSASD dataset requires 

additional explanation as it concerns an experimental study directed at improving 

representativeness and balance of survey response. The study was linked to the Survey 

of Consumer Sentiments (SCS) 2009. Based on historic SCS data for the years previous 

to 2009, an adaptive survey design was constructed that treated population subgroups 

differently based on their gender, ethnicity, income, age, type of household, their zip 

code percentage of non-native inhabitants and the urbanization of their area of 

residence. The adaptive survey design aimed at improving representativeness with 

respect to these subgroups while keeping the survey costs and survey response rate 

fixed. Details can be found in Luiten and Schouten (2013). The study ran parallel to the 

regular SCS in which all subgroups were treated the same and as usual. Four new 

registry variables were linked to the SCSASD dataset that became available after the 

survey data collection and that were not considered in the design of the experiment. 

These new variables are used as validation variables to compare the indicators for the 

control group and the experimental group. 

Table A.1: Overview of data sets. 

Label Survey Designs Auxiliary variables 

HS Dutch Health 

Survey 2010 

web 

CAPI 

web → CATI+CAPI 

Employment status, 

ethnicity, age, urbanization, 

type of household and zip 

code house value 

CVS  Dutch Crime 

Victimisation 

survey 2006 

web 

CATI+CAPI 

web → CATI+CAPI 

Ethnicity, age, urbanization 

and type of household  

HS-CVS HS and CVS 

combined 

mode designs of HS and 

CVS 

Ethnicity, age, urbanization 

and type of household 

LFS Dutch Labour CAPI 2009 Employment status, 
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Force Survey of 

2009 and 2010 

CAPI 2010 

CATI+CAPI 2010 

ethnicity, age, urbanization, 

type of household and zip 

code house value 

SCS Dutch Survey 

of Consumer 

Sentiments 

2009 

after varying numbers of 

phone calls 

Gender, ethnicity, income, 

age, zip code percentage 

nonnative, urbanization and 

type of household 

SCSASD SCS adaptive 

design pilot 

study 2009 

regular SCS (CATI) 

pilot study (web+mail → 

CATI) 

Adaptive survey design 

strata based on  gender, 

ethnicity, income, age, zip 

code percentage nonnative, 

urbanization and type of 

household, and new 

variables: owns car from 

company, type of business, 

number and size of jobs 

STS Dutch Short 

Term Statistics 

survey 2007 

after 25 days of data 

collection 

after 30 days of data 

collection 

after 60 days of data 

collection  

Business size, NACE, VAT of 

reference month in previous 

year, VAT of reference 

month 

LISS Longitudinal 

Internet panel 

for the Social 

Sciences 2007 -

2010 

contact recruitment 

interview response  

recruitment interview 

willing to be panel 

member registered as a 

panel member active in 

panel after one year active 

in panel after two years  

active in panel after three 

years 

Employment status, 

ethnicity, age, urbanization, 

type of household and zip 

code house value 

LCS Swedish Living 

Conditions 

Survey 2009 

after different number of 

calls 

including follow up 

Gender, age, ethnicity, 

education, civil status, 

property ownership, 

income, employment status, 

region, benefits 

PPS Swedish Party 

Preference 

Survey May 

2012 

after different numbers of 

calls 

Gender, age, ethnicity, 

education, civil status, 

income, region 

SCA Survey of 

Consumer 

Attitudes 2011-

Four waves: Sep 2011, Jan 

2012, Apr 2012 and Jun 

2012 

Census Region (4 regions), 

proportion in ZCTA 

(neighborhood) with income 
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2012 $100,000+, proportion in 

ZCTA Hispanic, proportion in 

ZCTA black, proportion of 

households in ZIP code with 

a listed telephone number, 

proportion in ZCTA that is 

25-34 years old, telephone 

number with address, 

median Home Value of 

households in ZCTA 

NSFG National 

Survey of 

Family Growth 

2006-2010 

Two time points during 

data collection 

(intermediate and final) 

Indicator for access 

problems to the area 

segment, Census Region (1-

4), 

Indicator for urban area 

within large MSA, sampling 

domain (1= <10% black, 

<10% Hispanic; 2= >10% 

black, <10% Hispanic; 3= 

<10% black, >10% Hispanic; 

