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1 THE BASICS UNDERSTANDNG LINEAR REGRESSIO

Linear regession isa modelling technigudor analysinglatato make predictions. In simple
linear regression, divariate model is built to predict aesponsevariable (w) from an
explanatory variablg€c)!. I multiple linear regression the model is extended to include
more than one explanatoryariable (x> X spfrdelucing anultivariate model.

This primer presents the necessdhgory and gives a practical outline of the technique for
bivariateand multivariatelinear regressiomodels. We discuss model building, assumptions

for regression modelling andterpreting the results to gaimeaningful understanding from

data. Complex algebra is avoided as far as is possible and we have provided a reading list
for more indepth learning and reference.

1.1 SIMPLE LINEAR REGRBS$¢ ESTIMATING BIVARIATMODEL

A smple linear regression estimaehe relationship between aesponsevariablewy and a
single explanatory variablg given a set of data that includes observations for both of these
variables for a particulssample

For examplewe might be interested to know if exam performance at age; ilée response
variableq can be predicted from exam results at ageclthe explanatory variable.

Tablel Sample of exam results at ages 11 and 16 (n = 17)

Results atge 16 Results at age 11
(Variable nameExam1§ (Variable name: Exam11)
45 55
67 77
55 66
39 50
72 55
47 56
49 56
81 90

1 The terms response and explanatory variables are the general terms to describe predictive relationships. You
will also see the terms dependent and independent used. Formally, this latter pair onlgstpgxperimental
designs but are sometimes used more generad8gme statistical software (e.g. SPSS) uses
dependent/independent by default.
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55 66

67 77

56 66
Tablel contains exam results at ages 11 and 16 for a sample of 17 students. Before we use
fAYSIENI NEBaINBaaArzy (G2 LINBRAOG | addzRSyiQa NB:

data(Figurel).

Figurel Scatterplot of exam score at age 16, against score at age 11
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We are interested in the relationship betweage 11 and age 16 score®r how they are
correlated. In this case, the correlation coefficient is 0¢8demonstrating that the two
variables are indeed highly positively correlated.

To fit a straight line to the points on this scatterplot, we use Ireg@ressiort the equation
of this line, is what we use to make predictiofi$ie equation for the linen regression
modellingtakes the form:

w T o Q

We refer to this as our modelFor the mathematical theory underlying the estimation and
calculation of correlation coeffients, see Appendix A.



I oisthe interceptalso called theconstant; this is where the line crosses th®axis of the
graph. For this example, this would be the predicted age 16 score, for someone who has
scored nil in their age 11 exam.

i 1is theslopeof the linec this is how much the value ofincreases, for ane-unit increase
in &y or for each additional mark gaindéa the age 11 exam, how much the student scores in
the age 16 exam.

Q is the error term for the’Q student. The error is the amount by which the predicted
value is different to the actual value. In linear regression we assume that if we calihdate
error terms for every person in the sample, and take the mean, the mean value will be zero.
The error term is also referred to as the resid(ssel.3for more detail on residuals)

1.2 HYPOTHESIS TESTING

Our hypothesis is that the age 16 score can be predicted from the age 11tkabie to say
that there is an associatiobetween the two We can write this out as null and alternative
hypotheses:

o T
o T

The null hypothesis is that there is no associatigni R2Say Qd YIF GGSNJ gKI
is for a student when predicting their age 16 score, so the slope ofitleedenotedf h
would be zero.

If there is a relationship, then the fle is not zera; our alternative hypothesis.

The relationship betweerx and y is then estimated by carrying out a simple linear
regression analysisSPSS estimates the equation of the line of best fit by minimising the
sum of the squares of the differences between the actual values, and the values predicted
by the equation (the residuals) for each observatidiis method is oftemeferred to ashe
ordinary least squares approacthere are other methods for estimating parameters but
the technical details of this are beyond this primer.

For this example
i 0=-3.984

11=0.939



This gives us a regression equation of:
() o®0 ) T T 00

wherex; isthe value of EXAM11 for th# student. The” symbol over thab is used to
show that this is a predicted value.

So, if a student has @&XAM.1 score of 55 we can predict tliEeXAM6 score as follows:
01 QO UDDOERD wéi Qoo YT TEOOC WU UL
T X

If we draw this line on thecatterplot, asshown inFigure2, it is referred to as the line of
best fit ofy on x, because we are trying to predigtusingthe information provided by.

1.3 RESIDUALS

The predictedEXAMG6 score of the student with aBXAM.1 score of 55 is 47,;however, if

we refer to the original data, we can see that the first student in the table scored 55 at age
11, buttheir actual score at age 16 wdS. The difference between the actual or observed
value, and the predicted valus called the error or residual.

Q 0w w
Remember thatoomeans predicted, andbmeans actual or observed.

The residual for the first student is therefof® ¢ 47.7 =-2.7. The residual is the distance of
each data point away from the regression lina.Figure2 the prediction equation is plotted
on the scatter plot obxam scores. Wean see that very few if any of the actual values fall
on the prediction line



Figure2 Plotting the regression line for age 11 and age 16 exam scores
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If we calculate the predicted value using the regressionagign for every studentin the
sample,we can then calculatell the residuals.For amodel which meets theassumptions

for linear regressionthe mean of these residuals is zero. More about assumptions and
testing data to make sure they are suitalide modelling using linear regression later!

