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1 THE  BASICS ς UNDERSTANDING LINEAR REGRESSION 

Linear regression is a modelling technique for analysing data to make predictions.  In simple 

linear regression, a bivariate model is built to predict a response variable (ώ) from an 

explanatory variable (ὼ)1.  In multiple linear regression the model is extended to include 

more than one explanatory variable (x1,x2ΣΧΦΣȄp) producing a multivariate model. 

This primer presents the necessary theory and gives a practical outline of the technique for 

bivariate and multivariate linear regression models. We discuss model building, assumptions 

for regression modelling and interpreting the results to gain meaningful understanding from 

data.  Complex algebra is avoided as far as is possible and we have provided a reading list 

for more in-depth learning and reference. 

1.1 SIMPLE LINEAR REGRESSION ς ESTIMATING A BIVARIATE MODEL 

 

A simple linear regression estimates the relationship between a response variable ώ, and a 

single explanatory variable ὼ, given a set of data that includes observations for both of these 

variables for a particular sample.  

For example, we might be interested to know if exam performance at age 16 ς the response 

variable ς can be predicted from exam results at age 11 ς the explanatory variable. 

Table 1  Sample of exam results at ages 11 and 16 (n = 17) 

Results at age 16 
(Variable name: Exam16)   

Results at age 11 
(Variable name: Exam11)   

45 55 

67 77 

55 66 

39 50 

72 55 

47 56 

49 56 

81 90 

                                                      

1 The terms response and explanatory variables are the general terms to describe predictive relationships. You 

will also see the terms dependent and independent used. Formally, this latter pair only applies to experimental 

designs but are sometimes used more generally.  Some statistical software (e.g. SPSS) uses 

dependent/independent by default. 
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33 40 

65 70 

57 62 

33 45 

43 55 

55 65 

55 66 

67 77 

56 66 

Table 1 contains exam results at ages 11 and 16 for a sample of 17 students.  Before we use 

ƭƛƴŜŀǊ ǊŜƎǊŜǎǎƛƻƴ ǘƻ ǇǊŜŘƛŎǘ ŀ ǎǘǳŘŜƴǘΩǎ ǊŜǎǳƭǘ ŀǘ мс ŦǊƻƳ ǘƘŜ ŀƎŜ мм ǎŎƻǊŜΣ ǿŜ Ŏŀƴ Ǉƭƻǘ ǘƘŜ 

data (Figure 1). 

Figure 1  Scatterplot of exam score at age 16, against score at age 11 

  

We are interested in the relationship between age 11 and age 16 scores ς or how they are 

correlated.  In this case, the correlation coefficient is 0.87 ς demonstrating that the two 

variables are indeed highly positively correlated. 

To fit a straight line to the points on this scatterplot, we use linear regression ς the equation 

of this line, is what we use to make predictions. The equation for the line in regression 

modelling takes the form: 

ώ ‍ ‍ὼ Ὡ 

We refer to this as our model.  For the mathematical theory underlying the estimation and 

calculation of correlation coefficients, see Appendix A. 
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0̡ is the intercept also called the constantς this is where the line crosses the ώ axis of the 

graph.  For this example, this would be the predicted age 16 score, for someone who has 

scored nil in their age 11 exam.   

1̡ is the slope of the line ς this is how much the value of ώ increases, for a one-unit increase 

in ὼ, or for each additional mark gained in the age 11 exam, how much the student scores in 

the age 16 exam.  

 Ὡ is the error term for the Ὥ student.  The error is the amount by which the predicted 

value is different to the actual value.  In linear regression we assume that if we calculate the 

error terms for every person in the sample, and take the mean, the mean value will be zero.  

The error term is also referred to as the residual (see 1.3 for more detail on residuals). 

1.2 HYPOTHESIS TESTING 

 

Our hypothesis is that the age 16 score can be predicted from the age 11 score that is to say 

that there is an association between the two.  We can write this out as null and alternative 

hypotheses: 

 

Ὄȡ  ‍ π 

Ὄȡ  ‍ π 

 

The null hypothesis is that there is no association ς ƛǘ ŘƻŜǎƴΩǘ ƳŀǘǘŜǊ ǿƘŀǘ ǘƘŜ ŀƎŜ мм ǎŎƻǊŜ 

is for a student when predicting their age 16 score, so the slope of the line, denoted ‍ȟ 

would be zero. 

If there is a relationship, then the slope is not zero ς our alternative hypothesis. 

The relationship between x and y is then estimated by carrying out a simple linear 

regression analysis.  SPSS estimates the equation of the line of best fit by minimising the 

sum of the squares of the differences between the actual values, and the values predicted 

by the equation (the residuals) for each observation.  This method is often referred to as the 

ordinary least squares approach; there are other methods for estimating parameters but 

the technical details of this are beyond this primer.   

