
Outliers and Influential Observations in

Exponential Random Graph Models

Johan Koskinen ∗†, Peng Wang ‡, Garry Robins §, and Philippa Pattison ¶

April 29, 2018

∗E-mail: johan.koskinen@manchester.ac.uk. The author would like to acknowledge financial
support from the Leverhulme Trust Grant RPG-2013-140
†The Mitchell Centre for Social Network Analysis and the Department of Social Statistics, School

of Social Sciences, University of Manchester, Manchester, M139PL UK; Melbourne School of Psycho-
logical Sciences, The University of Melbourne, Australia; Institute of Analytical Sociology, University
of Linköping.
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Abstract

We discuss measuring and detecting influential observations and outliers

in the context of exponential family random graph (ERG) models for social

networks. We focus on the level of the nodes of the network and consider those

nodes whose removal result in changes to the model as extreme or “central” with

respect to the structural features that “matter”. We construe removal in terms

of two case deletion strategies: the tie-variables of an actor are assumed to be

unobserved or the node is removed resulting in the induced subgraph. We define

the difference in inferred model resulting from case deletion from the perspective

of information theory and difference in estimates, both in the natural and mean

value parameterisation, representing varying degrees of approximation. We

arrive at several measures of influence, and propose the use of two that do not

require refitting of the model and lend themselves to routine application in the

ERGM fitting procedure. MCMC p-values are obtained for testing how extreme

each node is with respect to the network structure. The influence measures are

applied to two well-known data sets to illustrate the information they provide.

From a network perspective, the proposed statistics offer an indication of which

actors are most distinctive in the network structure, in terms of not abiding by

the structural norms present across other actors.

1. Introduction

It is in the nature of statistical models that parameter estimates change with the

addition or removal of observations. If, however, an observation substantially alters

the overall inference we might suspect that this observation has a major influence on

our model. It could also be that an observation does not alter our overall conclusions

but that it is highly unusual given the other information we have. Consequently

considerable attention in the statistical literature has been devoted to developing

diagnostics tools that pick out influential observation and outliers (see e.g. Chatterjee

and Hadi, 1986, in the case of linear regression and Pregibon, 1981; Williams, 1987;

Lesaffre and Albert, 1989; and Hines, Lawless, and Carter,1992, for extensions to
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varying forms of generalized linear models).

For social network data (Wasserman and Faust, 1994), the class of exponential

random graph models (ERGM)(Holland and Leinhardt, 1981; Frank and Strauss,

1986; Wasserman & Pattison, 1996; Pattison & Wasserman, 1999; Snijders et al.,

2006; Hunter and Handcock, 2006) has become an important approach for captur-

ing the complex dependencies giving rise to observable tie variables in social networks

(Robins and Morris, 2007). ERGM are a class of log-linear models for the tie-variables

of nodes in a network. Using the Hammersley-Clifford theorem (Besag 1974), Frank

and Strauss (1986) derived a set of sufficient statistics for ERGM from assumptions

about how the ties of nodes may depend on each other. These statistics are interac-

tions between tie-variables that correspond to different order stars as well as triangles.

Snijders et al. (2006) elaborated on these dependence assumptions to derive an ex-

tended class of network statistics.

The statistical literature on influence has largely drawn on linear regression and

therefore has been concerned with defining analogies to residuals that may be used to

study how, for example, case deletion changes the deviance. This means that you can

define residuals and case-deletion even when you do not have independently defined

error terms. This approach, which works well in logistic regression (Pregibon, 1981)

and GLM (Williams, 1987), relies to a large extent on the assumption of independence

of observations. For ERGMs, while we may still consider changes in deviance, the

intrinsic assumption of interdependent observations prevents us from adopting the

standard approach of expressing this in terms of residuals. The analysis of outliers

in contingency tables is closely related to the case of ERGM but has the advantage

of being able to rely on distributional assumptions (e.g. Kuhnt, 2004) that do not

apply for ERGM.

ERGMs generally cater for a degree of heterogeneity with respect to the observ-

ables among the actors. Even if a model asserts that actors are stochastically equiva-

lent (in the sense for example that the model is permutation invariant with respect to

permutations of the node labels), for the actual realisation we might have big differ-
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ences between the interactional patterns of individuals. Some actors may for example

have many ties whereas others may have no ties at all. In a manner of speaking, for

some models you may even say that it is expected that some actors are unexpectedly

different. Robins, Pattison and Woolcock (2005) demonstrate exactly this behaviour

in their thorough investigation of ERGM specifications. Naturally you have a similar

situation in standard statistical models where the deviation from the general tendency

has “long tails” - a regression model with errors distributed according to a Cauchy

distribution may have extreme outliers - but in the case of ERGMs this phenomena is

subtly different in that the observations pertaining to one actor affects the interpre-

tation of observations pertaining to other actors (Wang et al., 2013). For example,

for models for repeated measures, observations are dependent within individuals but

measurement occasions are nested within individuals. Residuals can thus be defined

on the individual level (Waternaux, Laird, and Ware, 1989; Weiss and Lazaro, 1992).

In a network each tie-variable is however cross-classified by its constituent nodes.

The rest of the paper is structured as follows. We begin by defining the ERGM

framework, accompanied by some notation necessary for the purpose of the proposed

methodology, and present the main arguments for the particular type of “case dele-

tion” chosen here. We proceed by presenting two approaches to removing an actor

and the associated case-deletion estimators, which is followed by a derivation of mea-

sures that weigh together the shifts in estimates as compared to the complete data

analysis and a series of approximations. We present a Monte Carlo-based test of the

statistics that can be used to gather further insight into the extent to which nodes

are extreme. The measures are then applied to two well-known data sets with a thor-

oughly researched set of model-specifications. The approximate measures are shown

to be good and the most compelling one has been implemented in MPNet. While

one of the measures have the intuitive appeal of comparing the estimated model to

a model with the actor entirely removed, the preferred measure uses a missing data

approach which does not require that we can interpret ERGMs for subsets.
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2. The model

In the following we assume that we are interested in modelling a graph of order

n, with fixed vertex set V , but stochastic edge set E ⊆ E =
(
V
2

)
. We assume that the

model is defined for graphs with adjacency matrices y ∈ Y , and that given a set of

fixed covariates x it has the form

pθ,x(y) ≡ Pr(Y = y|θ, x) = exp{θTz(y;x)− ψY(θ;x)},

where θ is a p × 1 vector of parameters, θ ∈ Θ ⊆ Rp, z(y;x) is a vector valued

function of y for each x, and ψY(θ;x) = log
∑

y∈Y exp{θTz(y;x)} is a normalising

constant. For the simplest case where ties are assumed independent and no covari-

ates are used, z(y;x) = z(y) is just a count of the number of ties in the network,

i.e. z(y) =
∑

1≤i≤n yi+/2, where yi+ =
∑

j 6=i yij. Frank and Strauss (1986) pro-

posed a Markov dependence assumption for ERGMs, whereby the tie-variables Yij

and Yk` are conditionally independent, conditional on the rest of the graph, unless