Our model has allowed us to predict thalues of EXAM16however it is important to
distinguish between correlation and causation. THXAMJ1 score value, has not caused

the EXAMG6 score value, they are simpigrrelated¢ there may be other variablethrough

which the relationship is mediatedbase intellect, educational environment, parental
support, student effort and so on and thessould becausng the score, rather than the
explanatory variable itself.To illustrate this further statistically speaking, we would have

just as good a model if we used EXAM16 to predict the values of EXAM11. Clearly one would
y2i SELISOG I &aidzRSyidQa 9-!a al02NBa |4 38 wm
at age 11!So a good model does not mean a causal relationship.

Our analysis has investigated how an explanatory variable is associated vagp@nse
variable of interest, but the equation itself is not grounds for causal inference.

1.4 MULTIPLEINEARREGRESSIONA MULTIVARIATE MODEL

Multiple linear regression extendsimple linear regressiorio include more than one
explanatory variable.In both cases, westill dza& S G KS G S NI w&dssugisSthaNl 06 S O
the responsevariable is directly related ta linearcombination of the eglanatory variables.

1C



The equation for multiple linear regressidras the sameform as that for simple linear
regression but has more terms:

o I 1T ® Teo E T o Q
As for the simple case, is the constantg whichwill be the predicted value of y when all

explanatory variables are.0In a model withry explanatory variablg, each explanatory
variablehas its owni  goefficient.

Again, theanalysis does not allow us to make causal inferences, but it does allow us to
investigate how a set of explanatory variables is associated withsponsevariable of
interest.

11



2 BASIC ANALYSIS USINBSS

Multiple linear regression is a widely usadethod within social sciences research and
practice Examples of suitable problems to which this method could be applied include:

T t NERAOUGAZ2Y 27F |y AYRA QD idRamnic@Raracteyisc8.YS I A FS

f Prediction of the overall examination peMdy' y OS 2 F LJzLJAf & Ay W!I
values of a set of exam scores at age 16.

1 Estimation of systolic or diastolic blood pressure, given a variety of-sgol@omic
and behavioural characteristics (occupation, drinking smokingetme

This sectiorshows how to use the IBM program SPSS to build a multiple linear regression
model to investigate the variation betweettifferent areas in thepercentageof residents
reporting a life limitindong-term iliness.

The data are taken from the 2001 UK Census are restricted to the council wards in the
North West of England (n = 1006)

2.1 VARIABLES IN THE ANAIS

We will consider five variables this analysigSeeTable2).

Table2 Variables in the analysis

Variable Name | Description
Responseariable

%LLTI The percentage of people in each ward who consider themselve
have alimiting longterm iliness
Explanatory variables

A60P The percentage of people in each ward that are aged 60 and over
FEMALE The percentage of people in each ward that are female
UNEM The percentage of people in each ward that are unemployed (of tl

Economically active)

% Social Rented | ¢ KS LISNOSy Gl 3S 2F LIS2LX S Ay S|
from the local authority)

In thisexample we need to consider:
1 Does the model make sense in real world terms?
1 Are the assumptions of lineaegression met?

1 How well do these four explanatory variables explain the variation inotiteome
variable?

12



1 Which explanatory variables make the most difference to the outcome variable?
1 Are there anyareas thathave higher or lower than expected values fitre
outcome?

2.2 EXPLORATORY DATA AXAS

The first taskn any data analysis is to explore and understand the data using descriptive
statistics and useful visualisatiorihis has two purposes:
1. 1t will help you to get a feel for the data you are workimigh;
2. It will inform decisios you make when you cargut more complex analyses (such
as regression modelling).

2.2.1 DESCRIPTINETATISTICS

SPSS uses a point and click mbaged interface to allow the user to explore the data.
These screen shots show theenu selections required and are followed by outputs to show
what to expect from an exploratory analysis within SP86the first example,we want
descriptive statistics for the variables we are going to use in our model.

"@ censusNW2001.sav [DataSetl] - IBM SPSS Statistics Data Editor
File Edit View Data Transform  Analyze  Direct Marketing  Graphs  Utilities  Add-ons  Window  Help

SH&E W v | f ’ B .
- Descriptive Statistics * | E= Frequencies -

Name : Type Tables 3 [ Desaiptives.. issing Columns |

1 ZoneCode String Compare Means » N 6 =
2 ZoneName String Gen_eral Linear Model L4 = Brplore.. I =
Z uv20 Numeric ;eneraliged LinearModels  * BB Crosstabs.. 8 =
g good Numeric Mixed Models » TR AR 8 =
g fairly Numerfc GamE ~ [F] Ratio 8 f
v ey | Sewesn e —
8 It Numeric -ogtinear > Ll 8 =
9 no_|lti Numeric Neural Networks ' Mone Mone 8 =
10 UV0430001  Numeric Classify " | None None 8 =
11 UV0430002  Numeric OIS RS " None None g =
12 UV0430003  Mumeric SEE % None None 8 =
13 UVv0430004  Numeric LETPEEIETIE EER "L None Mone 8 =]
14 UV0430005  Numeric Forecasting P ip None MNone 8 =
15 UV0430006  Mumeric Survival b ltal None Mone 8 =
16 UWV0430007  Numeric Multiple Response P ). Mone Mone 8 =
17 UV0430008  Mumeric Missing Value Analysis... ... Mone Mone 8 =
18 Uv0430009 MNumeric Multiple Imputation [3 .. Mone Mone 8 =
19 Uv0430010  Mumeric Complex Samples 3 -.. Mone Mone 8 =
20 Uvo430011 MNumeric % Simulation. . .. Mone MNone 8 =
21 Uvo430012 MNumeric Quality Control > .. Mone MNone 8 =
22 Uv0430013 MNumeric ROC Curve... MNone MNone g =
23 UvV0430014  Mumeric = Mone Mone g =
24 uUvi Mumeric 11 1] all people table 3 Mone Mone g =

2 Here we are using SPSS version 23. If you are using a different version then the look and
feel may be a little diferent.
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This selection opens the folwing dioalog box.