For this example: 

0̡ = -3.984 

1̡ = 0.939 
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This gives us a regression equation of: 

ώ  σȢωψτπȢωσωὼ 

where xi  is the value of EXAM11 for the ith student.  The ̂  symbol over the ώ is used to 

show that this is a predicted value. 

So, if a student has an EXAM11 score of 55 we can predict the EXAM16 score as follows: 

ὖὶὩὨὭὧὸὩὨ Ὁὢὃὓρφ ίὧέὶὩ σȢωψτπȢωσωυυ

τχȢχ 

If we draw this line on the scatter plot, as shown in Figure 2, it is referred to as the line of 

best fit of y on x, because we are trying to predict y using the information provided by x.  

1.3 RESIDUALS 

The predicted EXAM16 score of the student with an EXAM11 score of 55 is 47.7;; however, if 

we refer to the original data, we can see that the first student in the table scored 55 at age 

11, but their actual score at age 16 was 45.  The difference between the actual or observed 

value, and the predicted value is called the error or residual. 

Ὡ ώ ώ 

Remember that  ώ means predicted, and ώ means actual or observed. 

The residual for the first student is therefore 45 ς 47.7 = -2.7.  The residual is the distance of 

each data point away from the regression line.  In Figure 2 the prediction equation is plotted 

on the scatter plot of exam scores.  We can see that very few if any of the actual values fall 

on the prediction line. 



 

 
10 

Figure 2  Plotting the regression line for age 11 and age 16 exam scores 

 

If we calculate the predicted value using the regression equation for every student in the 

sample, we can then calculate all the residuals.  For a model which meets the assumptions 

for linear regression, the mean of these residuals is zero.  More about assumptions and 

testing data to make sure they are suitable for modelling using linear regression later! 

Our model has allowed us to predict the values of EXAM16, however it is important to 

distinguish between correlation and causation.  The EXAM11 score value, has not caused 

the EXAM16 score value, they are simply correlated ς there may be other variables through 

which the relationship is mediated: base intellect, educational environment, parental 

support, student effort and so on and these could be causing the score, rather than the 

explanatory variable itself.  To illustrate this further, statistically speaking, we would have 

just as good a model if we used EXAM16 to predict the values of EXAM11. Clearly one would 

ƴƻǘ ŜȄǇŜŎǘ ŀ ǎǘǳŘŜƴǘΩǎ 9·!a ǎŎƻǊŜǎ ŀǘ ŀƎŜ мс ǘƻ ōŜ ŎŀǳǎƛƴƎ ƛƴ ŀƴȅ ǎŜƴǎŜ ǘƘŜƛǊ ŜȄŀƳ ǎŎƻǊŜǎ 

at age 11! So a good model does not mean a causal relationship.  

Our analysis has investigated how an explanatory variable is associated with a response 

variable of interest, but the equation itself is not grounds for causal inference. 

1.4 MULTIPLE LINEAR REGRESSION ς A MULTIVARIATE MODEL 

Multiple linear regression extends simple linear regression to include more than one 

explanatory variable.  In both cases, we still ǳǎŜ ǘƘŜ ǘŜǊƳ ΨƭƛƴŜŀǊΩ ōŜŎŀǳǎŜ we assume that 

the response variable is directly related to a linear combination of the explanatory variables. 
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The equation for multiple linear regression has the same form as that for simple linear 

regression but has more terms: 

ώ ‍ ‍ὼ ‍ὼ Ễ ‍ὼ Ὡ 

As for the simple case, ɼ is the constant ς which will be the predicted value of y when all 

explanatory variables are 0.  In a model with ὴ explanatory variables, each explanatory 

variable has its own  ̡ ψcoefficient. 

Again, the analysis does not allow us to make causal inferences, but it does allow us to 

investigate how a set of explanatory variables is associated with a response variable of 

interest. 
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2 BASIC ANALYSIS USING SPSS  

 

Multiple linear regression is a widely used method within social sciences research and 

practice. Examples of suitable problems to which this method could be applied include: 

¶ tǊŜŘƛŎǘƛƻƴ ƻŦ ŀƴ ƛƴŘƛǾƛŘǳŀƭΩǎ ƛƴŎƻƳŜ ƎƛǾŜƴ ǎŜǾŜǊŀƭ ǎƻŎƛƻ-economic characteristics. 

¶ Prediction of the overall examination perfoǊƳŀƴŎŜ ƻŦ ǇǳǇƛƭǎ ƛƴ Ψ!Ω ƭŜǾŜƭǎΣ ƎƛǾŜƴ ǘƘŜ 

values of a set of exam scores at age 16. 