{i, j} ∩ {k, `} 6= ∅. This implies a model that in addition to the edge-statistic,

has higher-order interaction terms such as the number of k-stars Sk =
∑

1≤i≤n
(
yi+
k

)
,

k = 2, . . . , n−1, and the number of triangles
∑

1≤i<j<k≤n
∑

k 6=i,j yijyikyjk. While defin-

ing a parsimonious class of models for complex dependencies, these type of models

have long been known to be badly specified (Strauss, 1986; Jonasson, 1999; Handcock,

2003). Snijders et al. (2006) proposed a modified set of statistics that have proved

to lead to better behaved models and that have since been successfully employed in

empirical analysis (Lusher et al., 2013). These models replace k-star statistics with

an alternating star statistic

u
(s)
λs

(y) =
n−1∑
k=2

(−1)k
Sk
λk−2
s

, (1)
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and an alternating triangle statistic

u
(t)
λt

(y) = λt
∑

1≤i<j≤n

yij

{
1−

(
1− 1

λt

)Lij

}
, (2)

where Lij =
∑

h6=i,j yihyhj is a count of the number of two-paths connecting i and j.

For the statistics (1) and (2), λs and λt are either considered user-defined smoothing

constants or parameters to be estimated (Hunter and Handcock, 2006; Koskinen et

al., 2010). Schweinberger (2011) analyses Markov graphs and the models defined by

the new specifications of Snijders et al. (2006) in great detail and concludes that

the latter are more stable than the former. In particular, a model with statistics∑
1≤i<j≤n yij and (2), is stable for λt ≥ 0.5 (Schweinberger, 2011).

ERGMs admit dependence of tie-variables on exogenous nodal (and dyadic) co-

variates (Robins, Elliott, and Pattison, 2001; Robins, Pattison, and Elliott, 2001).

For a monadic binary covariate x = (xi)i∈V , we may define the main effect of this

covariate on the probability of a tie through the statistic
∑

1≤i<j≤n yij(xi+xj). If the

corresponding parameter is positive, xi = 1 is associated with i being incident to more

edges. Homophily, the tendency for nodes with similar attributes to be more likely to

be directly connected than dissimilar nodes (McPherson et al., 2001), can be modelled

through the inclusion of the statistic
∑

1≤i<j≤n yij1{xi = xj}. Similar statistics may

be defined for categorical and continuous attributes (Robins and Daraganova, 2013).

The entries of y are typically not independent and if YA and YB are the col-

lection of variables corresponding to disjoint subsets A,B ⊆ E we generally do

not have that Pr(YA = u, YB = v|θ, x) = Pr(YA = u|θ, x) Pr(YB = v|θ, x). The

“smallest” observational unit is the dyad and we could consider the Yij’s (ij ∈ E)

to constitute our observations. For linear models with independently defined error

terms the residuals are straightforwardly defined as the difference between the ob-

served and fitted value. For binary response we may similarly define residuals as

eij = yij − π̂ij, for a dyad, where π̂ij is the predicted tie-probability (for GLMs other

forms may be considered; see, for example, Williams, 1984, and Pierce and Schafer,
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1986). For independent observations, π̂ij is unambiguously defined as the marginal

probability but for ERGM the marginal probabilities Eθ{Yij} =
∑

y∈Y yijpθ,x(y) are

intractable. It is tempting to, as in Wasserman and Pattison (1996), use the condi-

tional π̂ij|−ij = Pr(Yij = 1|θ̂, YE\{i,j} = yE\{i,j}) rather than the marginal probabilities.

Conditional probabilities π̂ij|−ij are however a poor choice for assessing fit as you need

to condition on observed data.

Marginal probabilities can be approximated numerically using the Monte Carlo

estimate of Eθ{Yij}. A homogenous ERGM is however permutation invariant (Frank

and Strauss, 1986; Schweinberger et al., 2017), meaning that residuals will not be

sensitive to model specification. For example, consider on the one hand a Bernoulli

model with the sufficient statistic
∑

1≤i<j≤n yij, and a model that in addition has the

sufficient statistic defined by (2) on the other. For any pair {i, j} the predicted tie-

probability will be the same under the two models and consequently the residuals will

all be the same for the two models (Block et al., in press). The interpretation of this is

that the added dependencies of a Markov model, or higher order dependencies such as

(2), fit, or account for, interactions of tie-variables, not the marginal probabilities of

tie-variables. It might for example be the case that eij and ek` considered separately

may appear to be small but that when they are considered jointly they are large. A

simple example is when we are considering the variables yij and yji in a directed graph,

the marginal tie-probabilities may be low but a reciprocated dyad yij = yji = 1 may

be much more likely than an asymmetric one yij 6= yji. So while residuals of individual

tie-variables are not informative, defining residuals for all possible interaction effects

is not feasible.

A natural way of grouping the variables in Y is by the nodes. This is also a

natural approach in, for example, repeated measures models, where residuals can be

defined on the individual level (Waternaux, Laird, and Ware, 1989) or individual by

occasion for each individual (Weiss and Lazaro, 1992). Here we let Y(i) and y(i) denote

the adjacency matrix of the subgraph of order n− 1 induced by removing node i, for

i ∈ V . Analogously we let x(i) be the collection of covariates that do not include those
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of node i, and let z(y(i);x(i)) be the vector of statistics evaluated for y(i) and x(i). Note

the departure from repeated measures where measures are nested within individuals.

For graphs, as ties are not nested within individuals, removing observations for i also

means removing observations yij for all j 6= i. We assume that z may unambiguously

be defined on a graph of order n− 1, and we do not make any notational distinctions

beyond that which is implied by the arguments of z.

In general, removing i leads to different sufficient statistics than setting yij = 0

(for j 6= i). In other words, z(y(i);x(i)) is not the same as evaluating z(y∗;x) for an

adjacency matrix y∗ with elements y∗ij = 0 but y∗k,` = yk,` for all {k, `} such that

{k, `} ∩ {i} = ∅ (Snijders, 2010, elaborate on statistics defined for subsets of nodes

under different conditions). For instance, if a count of the number of isolates is part

of z, then these two statistics are different. In order to make explicit the link between

y(i) and x(i), we denote the range space of Y(i) by Y(i).

In the following, the collection of tie-variables that involves i are denoted by yi•,

and the corresponding attribute vector xi•.