-

't,-'l Descriptives

Variable(s):

& 351049 [c50160028)
& 5010 50 [cs0160037]
& 6010 64 [c50160046]
& 6510 84 [cs0160055]
& 85 plus [c50160064]

& all people in households [cs0610001]
f no car orvan [cs0610011]
&% 1 car orvan [cs0610021]

g& 2 or more cars orvans [cs0610031] j

3|

4

& % IIti Iti_p]

&% % good health [good_p]
g& % female [female_p]

f % aged 60 and over [age60p]
& % unemp of econ act. [unem_p]

f % social rented [srent_p]

& % of people with == 1 carin hh [car1_2]

Options...
Style...

1 g

Bootstrap...

|| Save standardized values as variables

| ok ]| paste || Reset || cancel || Help |

Clickingon OKat this dialog boxwill prompt SPSS to open an output window in which the

following output will appeafTable3).3

Table3 An example of @scriptive statisticoutput in SPSS

Descriptive Statistics

N Minimum Maximum Mean Std. Deviation
% lIti 1006 9.26 33.26 20.0436 4.13001
% aged 60 and over 1006 7.24 46.60 21.4374 4.95659
% female 1006 35.18 56.77 51.4180 1.45675
% unemp of econ act. 1006 1.15 24.63 5.3712 3.54237
% social rented 1006 A3 73.89 15.6315 13.90675
Valid N (listwise) 1006

For the purposes of decisiemaking, weexpect to find a reasonable amount wdriability
in both our explanatory and response variables. A response variable with a low standard
deviation would mean there is little to explain; an explanatory variable iiite variability

3 Note that using the Pastautton in a dialog boabove allovgthe syntax to be pasted into a script window
from which it can be directly editedavedand runagain later There are numerous online sources for SPSS

syntax and it is not intendkthat this primer covers the writing of syntax.
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is unlikely to add value to a model. In this case, the variables all look to have sufficient
variability with the possible exception of théfemalevariable.

2.2.2 PRODUCING UNIVARIA®X PLOTS

A boxplot can be a useful tool for visualising the distribution of a number of variables side
by side.To produce these, the simplest approastas shown below:

t,-‘ censusNW2001.sav [DataSetl] - IBM SPSS Statistics Data Editor

File Edit View Data Transform Analze DirectMarkeing Graphs  Utilities  Add-ons  Window  Help

% ﬁ [.%k.] e E & % g ill) Chart Builder... 3 ;E jiij .:O \:@)
Lﬁ Graphboard Template Chooser..
MName : Type Width | Decimals T Columns L Align
1 ZoneCode String 18 0 ward 6 = Left ob N
2 ZoneMName String M 0 ward fRegsssionlorapeltel 37 = M
3 Uv20 Numeric 11 0 geng  LegacyDialogs " |HEpar. g
4 good Numeric il 0 good Nane Naone [[H 3-D Bar g
5 fairly MNumeric " 0 fairly good Mone None [ Line... g
6 not_good Numeric 1 0 not good Mone None B Area.. g
7 uvzz Numeric 1" 0 all people table ... Mone MNone B P g
8 IIti Numeric 1 0 with [Iti MNone None Hi;h—Low g
9 no_llti Numeric " 0 without [lti Mone MNone == . £
10 UV0430001  Numeric 1 0 all people in ho... None MNone I Boxplot s
11 UV0430002  Numeric 1 0 owned total Mone None [ Ermor Bar... g
12 UV0430003  Numeric 1 0 owns outright MNone None [E Population Pyramid g
13 Uv0430004  Numeric " 0 owns with mort... Mone None B2 scatterDot.. g
14 UWv0430005  Numeric 1 0 shared ownership Mone None Histogram.. g
15 UWV0430006  Numeric 1" 0 social rented total Mone MNone ! g
16 UV0430007  Mumeric 1 0 rented from cou... Mone None 8 = Riaht &8

'{,J Boxplot I&

EEaE Simple

EE q;] Clustered

Diata in Chart Are

@ Summaries for groups of cases
@ Summaries of separate variables

| Define || cancel || Help |

| -

15



ﬁ-‘ Define Simple Boxplot: Summaries of Separate Variables - &J

Boxes Represent: -
_

{’award code [Zone.. | g@ B It [IIti_p]

é’ general health [U... gﬁ’ % good health [good_p]

& good [good] & % female [female_p]

é’ fairly good [fairly] gﬁ’ % aged 60 and over [ageG0p]
& notgood [not_go... < % unemp of econ act [une...

é’ all people table 2... = — — —
& wiith I1ti [iti] Label Cases by

f without [Iti [mo_IIti] @ ward name [FoneName] |
& all people in hou...

& owned total [UVO...
& owns outright [UV...
é’ owns with mortg... -
& shared ownershi..
é’ social rented tota...
& rented from coun... [
é’ other social rente... Columns:
& private rented tot... }
& private landlord o... -
& employer of hous...
é’ relative or house... &

& other UV04300121 [T

Panel by

Rows:

[ OK ][ Paste ][ Reset ][Cancel][ Help ]

Here we plot thevaluesfor each variable. You can see in

Figure3 that the distribution for each variable is quite differeqtfor example, there are
much greater differences between the wards in #social rentersthan in%females This

is n line with our expectationg we would expect most wards to have a similar gender split,
but that poorer areas would haverauchhigher incidence of social renting.