¶ Estimation of systolic or diastolic blood pressure, given a variety of socio-economic 

and behavioural characteristics (occupation, drinking smoking, age etc.). 

This section shows how to use the IBM program SPSS to build a multiple linear regression 

model to investigate the variation between different areas in the percentage of residents 

reporting a life limiting long-term illness. 

The data are taken from the 2001 UK Census and are restricted to the council wards in the 

North West of England (n = 1006). 

2.1 VARIABLES IN THE ANALYSIS 

We will consider five variables in this analysis (See Table 2). 

Table 2  Variables in the analysis 

Variable Name Description 

Response variable 

% LLTI The percentage of people in each ward who consider themselves to 
have a limiting long-term illness 

Explanatory variables 

A60P The percentage of people in each ward that are aged 60 and over 

FEMALE The percentage of people in each ward that are female 

UNEM The percentage of people in each ward that are unemployed (of those 
Economically active) 

% Social Rented ¢ƘŜ ǇŜǊŎŜƴǘŀƎŜ ƻŦ ǇŜƻǇƭŜ ƛƴ ŜŀŎƘ ǿŀǊŘ ǘƘŀǘ ŀǊŜ ΨǎƻŎƛŀƭ ǊŜƴǘŜǊǎΩ όƛΦŜΦ ǊŜƴǘ 
from the local authority) 

 

In this example, we need to consider: 

¶ Does the model make sense in real world terms? 

¶ Are the assumptions of linear regression met? 

¶ How well do these four explanatory variables explain the variation in the outcome 

variable? 
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¶ Which explanatory variables make the most difference to the outcome variable? 

¶ Are there any areas that have higher or lower than expected values for the 

outcome? 

 

2.2 EXPLORATORY DATA ANALYSIS 

The first task in any data analysis is to explore and understand the data using descriptive 

statistics and useful visualisations. This has two purposes: 

1. It will help you to get a feel for the data you are working with;  

2. It will inform decisions you make when you carry out more complex analyses (such 

as regression modelling). 

2.2.1 DESCRIPTIVE STATISTICS  

SPSS uses a point and click menu-based interface to allow the user to explore the data.  

These screen shots show the menu selections required and are followed by outputs to show 

what to expect from an exploratory analysis within SPSS2. In the first example, we want 

descriptive statistics for the variables we are going to use in our model. 

 

                                                      

2 Here we are using SPSS version 23. If you are using a different version then the look and 

feel may be a little different. 
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This selection opens the following dioalog box. 

 

Clicking on OK at this dialog box will prompt SPSS to open an output window in which the 

following output will appear (Table 3).3   

Table 3  An example of descriptive statistics output in SPSS 

Descriptive Statistics 

 N Minimum Maximum Mean Std. Deviation 

% llti 1006 9.26 33.26 20.0436 4.13001 

% aged 60 and over 1006 7.24 46.60 21.4374 4.95659 

% female 1006 35.18 56.77 51.4180 1.45675 

% unemp of econ act. 1006 1.15 24.63 5.3712 3.54237 

% social rented 1006 .13 73.89 15.6315 13.90675 

Valid N (listwise) 1006     

For the purposes of decision-making, we expect to find  a reasonable amount of variability 

in both our explanatory and response variables. A response variable with a low standard 

deviation would mean there is little to explain; an explanatory variable with little variability 

                                                      

3 Note that using the Paste button in a dialog box above allows the syntax to be pasted into a script window 

from which it can be directly edited, saved and run again later.  There are numerous online sources for SPSS 

syntax and it is not intended that this primer covers the writing of syntax. 
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is unlikely to add value to a model. In this case, the variables all look to have sufficient 

variability with the possible exception of the %female variable.  

2.2.2 PRODUCING UNIVARIATE BOX PLOTS 

A box-plot can be a useful tool for visualising the distribution of a number of variables side 

by side.  To produce these, the simplest approach is as shown below:  
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Here we plot the values for each variable.  You can see in  

Figure 3 that the distribution for each variable is quite different ς for example, there are 

much greater differences between the wards in the %social renters, than in %females.  This 

is in line with our expectations ς we would expect most wards to have a similar gender split, 

but that poorer areas would have a much higher incidence of social renting.  
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Figure 3  Box plot of univariate distributions 

 

2.2.3 BIVARIATE CORRELATIONS 

SPSS will calculate the Pearson correlation for all pairs of specified variables.  Select Analyze 

> Correlate > Bivariate to reach the dialogue box: 

 

Table 4 shows the SPSS output where the five variables above are selected.  The output 

shows that N = 1006 for all correlations.  This tells us that the data are complete and there 
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are no missing values ς in a real life data scenario it is likely that N will differ for each 

calculated correlation as not all cases will have complete values for every field.  Missing 

data is an area for research within itself and there are many methods for dealing with 

missing data such that a sample remains representative and/or any results are unbiased.  