3. Estimation and case deletion

Since the model pθ,x(y) is an exponential family distribution (Barndorff- Nielsen

1978; Lehmann, 1983), the maximum likelihood estimate (MLE), θ̂, given an obser-

vation is such that it satisfies

µY(θ̂;x) = z(y;x), (3)

where µY(θ̂;x) = Eθ̂{z(Y ;x)|x} is the expected value. Furthermore the Fisher infor-

mation matrix and the negative Hessian are both equal to I(θ̂) = Covθ̂{z(Y ;x)|x}.
The moment equation (3) may be solved numerically for the MLE and once an esti-

mate is obtained I(θ̂) may be approximated by the corresponding MCMC quantity

(Corander, Dahmström, and Dahmström, 1998, 2002; Crouch, Wasserman, and Tra-

chtenberg, 1998; Snijders, 2002; Handcock, 2003; Hunter and Handcock, 2006).
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Handcock (2003) showed that an alternative parametrisation, the mean value

parametrisation (MVP), of the ERGM could provide additional insight into the model.

More specifically the MVP of the ERGM on Y and x, is a mapping µY : Θ → C,

where C is the relative interior of the convex hull on {t ∈ R : z(y;x) = t, for some

y ∈ Y}, and as defined above µY(θ;x) = Eθ{z(Y ;x)|x}. We may note a particularly

useful property of the MVP, namely that the MLE is given by µ̂ = z(y;x). The

Fisher information matrix is given by I(µ−1
Y (µ̂))−1 = Covµ−1

Y (µ̂){z(Y ;x)|x}−1, where

µ−1
Y denotes the inverse function, µ−1

Y (A) = {θ ∈ Θ : µY(θ;x) ∈ A}.
For the purposes of investigating how large an influence the observations pertain-

ing to an actor has on the estimate θ̂, how do we conceptualise fitting the model with

that actor removed? Here we propose two alternative and complementary interpre-

tations. The first is to remove the information about the part of y that pertains to i.

The second is to remove the part of y that pertains to i altogether. By the first ap-

proach we mean something that might be expressed as “what would our estimates be

had we not known the values of yij for any of the j’s”? We shall refer to this approach

as the “missing data (MD) approach” and the estimate we obtain when i is removed

according to the MD approach is denoted by θ̂(i), the missing data MLE (MDMLE).

While we assume that information on yij is missing, for j ∈ V \{i}, the values on all

the covariates are considered known. The analogy to analysis of ERGMs with missing

data is that the MDMLE would be the MLE for the network had yij been missing

for all j (what Huisman, 2009, refers to as item non-response in the case of social

network data) and observations missing at random in the sense of Rubin (1976) as

demonstrated in Handcock and Gile (2010). Hence the name “MD” approach.

In the second approach node i is removed entirely from the network as are its

covariate values, so that instead of having the observations y and x, we have the

observations y(i) and x(i). Since this is analogous to fitting a model to the part of the

network that is known, using only the available case when there is missing information

for i, this approach is called the available case (AC) approach (c.p. “available-case”

analysis, Little and Rubin, 1987). The corresponding estimate is denoted by θ̃(i), the
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available case MLE (ACMLE).

3.1 Estimation

For AC the estimation is done using the same procedure as for the completely

observed network, and θ̃(i) satisfies

µY(i)(θ̃(i);x(i)) = z(y(i);x(i)),

but where µY(i)(θ̃(i);x(i)) = Eθ̃(i){z(Y(i);x(i))|x(i)}, and the Fisher information matrix

is I(θ̃(i)) = Covθ̃(i){z(Y(i);x(i))|x(i)}. Note that expectations are now taken with

respect to a distribution on Y(i) rather than Y . Obtaining the MDMLE is a more

involved but similarly entails finding the estimate θ̂(i) that satistfies

µY(θ̂(i);x) = µYi(y(i))(θ̂(i);x), (4)

where µY(θ̂(i);x) is defined as before but

µYi(y(i))(θ̂(i);x) = Eθ̂(i){z(Y ;x)|x, Y(i) = y(i)},

i.e., with respect to the conditional distribution restricted to Y i(y(i)) = {u ∈ Y :

u(i) = y(i)}. This follows from simply setting to zero the differentiated log likelihood
∂
∂θ

log
∑

u∈Yi(y(i))
pθ,x(u), and solving for θ. Handcock and Gile (2010) proposed a

maximum likelihood-based scheme for fitting the ERGM with missing data. Here we

will use stochastic approximation to solve the equation (4) (Koskinen and Snijders,

2013). The negative of the Hessian is straightforward to obtain as Covθ̂(i){z(Y ;x)|x}−
Covθ̂(i){z(Y ;x)|x, Y(i) = y(i)}. We do not pursue a Bayesian data-augmentation

scheme (Koskinen, Robins, Pattison, 2010) as the proposed measures ultimately do

not require estimation with missing values.

AC is in a sense straightforward to interpret as it is the direct equivalent of the

standard case-deletion approach (Cook, 1977). However, while models for indepen-
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dent cases scale up and are well-defined on subsets of data, this is not necessarily true

for networks (Anderson, Butts, and Carley, 1999). For ERGM it is a know fact that

they do not marginalise, something which follows from definition of the dependence

graph (Koskinen, Robins, and Pattison, 2010). Snijders (2010) points out that if the

graph on V follows an ERGM, then the subgraph induced by node set V ∗ ⊂ V only

follows an ERGM for trivial models. He goes on to identify the conditions under

which the graph on V ∗ follows an ERGM with the same parameters as that for V

conditionally. For example, if V ∗ are the nodes of a saturated snowball sample, the

graph on V ∗ follows an ERGM with same parameters as the ERGM for V restricted to

the space of connected graphs on V ∗. Schweinberger et al. (2017) study properties of

ERGMs defined on subsets under a large number of different conditions and assesses

the implications for statistical inference. While they provide a more nuanced account

and more applicable results than Shalizi and Rinaldo (2013), the fact still remains

that since ERGM do not marginalise it is not clear how a model for Y(i) relates to a

model for Y .

3.2 Combined influence for p > 1

When p = 1, the influence on the estimate of θ may simply be investigated by

plotting θ̃(i) and θ̂(i) against θ̂ for each of the i’s. When we have more than one

parameter we may still plot the individual elements of the parameter vector separately

but it will be hard to asses the overall influence of an actor from these partial plots.

These plots may not be directly comparable since parameters are likely to be on

different scales. Therefore we may not know which parameters are most “important”

and what weight should be given to the deviations on the different elements of θ.