16



Figure3 Box plot of univariate distributions
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2.2.3 BIVARIATE CORRHEIONS

SPSS will calculate the Pearson correlation for all pairs of specified vari@blestAnalyze
> Qorrelate >Bivariate to reach the dialogue box

@ Bivariate Correlations @

Variables:
& 1carorvan [cs06...[< & % IIti [Iti_p] —
f 2 0r more cars or... f % female [female_p]
ﬁ % good health [g... @’ % aged 60 and over...
‘gﬁ % of people with ... ‘gﬁ % unemp of econ a... =
ﬁ Zscore: with [Iti [... ﬁ % social rented [sre...
‘gﬁ Zscore: % aged ..

‘gﬁ Zscore: % femal...

& Zscore: % unem...
4&5) Fernras B enrial

-

Correlation Coefficients

[ Pearson [ Kendall's tau-b ["] Spearman

Test of Significance
@ Two-tailed © One-tailed

[ Flag significant correlations

(0% ) (pase) (et Ganca) o

Table4 shows the SPSS output whetiee five variablesabove are selected. The output
shows that N = 1006 for all correlations. This tells us that the data are complete and there

17



are no missingzalues ¢ in a real life data scenario it is likely that N will differ for each
calculated correlation as not all cases will have complete values for every fiéiksing
data is an area for research within itself and there are many methods for dealing with
missing data such that a sample remanepresentativeand/or any results areunbiased

For the purposes of this example, all cases with missing data have been exclued
somewhatheavyhanded approach but which works well for a worked example and may
indeed be appropriate in many analyses.

The two values of the bivariate correlation table:
1. The correlations between your hypothesised explanatory variables and your
response variables should be reasonable sized (as a rule of thgnmdring the sign
of the correlation, they should be0.15) and statistically significant.
2. The correlations between your explanatory variable should not be too high. We
cover this more detail in section 3.5.

18



Table4 Pearson Correlations

Correlations

% aged | % unemp
60 and of econ | % social
% IlIti % female over act. rented
% lIti Pearson Correlation 1 .370" 166" .693" .599™
Sig. (2-tailed) .000 .000 .000 .000
N 1006 1006 1006 1006 1006
% female Pearson Correlation .370" 1 .259" 162" 211"
Sig. (2-tailed) .000 .000 .000 .000
N 1006 1006 1006 1006 1006
% aged 60 and over Pearson Correlation .166™ .259™ 1 -.320"| -.321"
Sig. (2-tailed) .000 .000 .000 .000
N 1006 1006 1006 1006 1006
% unemp of econ act. Pearson Correlation .693" 162" -.320" 1 797"
Sig. (2-tailed) .000 .000 .000 .000
N 1006 1006 1006 1006 1006
% social rented Pearson Correlation 599" 211" -.321" 797" 1
Sig. (2-tailed) .000 .000 .000 .000
N 1006 1006 1006 1006 1006

**_Correlation is significant at the 0.01 level (2-tailed).

In thiscase,the correlations of theexplanatory variablesvith the response variablegpart

from age 60 look gooénough (according to the criteria set aboyeWe willleave this in
consideration now, but will watch out for issues with this variable later. Similarly, the
correlation between social rented and unemployment is quite high but not high enough for
rejection at this stage.

2.2.4 PRODUCING SCATTERR(@ON SPSS

SPSSvill produce scatterplots for pairs of variableShis example shows a scatter plot of
the percentage of residents reporting a life limiting illness, against the percentage of
residents residing in rented social housing (for example housing associatidocalr
authority homes). Use theGraphs > Chartbuildemenu path to access the chart builder
dialogue box. You may see a warning about setting the measurementlevidis example

all of our variables are continuogghat is to say they are numericahd can take any value.
Dealing with nominal or categorical variabledl be discussed in sectiofh

The dialog boxsishown belowSelect Scatter/Dot and then the tdeft hand option (simple
scatter).
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%3 Chart Builder X

Variables: Chart preview uses example data

&4 ward code [Zone... i

&4 ward name [Zone...
ﬁ general health [U... :
& good [good] i
ﬁ fairly good [fairly] i
&2 notgood [not_go... E
& all people table 2... i

- RiET

& with I [Iti] [
& without IIfi [no_Iiti]

ﬁ all people in hou...
& owned total [UVO...

A i e i deiclea T g

[ Category 1
B Category 2

Gallery Basic Elements Groups/PointID Tiles/Footnotes =
= =

Choose from:

e | options.. |
Bar oC C‘DC ] ‘ ‘ O 0

Line D &+ ° O

Area —

Pie/Palar

High-Low
Boxplot
Dual Axes

[4]

=
¥
“h

m Paste Reset || Cancel %

To generate the graphou need to drag the variable names from the list on the left onto the
pane on the rightand then cliclOK
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13 Chart Builder

Variables

Chart preview uses example data

& Uo pas [Cou TouT

& no car orvan [es0
&9 1 car orvan [cs08
&9 2 or more cars or.

& % Iiti [ti_p]

& % good health [g..
& % female [female
& %ageds0ando

&9 % unemp of econ
&9 % social rented [

# all people in hou...

&9 % of people with

No catagories (scak
variabia)

o

o [o]e}
o]

o o] o]

o]
o

- o] Qo
4 % sooial rented

Choose from:

Gallery  Basic Elements Groups/Point|D  Titles/Footnotes

Element
Properties...

Favorites
Bar

Line P
Area

od| | 4

o
i @ °
S o

Pie/Polar
Scatter/Dot

Histogram E g
High-Low

JE=RI

Boxplot
Dual Axes

Options...

() et st (anct) (i ]

The output should look likEigure4.