For the purposes of this example, all cases with missing data have been excluded ς a 

somewhat heavy-handed approach but which works well for a worked example and may 

indeed be appropriate in many analyses. 

The two values of the bivariate correlation table:  

1. The correlations between your hypothesised explanatory variables and your 

response variables should be reasonable sized (as a rule of thumb, ignoring the sign 

of the correlation, they should be >0.15) and statistically significant.  

2. The correlations between your explanatory variable should not be too high. We 

cover this more detail in section 3.5. 
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Table 4  Pearson Correlations 

Correlations 

 % llti % female 

% aged 

60 and 

over 

% unemp 

of econ 

act. 

% social 

rented 

% llti Pearson Correlation 1 .370** .166** .693** .599** 

Sig. (2-tailed)  .000 .000 .000 .000 

N 1006 1006 1006 1006 1006 

% female Pearson Correlation .370** 1 .259** .162** .211** 

Sig. (2-tailed) .000  .000 .000 .000 

N 1006 1006 1006 1006 1006 

% aged 60 and over Pearson Correlation .166** .259** 1 -.320** -.321** 

Sig. (2-tailed) .000 .000  .000 .000 

N 1006 1006 1006 1006 1006 

% unemp of econ act. Pearson Correlation .693** .162** -.320** 1 .797** 

Sig. (2-tailed) .000 .000 .000  .000 

N 1006 1006 1006 1006 1006 

% social rented Pearson Correlation .599** .211** -.321** .797** 1 

Sig. (2-tailed) .000 .000 .000 .000  

N 1006 1006 1006 1006 1006 

**. Correlation is significant at the 0.01 level (2-tailed). 

In this case, the correlations of the explanatory variables with the response variable, apart 

from age 60 look good enough (according to the criteria set above). We will leave this in 

consideration now, but will watch out for issues with this variable later. Similarly, the 

correlation between social rented and unemployment is quite high but not high enough for 

rejection at this stage. 

2.2.4 PRODUCING SCATTERPLOTS (IN SPSS) 

SPSS will produce scatterplots for pairs of variables.  This example shows a scatter plot of 

the percentage of residents reporting a life limiting illness, against the percentage of 

residents residing in rented social housing (for example housing association or local 

authority homes).  Use the Graphs > Chartbuilder menu path to access the chart builder 

dialogue box.  You may see a warning about setting the measurement level ς in this example 

all of our variables are continuous ς that is to say they are numerical and can take any value.  

Dealing with nominal or categorical variables will be discussed in section 4. 

The dialog box is shown below. Select Scatter/Dot and then the top left hand option (simple 

scatter). 
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To generate the graph you need to drag the variable names from the list on the left onto the 

pane on the right and then click OK: 
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The output should look like Figure 4. 

Figure 4  Scatter plot of % llti against % social rented 

 

 

Double clicking on the graph from the output page will open the graph editor and allow a 

straight line to be fitted and plotted on the scatterplot as shown in Figure 5.   

Choose ς Elements, Fit line, Linear to fit a simple linear regression line of % LLTI on % social 

rented. 
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Figure 5  Simple linear regression of %llti by % social rented using graph editor 

 

The simple linear regression line plot in Figure 5 shows an Ὑ  value of 0.359 at the top right 

hand side of the plot.  This means that the variable % social rented explains 35.9% of the 

ward level variation in % LLTI.  This is a measure of how well our model fits the data ς we 

can use Ὑ  to compare models, the more variance a model explains, the higher the Ὑ  

value. 

 

2.3 SIMPLE LINEAR REGRESSION 

 

The linear regression line plotted in Figure 5 through the graph editor interface can be 

specified as a model. 

Our response variable is %llti and for a simple linear regression we specify one explanatory 

variable, % social rented.  These are selected using the Analyze > Regression > Linear menu 

path. 
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2.3.1 REGRESSION OUTPUTS 

The output for a model within SPSS contains four tables.  These are shown as separate 

Tables here with an explanation of the content for this example. 

Table 5  Variables entered 

 

Table 5 confirms that the response variable is % llti and the explanatory variable here is % 

social rented.  The ƳƻŘŜƭ ǎŜƭŜŎǘƛƻƴ ΨmethodΩ ƛǎ ǎǘŀǘŜŘ ŀǎ Ψ9ƴǘŜǊΩΦ  ¢Ƙƛǎ ƛǎ ǘƘŜ ŘŜŦŀǳƭǘ ŀƴŘ ƛǎ 

most appropriate here.  More about άmethodsέ later! 