Additionally, the estimates are typically highly correlated, wherefore it may be hard to

parse out the influence of actors on individual elements of θ. A measure corresponding

to DFBETA for linear regression (Belsley et al., 1980), that takes the correlation

between parameters into account, could be developed for ERGM but we do not pursue

that here.
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3.2.1 Kullback-Leibler divergence

MD A common way of investigating similarity between distributions on range

space Y with probability mass functions p(y) and q(y), where p is dominated by

q, is by using the Kullback-Leibler divergence D(p||q) = EY |p{log(p(Y )/q(Y ))}.
Note that the Kullback-Leibler divergence may be rewritten H(p, q) − H(p), where

H(p, q) = −
∑

y∈Y p(y) log q(y) is commonly referred to as the cross entropy and

H(p) = −
∑

y∈Y p(y) log p(y) is the entropy. This is of some significance as the

ERGM, pµ−1
Y (µ), with statistics z, maximises H(p) subject to the constraint that

EY |p{z(Y )} = µ. The Kullback-Leibler divergence is, as Handcock (2003) points out,

a natural choice for assessing similarity of distributions in the case of ERGMs, in

which case it is given by

Eθ̂

{
log

pθ,x(Y )

pφ,x(Y )

}
= (θ − φ)TµY(θ;x) + ψY(φ;x)− ψY(θ;x),

If θ is the MLE, θ̂, µY(θ̂;x) = z(y;x) and we may define the missing data divergence

(DMD) as

D(θ̂||φ) = (θ̂ − φ)Tz(y;x) + ψY(φ;x)− ψY(θ̂;x),

which we recognise as half the deviance 2{log pθ̂,x(y) − log pφ,x(y)} between the two

models defined by θ̂ and φ, where D(θ̂||φ) is taken to mean D(pθ̂,x||pφ,x), when there

is no ambiguity. The interpretation is therefore that D(θ̂||φ) measures the decreases

in likelihood as the maximum likelihood estimate is substituted by a less optimal

estimate. Construing influence as the degree of change in deviance has also been

done for GLMs when p > 1 (see e.g. Williams, 1987; Lee, 1988). Cook (1986) also

identifies the relationship between the influence statistic defined in terms of differences

in fitted values (Cook, 1977) and the deviance or likelihood displacement. Handcock

and Gile (2010) used D(·||·) as a general measure of how different the distributions

defined by the MDMLEs were to the MLE for a data set were the MDMLE was

calculated for snowball sampled subsets of y.
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In order to calculate D(θ̂||θ̂(i)), defined on Y , for each i ∈ V , we need to re-

fit the model by solving (4) n times. In addition, since ψY typically is analytically

intractable, we require some numerical approximation to this normalising constant.

Hunter and Handcock (2006) proposed to use the path sampler, a generalisation of

bridged importance sampling that draws on the principle of thermodynamic integra-

tion in statistical physics (Meng and Wong, 1996; Gelman and Meng, 1998; Neal,

1993). In the calculations here, the quantity λ(φ, θ) = ψY(φ;x)− ψY(θ;x), has been

estimated by λ̂(φ, θ) = 1
M

∑M
m=1(φ − θ)z(ym;x), where ym has been generated from

pφm,x, φm = tmθ + (1 − tm)φ, and tm are i.i.d. uniformly random variates. There

is a variety of alternative samplers for approximating λ(φ, θ) but the path sampler

appears to be the most efficient to date. In addition the path sampler has the advan-

tage that it estimates the ratio on the log-scale (for a review see Gelman and Meng,

1998).

AC For the AC approach we define D(·||·) a little differently, namely as D(θ̃(i)||θ̂)
with respect to the reduced graph space Y(i), giving the available case divergence

(DAC)

(θ̃(i) − θ̂)Tz(y(i);x(i)) + ψY(i)(θ̂;x(i))− ψY(i)(θ̃(i);x(i)).

This statistic hence measures the decrease in fit when the optimal parameter value

for the data defined by removing i altogether, θ̃(i), is substituted by the parameter

value that is optimal (in the likelihood sense) for the model defined for the data set

in its entirety, including i. As for the normalising constants in the MD approach,

λ̂(θ̂, θ̃(i)) may be estimated using the path sampler, only now the simulated graphs

belong to Y(i).

3.2.2 Taylor series approximations

We may expandD(θ̂||ψ), around θ̂, and by noting that log pθ̂,x(y) = 0, disregarding

terms of order greater than 2, and rearanging we have the following approximation
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to D(θ̂||θ̂(i)), the missing data generalised Cook’s distance (GCD MDMLE)

||θ̂(i) − θ̂||2I(θ̂)−1 = (θ̂(i) − θ̂)TI(θ̂)(θ̂(i) − θ̂),

saving the effort of calculating ψ. In the sequel we use the notational convention

||u− v||2A = (u− v)TA−1(u− v), for p× 1 vectors u, v ∈ Rp, and positive definite A.

In the case of GLM, Lee (1988) states that the likelihood replacement is preferable to

this generalised Cooks distance on the ground that there is ambiguity in the choice

of scaling matrix. If the expansion is valid it does however justify the use of I(θ̂)

(c.p. the use of the normal curvature in Cook, 1986) and using Cook’s distance to

infer the presence of outliers and influential observations has a long tradition in linear

regression and GLMs (cf Hines and Hines, 1995).

Expanding D(θ̃(i)||θ̂), we analogously get

||θ̃(i) − θ̂||2I(θ̃(i))−1 .

For the purposes of further approximation, it is a somewhat undesirable feature that

the information matrix here depends on θ̃(i). Making the assumption that the cur-

vature in the neighbourhood of θ̃(i) for the model defined on Y(i) is not too different

from the curvature in the neighbourhood of θ̂ for the model defined on Y , we simplify

the above expression according to

||θ̃(i) − θ̂||2I(θ̃(i))−1 ≈ ||θ̃(i) − θ̂||2I(θ̂)−1 ,

which we call the available case generalised Cook’s distance (GCD ACMLE). These

two approximations are expressed in terms of differences in parameter estimates,

weighted together by their variation with consideration taken to the association

between estimators. We may therefore say that they represent the magnitudes of

changes in the effects (self organisation, assortive mixing, etc) we would see as a

result of removing an actor.
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3.2.3 Approximate generalised Cook’s distances by means of the MVP

Refitting the model for every node to obtain the case-deletion parameter estimates

is computationally very costly. For other models, one-step estimators have been used

to obtain approximate estimates (Lesaffre and Verbeke,1986; Lee, 1988). Here we

draw instead on the relationship between the natural parameter and the mean-value

parametrisation.

Starting with AC, consider the MVP form of ||θ̃(i) − θ̂||2
I(θ̂)−1 , with the natural

parameter estimate θ̃(i) and θ̂ substituted by their corresponding MVP estimates

µYi(θ̃(i);x(i)) and µYi(θ̂;x(i)), and the MVP Fisher information I(θ̂). This yields the

expression

||µYi(θ̃(i);x(i))− µYi(θ̂;x(i))||2I(θ̂).