Double clickng on the graphfrom the output page will open the graph editor and allow a

% It

Figure4 Scatter plot of % IIti against % social rented
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straightline to be fitted and plotted on the scatterplot as showrFigure5.

Choose; Elements, Fit line, Linedo fit a simple linear regression liraé % LLTédn % social

rented.
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Options

Elements  Help

" In? ol

o
Q

1 B4 Data Label Mode

000
o 06’

T
[E

h_,
I

Lll. Show Data Labels
[iil Show Error Bars
W¥ Add Markers

[ FitLine at Total

Eﬁ Fit Line at Subgroups
I~ Interpolation Line o

m

[L Show Distribution Curve

& Explode Slice /

2% o ToalgpeetBg S

Properties ==
Cransize Unes FtLine | Varnavies

[] Display Spikes  [| Suppress intercept
rFit Method

@ Quadratic

@ Cubic

% of points to fit: =p

Kernel: |Epanechnikov +

rConfidence Intervals
@ None

© Mean

© Individual
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Figure5 Simple linear regression of %llti by % social rented using graph editor

R Linear = 0,359
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The simple linear regression line plot lagure5 shows anY value of 0.35%t the top right
hand side of the plot This means thathe variable% social rente@xplains 35.9% of the
ward level variation i LLTI This is a measure ol well our model fits the datg we
can useY to compare models, the more variance a model explains, the higherYthe

value.

2.3 SIMPLEINEAR REGRESSION

The linear regression line plotted migure5 through the graph editor interface can be
specified as a model.

Ourresponsevariable is»lltiand for a simple linear regression we specify one explanatory
variable,% social rented Theseaare selected using thAnalyze >Regression >Linear menu

path.
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@ censusNW2001.sav [DataSetl] - IBM SPSS Statistics Data Editor

File  Edit View Data Transform  Analyze DirectMarketing Graphs  Utilities  Add-ons  Window  Help
=N 3 Reports » : B & B *
. (=] g M A SA H @
P H = Descriptive Statistics » e md
| Name || Type Tables 3 || Values || Missing || Columns || Align ||
1 ZoneCode String Compare Means b None MNaone 6 &
2 ZoneName String . General Linear Model » None MNone 37 &
: uv20 Numer!c Generalized Linear Models 2 Nane None 8 ‘&
4 good MNumeric HMixed Models N Maone Mone 8 &
5 fairly MNumeric Mone Mone 8 &
- Correlate 3
6 not_good Numeric i Ll Ll o &
7 UV22 Numeric Begressmn * | [E automatic Linear Modeling... &
8 Iiti Mumeric Loglinear : il Linear... &
9 no_llti Numeric Neura-l Networks [8] Curve Estimation... &
10 Uv0430001 Numeric R : Partial Least Squares... &
B Dimension Reduction
11 UV0430002  Numeric = X I Binary Logistic.. &
12 UV0430003  Numeric SEE o &
; E Multinomial Logistic...
13 UV0430004  Numeric LOTIEEMETE RS L &
. Ordinal...
14 |UV0430005  Numeric Forecasting » | Bl orgina &
15 UV0430006 Numeric Sunvival » | probit. &
UV0430007  Numeric Multiple Response r Nonlinear... &
17 UV0430008 | Numeric EZ] Missing Value Analysis... [ weight Estimation... &
18 UV0430003  Numeric Multiple Imputation » | [ 2-Stage Least Squares... &
13 UV0430010  |Numeric Complex Samples 4 Optimal Scaling (CATREG)... &
20 |Uv0430011  Numeric |EZ simulation.. m—_ rrome . &
21 UV0430012 Numeric Quality Control b . MNone Mone 8 &
22 UV0430013 Numeric ROC Curve.. Mone Mone 8 &
23 UvV0430014 Numeric = Maone Mone 8 &
24 uv3 Mumeric 11 0 all people table 3 Mone Mone 8 = Right &
3 Linear Regression -
(] g " S
m Dependent: Statistics.
\@4 ward code [Zone... < | | [ﬁ
Plots...
&4 ward name [Zone... “Block 1 of 1
& general health [U.. Save
& good [good] Previous Mext m
. . it
& fairly good [fairly] Independent(s).
&2 not good [not_go.__
all people table 2.
& ) P .p . Bootstrap
& with Iiti Iiti]
ﬁ without lIti [no_IIti]
& all people in hou... Method: |Enter -
& owned total [UVO...
& owns outright [UV.. Selection Variable:
& owns with mortg... - | | (Rule
& shared ownershi...
&% social rented tota... N Case Labels:
&2 rented from coun... | |
& other social rente... WLS Weight
& private rented tot.. [ | ™ | |
Paste [R&se«t ”Cancel” Help ]
h
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- =

"u-'l Linear Regressicn

] ] . # erende.nt. Statistics...
& all people table 1.._ [£] [ l |§ %4 IIti [Iti_p] |
& 0to 15 [cs01600... Block 1 of 1

& 351049 [cs0160... Next
& 501059 [cs0160... Independent(s):

& 60 to 64 [cs0160...
&% B51t0 84 [cs0160...
& 85 plus [cs01600...
ﬁ all people in hou...

& no car orvan [cs0... Method:

ﬁ 1 car orvan [cs06...

=
& 1610 34 [cs0160...

& % social rented [srent_p]

ﬁ 2 OF More cars or... Selection Variable:

& % good health [g... - | |

ﬁ % female [female... _

ﬁ % aged 60 and o... - sl il

ﬁ % unemp of econ... | |
ﬁ % social rented [... WLS Weight:

ﬁ % of people with ... |= - |

| ok ]| paste | Reset || cancel|| Help |

2.3.1 REGRESSION OUTPUTS

The output for a model within SPSS contaimgr tables. These are shown as separate
Tablesherewith an explanation of the content for this example.