Variables Entered/Removedb

% social

rented
a . Enter

Model

1

Variables

Entered

Variables

Removed Method

All requested variables entered.a.  

Dependent Variable: % lltib.  
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Table 6  Model Summary 

 

Table 6 is a summary of the model fit details.  The adjusted Ὑ  figure 4is 0.359 ς the same as 

we saw in Figure 5 showing that the model explains 35.9% of the variance in the % of life 

limiting illness reported at a ward level. 

Table 7  ANOVA table 

 

ANOVA stands for Analysis of Variance; SPSS produces an ANOVA table as part of the 

regression output as shown in Table 7.  The variance in the data is divided into a set of 

components.  The technical background to an ANOVA table is beyond the scope of this 

primer. We look mainly at the Sig. column, which tells us the p-value for the Ὑ  statistic. If 

this is greater than 0.05 then the whole model is not statistically significant and we need to 

stop our analysis here. The value here is below 0.05 and so we can say that the fit of the 

model as a whole is statistically significant. 

                                                      

4 In SPSS, both Ὑ  ŀƴŘ άŀŘƧǳǎǘŜŘέ Ὑ  are quoted.  For large sample sizes, these two figures 

are usually very close.  For small values of n, the figure is adjusted to take account of the 

small sample size and the number of explanatory variables and so there may be a 

difference.  The technical details of the adjustment are beyond the scope of this primer.  

The adjusted figure should be used in all instances. 

Model Summary

.599a .359 .359 3.30724

Model

1

R R Square

Adjusted

R Square

Std. Error of

the Estimate

Predictors : (Constant), % social renteda. 

ANOVAb

6160.641 1 6160.641 563.240 .000a

10981.604 1004 10.938

17142.244 1005

Regression

Residual

Total

Model

1

Sum of

Squares df Mean Square F Sig.

Predic tors : (Constant),  % social renteda. 

Dependent Variable: % lltib. 
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Table 8  Model parameters 

 

The estimated model parameters are shown in the Coefficients table (Table 8).  The B 

column gives us the ‍ coefficients for the prediction equation. 

To best understand this table it helps to write out the model equation.  Remember: 

ώ ‍ ‍ὼ Ὡ 

Substituting the variables and results of our regression analysis gives: 

Ϸ ὰὰὸ‍ ‍ Ϸ ίέὧὭὥὰ ὶὩὲὸὩὨ 

So: 

Ϸ ὰὰὸρχȢςφρπȢρχψϷ ίέὧὭὥὰ ὶὩὲὸὩὨ 

 

The ^ over the %lltii indicates that this is a predicted value rather than the actual value (and 

ǘƘŜǊŜŦƻǊŜ ǿŜ ŘƻƴΩǘ ƴŜŜŘ ǘƘŜ ŜǊǊƻǊ ǘŜǊƳύΦ 

2.3.1.1 INTERPRETING THE RESULTS 

 

In our example, for every 1% increase in the percentage of people living in social rented 

housing in a ward, we expect a 0.178% increase in the percentage of people living with a life 

limiting illness in that same ward.  The relationship is positive ς areas with more social 

tenants have greater levels of long-term illness.  

For a ward with no social tenants, we expect 17.261% illness as this is the intercept ς where 

the line of best fit crosses the y-axis. 

Again, we must be careful to remember that this statistically significant model describes a 

relationship but does not tell us that living in socially rented accommodation, causes life 

limiting illnesses.  In fact, those people reporting illness in each ward may not even be the 

same people who report living in social housing as the data are held at a ward, rather than 

person level.  Instead, an increase in social tenants may indicate that a ward has higher 

levels of people with lower incomes and higher levels of poverty.  There is a significant body 

of literature that links poverty with illness, so this does make substantive sense. 

Coefficientsa

17.261 .157 109.999 .000

.178 .008 .599 23.733 .000

(Constant)

% social rented

Model

1

B Std. Error

Unstandardized

Coeffic ients

Beta

Standardized

Coeffic ients

t Sig.

Dependent Variable: % lltia. 
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2.3.2 STANDARDISED COEFFICIENTS 

The unstandardised coefficients shown in Table 8 can be substituted straight into the 

theoretical model.  The issue with these is that they are dependent on the scale of 

measurement of the explanatory variables and therefore cannot be used for comparison ς 

bigger does not necessarily mean more important. The standardised coefficients get round 

this problem and relate to a version of the model where the variables have been 

standardised to fit a normal distribution with a mean of zero and a standard deviation of 1.  

We interpret the standardised coefficients in terms of standard deviations. 

For this model, for one standard deviation change in the % of social renters in a ward, there 

is a 0.599 standard deviation change in the % of people reporting a life limiting illness. 