As θ̃(i) is the ACMLE, µYi(θ̃(i);x(i)) = z(y(i);x(i)), and hence

||µYi(θ̃(i);x(i))− µYi(θ̂;x(i))||2I(θ̂) = ||z(y(i);x(i))− µYi(θ̂;x(i))||2I(θ̂),

which is referred to as the approximate available case generalised Cook’s distance in

mean value parameterisation (GCD ACMVP). The vectors z(y(i);x(i)) can readily

be calculated as described above, I(θ̂) is obtained from fitting the model to y, and

µYi(θ̂;x(i)) may be approximated by the ergodic mean 1
M

∑M
m=1 z(um;x(i)) over an

MCMC sample {um} from the model defined by θ̂ on the graph of order n − 1 with

covariates x(i).

For MD, we may analogously consider substituting the natural parameters in

||θ̂(i)−θ̂||2I(θ̂)−1 by their corresponding MVP estimates, using ||µY(θ̂(i);x)−µY(θ̂;x)||2
I(θ̂)

.

As before we may use that µY(θ̂;x) = z(y;x), and from (4) we see that for θ̂(i),

µY(θ̂(i);x) = µYi(y(i))(θ̂(i);x), and hence

||µY(θ̂(i);x)− µY(θ̂;x)||2
I(θ̂)

= ||µYi(y(i))(θ̂(i);x)− z(y;x)||2
I(θ̂)

.

To obtain µYi(y(i))(θ̂(i);x) we would however have to estimate θ̂(i) first. Denoting the

14



MD log likelihood `(θ; y(i), x) = log
∑

u∈Yi(y(i))
pθ,x(u), we may consider the Kullback-

Leibler divergence in the “other” direction given by

D(θ̂(i)||θ̂) = EY(i)

[
`(θ̂(i);U, x)

]
− EY(i)

[
`(θ̂;U, x)

]
,

where the expectation EY(i)(g(U)) =
∑

u∈Y(i) e
`(θ̂(i);u,x)g(u). The gradient of D(θ̂(i)||θ)

as a function of θ is −EY(i) [S(θ;U, x)], where S(θ;U, x) = µY(U)(θ;x) − µY(θ;x), is

the MD score function evaluated in θ. This motivates the use of µY(y(i))(θ̂;x) instead

of µY(y(i))(θ̂(i);x), giving the following distance measure, approximate missing data

generalised Cook’s distance in mean value parameterisation (GCD MDMVP)

||µYi(y(i))(θ̂;x)− µY(θ̂;x)||2
I(θ̂)

= ||µYi(y(i))(θ̂;x)− z(y;x)||2
I(θ̂)

,

which only requires some additional simulations to calculate µYi(y(i))(θ̂;x). As the

Kullback-Leibler divergence in general is not symmetric we would not expect perfect

equivalence between DMD and GCD MDMVP. The distributions e`(θ;u,x) and pθ,x(u)

are furthermore defined on different range spaces. However, seeing as the former is

the marginalised form of the latter, large differences in DMD would be mirrored by

large differences GCD MDMVP. Note that the sample space over which µYi(y(i))(θ̂;x)

is calculated is considerably smaller than that of µYi(θ̂;x(i)). The former is restricted

to graphs in Y i(y(i)), which has cardinality 2n−1, whereas the latter is defined over

the whole of Yi, with cardinality 2(n−1)(n−2)/2.

For reference we will use a case deletion measure similar to that used by Snijders

and Borgatti (1999), that we may call the Jack-knifed distance measure (JN)

||z(y(i);x(i))− z̄AC ||2Σ(z̄AC),

where

z̄AC =
1

n

n∑
i=1

z(y(i);x(i)), (5)
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and Σ(z̄AC) = 1
n

∑n
i=1 z(y(i);x(i))

Tz(y(i);x(i)) − z̄T
AC z̄AC . When only subgraph census

statistics are included in z(y, x) = z(y), the MVP estimate µYi(θ̂;x(i)) = µYi(θ̂)

does only depend on the parameter θ̂. The difference between ||µYi(θ̃(i);x(i)) −
µYi(θ̂;x(i))||2I(θ̂) and ||z(y(i);x(i))− z̄AC ||2Σ(z̄AC), is then likely to be small meaning that

GCD AC and the Jack-knifed distance measure more or less coincide.

3.3 MCMC p-values

For the purposes of testing heterogeneity and whether any actor is extreme, we

may want to benchmark the observed values against what we expect under a homo-

geneous ERGM. Let Si(y) be the value for node i on the measure of interest. The

p-value Pr(Si(Y ) > Si(yobs)) is not available in an analytically tractable form nor can

we rely on standard approximations (such as χ2). Instead we propose a direct Monte

Carlo-based approach, whereby we generate a sample {um}Mm=1 from the ERGM under

θ̂, and calculate the MCMC p-value as 1
M

∑M
m=1 1(Si(um) > Si(y)). Any function of

the distribution of values may be investigated. If no covariates are used, the observed

maximum value S(n)(y) = maxi{Si(y)} can be compared to the distribution of the

maximum, i.e. (S(n)(um))Mm . If covariates are used, the ERGM is no longer homoge-

nous and the maximum of the raw measures might be misleading. It is convenient to

standardise the values within actors. An example is given in the next section.

The measure has to be recalculated for each m = 1, . . . ,M meaning that it is

time-consuming and is best suited for in-depth investigation. Furthermore, the Monte

Carlo test does not perfectly mirror the sampling distribution of the measure as the

model is not refitted. Thus, in for example ||µYi(um,(i))(θ̂;x) − z(um;x)||2
I(θ̂)

, while

z(um;x) is the correct estimate in the mean value parametrisation, the conditional

mean µYi(um,(i))(θ̂;x) is based on θ̂ for y rather than um.

3.4 Remarks on interpretation of measures

While the measures may be interpreted strictly as measures of the influence of a

node on the graph-level statistical inference their interpretation from the perspective
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of the ERGM may not be straightforward. We briefly consider here some observa-

tions for homogenous ERGM before we investigate the application of the measures

to empirical examples.

Consider two two nodes i and j with identical row-vectors yi• and yj• (with ad-

justment for the elements yij and yji). These nodes are structurally equivalent. As a

consequence of the permutation invariance of ERGM discussed in the context of resid-

uals in Section 2, for the marginal tie-probabilities πik = πjk (k 6= i, j) but for their

conditional tie-probabilities we also have πik|−ik = πjk|−ik. Furthermore, y(i) = y(j)

and consequently θ̃(i) = θ̃(j) and θ̂(i) = θ̂(j). Hence, for two structurally equivalent

nodes the measures developed here will be the same (but may differ between AC and

MD).