Table5 Variables entered

Variables Entered/Removet

Variables Variables
Model Entered Remowed Method
1 % socjal
rented

Enter

a. All requested variables entered.
b. Dependent Variable: % llti

Table5 confirms that theresponsevariable is% lltiand the explanatory variable here is %
social rented. TheY2 RS{ & BiéttH@NI A 2 ¥ 0 Wi RP | & KRAY IASNIG K S
most appropriate here. More aboudmethod< later!
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Table6 Model Summary

Model Summary

Adjusted Std. Error of
Model R R Square R Square the Estimate
1 5992 359 359 3.30724

a. Predictors: (Constant), % social rented

Table6 is a summary of the model fitetails. The adjusted figure4is 0.359 the same as
we saw inFigure5 showing that the model explains 35.9% of the variance & % of life
limiting illness reported at a ward level.

Table7 ANOVAtable

ANOV A
Sum of
Model Sguares df Mean Square F Sig.
1 Regression | 6160.641 1 6160.641 563.240 .0002
Residual 10981.604 1004 10.938
Total 17142.244 1005

a. Predictors: (Constant), % social rented
b. Dependent Variable: % llti

ANOVA stands for Analysis of Varign8®SS produces an ANOVA table as part of the
regression output as shown ifable7. The variance in the data is divided into a set of
components. The technical background to an ANOVA table is beyond the scope of this
primer. We look mainly at the Sigolumn, whichtells us the pvalue for theY statistic If

this is greater than 0.05 then the whole model is not statistically significant and we need to
stop our analysis herel'he value here is below 0.05 and so we can say that the fit of the
model as a whole is statistity significant.

4ln SPSS, bot | Y R & | Ry2at#EqlideR. ¢ For large sample sizes, these two figures
are usually very close. For small values of n, the figure is adjusted to take account of the
small sample sizena the number of explanatory variables and so there may be a
difference. The technical details of the adjustment are beyond the scope of this primer.
The adjusted figure should be used in all instances.
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Table8 Model parameters

Coefficient®

Unstandardized Standardized
Coefficients Coefficients
Model B Std. Error Beta t Siq.
1 (Constant) 17.261 .157 109.999 .000
% social rented .178 .008 .599 23.733 .000

a. Dependent Variable: % llti

The estimated model parameters are shown in the Coefficients talddl¢ 8). The B
column gives us the coefficients for the prediction equation.

To best understand this table it helps to write out the model equation. Remember:
w I o Q
Substitutingthe variables and results of our regression analysis gives:
Paao T Pi¢QiQed&oQQ
So:
PaaopBopmp X ®i ¢ OIQBHO QQ

The ” over théklltii indicates that this is a predicted value rather than the actualegand
GKSNBEF2NBE 6S R2y Qi ySSR (GKS SNNEBNJ §SN¥XYO O

22.3.1.1 INTERPRETING THE RESULTS

In our examplefor every 1% increase in the percentage of people living in social rented
housing in a ward, we expect a 0.178% increase in the percentage of people living feith a li
limiting illness in that same wardThe relationship is positive areas with more social
tenants have greatelevels oflongterm illness.

For a ward with no social tenants, we expect 17.261% illness as this is the intewkete
the line of best fit crosses theaxis

Again, we must be careful to remember that this statistically significant moestribesa
relationship but does not télus that living in socially rented accommodation, causes life
limiting illnesses. lfact, those people reporting illness in each ward may not even be the
same people who report living in social housing as the data are held at a ward, rather than
personlevel. Instead, an increase in social tenants may indicate that a ward has higher
levels of people with lower incomes and higher levels of poverty. There is a significant body
of literature thatlinks poverty with illnesso thisdoes makesubstantive ense.
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2.3.2 STANDARDISED COEMENTS

The unstandarded coefficients shown ifmmable 8 can be substituted straight into the
theoretical model. The issue with these is that they are dependent on the scale of
measurement of the explanatory variables and therefore cannot be used for compayison
bigger does not necessarily mean more importdftie standardised coeéients get round

this problem andrelate to a version of the model where the variables have been
standardised to fit a normal distributiowith a mean of zero and a standard deviation of 1
We interpretthe standardised coefficienia terms of standard deviations.

For this model, for oa standard deviation change in tl of sociatentersin a ward, there
is a 0.599 standard deviation change in the % of people reporting a life limiting illness.

The descriptives table we produced in SPR®le3) tells us that the standard deviation of
social tenancy is 13.9% and the standard deviation of the outcome variable is 4.13%. So for
a 13.9% change in social tenancy, there is a (4.13*0.599) change s3l8el7%. This is

the same as a change of 0.178% for a 1% increase in social tenancy

2.3.3 STATISTICAL SIGNANCE

Thetable of thecoefficients(Table8) shows thatboth intercept andslope { and] ) are
statistically significant

The parameters are estimates drawn from a distribution of possible vajeasratedby
SPSS when computingethmodel ¢ the true value for each parameter could in fact fall
anywherewithin its distribution. The standard error of the estimate shows us the spread of
this distribution, and the Sig. column tells us whether or not these values are statistically
different from zero.

If these values are not statistically differeffom zero, then the true value sits within a
distribution which includes zero within the 95% confidence bounds. If the estimate for the
parameter could be zero, then it could be that there is in fact no relationghdgpzero
coefficient and a flat line of beéit.

A value which is not statistically significant is indicated byvalpe greater than 0.05 (the

Sig. column). For this model, p <0.05 and so we can say that the estimates of the
parameters are statistically significant and we can infer that theesmiassociation between

the variables.