The descriptives table we produced in SPSS (Table 3) tells us that the standard deviation of 

social tenancy is 13.9% and the standard deviation of the outcome variable is 4.13%.  So for 

a 13.9% change in social tenancy, there is a (4.13*0.599) change in illness ς 2.47%.  This is 

the same as a change of 0.178% for a 1% increase in social tenancy5. 

2.3.3 STATISTICAL SIGNIFICANCE 

The table of the coefficients (Table 8) shows that both intercept and slope (‍ and ‍) are 

statistically significant. 

The parameters are estimates drawn from a distribution of possible values generated by 

SPSS when computing the model ς the true value for each parameter could in fact fall 

anywhere within its distribution.  The standard error of the estimate shows us the spread of 

this distribution, and the Sig. column tells us whether or not these values are statistically 

different from zero. 

If these values are not statistically different from zero, then the true value sits within a 

distribution which includes zero within the 95% confidence bounds.  If the estimate for the 

parameter could be zero, then it could be that there is in fact no relationship ς a zero 

coefficient and a flat line of best fit . 

A value which is not statistically significant is indicated by a p-value greater than 0.05 (the 

Sig. column).  For this model, p <0.05 and so we can say that the estimates of the 

parameters are statistically significant and we can infer that there is an association between 

the variables. 

                                                      

5 2.47% / 13.9 % = 0.178, the unstandardised value for ‍ 
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2.4 MULTIPLE LINEAR REGRESSION ANALYSIS 

Adding additional explanatory variables to a simple linear regression model builds a multiple 

linear regression model.  The process is identical within SPSS ς including additional variables 

in the specification stages. This example includes the percentage of females, the percentage 

of over 60s and the percentage of unemployed economically active residents as additional 

explanatory variables, over the simple regression using just the percentage of social tenants. 

 

 

 

2.4.1 MORE ON METHODS ς Ψ9b¢9wΩ 

This worked example is a case of a deductive model.  A deductive model is one that is built 

on real world understanding of the problem to be modelled and is grounded in theory ς 

often drawn from existing understanding or published literature.   

Here we are interested in the levels of life limiting illness in different areas.  We have a 

theory that poverty is linked with life limiting illnesses, and that differences in age and 

gender may play a part.  We have a dataset that contains variables which are related to this 

theory and so we build a model that reflects our theory. 
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For the default method is Ψ9ƴǘŜǊΩ, the order of the explanatory variables is not important. 

The method uses all the specified explanatory variables, regardless of whether or not they 

turn out to be statistically significant.  

Other methods are covered later in this primer. 

 

2.4.2 REGRESSION OUTPUTS 

Including the extra variables has increased the adjusted Ὑ  value from 0.395 to 0.675.  This 

means 67.5 % of the variation in percentage LLTI is now explained by the model ς a large 

improvement.  The ANOVA table (Table 11) shows that the model is a statistically significant 

fit to the data. 

Table 9  Variables 

 

Table 10  Model Summary 

 

Variables Entered/Removedb

% aged 60

and over,

% female,

% unemp

of econ

act., %

social

rented
a

. Enter

Model
1

Variables

Entered

Variables

Removed Method

All requested variables entered.a.  

Dependent Variable: % lltib.  

Model Summary

.823a .677 .675 2.35344

Model

1

R R Square

Adjusted

R Square

Std. Error of

the Estimate

Predictors : (Constant), % aged 60 and over, % female,

% unemp of econ act., % social rented

a. 
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Table 11  ANOVA 

 

Table 12  Tables of coefficients (sometimes called Model parameter values) 

 

2.4.3 INTERPRETING THE RESULTS 

 

From Table 12 we can see that all of the explanatory variables are statistically significant. So 

our theory that these variables are related to long-term limiting illness rates is supported by 

the evidence. 

All the ‍ coefficients are positive ς which tells us that an increase in the value of any of the 

variables leads to an increase in long term limiting illness rates.  

From the information in Table 12, we can now make a prediction of the long term limiting 

illness rates for a hypothetical ward, where we know the values of the explanatory variables 

ōǳǘ ŘƻƴΩǘ ƪƴƻǿ ǘƘŜ ƭƻƴƎ ǘŜǊƳ ƭƛƳƛǘƛƴƎ ƛƭƭƴŜǎǎ ǊŀǘŜΦ 

Say that in our hypothetical ward that the unemployment rate is 18%, females are 45% of 

the population, social tenancy is at 20%, and 20% of the population are aged 60 and over. 

The general form of the model is: 

ANOVAb

11598.023 4 2899.506 523.501 .000a

5544.221 1001 5.539

17142.244 1005

Regression

Residual

Total

Model

1

Sum of

Squares df Mean Square F Sig.