For a Bernoulli model the MLE is available in closed form and we can write up a

closed form expressions for GCD ACMLE and GCD MDMLE. In fact,

||θ̂(i) − θ̂||2I(θ̂)−1 = ||θ̃(i) − θ̂||2I(θ̂)−1 = (L̄− yi+)2n∗L−2,

where L =
∑

1≤i<j≤n yij, n
∗ =

(
n
2

)
, and L̄ = 2L/n, the average degree. Consequently

the influence measure is a curvilinear function of the actor degree and actors with

extremely many or extremely few ties are going to be influential. When the degree

distribution is skewed to the right this means that high degree nodes are going to be

most influential.

For models with more complicated dependence structures it is difficult to say

anything about the properties of AC and MD. As discussed in Section 3.1, the model

estimated for Y is misspecified on Y(i) and as a consequence the interpretation of

AC in terms of the traditional case-deletion approach may be confounded by the

dependencies of the model.
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4. Empirical illustration

Here we provide two examples that help illustrate what type of local structural

patterns contribute to large values on the influence statistics. One example flags a

truly influential node and the other example a seemingly influential node.

4.1 A collaboration network

Lazega (2001) collected a collaboration network among 36 New England law-firm

partners that were located in three different offices and that practiced either litigation

or corporate law. The network in Figure 1 displays a high degree of homophily on

office but also appears to have homophily on practice.

We fit a so called social circuit dependence model, with u
(t)
λt

(y) defined as in (2),

that has been used for this data set for a number of illustrations (Snijders et al.,

2006; Hunter and Handcock, 2006; Handcock and Gile, 2010; van Duijn et al., 2009).

The value of the smoothing constant λt (Snijders et al., 2006), is commonly set to

2 (Robins and Lusher, 2013:168-171). Here we set λt = exp(0.7781) based on the

argument in Handcock and Gile (2010) and van Duijn et al. (2009) that this was

found to be the MLE by Hunter and Handcock (2006) when λt was estimated. The

estimation results are provided in Table 1.

The vertex valencies and the calculated influence measures are provided in Table 2.

The MCMC error for the path sampler was checked individually for AC, MD and each

i to assure that it was negligible in comparison with the respective approximations

of the ratios of normalising constants (a total of 2,000 sample points were used and

the burn-in for each sample point 150n(n− 1).25).

Throughout we will not attempt to interpret the magnitudes of values in Table 2

(the MVP, for example, tend to be on a different scale to their MCMC equivalents)

but focus on the ranking of nodes. Figure 2 plots the values of Table 2 against each

other to make consistency across measures more clearly visible. For this particular

example, the measures are relatively consistent and pick out node 15 as the top
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Figure 1: Collaboration network for Lazega’s (2001) 36 partners. Colours (white,
grey, black) indicating the different offices; size reflecting tenure; practice corporate
(diamond) practice litigation (circle). The top 7 highest degree nodes are labeled.19



Table 1: Estimates and statistics for Lazega’s (2001) partners

MLE se z(y;x)∗ z̄∗∗AC
density −6.51 0.571 115 108.611
main seniority 0.852 0.237 130.194 122.961
main practice 0.41 0.115 129 121.833
homophily practice 0.76 0.198 72 68
homophily sex 0.703 0.251 99 93.5
homophily office 1.145 0.19 85 80.278
alternating k-triangle 0.898 0.148 190.306 177.372

∗ Statistics are defined as in Section 2
∗∗ Defined as in Eq. (5)

ranked, though DAC and GCD ACMVP rank node 28 above 15 (more of which will

be discussed below). As we would expect, in the scatter plots of Figure 2, the different

stages of approximations in the MD approach are largely consistent, and DMD, GCD

MDMLE, and GCD MDMVP provide much the same information. Similarly for

the AC approach, the measures are internally consistent. The differences between

measures corresponding to the MD approach and those of the AC approach echo

those of between DAC and DMD, comparing e.g. the top left panel of Figure 2 (GCD

MDLE against GCD ACMLE) with the panel in the middle at the far right (DMD

against DAC).
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Table 2: Influence measures for Lazega’s (2001) lawyers 1 through 36
ID Deg MDMLE ACMLE DMD DAC ACMVP MDMVP JN

1 1 0.065 0.179 0.038 0.059 0.128 0.054 2.435
2 6 0.156 0.221 0.073 0.074 0.193 0.128 5.437
3 3 0.098 0.1 0.065 0.052 0.079 0.094 2.004
4 9 0.118 0.176 0.059 0.087 0.165 0.124 5.504
5 6 0.371 0.475 0.161 0.2 0.327 0.29 6.173
6 5 0.139 0.157 0.06 0.066 0.18 0.103 3.001
7 2 0.346 0.457 0.169 0.185 0.377 0.236 3.039
8 0 0.192 0.482 0.091 0.194 0.338 0.178 5.811
9 3 0.374 0.807 0.216 0.34 0.432 0.252 1.714

10 5 0.909 1.284 0.51 0.512 0.949 0.674 5.6
11 1 0.112 0.369 0.066 0.148 0.281 0.079 2.39
12 9 0.331 0.654 0.171 0.31 0.705 0.251 8.97
13 2 0.206 0.402 0.073 0.165 0.264 0.153 3.145
14 6 0.056 0.103 0.042 0.043 0.155 0.051 3.211
15 11 3.138 3.009 1.366 1.136 1.754 2.089 27.681
16 13 0.357 0.551 0.184 0.297 0.616 0.257 5.936
17 15 0.309 0.169 0.159 0.086 0.199 0.31 10.555
18 8 0.259 0.314 0.131 0.135 0.295 0.236 4.98
19 10 0.048 0.354 0.018 0.185 0.545 0.043 3.798
20 4 0.027 0.378 0.003 0.145 0.279 0.017 0.826
21 1 0.171 0.66 0.067 0.31 0.601 0.148 2.276
22 9 0.385 0.572 0.184 0.267 0.444 0.308 4.942
23 0 0.283 1.106 0.112 0.468 1.061 0.245 5.811
24 9 0.255 0.374 0.116 0.148 0.34 0.206 5.523
25 5 0.274 0.723 0.14 0.343 0.777 0.219 5.155
26 12 0.542 0.605 0.264 0.276 0.6 0.459 13.28
27 3 0.319 0.169 0.15 0.089 0.149 0.208 6.095
28 13 0.977 1.961 0.456 1.179 2.172 0.711 17.65
29 9 0.957 0.681 0.435 0.264 0.464 0.637 19.178
30 4 0.137 0.441 0.047 0.19 0.233 0.096 1.689
31 13 1.456 1.924 0.65 0.686 1.295 0.831 13.006
32 12 0.659 0.71 0.318 0.314 0.609 0.42 7.975
33 5 0.303 0.815 0.138 0.347 0.82 0.244 5.328
34 6 0.387 1.216 0.226 0.432 0.532 0.282 8.749
35 7 0.576 1.547 0.332 0.666 1.536 0.295 14.015
36 3 0.63 2.691 0.303 0.983 2.044 0.444 2.116
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The influence measures are non-trivial in the sense that they do not merely reflect

differences in actor degrees as can be seen from the left hand panels of Figure 3. The

ranking is also not immediately visible in the sociogram of Figure 1.