52.47%/13.9 % = 0.178, the unstandardised védue
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2.4 MULTIPLE LINEAR REGRIOMNALYSIS

Adding additional explanatory variablesa simple linear regression modalilds a multiple
linear regression model. The process is identical within §R&iding additionalariables

in the specification stage3his example includes the percentage of females peentage

of over 60s and the percentage of unemployed economically active residents as additional
explanatory variables, over the simple regression using juspéneentage of social tenants.

"Q-'I Linear Regressicn - &J
e
& all people table 1. [= | & % It [ti_p]
& 010 15 [cs01600... Block 1 of 1 o
&% 1610 34 [cs0160...

et

& 3510 49 [cs0160... N
& 5010 59 [cs0160... Independent(s):
ﬁ 60to 64 [cs0160... ﬁ % social rented [srent_p] [=
& 6510 84 [cs0160.. & o female [female_p] Bootstrap...
& 85 plus [cs01600 + =

p &¥ 5 aged 60 and over [age6...[~
&' all people in hou...
&7 no car orvan [cs0... Method:
@? 1 car arvan [cs06...
ﬁ 2 0r more cars or... Selection Variable:
& 9 good health [g... -y | |
ﬁ} %% fermmale [female... - .
ﬁ % aged 60 and o... Y |_ase dDels. |
ﬁ % unemp of econ...
ﬁ % social rented ... WLS Weight:

@? % of people with ... |= -» | |

[ OK ][ Faste ][ Reset ][Cancel][ Help ]

2.4.1 MORE ON METHORSVPO9 b ¢ 9 wQ

This worked example is a case aleductivemodel. Adeductivemodel isone thatis built
on real world understandingf the problem to be modelleénd isgroundedin theory ¢
often drawn fromexisting understanding or published literature

Here we are interested in the levels of life limitilpess in different areas. ®have a
theory that poverty is linked with life limiting illnesseand that differences in age and
gender may play a par We have a datasehat containsvariables which are related to this
theory and so we build a model that reflects our theory.
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For the default methodis W9 y,(ih® Nierof the explanatory variables not important
The methoduses all the specifiedxplanatory variablegegardless of whether or not they
turn out to be statistically significant.

Other methods are covered later in this primer.

2.4.2 REGRESSION OUTPUTS

Including the extra variables has increased the adjustedaluefrom 0.395 t00.675. This
means67.5 % of the variation ipercentageLLTlis now explainedy the modelg a large
improvement The ANOVA tabl@able 11shows that the model ia statisticallysignificant
fit to the data.

Table9 Variables

Variables Entered/Removet

Variables Variables
Model Entered Remowved Method
1 % aged 60
and over,
% female,
% unemp
of econ
act., %
sociala
rented

Enter

a. All requested variables entered.
b. Dependent Variable: % Ilti

Table10 Model Summary

Model Summary

Adjusted Std. Error of
Model R R Square R Square the Estimate
1 8232 677 675 2.35344

a. Predictors: (Constant), % aged 60 and over, % female,
% unemp of econ act., % social rented
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Tablell ANOVA

ANOVA®
Sum of
Model Squares df Mean Square F Sig.
1 Regression |11598.023 4 2899.506 523501 .0002
Residual 5544221 1001 5,539
Total 17142 .244 1005

a. Predictors: (Constant), % aged 60 and over, % female, % unemp of econ act., %
social rented

b. Dependent Variable: % lti

Tablel2 Tables of coefficients (sometimes callddodel parametervalues)

Coefficients?

Unstandardized Standardized
Coefficients Coefficients

Model B Std. Error Beta t Sig.

1 (Constant) -9.832 2.734 -3.596 .000
% unemp of econ act. T74 035 .664 22.147 .000
% female 344 056 A21 6.176 .000
% social rented 052 .009 175 5.728 .000
% aged 60 and over 336 017 404 19.762 .000

a. Dependent Variable: % llti

2.4.3 INTERPRETING THE RES

FromTablel2 we can seehat all of the explanatory variables are statistically significaot
our theory that these variables are related ltmg-term limitingiliness rates isupported by
the eviderce.

Allthet coefficients are positive which tells us thaan increase ithe value ofanyof the
variables leads to an increaselamg term limiting iliness rates

From the information in Table 18%e cannow make a predictiorof the long term limiting
illnessratesfor a hypothetical wardwhere we know the values of the explanatory variables
odzi R2y QiU 1y2¢6 GKS t2y3 GSNY fAYAOGAY3T AffySa

Saythat in our hypothetical ward thathe unemploymentrate is 18%, females are 4586
the population social tenancy is at 20%, and 20% of the population are aged 60 and over.
The general form of the modeéd:
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PaaofQ f PoeQanNaé ®QQ
I P "QQEOaQ

I Pié QIQedao QQ

I b OORmE L Qi

Substitutingthe values from Table 1givesus.
POOO oI XT POEQaANGE QQ
™TT P QRawaQ
™iug Pi £ OIQBH 6 QQ
™oe PO QRmE QUL Qi
This would give a predicted value for our hypothetical wafrd7.3%
Paao «lo¢m xXT1pUyY
TTTTU
TETtL CC Tt
W oeCT ¢ ®

We can also use Table &®examinethe impact of an older population in a ward as a single
variable If we leave all other variables the santgsometimesOl f f SR aK2f RAy 3
GFNRAFo6fSa O2yail yi éanincreade Dy 1% dnSthprodorgion afShe 0 K I
populationthat is over 60leads to a 0.336% increase in the predicted valuénf term

limiting iliness ratgi.e. the precise value of the coefficient). Another way of saying this is

G2 ale GKA&A Aa aGaO2yiNRfftAYy3a FT2NJ SYLX 28YSyidx
in the percentage of people over sixty leads to 0.336 unit increase in long term limiting

Af fySaa NIldifeipéerability i§ ang of thd strédgths of linear regression

3 THE ASSUMPTIONS QREAR RGRESSION

OK so we have just showhe basics of linear regression and how it is implemented in SPSS.
Now we are going to go a bit deeper. In this section we wvolhsider some of the
assumptions of linear regression and how they affect the models that you might produce.