4= >10% black, >10% 

Hispanic), indicator for 

housing unit in structure 

with more than one unit, 

indicator for evidence of 

non-English speakers in 

neighborhood, proportion 

eligible for NSFG in ZCTA, 

indicator for neighborhood 

has safety concerns 

HRS Health and 

Retirement 

Survey 2006, 

2008 

Two waves 2006 and 2008 Age group cohort, indicator 

for less than high school 

education, indicator for part 

of a couple, gender, marital 

status, indicator for black, 

indicator for in a nursing 

home, indicator for 65 years 

or older in 2006, indicator 

for Hispanic 

 

Table A.2 gives the type of comparison that is made for each of the data sets. The 13 

datasets allow for all types of comparisons; four look at different surveys or designs of 

the same survey, three consider the same survey in different waves, four correspond 
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to different amounts of effort during data collection and two involve different data 

collection steps. 

Table A.2: Overview of comparisons. 

 Type of comparison 

Different 

surveys/designs 

Survey in time Data collection Processing steps 

HS x    

CVS x    

HS-CVS x    

LFS  x   

SCS   x  

SCSASD x    

STS   x  

LISS    x 

LCS   x  

PPS    x 

SCA  x   

NSFG   x  

HRS  x   
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Appendix B: Probability distribution of the rank test 

This appendix describes the construction of the rank test that is used in the main 

document to test absence of patterns in indicator values and nonresponse biases. We 

first introduce notation and derive the probability distribution of the number of 

pairwise inversions or the number of discordant pairs in independent rankings. This 

distribution forms the basis for the rank test. In the main document we analyse the 

properties of the rank test in a simulation study. 

B.1 The probability distribution of the number of pair wise inversions 

Assume there are V comparative data sets, i.e. different surveys, different designs of 

the same survey or different levels of effort, labelled by Vv ,,2,1  . In the following, 

we will simply refer to different designs. 

For illustration purposes, we use the following example with 2V : data set 1 is the 

Labour Force Survey conducted through three different survey modes on independent 

samples and data set 2 is the Health Survey of five different calendar years. In data set 

1, we have auxiliary variables age, type of household, employment status, urbanization 

of residence area, ethnicity and average house value at zip code. In data set 2, we have 

gender, age and income.  

We introduce some notation. Let vD  be the number of different designs in 

comparative data set v . In the example, we have 31 D  and 52 D . Let 

T

Mvvvv v
XXXX ),,,( ,2,1,   be the vector of auxiliary variables that is input to the 

comparison in data set v . The comparison thus consists of vM  auxiliary variables, 

which may again be different in each data set  v . In the example they are 61 M  and 

32 M . Assume that the auxiliary variables in vX  are independent.  

The test statistic that we propose in the section B.2 is based on the number of pairwise 

inversions that result when ranking the different designs according to the indicators 

and to remaining bias. A small number of pairwise inversions implies clustered 

preferences, i.e. the indicator shows a consistent picture when different variables are 

considered. 

With a pairwise inversion we mean the inversion of two consecutive designs. Two 

examples: 

2,1,3,4 requires only one pairwise inversion to get to 1,2,3,4, namely (2,1). 

1,3,4,2 requires two pairwise inversions to get to 1,2,3,4, namely (4,2) and 

(3,2). 

In this section, we derive the probability distribution of the number of pairwise 

inversions between two independent rankings of the designs. 
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Without loss of generality, it can be said that the first ranking leads to a preferred 

order D,,3,2,1   of the designs. So design 1 performs best and design D  performs 

worst. When the two rankings are independent, then the new sequence may be any 

permutation of the D  designs. There are !D  ways in which the designs can be 

ordered and each sequence has an equal probability of being realized, i.e. !/1 D . The 

maximal number of pair wise inversions is 2/)1( DD  and is attained when 

D,,3,2,1   is reversed to the sequence 1,2,,1, DD .  