Interpreting the difference between the AC and the MD measures, it is informative

to study a plot of GCD ACMLE against GCD MDMLE with marker size proportional

to the Jack-Knifed distances as in Figure 4. The two main differences between AC

and MD can firstly be said to be that AC, in addition to measuring the extremeness

of yi,•, also indicates whether an observation has great influence because it has a

covariate vector xi,• that is extreme. This is in analogy with GLM where observations

may be extreme in terms of the response variable or in the design space. Some care

may however be taken in translating this to ERGMs since no clear distinction can be

made between exogenous covariates and response variables. This example nonetheless

illustrates that this general idea provides insight into the difference between AC and

MD. Secondly, something which is harder to parse out, is the fact that the AC model

is misspecified under the assumption that the network actually consists of n nodes.

If there is evidence of Markov (and social circuit) dependence in y we may rule out

“long-range” dependencies in the data generating process (Snijders, 2010). The action

of removing an actor i does however induce dependencies among the tie-variables that

are not of the type of dependence, that were assumed for y (Markov and social circuit).

Loosely speaking, the MD approach is able to pick out interdependencies between tie

variables, that should be conditionally independent according to a model defined on

the induced subgraph, as stemming from unobserved potential ties, the AC approach

is unable to cope with this since it does assume that there are no unobserved tie

variables (Koskinen, Robins, and Pattison, 2010). This may also explain why more

nodes appear to have large values on AC than MD. These matters are highlighted

by a closer inspection of the actors 28, 36, and 35, that have high values on GCD

ACMVP but not on GCD MDMVP.

To better understand the differences between the measures, we may consider the

influence of different nodes on particular parameter estimates. Figure 5 plots the
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given by z(y(i);x(i)) − z(y;x)) for Lazega’s (2001) 36 partners with some key actors
indicated
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case-deletion maximum likelihood estimates for all parameters and nodes. As noted

in Section 3.1, we could base a DFBETA-like measure (Belsley et al., 1980) on these

individual estimates. Here we only use the estimates of Figure 5 contribute in a

different way for AC and MD.

Judging by Figure 4 actor 15 has high values on all of GCD ACMVP, GCD

MDMVP, and JN. Because of the “response” y15,•, the parameter estimates change

a great deal when 15 is removed by either AC or MD. As seen from Figure 3, 15

contributes highly to the density and the clustering (as measured by contribution to

the k-triangle count), which is reflected in the corresponding estimates in Figure 5,

panels (a) and (g), respectively, for both MDMLE and ACMLE. As 15 is the only

actor in a particular office, none of the ties in y15,• contribute towards the homophily

effect for office meaning that the estimate for this effect is greatly increased when

15 is removed. This is clearly demonstrated in panel (f) of Figure 5. The change

in estimates, and thereby the improved fit, is not greatly altered by the choice of

removal method and both AC and MD rate 15 highly influential. The differences in

contribution to z(y;x) of 15 is also the most “unusual” given the model, wherefore

15 also has the greatest JN.

The reason 28 inches past 15 in AC can be summarised: 28 contributes greatly to

density and clustering (Figure 3) but when, as in the MD approach, the attributes of

28 (high seniority, corporate practice, male, etc) are taken into account y28,• is not as

extreme. Actor 28 is still highly influential according to both methods and changes

the estimates greatly (Figure 5). Actor 28 sits in a highly triangulated region of the

graph and when removed using AC many ties are left unexplained. A symptom of

this could be that the change in the k-triangle statistic is much greater in the AC

approach for 28 than for MD (Figure 5 g).

Actor 36 is ranked 2nd by GCD ACMVP and 7th by GCD MDMVP, and 35

is ranked 4th and 11th, respectively. Both actors have low JN, 36 in particular has

extremely low JN. The reasons for the discrepancy between AC and MD are the same

for these two actors but the tendencies are stronger for 36. Looking at Figure 3 we
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see that their degrees are low and the contribution towards clustering small. Actors

36 and 35 are extreme in the attribute space since they are the most and second most

senior partners in the firm (middle upper panel of Figure 3). The extreme seniority

in combination with relatively few ties means that removal of these actors would

result in a substantial increase in the estimate of the main effect of senority (panel

(b) Figure 5). In the case of 36, JN is low since the extreme seniority is counteracted

by the low contribution to the main effect of seniority.

To test whether the observed value for actor 15 is extreme, we calculate the MCMC

p-value for the influence statistic of all actors. For each um (m = 1, . . . , 1000),

let δim = abs(Si(um) − S̄i)/S̃i, and let δ
(1)
m , . . . , δ

(n)
m be the ordered values in in-

creasing order. The mean S̄i = 1/M
∑M

m Si(um) and standard deviation S̃i =

[1/M
∑M

m (Si(um)− S̄i)2]1/2 are the MCMC equivalents of the node-specific expected

values and standard deviations, respectively. Figure 6 provides the MCMC distri-

bution of the maximum δ
(n)
m . The MCMC p-value for node 15 is 0.045 suggesting
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Figure 6: Distribution of node-standardised maximal GCD MDMVP with MCMC
p-value and reference line for actor 15

that the actor has a significant impact on the model. The MCMC p-value for i = 15

marginally, Pr(S15(Y ) > S15(y)), is 0.001.

4.2 A covert network

As a second example we consider the case of the revolutionary organisation Novem-

ber 17 which was active in Greece between 1975 and 2002 (Nomikos, 2007). The

network (November 17 Organization Aggregate Attack Series) was obtained from the

John Jay & ARTIS Transnational Terrorism Database (JJATT 2009) and consists of

18 actors with a total of 46 ties. Ties are defined as present if there in 1995-2002

was evidence of two individuals being either (1) Acquaintances/Distant family; (2)
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Friends/Moderately close family; or (3) Close Friends/Family and Tight-knit opera-

tional cliques1. The network sociogram is provided in Figure 7. From the sociogram

it seems clear that node 1 is the most central node in the network.