To interpret a model and its limitations, it is important to understand the underlying
assumptions of the method and how these affect the treatinehthe data and modelling
choices made.

When we use linear regression to build a model, we assume that:
1 The response variable is continuous and the explanatory variables are either
continuous or binary.
1 The relationship betweenutcomeandexplanatoryariables is linear
1 The residuals are homoscedastic
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1 Theresiduals arenormally distributed

There is nanore than limitedmulticollinearity

1 There are no external variablesthat is variable that are not included in the model
that have strong relationshipwith the response variable (after controlling for the
variables that are in the model).

1 Independent errors

1 Independent observations.

=

For most ofthese assumptionsf they are violated then it does not necessarily mean we
cannot use a linear regression method, simply that we may need to acknowledge some
limitations, adapt the interpretation or transform the data to makenibre suitable for
modelling.

3.1 ASSUMPTION 1: VARIAHYPES

The most basic assumption of a linear regression is that the response variable is continuous.
The normal definition of continuous is that it can take any value between its minimum and
its maximum. Two useful testor continuity are:

1. Can you perfornmeaningful arithmetic on the numbers on the scale?
2. Can you meaningfully continuously subdivide the numbers on the scale into infinitely
small part®

In many cases these two testre clear cutbut thereis a certain class of variables called
count varidles which pass test 1 but the result of test 2 is ambiguous and depends in part
on the meaning of the variable. For example, number of cigarettes smoked is usually OK to
treat as continuous whereas number of cars in a household is not.

Binary variablesra indicators of whether feature is present or whether something is true or
false not they are usually coded as the feature is present/true and 0 the feature
absent/false.

Variables which are not binary or continuous can be used in a regression ihtbaee are
first converted into Dummy variables (see sectibh)

3.2 ASSUMPTION: 2LINEARITY
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Linear regression modelling assumes that the relationship between outcomeactu of
the explanatory variables is lin€ahowever this may not always be the case

3.2.1 CHECKING FOR NONNEAR RELATIONSHIPS

Nontlinearrelationships can be difficult to spotf there are just two variableshen acurve
in the data when looking at &wvo-way scatter plot may indicate aon-linear relationship
However, nodinear relatimships can be hdden, perhaps because of complex
dependencies in the data;@rveor even a cubic shap@) the scatter plot of residualnhay
alsoindicate that there areon-lineareffects.

3.2.2 MODELLING NON-LINEAR RELATIONBHUSING LINEAR FRESSION

We cantake account ofa nonlinear relationship into a linear regression modefough a
neat trick. B transforming theexplanatoryvariableinto somethingthat does have a linear
relationship with the outcomeand entering that transformed variable into our model we
can maintain theassumption of linearity.

For example, there may be a curve in the dathich is better represented by a quadratic
rather than a linear relationship.

Figure Gshows the log of haly wage by age for a sample of respondents. In the left hand
plot a straight line of best fit is plotted. In the right hand plot, we can see that a curved line
looks to the naked eye to be a much more sensible fit., herefore, propose that there is

a quadratic relationship between the log of pay per hour, and afj@is means that the log

of pay per hour and age squared are linearly related.

8i.e. in the sense that it conforms to a straight line. It might seem slightly odd as a curve is also a line but when
A0 GAA0GAOALYa NBTFSNI G2 aftAySHENEXAY.SHNEE YSIHYy &GN A3IKGZ
https://study.com/academy/lesson/howo-recognizelinearfunctionsvsnon-linear-functions.html

for further discussion.

" This may seem little confusing; ince we have added in neimear predictors whys themodel stillreferred
to asalinearregressiormodel? The reason is thahe linearity here refers to the model not the dafghe
term linear regressiodenotes arequationin whichthe effect of each parametdn the model is simply
additive (but the parameters themselves could represent nlimear relationships in the dajaSee:
https://blog.minitab.com/blog/adventuresn-statistics2/what-is-the-differencebetweenlinearand

nonlinearequationsin-regressioranalysifor more details.
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Figure6 Scatterplots of bgof hourly wage, by age

Toaccount for thisnon-linear relationship in our linear model, we need to compute a new
variableg the square of agéhere called agesq where agesq =2gef there is a statistically
significant quadratic relationship between hourly wage and age, then the msluamlid
containa statistically significant linear coefficient for age squared which we can ukerto
makebetter predictions.

Thegeneral form oimodel forthe linear relationship would be:
0 £€0¢ 0 1 wnQQ T I wQQ -
The model for the quadratic rafionship would be:
0 £€0¢ 0 1wQQ T I 0QQr 0w QQi A

Note that we have retained the linear component in the model. This is generally regarded as
best practiceregardless of the significance of the linear componéntthis @se the left
hand graph in Figure 6 does indicate that there is a linear component.

3.3 ASSUMPTION: NORMAL DISTRIBUTION RESIDUALS

3.3.1 P-P PLOTS

We can assess the assumption that the residuals are normally distributed by prodiig a
plottthroughthe regression dialogue box

8 This is sometimes referred to asiarmal probabilityplot or a quantle-quantile or gq plot.
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