Predictors: (Constant), % aged 60 and over, % female, % unemp of econ act., %

social rented

a. 

Dependent Variable: % lltib. 

Coefficientsa

-9.832 2.734 -3.596 .000

.774 .035 .664 22.147 .000

.344 .056 .121 6.176 .000

.052 .009 .175 5.728 .000

.336 .017 .404 19.762 .000

(Constant)

% unemp of econ act.

% female

% social rented

% aged 60 and over

Model

1

B Std. Error

Unstandardized

Coefficients

Beta

Standardized

Coefficients

t Sig.

Dependent Variable: % lltia. 
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Ϸ ὰὰὸὭ ‍ ‍ Ϸ όὲὩάὴὰέώὩὨ

‍ Ϸ ὪὩάὥὰὩ

‍ Ϸ ίέὧὭὥὰ ὶὩὲὸὩὨ

‍ Ϸ ὥὫὩ φπ ὥὲὨ έὺὩὶ

‐ 

Substituting the values from Table 12 gives us: 

 Ϸὰὰὸ ωȢψσςπȢχχτϷ όὲὩάὴὰέώὩὨ

πȢσττϷ ὪὩάὥὰὩ

πȢπυςϷ ίέὧὭὥὰ ὶὩὲὸὩὨ

πȢσσφϷ ὥὫὩ φπ ὥὲὨ έὺὩὶ 

This would give a predicted value for our hypothetical ward of 27.3%: 

Ϸὰὰὸ ωȢψσςπȢχχτρψ

πȢστττυ

πȢπυςςπ

πȢσσφςπ ςχȢσ  

 

We can also use Table 12 to examine the impact of an older population in a ward as a single 

variable. If we leave all other variables the same (sometimes ŎŀƭƭŜŘ άƘƻƭŘƛƴƎ ŀƭƭ ƻǘƘŜǊ 

ǾŀǊƛŀōƭŜǎ ŎƻƴǎǘŀƴǘέύΣ ǘƘŜƴ ǿŜ Ŏŀƴ ǎŜŜ ǘƘŀǘ an increase of 1% in the proportion of the 

population that is over 60 leads to a 0.336% increase in the predicted value of long term 

limiting illness rate (i.e. the precise value of the B coefficient). Another way of saying this is 

ǘƻ ǎŀȅ ǘƘƛǎ ƛǎ άŎƻƴǘǊƻƭƭƛƴƎ ŦƻǊ ŜƳǇƭƻȅƳŜƴǘΣ ƎŜƴŘŜǊ ŀƴŘ ǎƻŎƛŀƭ ǘŜƴŀƴŎȅ ǊŀǘŜǎΣ ŀ м ǳƴƛǘ ƛƴŎǊŜŀǎŜ 

in the percentage of people over sixty leads to 0.336 unit increase in long term limiting 

ƛƭƭƴŜǎǎ ǊŀǘŜǎέΦ ¢Ƙƛǎ ǎƛƳǇle interpretability is one of the strengths of linear regression.  

3 THE ASSUMPTIONS OF LINEAR REGRESSION 

OK so we have just shown the basics of linear regression and how it is implemented in SPSS. 

Now we are going to go a bit deeper. In this section we will consider some of the 

assumptions of linear regression and how they affect the models that you might produce. 

To interpret a model and its limitations, it is important to understand the underlying 

assumptions of the method and how these affect the treatment of the data and modelling 

choices made. 

When we use linear regression to build a model, we assume that: 

¶ The response variable is continuous and the explanatory variables are either 

continuous or binary.  

¶ The relationship between outcome and explanatory variables is linear 

¶ The residuals are homoscedastic 
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¶ The residuals are normally distributed 

¶ There is no more than limited multicollinearity 

¶ There are no external variables ς that is variable that are not included in the model 

that have strong relationships with the response variable (after controlling for the 

variables that are in the model). 

¶ Independent errors  

¶ Independent observations. 

For most of these assumptions, if they are violated then it does not necessarily mean we 

cannot use a linear regression method, simply that we may need to acknowledge some 

limitations, adapt the interpretation or transform the data to make it more suitable for 

modelling. 

3.1 ASSUMPTION 1: VARIABLE TYPES 

The most basic assumption of a linear regression is that the response variable is continuous. 

The normal definition of continuous is that it can take any value between its minimum and 

its maximum. Two useful tests for continuity are: 

1. Can you perform meaningful arithmetic on the numbers on the scale? 

2. Can you meaningfully continuously subdivide the numbers on the scale into infinitely   

small parts? 