Table 3 provides the parameter estimates for a social circuit ERGM fitted to the

network that provided adequate fit (Robins and Lusher, 2013:184-185) for different

structural features of the network. We focus here only on GCD MDMVP. The values

Table 3: Estimates and statistics∗ for the November 17 network

MLE se z(y)
density −1.407 1.258 46
alt. k-stars −1.1974 0.423 120.91
alt. k-tri 2.1890 0.462 75.33

∗ Statistics are defined as in Section 2

on GCD MDMVP for the actors are provided in Table 4.2 along with the values of

µYi(y(i))(θ̂, x).

The observed GCD MDMVP for actor 1 (2.96) is almost three times as large as

the second highest value, which is recorded for actor 3 (1.095). Actor 1 also has the

largest degree (and is in fact connected to all other actors) and actor 3 has the second

highest degree of 10. As the assumed model is homogenous we can test the influence

statistic using the MCMC p-value Pr(S(n)(Y ) > S(n)(yjobs)). Here this simulated

p-value is 0.133 which is illustrated with reference to the CDF in Figure 8. The

conclusion can be said to be that while actor 1 clearly is different from the other

actors we would expect the model to generate such extreme actors.

The difference between the two examples is revealing. In the first case of the lawyer

network, we identified an individual who we inferred (using the MCMC p-value) was

1Ties were interactions that were (1) limited to radical organisation activities; (2) extend beyond
radical organisations to include such categories as co-workers and roommates; (3) those that would
die for each other
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Figure 7: November 17 network. Node-size proportional to degree centrality
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Table 4: GCD MDMVP and µYi(y(i))(θ̂, x) in the November 17 network

ID GCD density alt. k-stars alt. k-tri
1 2.963 33.20 78.05 50.37
2 0.822 49.85 133.72 84.45
3 1.095 41.66 103.49 64.03
4 1.062 41.68 103.57 64.13
5 0.150 46.06 120.08 75.15
6 0.242 45.10 116.43 72.48
7 0.069 45.87 119.90 75.18
8 0.116 44.87 116.03 72.70
9 0.580 48.98 130.88 82.59
10 0.168 48.18 128.84 79.24
11 0.187 48.20 128.93 79.24
12 0.063 47.09 124.15 77.22
13 0.165 48.12 128.66 79.14
14 0.759 49.76 133.46 84.22
15 0.483 48.72 130.02 81.96
16 0.318 47.78 126.58 79.71
17 0.064 47.08 124.12 77.16
18 0.413 44.27 113.17 70.40
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Figure 8: ECDF of maximal GCD MDMVP with MCMC p-value and reference line
for actor 1 for November 17 network
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extreme compared to other actors. In such a case we might conclude that there is

something quite distinctive about this individual that determines a significant influ-

ence on the network structure. In the second case, the method identifies one actor

who in fact has ties to all others: that is, the highest possible degree centrality. Yet,

the MCMC p-value is not significant. So we do not have convincing evidence that

this actor is significantly extreme, despite the highest possible degree. As with most

statistical tests, the lack of evidence could be related to poor statistical power and

the November 17 network is considerably smaller than the Lazega law-firm partner

network. The inference we make is that, assuming the social processes that produced

the network continue to operate, the “removal” of this actor would likely see another

actor move into a highly central position. Indeed, when we simulate networks from

the model, it is not unusual to produce one highly central node, even though the

highest degree centrality is not always achieved. In short, in the first case, the net-

work is altered substantially; in the second, the network largely reconstitutes itself.

These examples illustrate how a model-based analysis of extreme actors goes beyond

conclusions based on examination of standard centrality scores.

5. Concluding discussion

We have proposed a methodology for studying the influence of observations on

parameter estimates in ERGMs. The methodology relies on defining observations at

the level of the actor and thus investigating the influence on the model exerted by

the individuals in the network. The influence is measured as the change in parameter

estimates that would result under either one of two case deletion strategies: the

missing data (MD) approach and the available case (AC) approach. For each of the

case deletion strategies we have defined two influence measures that approximate the

decrease in deviance, or equivalently, the Kullback-Leibler divergence, for the model

defined by the estimates obtained from the respective case deletion strategies. The

two measures are particularly useful in investigating influence as a routine application
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when fitting ERGMs since these do not require refitting of the model. The AC

approach offers a heuristic interpretation in terms of what the structure of the network

would be if an actor was completely exogenous to the network and simply were left

out. The MD approach has the benefit of being more principled, measuring the

difference between networks of the same size. While the AC approach does not take

into account that an actor may be extreme only because of their covariates, the MD

approach does. The MD approach is implemented in MPNet (Wang, et al., 2014) as

is the MCMC p-value scheme. The former can used routinely in ERGM analysis and

the latter, which is computationally intensive, can be used for further investigations.

The proposed influence measures may heuristically be thought of as indices of

model-based centrality - to what degree does our analysis depend on specific indi-

viduals in the sense that their exclusion would change the estimates greatly in the

directions that “matter”. Delving deeper into the issues of what constitutes influ-

ential actors and outliers in the case of the ERGM and how this relates to the con-

cept of centrality (Freeman, 1978; Borgatti and Everett, 2006; Schoch and Brandes,

2015), raises some fundamental issues regarding statistical models for social networks.

When fitting an ERGM to a network, what does it mean that an actor is atypical or

typical? Robins, Pattison and Woolcock (2005) provide numerous examples of how

normal ERGMs may generate extreme nodes. Embedded in these questions are issues

of how the ERGM scales and how a stochastically homogeneous network relates to

larger networks in which it might be embedded (Schweinberger et al., 2017; c.p. the

closely related so called boundary issue, Laumann et al., 1983; and in the context of

ERGM, see Koskinen, Robins, Wang, and Pattison, 2013). From the perspective of

interpreting the ERGM as a data-generating process, an actor with a large value on

the statistic is ‘playing by different rules’ to the other actors. As such, identifying

an ‘extreme actor’ may indicate that the node should be treated as exogenous in the

analysis. Considering a government agency, an ERGM is not a suitable model for

explaining the ties of the president - people may have ties to the president because

this is the president, not because of endogenous tie-mechanisms. In our empirical
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illustrations using a collaboration network, there was one actor that clearly affected

the structure of the network. In this case it might mean that if this actor were re-

moved, then the collaborations would be organised differently. For the Revolutionary

17 November network we can however conclude that if the actor that appeared most

extreme were removed, then his position would be replaced by another actor.

We believe that the proposed influence measure will prove a useful tool in further

investigating these issues. The properties of these influence measures also warrant

further investigation to assess what information they might provide beyond what may

be motivated strictly from a statistically principled perspective.
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