It is easy to show that the probability distribution of the number of pairwise inversions 

is symmetrical and has expectation 4/)1( DD . The number of sequences of design 

labels that requires d  pairwise inversions has no easy closed form, but it can be shown 

(Bona 2004) that it is the coefficient of the term d
z  in the polynomial 

                  )1()1()1(1)(
22

1
0

D

D

l

l

k

k
zzzzzzz  




 .      (B1) 

The probability of d  pairwise inversions is equal to this coefficient times !/1 D . In the 

example, the maximal number of inversions for the first data set is three and for the 

second data set it is ten. The probability distributions are (1/6, 1/3, 1/3, 1/6) and 

(1/120, 1/30, 3/40, 1/8, 1/6, 11/60, 1/6, 1/8, 3/40, 1/30, 1/120). 

 

B.2 A rank test for indicator preferences 
 

For each indicator we rank the designs within a comparative data set based on 

increasing the number of auxiliary variables used in the model. We start by ranking the 

designs on 
1

X , then add 
2

X , and continue to add variables until the whole vector 

T

Mvvvv v
XXXX ),,,( ,2,1,   is included. Hence, the included auxiliary variables function 

as the evaluation variables and the omitted auxiliary variables as the validation 

variables. The evaluation set of variables grows with each step, while the validation set 

of variables shrinks. 

If we assume that indicators computed on evaluation variables are not predictive of 

indicators based on validation variables, then it holds that the different rankings are 

independent. The total number of pair wise inversions needed to go from the first 

ranking to the last ranking is the sum of 1
v

M  independent numbers or pairwise 

inversions. We derived the probability distribution of this number in the previous 

section.  

A small total number of pairwise inversions implies clustered preferences, i.e. the 

indicator shows a consistent picture when different variables are considered. Let 
mv

I
,

 

be the number of pairwise inversions in data set v  when adding variable m . Let v  be 
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the expected total number of pairwise inversions. Then the null hypothesis is 

4/)1()1(:0,  vvvvv DDMH  , and the test statistic is 

                                                                 





1

1 ,

vM

m mvv
IT .                                                    (B2) 

 It is possible to test all comparative data sets simultaneously, i.e. summing the 

individual test statistics 
v

T  in (B2) over all data sets. We will do both – that is, test 

datasets individually and jointly.  

Essentially, the testing problem in this section is a multiple sample location problem. A 

standard test is the Kruskal-Wallis test, see e.g. Van der Vaart (1998). The Kruskal-

Wallis is a chi-square test for large M . In our case, M  is generally small, so that we 

cannot assume a chi-square distribution but would have to derive the exact probability 

distribution. The test we propose here uses a different statistic and is more intuitive. 

Tables B.1 and B.2 contain the 5% and 1% quantiles, respectively, for different values 

of vD  and 
v

M . The rank test is implemented in R by the authors and the code is 

available upon request. 

Table B.1: 5% quantiles for various values of D and M. 

 

M 

D 

2 3 4 5 6 7 8 

2 - - 0 1 2 4 6 

3 - 0 2 4 8 12 18 

4 - 1 4 8 14 21 29 

5 - 2 6 12 20 30 42 

6 0 3 9 16 27 39 54 

7 0 4 11 21 33 49 67 

8 0 5 14 25 40 58 79 

9 1 7 16 30 47 68 92 

10 1 8 19 34 53 77 105 

 

Table B.2: 1% quantiles for various values of D and M. 

 

M 

D 

2 3 4 5 6 7 8 

2 - - - 0 1 2 4 

3 - - 0 2 5 9 14 

4 - 0 2 6 11 17 25 

5 - 1 4 10 17 26 36 

6 - 2 6 14 23 34 48 

7 - 3 9 17 29 43 60 

8 0 4 11 22 35 52 72 

9 0 5 13 26 42 61 85 

10 0 6 16 30 48 70 97 
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Explanation of symbols

XXXX 20130X X-00

 . Data not available
 * Provisional figure
 ** Revised provisional figure (but not definite)
 x Publication prohibited (confidential figure)
 – Nil
 – (Between two figures) inclusive
 0 (0.0) Less than half of unit concerned
 empty cell Not applicable
 2013–2014 2013 to 2014 inclusive
 2013/2014 Average for 2013 to 2014 inclusive
 2013/’14 Crop year, financial year, school year, etc., beginning in 2013 and ending in 2014
 2011/’12–2013/’14 Crop year, financial year, etc., 2011/’12 to 2013/’14 inclusive
 
  Due to rounding, some totals may not correspond to the sum of the separate figures.