In many cases these two tests are clear cut but there is  a certain class of variables called 

count variables which pass test 1 but the result of test 2 is ambiguous and depends in part 

on the meaning of the variable. For example, number of cigarettes smoked is usually OK to 

treat as continuous whereas number of cars in a household is not.  

Binary variables are indicators of whether feature is present or whether something is true or 

false not they are usually coded as 1 ς the feature is present/true and 0 the feature 

absent/false.  

Variables which are not binary or continuous can be used in a regression model if there are 

first converted into Dummy variables (see section 4.1) 

3.2 ASSUMPTION 2:  LINEARITY 
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Linear regression modelling assumes that the relationship between outcome and each of 

the explanatory variables is linear6, however this may not always be the case. 

3.2.1 CHECKING FOR NON-LINEAR RELATIONSHIPS 

Non-linear relationships can be difficult to spot.  If there are just two variables, then a curve 

in the data when looking at a two-way scatter plot may indicate a non-linear relationship. 

However, non-linear relationships can be hidden, perhaps because of complex 

dependencies in the data; a curve or even a cubic shape, in the scatter plot of residuals may 

also indicate that there are non-linear effects.   

3.2.2 MODELLING A NON-LINEAR RELATIONSHIP, USING LINEAR REGRESSION 

We can take account of a non-linear relationship into a linear regression model through a 

neat trick. By transforming the explanatory variable into something that does have a linear 

relationship with the outcome and entering that transformed variable into our model we 

can maintain the assumption of linearity.7  

For example, there may be a curve in the data, which is better represented by a quadratic 

rather than a linear relationship. 

Figure 6 shows the log of hourly wage by age for a sample of respondents.  In the left hand 

plot a straight line of best fit is plotted.  In the right hand plot, we can see that a curved line 

looks to the naked eye to be a much more sensible fit.  We, therefore, propose that there is 

a quadratic relationship between the log of pay per hour, and age.  This means that the log 

of pay per hour and age squared are linearly related. 

                                                      

6 i.e. in the sense that it conforms to a straight line. It might seem slightly odd as a curve is also a line but when 

ǎǘŀǘƛǎǘƛŎƛŀƴǎ ǊŜŦŜǊ ǘƻ άƭƛƴŜŀǊέΣ ǘƘŜȅ ƳŜŀƴ ǎǘǊŀƛƎƘǘΣ ŜǾŜǊȅǘƘƛƴƎ ŜƭǎŜ ƛǎ άƴƻƴ-ƭƛƴŜŀǊέ. See 

https://study.com/academy/lesson/how-to-recognize-linear-functions-vs-non-linear-functions.html 

for further discussion. 

7 This may seem a little confusing; since we have added in non-linear predictors why is the model still referred 

to as a linear regression model? The reason is that the linearity here refers to the model not the data. The 

term linear regression denotes an equation in which the effect of each parameter in the model is simply 

additive (but the parameters themselves could represent non-linear relationships in the data). See: 

https://blog.minitab.com/blog/adventures-in-statistics-2/what-is-the-difference-between-linear-and-

nonlinear-equations-in-regression-analysis for more details.  

https://study.com/academy/lesson/how-to-recognize-linear-functions-vs-non-linear-functions.html
https://blog.minitab.com/blog/adventures-in-statistics-2/what-is-the-difference-between-linear-and-nonlinear-equations-in-regression-analysis
https://blog.minitab.com/blog/adventures-in-statistics-2/what-is-the-difference-between-linear-and-nonlinear-equations-in-regression-analysis
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Figure 6  Scatterplots of log of hourly wage, by age 

 

To account for this non-linear relationship in our linear model, we need to compute a new 

variable ς the square of age (here called agesq where agesq = age2).  If there is a statistically 

significant quadratic relationship between hourly wage and age, then the model should 

contain a statistically significant linear coefficient for age squared which we can then use to 

make better predictions. 

The general form of model for the linear relationship would be: 

ὒὲὌέόὶὰώ ὡὥὫὩ ‍ ‍ὥὫὩ‐  

The model for the quadratic relationship would be: 

ὒὲὌέόὶὰώ ὡὥὫὩ ‍ ‍ὥὫὩ‍ὥὫὩίή‐ 

Note that we have retained the linear component in the model. This is generally regarded as 

best practice regardless of the significance of the linear component. In this case the left 

hand graph in Figure 6 does indicate that there is a linear component. 

3.3 ASSUMPTION 3:  NORMAL DISTRIBUTION OF RESIDUALS 

3.3.1 P-P PLOTS 

We can assess the assumption that the residuals are normally distributed by producing a P-P 

plot8through the regression dialogue box. 

                                                      

8 This is sometimes referred to as a normal probability plot or a quantile-quantile or q-q plot. 
















































